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Residual-based Rank Specification Tests for AR-GARCH type 
models 

This paper derives the asymptotic distribution for a number of rank-based and 
classical residual specification tests in AR-GARCH type models. We consider 
tests for the null hypotheses of no linear and quadratic serial residual 
autocorrelation, residual symmetry, and no structural breaks. For these tests 
we show that, generally, no size correction is needed in the asymptotic test 
distribution when applied to AR-GARCH type residuals obtained through 
QMLE estimation. To be precise, we give exact expressions for the limiting 
null distribution of the test statistics applied to residuals, and find that standard 
critical values often lead to conservative tests. For this result, we give simple 
sufficient conditions. Simulations show that our asymptotic approximations 
work well for a large number of AR-GARCH models and parameter values. 
We also show that the rank-based tests often, though not always, have 
superior power properties over the classical tests, even if they are 
conservative. We thereby provide a useful extension to the econometrician's 
toolkit. An empirical application illustrates the relevance of these tests to the 
AR-GARCH models for the weekly stock market return indices of some major 
and emerging countries. 
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1 Introduction

Given the large literature on AR-GARCH type models, there has been much interest
in specification testing for location-scale time-series models. In this paper we provide
a unifying approach to derive the asymptotic distribution of (rank-based) residual
specification tests. We focus on the assumptions of independence, symmetry, and
stability of innovations in AR-GARCH type models. More precisely, we consider
the size-correction needed when applying existing and new rank-based tests for: (1)
null hypotheses of no linear and quadratic correlation in the standardized residuals
of AR-GARCH type models; (2) null hypothesis of symmetry of the innovations;
and (3) the null hypothesis of structural stability. The motivation of our special
focus on rank-based statistics for these specifications tests lies in the fact that most
applications of AR-GARCH models show non-normal innovation distributions (e.g.,
when applied to financial asset returns which are often leptokurtic and/or asymmetric
or exhibit infinite fourth moment). Rank-based tests deal well with these features
and complement recent tests in the literature.

Specification tests for AR-GARCH type models have a long history. We mention
a few examples. Li and Mak (1994) propose a test based on the sample autocorrela-
tion of squared residuals under conditional normality. Berkes, Horváth and Kokoszka
(2003) extend this result, dropping the conditional normality condition and using
mild non-explosiveness assumpions. Tse (2002) also deals with residual-based speci-
fication tests for GARCH type models assuming asymptotically efficient estimators.
Lundbergh and Teräsvirta (2002) contributed an important approach that unifies
the standard LM-type tests for remaining volatility clustering, as implemented by
Bollerslev (1986), and the LM tests of Engle and Ng (1993) for volatility asymme-
try. Their approach is quite flexible for checking conditional variance specifications.
Halunga and Orme (2009) extend the Lundbergh and Teräsvirta approach to take
into account conditional mean estimation uncertainty. Our rank tests for linear and
quadratic residual autocorrelation are robust to different innovation distributions
and account for the estimation uncertainty. The same holds for the rank-based tests
for symmetry and the absence of structural breaks. Our tests turn out to have
standard limiting distributions and better power for leptokurtic AR-GARCH mod-
els compared to, e.g., recently proposed tests in the literature by Kulperger and Yu
(2005). The rank-based tests for the null of symmetry of the innovation distribution
in AR-GARCH type models are easy to implement and in some cases compare favor-
ably to other recent tests in the literature including those in Bai and Ng (2001) and
Lambert et al (2012). Overall we find that our rank residual-based tests complement
various tests in the literature, are never oversized and enjoy good power properties
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especially for leptokurtic error innovations of AR-GARCH models.
The analysis of residual-based tests is generally complicated by its two-step na-

ture. The use of residuals (calculated using estimated parameter values) in the test
statistics instead of actual innovations may lead to a change in the null limiting
distribution and, thereby, to a size-distortion. A well-known example of this phe-
nomenon is the degrees-of-freedom correction when applying the standard Ljung-Box
test to residuals of an ARMA-type model. Without this correction, the residual-
based Ljung-Box test is undersized. In general, applying a standard test to residuals
of some model may lead to both over- and undersizing. Note that in a GMM-type
framework, residual-based tests (in the form of a J-test for overidentifying restric-
tions) will almost automatically always have a limiting null distribution that is less
spread-out than the innovation-based tests. We, however, consider a (quasi) likeli-
hood framework that is often applied in the context of AR-GARCH models. In this
setting, we show that generally a size correction is needed and, when it is, we provide
it explicitly. Also, often, but unlike the GMM framework not always, ignoring such
a correction leads to a conservative, thus still valid, test. We state simple sufficient
conditions for the specifications tests we consider to be conservative when applied to
residuals.

In this respect, the present paper has two important theoretical contributions. We
give explicit expressions for the limiting null distribution of (rank-based) statistics
used in specification testing. We precisely identify situations where the critical values
of the tests need not be adjusted, i.e., the two-step nature of the procedure does
not lead to a size distortion. Also, in relevant special situations, our results show
that the test statistic applied to residuals, but using uncorrected critical values,
leads to a conservative test. Thus, in applied work, such tests can be used without
adjustment. Our second contribution is that, for the rank-based tests we consider,
this conservativeness does not come at the cost of low power. That is, the power of
the rank-based tests applied to residuals still makes these tests a competitor for more
classical ones. Extensive simulations in Section 4 confirm these asymptotic claims
for finite samples.

For our theoretical results, we rely on the Hájek-Le Cam framework of Locally
Asymptotically Normal (LAN) experiments, following more abstract results in An-
dreou and Werker (2012). This framework, discussed, e.g., in Bickel, Klaassen, Ritov
and Wellner (1993), Le Cam and Yang (1990), Pollard (2004), and van der Vaart
(1998), provides high-level assumptions under which likelihood based inference pro-
cedures lead to Gaussian limiting distributions. This method is especially suited for
deriving the asymptotic distribution of rank-based statistics since it does not require
(asymptotic) smoothness conditions on the statistic of interest with respect to the
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nuisance parameters.1 The method also applies to general model specifications, as
long as they satisfy the LAN condition. For instance, IGARCH models are not ruled
out. For instance, they would also be valid for multivariate GARCH type models
which are also LAN and for which our rank-based tests can be readily extended
thereby addressing one of the open research questions in such models mentioned
in Bawens et al. (2006). As such, the limiting distributions need not be derived
case-by-case in a model specific way.2

The rest of the paper is organized as follows. In Section 2 we formally introduce
the GARCH type models we consider, including the regularity conditions needed.
Essentially, these regularity conditions induce the model to be Locally Asymptoti-
cally Normal (LAN) so that existing results on asymptotic statistics can be invoked
immediately. We also introduce the conditions needed to derive the limiting dis-
tribution of a statistic when applied to some model’s residuals, where we restrict
attention to the case the model is estimated using Gaussian QMLE which is still
the most commonly used estimator for GARCH models. This leads to our main
theoretical result in Theorem 1 and several propositions for special cases. Section 3
derives the asymptotic distribution of three broad categories of specification tests
when applied to standardized residuals, namely tests for (1) temporal dependence,
(2) symmetry, and (3) stability. We use our main theorem to derive the corrections
to critical values needed to obtain tests with an exact asymptotic size, and indicate
when precisely ignoring such a correction leads to a conservative test. In Section 4 we
present a comprehensive simulation study corroborating our theoretical results and
showing that the rank-based tests considered generally have strong power properties
compared to more classical tests widely applied in the literature. Section 5 provides
an illustration of our results for modelling some of the major and emerging stock
market returns indices. Section 6 concludes the paper.

2 Model and theory

As explained in the introduction, we rely on Andreou and Werker (2012) for the
formal analysis of our residual-based specification tests in AR-GARCH models. That

1Recent developments in the econometrics literature that involve ranks are found, for instance, in
transformation models (e.g., Cavanagh and Sherman (1998) and Sherman (1993)), in two-step rank
regression (Honoré and Hu (2004)), for robust testing in linear models (Rothenberg and Thompson
(2003)), in variance-ratio tests (Wright, 2000) and the Kendall’s tau test for the residuals of binary
choice models (Andreou and Werker, 2011).

2Other advances in econometric theory using LAN can be found in Abadir and Distaso (2007),
Jeganathan (1995), Ploberger (2004), and Ploberger and Phillips (2012).
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paper provides an analysis which is especially useful for non-pointwise differentiable
statistics, for instance, those involving ranks or runs. Their main theorem is based
on two assumptions, called ULAN and AN. The ULAN (Uniform Local Asymptotic
Normality) condition imposes the model of interest to be sufficiently “regular”. For
GARCH-type models this condition is well-studied and we, thus, refer to existing
results. The AN (Asymptotic Normality) condition describes the joint asymptotic
behavior of the model’s score, the estimator of the unknown model parameters,
and the test statistic of interest. This joint, trivariate, limiting variance matrix
determines whether a size correction in the residual-based statistic is needed, or
not. Both conditions are discussed below in the context of location-scale time-series
models.

Consider a time series Y1, . . . , YT modeled as

Yt = µt−1(η) + σt−1(θ)εt, t = 1, . . . , T, (2.1)

where both µt−1(θ) and σt−1(θ) may depend on past observed values Yt−1, Yt−2, . . ..
Moreover, (εt) is a sequence of i.i.d. innovations. We assume throughout that these
innovations have an absolutely continuous density f with finite Fisher information
for location and scale, i.e.,

Iµ = Iµ,f :=

∫
(f ′(x)/f(x))2f(x)dx <∞, (2.2)

Iσ = Iσ,f :=

∫
(1 + xf ′(x)/f(x))2f(x)dx <∞. (2.3)

We also introduce the notation Iµσ =
∫

(f ′(x)/f(x))(1 + xf ′(x)/f(x))f(x)dx, which
equals zero in case f is symmetric. Finally, we impose the identification restrictions
Eεt = 0, Eε2

t = 1, and also κε := Eε4
t < ∞. The unknown parameters η and θ are

assumed to belong to open Euclidean sets.
Under suitable regularity conditions this model is regular in the ULAN sense.

We formulate this as a high-level assumption.
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Assumption 1 The model (2.1) generating Y1, . . . , YT is Uniformly Asymptotically
Normal (ULAN), as T →∞, with scores (Central Sequences) for η and θ given by

∆(η) =
1√
T

T∑
t=1

−f
′(εt(η, θ))

f(εt(η, θ))
σ−1
t−1(θ)

∂

∂η
µt−1(η), (2.4)

∆(θ) =
1√
T

T∑
t=1

−
(

1 + εt(η, θ)
f ′(εt(η, θ))

f(εt(η, θ))

)
σ−1
t−1(θ)

∂

∂θ
σt−1(θ),

where εt(η, θ) := (Yt − µt−1(η)) /σt−1(θ). The Fisher Information matrix consists of
four blocks determined by

Iηη′ = IµWµµ′ with Wµµ′ = E

[
σ−2
t−1(θ)

∂

∂η
µt−1(η)

∂

∂η′
µt−1(η)

]
, (2.5)

Iηθ′ = IµσWµσ′ with Wµσ′ = E

[
σ−2
t−1(θ)

∂

∂η
µt−1(η)

∂

∂θ′
σt−1(θ)

]
, (2.6)

Iθθ′ = IσWσσ′ with Wσσ′ = E

[
σ−2
t−1(θ)

∂

∂θ
σt−1(θ)

∂

∂θ′
σt−1(θ)

]
. (2.7)

By symmetry, we have Iθη′ = I ′ηθ′ and Wσµ′ = W ′
µσ′ .

Under sufficient regularity conditions, the model (2.1) indeed generally satisfies
the ULAN condition. For instance, consider the pure GARCH(1,1) specification
µt−1(η) = 0 and

σ2
t (θ) = ω + αY 2

t−1 + βσ2
t−1(θ), (2.8)

with θ = (ω, α, β) ∈ R3
+ and some fixed initial value σ2

0(θ). Theorem 2.1 in Drost and
Klaassen (1997) then implies that the ULAN condition is satisfied under the Nelson
(1990) strict stationarity condition E log(β + αε2

t ) < 0. Note in particular that
IGARCH(1,1) models are not ruled out. The first ULAN result for GARCH-type
models was established by Linton (1993). Asymmetric GARCH-type models have
been analyzed in Sun and Stengos (2006). Pure ARMA models, i.e. σt−1(θ) = 1,
have been considered by Kreiss (1987a) and Kreiss (1987b). Dynamic location-
scale models of the general form (2.1) are studied in Drost, Klaassen and Werker
(1997). Ling and McAleer (2003) study non-stationary ARMA-GARCH models, but
a special case of their Theorem 3.1 provides a LAN result for non-explosive models
that is our focus of interest. Also, note that other models for positive observations,
like durations, are sometimes of the form (2.1). This is, for instance, the case for
Autoregressive Conditional Duration (ACD) models of Engle and Russell (1998).
Their asymptotic structure has been analyzed in Drost and Werker (2004).
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In order to estimate the model parameters (η, θ), empirical work almost invari-

antly uses a Gaussian Quasi Maximum Likelihood (QML) estimator (η̂, θ̂). This es-
timator is based on an imposed Gaussian distribution for the innovations εt, which,
generally, leads to consistent and asymptotically normal estimates. We formalize
this in the following assumption.

Assumption 2 The Gaussian QML estimator for (η, θ) in (2.1) satisfies

√
T

[
η̂ − η
θ̂ − θ

]
=

[
Wµµ′ 0

0 2Wσσ′

]−1

× 1√
T

T∑
t=1

[
εt(η, θ)σ

−1
t−1(θ) ∂

∂η
µt−1(η)

(εt(η, θ)
2 − 1)σ−1

t−1(θ) ∂
∂θ
σt−1(θ)

]
+ oP (1) (2.9)

L→ N

([
0
0

]
;

[
W−1
µµ′

1
2
Eε3W−1

µµ′Wµσ′W
−1
σσ′

1
2
Eε3W−1

µµ′Wµσ′W
−1
σσ′

1
4
(κε − 1)W−1

σσ′

])
.

The validity of Assumption 2 follows informally from standard Taylor expan-
sions of the QMLE estimator and standard martingale difference CLTs. Formal
results are often available under regularity conditions. For pure ARMA models, an
overview, e.g., can be found in Brockwell and Davis (1991). For scale models, the
analysis is generally more involved but some strong results exist. For instance, for
the GARCH(1,1) model, Lumsdaine (1996) establishes consistency and asymptotic
normality of the Gaussian QMLE estimator. Berkes and Horváth (2004) have im-
proved upon these results showing that, still under (2.8), (2.9) holds. More precisely,
(2.9) follows from their result (4.18) which, as noted in the proof of their Theorem 2.1,

is also valid for θ̂ applied to their Example 2.1. Note that the results in Berkes and
Horváth (2004) are established for GARCH(p,q) processes. Theorem 2 in Bardet
and Wintenberger (2009) establishes Asymptotic Normality and consistency of the
QMLE estimator for general causal time-series models precisely of the form (2.1).

We are interested in the present paper in specification testing, based on a residual-
based statistic. We therefore assume to be given an innovation-based statistic of
interest S(η, θ). To be able to derive the limiting distribution of the associated

residual-based statistic S(η̂, θ̂), we introduce a last assumption. Note that this is a
multivariate extension of Andreou and Werker (2012).
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Assumption 3 The innovation-based version of the test statistic of interest S(η, θ),

the central sequence, and the estimator (η̂, θ̂) are jointly asymptotically normal, that
is 

S(η, θ)
∆(η)
∆(θ)√
T (η̂ − η)√
T (θ̂ − θ)

 L→ N




0
0
0
0
0

 ; (2.10)


Σ c′η c′θ α′η α′θ
cη IµWµµ′ IµσWµσ′ I 0
cθ IµσWσµ′ IσWσσ′ 0 I
αη I 0 W−1

µµ′
1
2
Eε3

tW
−1
µµ′Wµσ′W

−1
σσ′

αθ 0 I 1
2
Eε3

tW
−1
σσ′Wσµ′W

−1
µµ′

1
4
(κε − 1)W−1

σσ′


 ,

where I and 0 denote an identity and zero matrix, of appropriate dimensions, respec-
tively.

Remark 1 (AN) in Andreou and Werker (2012) is formulated using convergence
under local alternatives to the parameters. As explained in their Appendix B it is,
for residual-based statistics, sufficient to verify the condition under fixed alternatives
only.

Assumption 3 describes the joint behavior of all ingredients that determine whether
a size correction is needed for a residual-based test, namely the model (represented

by the central sequences ∆(η) and ∆(θ)), the estimators θ̂ and θ̂ used, and the test
statistic of interest (whose innovation-based version is S(η, θ)).

This is a convenient place to mention some equalities that we will use throughout
the paper.

E
−f ′(εt)
f(εt)

εt = −
∫
f ′(x)xdx = 1, (2.11)

−E

(
1 + εt

f ′(εt)

f(εt)

)
εt = −

∫
f ′(x)x2dx = 0, (2.12)

E
−f ′(εt)
f(εt)

(
ε2
t − 1

)
=

∫
f ′(x)x2dx = 0, (2.13)

−E

(
1 + εt

f ′(εt)

f(εt)

)(
ε2
t − 1

)
= −1−

∫
f ′(x)x3dx = 2. (2.14)
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In particular these results corroborate Assumption 3 as far as it concerns the asymp-
totic covariance between the scores and the QML estimator.

We can now state the asymptotic null distribution of the residual-based test
statistic S(η̂, θ̂).

Theorem 1 Under Assumptions 1-3, the residual-based statistic S(η̂, θ̂) is asymp-
totically normally distributed with zero mean and variance

Σ + c′ηW
−1
µµ′cη +

1

2
Eε3

(
c′ηW

−1
µµ′Wµσ′W

−1
σσ′cθ + c′θW

−1
σσ′Wσµ′W

−1
µµ′cη

)
(2.15)

+
κε − 1

4
c′θW

−1
σσ′cθ − α

′
ηcη − α′θcθ − c′ηαη − c′θαθ.

Proof From Theorem 1 in Andreou and Werker (2012) we find the asymptotic
variance of the residual-based statistic as Σ + c′Γc− α′c− c′α, where Γ denotes the
limiting variance of the Gaussian QML estimator (η̂, θ̂). Using the partitioning of
the variance-covariances as in Assumption 3, the result follows. 2

Theorem 1 shows that replacing innovations by residuals may leave the asymp-
totic variance of the test statistic S unchanged, increase it, or decrease it, depending
on the values of cη, cθ, αη, and αθ. In particular, unlike what is sometimes con-
sidered to be common wisdom, it’s not the case that the asymptotic variance of
residual-based statistics is always smaller than that of the innovation-based statistic.
Such a situation is of particular interest as applied researchers could forego a de-
tailed analysis of the residual-based statistic and just use critical values based on the
innovation-based version that are generally available. If indeed the residual-based
asymptotic variance is smaller, such an approach will lead to a conservative test,
thus not invalidate the analysis in terms of size. If needed, the results in the present
paper can be used to get critical values that lead to an (asymptotically) size closer
to the desired level.

We give two results under which applying an innovation-based test to residuals
indeed leads to a conservative test.

Proposition 1 Impose the conditions of Theorem 1 and assume cθ = 0 and αη =
aW−1

µµ′cη for some scalar a. Then, the non-size-corrected residual-based test is con-
servative if

a ≥ 1

2
. (2.16)

Proof In view of Theorem 1, the non-size-corrected test based on S(η̂, θ̂) is con-
servative when cθ = 0 in case

c′ηW
−1
µµ′cη − 2α′ηcη = (1− 2a) c′ηW

−1
µµ′cη ≤ 0.
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As c′ηW
−1
µµ′cη ≥ 0, the result follows. 2

Proposition 2 Impose the conditions of Theorem 1 and assume cη = 0 and αθ =
aW−1

σσ′cθ for some scalar a. Then, the non-size-corrected residual-based test is con-
servative if

a ≥ κε − 1

8
. (2.17)

Proof In view of Theorem 1, the non-size-corrected test based on S(η̂, θ̂) is con-
servative when cη = 0 in case

κε − 1

4
c′θW

−1
σσ′cθ − 2α′θcθ =

(
κε − 1

4
− 2a

)
c′θW

−1
σσ′cθ ≤ 0.

As c′θW
−1
σσ′cθ ≥ 0, the result follows. 2

It’s also worth stating the following proposition explicitly. It gives a simple
condition under which the residual-based statistic has exactly the same (asymptotic)
size as the innovation-based statistic.

Proposition 3 Impose the conditions of Theorem 1 and assume cη = 0 and cθ = 0.
Then, the limiting null distribution of the residual-based statistic equals that of the
innovation-based statistic.

Proof This follows immediately from Theorem 1. 2

A question that arises naturally at this point is the effect on the (local) power of
tests that are applied to residuals instead of actual innovations. Similar techniques
as above can be used to assess this power, whether the tests are rank-based or not.
In the present paper we will assess the actual power of the various tests by extensive
simulations in Section 4. We only remark that it is possible, maybe somewhat sur-
prisingly, for residual-based statistics to be more powerful against certain alternatives
than the same statistic applied to actual innovations.

3 Specification tests

We consider a panoply of specification tests for the location-scale time-series model
introduced above. We group these tests in various sections.
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3.1 Linear residual autocorrelation tests

We are interested in testing for serial correlation in the residuals of the model. Based
on the innovations εt(η, θ), the classical standard s-th order autocorrelation statistic
satisfies, under(η, θ),

S
(s)
C1(η, θ) :=

√
T

(T − s+ 1)−1
∑T

t=s+1 εt(η, θ)εt−s(η, θ)−
(
T−1

∑T
t=1 εt(η, θ)

)2

T−1
∑T

t=1 εt(η, θ)
2 −

(
T−1

∑T
t=1 εt(η, θ)

)2

=
1√
T

T∑
t=s+1

εt(η, θ)εt−s(η, θ) + oP (1). (3.1)

In order to use Theorem 1, we apply a suitable martingale difference limit theorem to

SC1(η, θ) =
[
S

(1)
C1(η, θ), . . . , S

(m)
C1 (η, θ)

]′
. First, Σ = Im. Moreover, in view of (2.13),

we have cθ = 0 and, as a result, the value of αθ is irrelevant. Also, we find that cη is
determined row wise by

cη,s = Eεt−s
∂

∂η′
µt−1(η)

σt−1(θ)
, (3.2)

for l = 1, . . . ,m. Finally, in view of Eε2 = 1, we have αη = W−1
µµ′cη. Taking all

these together, the limiting null variance of the residual-based test statistic SC1(η̂, θ̂)
becomes

Im − c′ηW−1
µµ′cη. (3.3)

A few remarks are in place. First, note that this result is valid even if Eε3 6= 0.
Second, when applied to pure AR models of order p < m, the result reduces to the
standard Ljung-Box degrees of freedom correction as, in that case, cη = [Ip; 0m−p,p]

′

and Wµµ′ = Ip. Finally, in case of a pure scale model, i.e., no η parameter, we
find that no size correction is needed. In line with Proposition 2, applying no size
correction, i.e., using m degrees of freedom in Ljung and Box (1978) test applied to
residuals, always leads to a conservative test for linear residual autocorrelation in
location-scale time series. Using m−dim(η) degrees of freedom only leads to a valid
test for pure AR specifications. These results are corroborated by the simulations in
Section 4.

One of the advantages of our approach is that we do not require point-wise dif-
ferentiability of our test statistic with respect to the parameters η and θ. This is
particularly helpful when considering rank-based statistics since they are, by defi-
nition, not smooth in the parameters. While some form of asymptotic smoothness,
as required by more traditional approaches, often holds for rank-based statistics, at
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least under additional regularity conditions, the verification of such results may be
nontrivial. In such cases, Theorem 1 is useful. We introduce the notation Rt(η, θ)
for the rank of the t-th innovation, εt(η, θ), among all ε1(η, θ), . . . , εT (η, θ).

Rank-based test statistics are known for their robustness properties. In particular,
rank-based statistics are often distribution-free, i.e., their asymptotic behavior is the
same irrespective of the actual innovation distribution f . In order to introduce
the rank-based statistic for linear residual autocorrelation, we consider a so-called
reference density g. We assume throughout that g admits finite Fisher information
for location Iµ,g =

∫
(g′/g)2g < ∞, has mean zero and unit variance. Moreover, we

assume that g is strongly unimodal (i.e., −g′/g is monotone increasing). Finally, we
denote by G the distribution function associated to g.

Now, the rank-based test for l-th order autocorrelation is based on

S
(s)
R1(η, θ; g) =

1

T − s

T∑
t=s+1

−g′

g

(
G−1

(
Rt(η, θ)

T + 1

))
G−1

(
Rt−s(η, θ)

T + 1

)
/
√
Iµ,g, (3.4)

Using for instance the results mentioned in Hallin and Werker (1999), one may show,
under the stated assumptions on the reference density g,

S
(s)
R1(η, θ; g) =

1

T − s

T∑
t=s+1

−g′

g

(
G−1 (F (εt(η, θ)))

)
(3.5)

×G−1 (F (εt−s(η, θ))) /
√
Iµ,g + oP (T−1/2)

L→ N(0, 1),

as T →∞. Note that F (εt(η, θ)) follows a standard uniform distribution. The rank-
based autocorrelations are asymptotically normally distributed with unit variance
even if G 6= F . Actually, the representation (3.5) would need no assumption on F
other than continuity to avoid possible complications due to ties in the ranks. Finally,
observe that the unit variance assumption on the reference density g is innocuous as
any scale factor would cancel in S

(s)
R1(η, θ). Popular choices for G are the so-called van

der Waerden autocorrelations obtained by taking the standard normal distribution,
while the logistic distribution leads to the Wilcoxon autocorrelations; see Section 4
for details. Both satisfy Assumption G and many more examples can be found in
the overview of Hallin and Werker (1999).

The prime advantage of using rank-based autocorrelations is that they are insen-
sitive to misspecification of the innovation distribution (since they are distribution
free), while they still may lead to semiparametrically efficient inference procedures
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(Hallin and Werker (2003)). As a result, any reference density G satisfying the as-
sumptions leads to a valid innovation-based test (in terms of size), while the power
depends on the actual choice of G relative to the true distribution F . Moreover, while
tests directly based on the powers of the innovations often require the existence of
appropriate moments, rank-based tests do not.

Using the asymptotically linear representation (3.5), we easily find the matrices
c and α. To that end, define matrices Aµ and Aσ by their rows, for s = 1, . . . ,m,

AR1,µ,s = E

[
G−1(F (εt−s))σt−1(θ)−1 ∂

∂η′
µt−1(η)

]
,

AR1,σ,s = E

[
G−1(F (εt−s))σt−1(θ)−1 ∂

∂θ′
σt−1(θ)

]
.

Then

cη = I−1/2
µ,g E

[
f ′(ε)

f(ε)

g′(G−1(F (ε)))

g(G−1(F (ε)))

]
AR1,µ,

cθ = I−1/2
µ,g E

[(
1 + ε

f ′(ε)

f(ε)

)
g′(G−1(F (ε)))

g(G−1(F (ε)))

]
AR1,σ,

αη = I−1/2
µ,g E

[
ε
−g′(G−1(F (ε)))

g(G−1(F (ε)))

]
W−1
µµ′AR1,µ,

αθ =
1

2
I−1/2
µ,g E

[(
ε2 − 1

) −g′(G−1(F (ε)))

g(G−1(F (ε)))

]
W−1
σσ′AR1,σ.

With the above expressions, Theorem 1 can be applied directly so that exact
(asymptotic) critical values are available for rank-based linear residual autocorrela-
tion tests. In applied work, one may wish to settle for a conservative test so that cη,
cθ, αη, and αθ need not be estimated. One easily checks the following two special
cases.

1. In case we test for linear residual autocorrelation in pure location models,
i.e., σt = θ is constant (cθ = 0), a conservative test is obtained as long as
2ε+ (f ′/f)(ε) is increasing in ε. Indeed, this follows immediately from Propo-
sition 1.

2. In case we test for linear residual autocorrelation in pure scale models, i.e.,
µt = η (cη = 0), no size-correction is needed in case f and g are both sym-
metric about zero. Indeed, we then have cθ = 0 as the expectation of an anti-
symmetric function under a symmetric distribution and apply Proposition 3.
Thus, for an asymptotically correctly sized test on m rank-based autocorrela-
tions, one should use χ2

m quantiles.
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3.2 Quadratic residual autocorrelation tests

In order to test for possible autocorrelation in the squared residuals, we consider
both the Li and Mak (1994) and a rank-based test on the autocorrelation of squared
innovations. First, the Li and Mak (1994) test is based on the classical s-th order
autocorrelation of squared residuals, i.e.,

S
(s)
C2(η, θ) :=

√
T

∑T
t=s+1

(
ε2
t (η, θ)− T−1

∑T
t=1 ε

2
t (η, θ)

)(
ε2
t−s(η, θ)− T−1

∑T
t=1 ε

2
t (η, θ)

)
∑T

t=1

(
ε2
t (η, θ)− T−1

∑T
t=1 ε

2
t (η, θ)

)2

=
1√
T

T∑
t=s+1

(ε2
t (η, θ)− 1)(ε2

t−s(η, θ)− 1)

κε − 1
+ oP (1). (3.6)

In order to verify Assumption 3 for SC2(η, θ) =
[
S

(1)
C2(η, θ), . . . , S

(m)
C2 (η, θ)

]′
observe

again Σ = Im. Furthermore, from (2.13) we find cη = 0 so that the value of αη is no
longer relevant in (2.15). Observe that this holds even when Eε3 6= 0. Introduce the
matrix AC2,σ by its rows, s = 1, . . . ,m,

A′C2,σ,s = E

[(
ε2
t−s − 1

)
σt−1(θ)−1 ∂

∂θ
σt−1(θ)

]
. (3.7)

As, using (2.14),

cθ,s =
2

κε − 1
AC2,σ,

αθ,s =
1

2
W−1
σσ′AC2,σ,

we apply Theorem 1 to find the limiting variance of the residual-based statistic
SC2(η̂, θ̂) as

Im −
1

κε − 1
AC2,σW

−1
σσ′A

′
C2,σ. (3.8)

The above limit is also derived in Berkes, Horváth and Kokoszka (2003) for residuals
of the GARCH(p,q) model (compare also Horváth and Kokoszka (2001)). Their
Theorem 2.2 is the counterpart of (3.8) with the notation d2

0 = κε − 1, ik = s, cik =
E
[
(ε2
t−s − 1) ∂

∂θ′
log σ2

t−1(θ)
]

= 2A′C2,σ,s, A0 = 1
4
(κε−1)2Γ−1, and B0 = −1

2
(κε−1)Γ−1,

where Γ is the limiting variance matrix of the QMLE estimator in Assumption 2.
Note that their Theorem 2.2 gives the limiting distribution of (κε − 1)ρ̂2(θ̂; s). Our
results extend to the case where a mean term µt−1 is present (without affecting
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the limiting distribution), as long as our high-level assumptions remain satisfied.
Moreover, the results apparently generalize to non-symmetric GARCH(p,q) models
like Asymmetric GARCH (compare Sun and Stengos (2006)).

As (3.8) is obviously smaller than Im, the Li and Mak (1994) test for remaining
autocorrelation in squared residuals in (2.1) based on χ2

m quantiles, will always be
conservative. For applications where κε is large (like financial applications), the
undersizing may actually be fairly small. This is a convenient result for empirical
analysis.

Second, we consider rank-based tests of exactly the same form as (3.4), but with
Rt(η, θ) the rank of the squared innovation ε2

t among ε2
1, . . . , ε

2
T . If we denote by F (2)

the cumulative distribution function of ε2, we find

cη = I−1/2
g E

[
f ′(ε)

f(ε)

g′(G−1(F (2)(ε2)))

g(G−1(F (2)(ε2)))

]
E

[
G−1(F (2)(ε2

t−s))σt−1(θ)−1 ∂

∂η
µt−1(η)

]
,

cθ = I−1/2
g E

[(
1 + ε

f ′(ε)

f(ε)

)
g′(G−1(F (2)(ε2)))

g(G−1(F (2)(ε2)))

]
E

[
G−1(F (2)(ε2

t−s))σt−1(θ)−1 ∂

∂θ
σt−1(θ)

]
,

αη = I−1/2
g E

[
ε
−g′(G−1(F (2)(ε2)))

g(G−1(F (2)(ε2)))

]
W−1
µµ′E

[
G−1(F (2)(ε2

t−s))σt−1(θ)−1 ∂

∂η
µt−1(η)

]
,

αθ =
1

2
I−1/2
g E

[(
ε2 − 1

) −g′(G−1(F (2)(ε2)))

g(G−1(F (2)(ε2)))

]
W−1
σσ′E

[
G−1(F (2)(ε2

t−s))σt−1(θ)−1 ∂

∂θ
σt−1(θ)

]
.

Again, Theorem 1 gives a precise and detailed answer to the effect of using resid-
uals in this rank-based autocorrelation test for squared innovations. But, as before,
for applied work two special cases may be convenient.

1. In case we test for quadratic residual autocorrelation in pure location models,
i.e., σt = θ is constant (cθ = 0), no size-correction is needed in case f is
symmetric as then cη = 0 as well.

2. In case we test for quadratic residual autocorrelation in pure scale models, i.e.,
µt = η (cη = 0), a conservative test is obtained, using Proposition 2, in case

E
[
(ε2 − 1) −g

′(G−1(F (2)(ε2)))

g(G−1(F (2)(ε2)))

]
E
[(

1 + εf
′(ε)
f(ε)

)
g′(G−1(F (2)(ε2)))

g(G−1(F (2)(ε2)))

] ≥ κε − 1

4
. (3.9)

Condition (3.9) looks somewhat involved, but is easily verified for given specifications
of f and g. We provide in Table 3.1 the ratio of the left-hand and right-hand side
in some standard cases. With the exception of the t(5) distribution, this condition
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N(0, 1) t5 t8 t10

vd Waerden 2 0.86 1.64 1.80
Wilcoxon 2 0.78 1.55 1.72

Table 3.1: Ratio of the left-hand and right-hand side of (3.9) for some standard cases.

is always satisfied. A more comprehensive, finite-sample, analysis is provided in the
simulations section.

3.3 Residual symmetry tests

Tests for symmetry of the innovations εt are often based on marginal properties of
the individual innovations, i.e., they satisfy

SSym(η, θ) =
1√
T

T∑
t=1

ψ(εt) + oP (1),

for some antisymmetric function ψ. This holds, in particular, for the sign test and
the Wilcoxon signed-rank test.

Remark 2 The results in this section, formally, easily extend to testing other marginal
properties of the innovation distribution, like testing for excess kurtosis. However,
tests for symmetry lead to significant simplifications in the size-corrections and thus
are particularly interesting to study.

Observe that, under the null of symmetry, E
[(

1 + εf
′(ε)
f(ε)

)
ψ(ε)

]
= E [(1− ε2)ψ(ε)] =

0 so that cθ = αθ = 0. In order to apply Theorem 1 we further note

cη = E

[
−f

′(ε)

f(ε)
ψ(ε)

]
E

[
σt−1(θ)−1 ∂

∂η
µt−1(η)

]
,

αη = E [εψ(ε)]W−1
µµ′E

[
σt−1(θ)−1 ∂

∂η
µt−1(η)

]
,

so that the residual-based statistic SSym(η, θ) has a limiting variance of

Var {ψ(ε)}+ E

[(
−f

′(ε)

f(ε)
− 2ε

)
ψ(ε)

]
× (3.10)

E

[
σt−1(θ)−1 ∂

∂η
µt−1(η)

]′
W−1
µµ′E

[
σt−1(θ)−1 ∂

∂η
µt−1(η)

]
.

This result gives again rise to two important special cases.
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1. In case we test for symmetry of the innovation distribution in zero-mean scale
models, i.e., µt = 0, then cθ = 0 so that no size-correction is needed in the
residual-based test.

2. In case we test for symmetry of the innovation distribution in general location-
scale models, using critical values of the innovation-based test, i.e., based on
Var {ψ(ε)}, leads to a conservative test when applied to residuals in case both
ψ and 2ε+ (f ′/f)(ε) are increasing in ε. Indeed, this also follows directly from
Proposition 1.

3.4 Structural break tests in the residual distribution

Finally, we consider testing for a break point at the s-th quantile of the sample, in
either the innovation distribution or the autocorrelation structure of (squared) inno-
vations. Tests for break points at an unknown location in the sample are, generally,
rooted in tests for a known break point by integrating out the possible break locations
or by taking a supremum over those locations. While our theory, at the expense of
added technical complexity, can be extended to such integral- of sup-based statistics,
we do not discuss the details here. We focus on tests with a known break location,
but the simulations in Section 4 indicate that the extension to integral- or sup-based
tests works indeed as expected.

As the analysis for the various possible tests for breaks is very similar, we focus
here on testing for a structural break in the conditional variance using the squared
standardized innovations. To that extent, let, in line with Section 3.2, Rt(η, θ) again
denote the rank of the squared residual ε2

t (η, θ) among ε2
1(η, θ), . . . , ε2

T (η, θ). An
often-used statistic is the CUSUM type rank statistic

SB(η, θ) =
1√
T

bTsc∑
t=1

(
Rt(η, θ)

T + 1
− 1

2

)
,

where b·c denotes the entire function. A standard theorem on the asymptotically
linear representation of rank statistics (e.g.,Hájek, Šidák and Sen (1999), Chapter 6,
or van der Vaart (1998), Theorem 13.5) shows

SB(θ) =
1√
T

T∑
t=1

(I{t ≤ bTsc} − s)
(
F (2)(ε2

t (η, θ))−
1

2

)
+ oP (1),

as T →∞. Here, as before, F (2) denotes the distribution function of ε2
t . Theorem 1

now shows that no correction in critical values is needed when this statistic is applied
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to residuals as

cη = lim
T→∞

1

T

T∑
t=1

(I{t ≤ bTsc} − s) E

[
−f

′(ε)

f(ε)
F (2)(ε2)

]
E

[
σt−1(θ)−1 ∂

∂θ
σt−1(θ)

]
= 0,

cθ = lim
T→∞

1

T

T∑
t=1

(I{t ≤ bTsc} − s) E

[
−
(

1 + ε
f ′(ε)

f(ε)

)
F (2)(ε2)

]
E

[
σt−1(θ)−1 ∂

∂θ
σt−1(θ)

]
= 0.

In view of Proposition 3, a test using critical values of the innovation-based statistic
has the desired (asymptotic) size, even when applied to residuals of location-scale
time-series models. As this result is based on the CUSUM centering, (I{t ≤ bTsc} − s),
the same idea applies to, e.g., similar tests for breaks in the innovation distribution
or in linear standardized residuals.

4 Simulations

This section presents simulation evidence for the performance of the rank residual-
based specification tests proposed in the previous section for AR-GARCH type pro-
cesses. The objective of this section is twofold: First, we study whether the asymp-
totic results presented in the previous section approximate well the finite-sample
behaviour of residual-based statistics for representative AR-GARCH type processes
encountered in financial time-series applications. Hence, we evaluate the size of both
the classical tests and the more recent rank-based tests to examine their degree of con-
servativeness for AR-GARCH processes. Second, we compare the power of the rank
residual-based tests with some traditional specification tests applied to AR-GARCH
models. This is important as it may be convenient that generally specification tests
are conservative when applied to residuals rather than innovations, but if this comes
at the expense of little power, the tests are not very useful. So, to be precise, in
all simulations below, we do not apply any size correction to the asymptotic critical
values of the tests and, thus, take the simplest empiricist approach who would use
the same critical values as if the distribution of the innovations were known and
not estimated. Each section below refers to a particular null hypothesis tested and
follows the structure of Section 3.3

3All simulations were performed in Matlab version R2011b. The properties of the tests were
evaluated for 5000 simulations.
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4.1 Linear residual autocorrelation tests simulations

The objective of this section is to evaluate the performance of tests that examine the
null hypothesis of no (further) linear autocorrelation in the standardized residuals
of AR-GARCH type models. We evaluate the performance of the proposed rank-
based statistics vis-à-vis the traditional portmanteau Ljung-Box test (Ljung and Box
(1978)).

The AR(m)-GARCH(p,q) DGP with autoregressive coefficients (c0,φ1,...,φm) and
GARCH(p,q) coefficients (ω, α1, ..., αp, β1, ..., βq) is simulated for the sequence {Yt}
given by:

Yt = c0 +
m∑
i=1

φiYt−i + vt, (4.1)

vt = σtεt,

σ2
t = ω +

p∑
i=1

αiv
2
t−i +

q∑
j=1

βjσ
2
t−j,

where ω > 0, αi ≥ 0, βj ≥ 0, and |φi| < 1. The DGPs under the null exhibit no
AR structure and refer to a highly persistent GARCH(1,1) process with (ω, α1, β1) =
(0.1, 0.1, 0.8) driven by normal, Student’s t(3), t(5), and t(8) innovations. The DGPs
under the alternative exhibit an AR structure in the conditional mean of Yt generated
by an AR(1)-GARCH(1,1) with (c0, φ)-(ω, α1, β1) = (0, φ)-(0.1, 0.1, 0.8) with φ =
0.1, 0.2, or 0.5. We consider various sample sizes T = 300, 500, 1000, and 2000.
The residual-based serial correlation tests for AR-GARCH models are based on the

standardized residuals ε̂t =

(
Yt − ĉ0 −

∑m
i=1 φ̂iYt−i

)/
σ̂t.

We consider the traditional Ljung-Box (LB) test statistic given by

LB = T (T + 2)
K∑
s=1

r2
s

T − s
, (4.2)

based on the sample autocorrelation function rs defined as

rs =

∑T
t=s+1(ε̂t − ¯̂ε)(ε̂t−s − ¯̂ε)∑T

t=1(ε̂t − ¯̂ε)2
, s = 1, 2, . . . , K, (4.3)

where ¯̂ε =
∑T

t=1 ε̂t
/
T . We follow Ljung and Box (1978) and set s = 0 for all the

residual serial correlation tests. We also consider the following two residual-based
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rank tests. The van der Waerden rank autocorrelation test (vdW) (e.g., in Hallin,
Vermandele and Werker (2006)) defined by

vdW = T (T + 2)
K∑
s=1

r2
vdW,s

T − s
, (4.4)

where the autocorrelation function rvdW,s is given by

rvdW,s =

{
(T − s)−1

T∑
t=s+1

Φ−1

(
Rt

T + 1

)
Φ−1

(
Rt−s

T + 1

)

− [T (T − 1)]−1
∑ ∑

1≤i 6=j≤T

Φ−1

(
i

T + 1

)
Φ−1

(
j

T + 1

)}/
σvdW . (4.5)

In addition, we apply the Wilcoxon rank autocorrelation test (Wilc)

Wilc = T (T + 2)
K∑
s=1

r2
Wilc,s

T − s
, (4.6)

which is based on the Wilcoxon autocorrelations given by

rWilc,s =

{
(T − s)−1

T∑
t=s+1

φlog

(
Rt

T + 1

)
ψlog

(
Rt−s

T + 1

)
− [T (T − 1)]−1

∑
1≤i

∑
6=j≤T

φlog

(
i

T + 1

)
ψlog

(
j

T + 1

)}/
σWilc, (4.7)

where φlog(u) := 2u − 1, ψlog(u) := ln
(

u
1−u

)
and σWilc = 1. The ranks in (4.5)

and (4.7) are those of the standardized residuals ε̂t.
4 Both vdW and Wilc adhere to

the general form of rank-based statistics for linear residual autocorrelation in (3.4).
In the simulations we use the 5% critical value of the χ2

K-distribution for the test
statistics in (4.2), (4.4), and (4.6). Following the asymptotic analysis in Section 3.1,
under the null, the aforementioned statistics are asymptotically nuisance parameter
distribution free for the pure scale models with symmetric innovation distributions.

The results for testing the null hypothesis of no AR in AR-GARCH models are
summarized in Table 1. The Ljung-Box (LB), van der Waerden (vdW), and Wilcoxon
(Wilc) tests yield sizes that are close to the nominal 5% size. For normal errors, it is

4By symmetry, the second term in (4.5) and in (4.7) is zero and can be omitted as in (3.4).
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known that the LB and vdW statistic have identical asymptotic behavior. This result
carries over to the residual-based versions, which implies that the asymptotic power of
both tests is the same. The evidence in Table 1 corroborates this result. Moreover,
the classical Chernoff-Savage result is seen to hold as well: For the Student’s t-
distribution the vdW test performs strictly better than LB. Also, for t-distributed
errors, the Wilcoxon test shows better power than vdW. Again this result is in
line with the simulation results in Table 1 and holds for alternative degrees of AR
persistence. This result is also robust to the sample sizes considered as well as
the GARCH parameter values, kurtosis, and the number of autocorrelations of the
standardized residuals in the sum of the test statistics, K.

From an applied point of view, the accuracy that asymptotic approximations pro-
vide to finite sample behavior may even be more important than the exact power.
It is this approximation that governs the validity of using asymptotic critical val-
ues. From that perspective, it is convenient that Table 1 corroborates the result in
Section 3.1 that no size correction is needed when testing for linear residual autocor-
relation in pure scale models with symmetric innovation distributions.

In Table 2 we evaluate the size of these tests for AR-GARCH models for which
our asymptotic analysis in Section 3.1 suggests that the χ2

K critical values will yield
conservative tests. Indeed this asymptotic result is evident from Table 2. Yet it is
interesting that the degree of undersizing does not compromise power for alternative
levels of AR persistence, especially as T increases.

4.2 Quadratic residual autocorrelation tests simulations

In this section we examine the performance of tests for the null hypothesis of no
(remaining) quadratic autocorrelation in the standardized residuals of AR-GARCH
type processes. We first focus on a pure GARCH(1,1)-(ω, α1, β1) DGP with no AR
component for the sequence {Yt}. We consider the following DGPs for obtaining the
size of the tests given by: (i) ARCH(1) with low persistence (ω, α1):= (0.01,0.1) and
with high persistence (ω, α1):= (0.01,0.8), (ii) GARCH(1,1) with high persistence
(ω,α1,β1):= (0.01,0.1,0.8) and IGARCH(1,1) with (ω,α1,β1):= (0.01,0.1,0.9). The
simulated DGPs for evaluating the power of the tests are given by: (i) ARCH(2)
processes with low persistence (ω, α1, α2):= (0.01,0.1,0.1) and with high persistence
(ω, α1, α2):= (0.01,0.1,0.4), (ii) GARCH(1,1) with high persistence (ω,α1,β1) := (0.01,0.1,0.8)
and IGARCH(1,1) with (ω,α1,β1):= (0.01,0.1,0.9), where, under the null, we estimate
an ARCH(1) model in line with Li and Mak (1994). Some of the parameter choices
for the above GARCH DGPs are considered in Andreou and Ghysels (2002).

The innovation distributions used for the above DGPs are the following: N(0, 1),
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Student’s t(3), t(5), t(8) as well as the asymmetric Hansen’s Skewed Student’s t-
family proposed by Hansen (1994) for GARCH type processes. This Hansen SkSt(λ, η)
distribution is given by its density:

g(z) =

{
bd
(
1 + 1

η−2

(
bz+a
1−λ

)2)−(η+1)/2
, if z < −a

b
,

bd
(
1 + 1

η−2

(
bz+a
1+λ

)2)−(η+1)/2
, otherwise,

(4.8)

where 2 < η <∞ and −1 < λ < 1. The constants a, b, and d are given by

a = 4λd

(
η − 2

η − 1

)
, b2 = 1 + 3λ2 − a2, and d =

Γ(η+1
2

)√
π(η − 2)Γ(η

2
)
.

We consider the set of parameter estimates found in the empirical application of
Hansen (1994) for the weekly US Dollar vis-à-vis the Swiss Franc exchange rate given
by SkSt(-0.09,8.1). In this case, the sample skewness and kurtosis of the standardized
residuals is around -0.24 and 4, respectively, compared to 0.01 and 4 for the Student’s
t(8) distribution for T = 500. On the other hand, the parameter choice given by
the Hansen SkSt(0.99,8.1) represents a highly skewed distribution, given that the
upper bounds of skewness are −1 < λ < 1. For this case, sample skewness is
around 1.6 and kurtosis is around 7 for the standardized residuals of the GARCH
model when T = 500 to 1000. In the same vein as above, we estimate the ARCH(1)
model with Hansen SkSt errors to obtain the power of the tests for a number of
parameter choices of the Hansen SkSt(λ, η):=(-0.09,8.1), (0.99,8.1), (0.9,3), (-0.09,5)
and (0.99,5).5 The objective is to examine the properties of the residual-based ranks
tests for a highly-skewed distribution that may affect the asymptotic approximation.

We evaluate the size and power of the traditional Li and Mak (1994) test as
well as the proposed rank-based quadratic residual autocorrelation tests discussed in
Section 3.2. The Li and Mak (1994) test statistic is given by

LM(r,K) = T
K∑

i=r+1

r̂2
i , (4.9)

5Another asymmetric distribution considered is the Standardized Fernández and Steel (1998)
Skewed-t with parameters (ξ, ν)=(10,3) and (exp (0.08), 8). Lambert, Laurent and Veredas (2012)
use the Std FS SkSt distribution to evaluate the performance of dynamic skewness in GARCH
type processes. Comparing the FS SkSt with Hansen SkSt, when λ = 0 (in the Hansen SkSt) and

when ξ = 1 (in FS SkSt) we get the Student’s t-distribution, where λ = ξ2−1
ξ2+1 . When FS SkSt

is standardized, the distribution is the same with Hansen’s SkSt distribution and, therefore, the
results for the Std FS SkSt distribution are not presented here.
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where r̂s are the residual autocorrelations

r̂s =

∑T
t=s+1

(
ε̂2
t − ¯̂ε

)(
ε̂2
t−s − ¯̂ε

)∑T
t=1

(
ε̂2
t − ¯̂ε

)2 , s = r + 1, ..., K (4.10)

and r̂s = is the sth lag squared (standardized) residual autocorrelation, ¯̂ε =
∑T

t=1 ε̂
2
t/T ,

ε̂t = Yt/σ̂t and σ̂2
t the estimated variance from the GARCH model.6

We also consider a set of rank-based statistics. The van der Waerden (vdW) test
for evaluating quadratic autocorrelation in the standardized residuals of GARCH
type processes is given by

vdW = T (T + 2)
K∑

s=r+1

r2
vdW,s

T − s
, (4.11)

where the autocorrelation function rvdW,s is given in (4.5), where the ranks are now
those of the squared residuals. In addition, we propose the following Absolute van
der Waerden (AvdW) scores which can lead to improved power for testing quadratic
dependence in the conditional variance. The AvdW rank autocorrelations are given
by

rAvdW,s =

{
(T − s)−1

T∑
t=s+1

Φ−1

(
1 + Rt

T+1

2

)
Φ−1

(
1 + Rt−s

T+1

2

)

− [T (T − 1)]−1
∑ ∑

1≤i 6=j≤T

Φ−1

(
1 + i

T+1

2

)
Φ−1

(
1 + j

T+1

2

)}/
σAvdW ,

(4.12)

where σAvdW is given by

σ2
AvdW =

[
E
(
V 2
T

)
− (E (VT ))2] (T − s) , (4.13)

with

E (VT ) =
1

T (T − 1)

∑
i 6=j

Φ−1

(
1 + i

T+1

2

)
Φ−1

(
1 + j

T+1

2

)
(4.14)

6Note that Lundbergh and Teräsvirta (2002) give a different version of the LM test compared
to that in equations (4.9)-(4.10) with a different covariance matrix. However, the two covariance
matrices are asymptotically equal. In the simulations we use r = 1 following Li and Mak (1994).
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and

E
(
V 2
T

)
=

1

T − s
1

T (T − 1)

∑
i 6=j

Φ−1

(
1 + i

T+1

2

)2

Φ−1

(
1 + j

T+1

2

)2

+ 2
T − 2s

(T − s)2

1

T (T − 1)(T − 2)

∑
i 6=j 6=k

Φ−1

(
1 + i

T+1

2

)
Φ−1

(
1 + j

T+1

2

)2

Φ−1

(
1 + k

T+1

2

)

+

[
1− 1

T − s
− 2

T − 2s

(T − s)2

]
1

T (T − 1)(T − 2)(T − 3)∑
i 6=j 6=k 6=z

Φ−1

(
1 + i

T+1

2

)
Φ−1

(
1 + j

T+1

2

)
Φ−1

(
1 + k

T+1

2

)
Φ−1

(
1 + z

T+1

2

)
.

(4.15)

The expectations E (VT ) and E (V 2
T ) follow along the lines of standard rank statistic

analysis using the observation that, under the null, the ranks are uniformly dis-
tributed over all permutations of 1, . . . , T . Now, the test statistic based on the
AvdW rank autocorrelations is given by

AvdW(r,K) = T
K∑

i=r+1

r̂2
AvdW,i, (4.16)

where r = 1 is used in the simulations. Finally, the Wilcoxon rank autocorrelation
test (Wilc) in equations (4.6) and (4.7) is used with the squared standardized resid-
uals where the summation in (4.6) starts from s = r + 1 instead of s = 1. In the
simulations we use the 5% χ2

K−r critical value for the (4.6), (4.9), (4.11) and (4.16)
statistics.

The results for the size of the quadratic residual autocorrelations tests are sum-
marized in Tables 3, 5, and 6 for (G)ARCH processes. The corresponding power
results for symmetric error distributions appear in Table 4 and for asymmetric error
distributions in Table 7. The results reported in Table 3 for symmetric error inno-
vations show that some undersizing occurs for the test statistics. This evidence is
consistent with the results in Section 3.2 according to which for pure (G)ARCH type
models with symmetric error distributions the asymptotic distribution of residual-
based tests is more concentrated that those based on innovations. The simulation
results suggest that the degree of conservativeness of these tests is small and, in
general, the size is closer to the nominal 5% value for large T ≥ 1000 for most
statistics. In particular we find that the AvdW and Wilcoxon tests yield size closest
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to the nominal 5% level for the different (G)ARCH processes driven by alternative
symmetric error distributions as T increases in Table 3. The results in Table 4 show
that the power of all the quadratic residual dependence tests approaches unity as T
increases when the GARCH processes are driven by an error with a symmetric dis-
tribution. We find that the AvdW usually provides the best power among the tests
considered for very leptokurtic error distributions such as the t(3), t(5), and even for
the t(8), a result which is consistent with the properties of rank-based statistics and
the Chernoff-Savage theorem. For DGPs with normal innovations, the Li Mak and
AvdW tests have the highest power across all the DGPs and sample sizes T con-
sidered, a result which is also consistent with asymptotic theory. Finally, it’s worth
mentioning that for the rank-based tests for remaining quadratic dependence in AR-
GARCH residuals (with symmetric error innovations), there is no serious undersizing
effect.7

We now turn to Tables 5 and 6 to consider the size and to Table 7 to consider
the power of quadratic residual autocorrelation tests for GARCH type processes with
asymmetric innovation distributions. In particular, we consider the parameter values
of Hansen (1994) given by Hansen SkSt(-0.09,8.1) for the innovations of a GARCH
type model, as well as the parameter set Hansen SkSt(0.99,8.1) in order to exam-
ine the case of excess skewness. The simulation analysis shows that, even if the
innovation distribution is asymmetric as in the cases considered here, the tests still
enjoy good size properties. We also consider the highly persistent GARCH DGPs
with Hansen SkSt(-0.09,5) and the Hansen SkSt(0.99,5) distributions. For these pro-
cesses, we have the same skewness as mentioned above but now the kurtosis is higher.
The results in Tables 5 and 6 show that there is very mild undersizing mainly for the
Li Mak test in the presence of either high skewness and/or high kurtosis. Table 7
shows that all tests considered have good power for detecting remaining quadratic
residual dependence in asymmetric GARCH processes. In particular, in the presence
of high skewness and/or kurtosis in highly persistent (G)ARCH processes, the power
of the AvdW test outperforms considerably that of the LiMak test. For instance,
for T = 1000 we find that the difference in power between the AvdW and LiMak
test can reach up to 0.80 for the IGARCH (and highly persistent GARCH) processes
driven by skewed (Hansen SkSt(0.9,3) and Hansen SkSt(0.99,8.1)) and leptokurtic
distributed errors.8 The relatively higher power of the AvdW and other rank-based
tests, especially for IGARCH processes, is also consistent with the fact that the rank-

7For conciseness these results are available upon request from the authors.
8Overall the power of the tests for the Std FS SkSt(exp(0.08),8) is very similar to the power of

the tests for the Hansen SkSt(-0.09,8.1) and the power for the Std FS SkSt(10,3) is very similar to
the power for the Hansen SkSt(0.9,3).
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based tests do not require finite moments. For the GARCH processes with Hansen
SkSt(-0.09,8.1) errors, which are characterized by relatively low skewness and kurto-
sis, the LiMak and AvdW produce similar power and they outperform the vdW and
Wilc tests.

Given that most empirical applications of GARCH processes yield highly persis-
tent estimates, we consider the newly proposed AvdW ranks tests as a useful test to
the applied econometrician. Moreover, given that most financial time series that are
used to estimate GARCH processes may exhibit excess kurtosis and/or skewness, the
proposed AvdW test appears to be a robust test that enjoys the relatively highest
power among the tests considered here.

4.3 Residual symmetry tests simulations

We present simulation evidence for the properties of tests based on ranks and signs of
standardized residuals for symmetry in the innovation distribution of GARCH type
processes. We compare these tests with that proposed in Bai and Ng (2001). First,
we simulate the GARCH(1,1) in (4.2) with and without the AR component under
the null with (ω,α1,β1):=(20,0.05,0.9) and (ω,α1,β1):=(20,0.3,0.5) with normal, t(3),
and t(5) innovations, following the parameter values and innovation distributions in
Bai and Ng (2001). The objective here is to evaluate the size properties of the tests
for pure GARCH models and the degree of conservativeness of these tests due to the
AR component in AR-GARCH processes as discussed in Section 3.3.

Under the alternative hypothesis, the DGP is a GARCH(1,1) with (ω,α1,β1):=
(20,0.05,0.9) and (ω,α1,β1):=(20,0.3,0.5) driven by innovations with the following
asymmetric distributions: (i) Chi-square with 2 degrees of freedom, χ2

2 (as in Bai and
Ng (2001)); (ii) Lognormal(0,1) (as in Bai and Ng (2001)); (iii) Lambda (λ1, λ2, λ3, λ4)
(as in Bai and Ng (2001)) given by

F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, (4.17)

with parameter values (λ1, λ2, λ3, λ4):=(0,-1,-0.001,-0.13); (iv) Hansen Skewed t(λ, η)
(Hansen (1994)), Hansen SkSt given by (4.8). The parameter values used are (λ, η):=
(0.9,3) and (λ, η):=(0.5,3) as highly skewed alternatives, as well as (λ, η):=(0.99,8.1)
and (λ, η):=(-0.09,8.1) following Hansen (1994), with standardized residuals’ skew-
ness and kurtosis given by 4.63 and 51.51, 3.81 and 46.02, 1.61 and 7.57, -0.26 and
4.45, respectively.9

9When FS SkSt is standardized the distribution is the same with Hansen’s SkSt distribution
and as expected, power for the Std FS SkSt ((ξ, v):=(

√
3, 3) and (

√
0.8349, 8.1)) and Hansen SkSt

((λ, η):=(0.5,3) and (-0.09,8.1)) innovations is very similar.
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In Table 8 we examine the size of the test for symmetry in the standardized
residuals’ distribution of GARCH and AR-GARCH processes. The following tests are
employed to examine the null hypothesis of symmetry in the standardized residuals:
(i) The Sign test statistic given by

Sign =
2x± 1− T√

T
, (4.18)

where x is the number of positive signs. We use +1 when x > T/2, 0 when x = T/2
and −1 when x < T/2. (ii) The Wilcoxon signed rank test (Wilc) statistic is given
by

Wilc = min

{
T−,

T (T + 1)

2
− T−

}
, (4.19)

where T is the sample size and T− is the sum of the ranks of the negative differences.
Under the null the distribution of the test statistics in (4.18) and (4.19) follows
asymptotically the Binomial distribution (B(x, 0.5) and B(T−, 0.5) respectively).
(iii) The Bai and Ng (2001) (BN) test is given by

BN = max{|ST (x)|}, (4.20)

where ST (x) = ŴT (x)− ŴT (0) +
∫ 0

x
h−T (y) dy for x ≤ 0, ST (x) = ŴT (x)− ŴT (0) +∫ x

0
h−T (y) dy for x > 0 and WT (x) = 1√

T

∑T
t=1[I(et ≤ x) − I(−et ≤ x)] with et =

(Yt−E(Y ))/σt. The asymptotic critical value of the test is 2.20 at the 5% level and
the asymptotic distribution of ST (x) is max0≤s≤1 |B(s)|, where B(r) is a standard
Brownian motion on [0, 1].

The results in Table 8 show that all the tests considered above have size close to
5% for GARCH processes, as opposed to the AR-GARCH processes where serious
undersizing is evident for the Sign and Wilcoxon tests. This simulation evidence is
consistent with the theoretical results in Section 3.3 and Proposition 1. However,
compared to the rest of the tests evaluated so far in the simulations for AR-GARCH
DGPs, we find that only for the rank-based residual symmetry tests there is serious
undersizing compared to the quadratic residual autocorrelation tests. In terms of
power, we focus on the alternative of a pure GARCH DGP with asymmetric error
distributions. The third panel of Table 8 shows that for the very skewed alternative
distributions, namely the χ2

2, the Lambda, and the Lognormal(0,1) distributions,
considered in Bai and Ng (2001), all tests enjoy power close to one. However, some
interesting differences arise across the alternative tests when the innovations of the
GARCH are driven by the Hansen SkSt distribution with parameter values as shown
in Table 8. As expected, generally power improves with the degree of skewness
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for the Hansen SkSt distributions. For the Hansen SkSt cases that exhibit both
high skewness and kurtosis, namely the SkSt(0.9,3) and SkSt(0.5,3), the Bai and Ng
(2001) (BN) test and Sign test have power equal to 1 for T ≥ 500. For the Hansen
SkSt(-0.09, 8.1) which exhibits the relatively lowest degree of skewness the power is
lower, as expected, except for the BN test and the Sign test for T ≥ 1000.10

4.4 Structural break tests simulations

The objective of this final simulation section is to examine the properties of structural
breaks or change-points applied to the squared standardized residuals of GARCH
processes. Under the null hypothesis there is no change in the GARCH parameters
given by

H0 :

{
Yt = σtεt, t = 0, 1, ..., T

σ2
t = ω +

∑p
i=1 αiY

2
t−i +

∑q
j=1 βjσ

2
t−j

(4.21)

against the alternative hypothesis of one permanent change in the GARCH param-
eters

H1 :


Yt = σtεt,

σ2
t =

{
ω +

∑p
i=1 αiY

2
t−i +

∑q
j=1 βjσ

2
t−j, if t = 0, ..., πT

ω′ +
∑p

i=1 α
′
iY

2
t−i +

∑q
j=1 β

′
jσ

2
t−j, if t = πT + 1, ..., T

(4.22)

where
(ω, α1, ..., αp, β1, ..., βq) 6= (ω′, α′1, ..., α

′
p, β

′
1, ..., β

′
q),

and 0 < π < 1. We consider the following DGPs to examine the size and power of
the tests:
(i) GARCH(1,1) with (ω,α1,β1):=(0.0002,0.1,0.7) under the null and (0.0003,0.1,0.7),
(0.0002,0.167,0.7) and (0.0002,0.1,0.767) under the alternatives. Similar DGPs and
parameters are considered in Kulperger and Yu (2005).
(ii) GARCH(1,1) with (ω,α1,β1):=(0.0002,0.1,0.8) under the null and (0.0003,0.1,0.8),
(0.0002,0.167,0.8) and (0.0002,0.1,0.867) under the alternatives. The distributions
considered for the innovations are the N(0,1) and the Student’s t(3), t(5) and t(8)
and break points at π = 0.5 and 0.7.

We consider the following test statistics to evaluate the null hypothesis of stabil-
ity in the squared standardized residuals of GARCH processes: the Kulperger and

10We find that the power of these tests for the Std FS SkSt(10,3) is similar to the power for the
Hansen SkSt(0.9,3), but slightly larger for all tests.
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Yu (2005) CUSUM (KY), a corresponding rank residual-based CUSUM (RBC) test
proposed here, the Pettitt (1979) test (Pet) and the Lombard (1987) test (Lomb).
Kulperger and Yu (2005) recently proposed the (KY) CUSUM of squared residuals
tests.

The KY statistic is given by

KY CUSUM1 = max1≤i<T

∣∣∑i
t=1 ε̂

2
t − i

∑T
t=1 ε̂

2
t/T

∣∣
ν̂2

√
T

, (4.23)

where

ν̂2
2 =

1

T

T∑
t=1

((ε̂t − ¯̂ε)2 − σ̂2
(T ))

2.

The second statistic is defined as

KY CUSUM2 = max1≤i<T

∣∣∑i
t=1(ε̂t − ¯̂ε)2 − iσ̂2

(T )

∣∣
ν̂2

√
T

, (4.24)

where ¯̂ε is the residual sample mean and σ̂2
(T ) the residual sample variance. The

limiting null distribution of the above statistics is that of the supremum of a Brownian
Bridge. The KY CUSUM2 is centred about the residual sample mean ¯̂ε in contrast
to the non centred KY CUSUM1. The two statistics give very similar results. In
the simulation results we focus on the KY CUSUM2 (denoted by KY in the Tables)
given that Kulperger and Yu (2005) also report results for this statistic only.

The rank-based CUSUM (RBC) of squared GARCH standardized residual test
is given by

RBC = max

∣∣∣∣∣∣T− 1
2

bTsc∑
i=1

s(Ri)

∣∣∣∣∣∣ , (4.25)

where

s(Ri) = A−1

[(
Ri

T + 1

)
− 1

2

]
, (4.26)

and

A2 = (T − 1)−1

T∑
i=1

[(
Ri

T + 1

)
− 1

2

]2

.

The asymptotic distribution of s(Ri) is that of a Brownian Motion (BM) and of
RBC that of a Brownian Bridge (under the null hypothesis of no breaks and when
these tests are applied to the true innovations). Given the results in Section 3.4, we
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expect that no size correction is required in the asymptotic distribution of the test
when applied to estimated squared standardized residuals of pure GARCH processes.
Hence, we use 5% critical value (of 1.36) in the simulations. Similarly, Lombard
(1987) proposed a rank-based score test for change-points in independent random
variables. Following our results in Section 3.4 we can also apply this test to the
squared standardized residuals given in (4.26) and the statistic given by

Lomb =
T−1∑
t=1

t∑
i=1

s(Ri)
2. (4.27)

follows the Cramer-von Mises asymptotic distribution. We apply the 5% critical value
(of 0.461) in simulations, thus again adopting no size correction in the asymptotic
distribution of the test.

Finally, the Pettitt (Pet) test is based on testing the null hypothesis that a se-
quence of random variables has a common distribution function against the alterna-
tive of having a change point. The statistic is given by

Pet = sup
t=1,...,T

|ε̂2
t |, (4.28)

where

ε̂2
t =

(
T−1

√
3

T + 1

)
Ut,T (4.29)

and

Ut,T = 2Wt − t(T + 1) with Wt =
t∑

j=1

Rj.

The limiting distribution of the Pettitt statistic, under the null, is again the supre-
mum of a Brownian Bridge.

The results in Table 9 show that for most tests size approaches 5% as T increases,
which is consistent with the results in Section 3.4 according to which no size correc-
tion is expected for the residual-based tests. We find that the Lombard test yields
size closer to the nominal 5%, whereas the KY test is often undersized (which agrees
with the findings of Kulperger and Yu (2005)). In terms of power the KY performs
best for detecting breaks in the standardized residuals of GARCH processes driven
by N(0, 1) errors, for all T considered. In general, as the sample size T increases, all
tests have similar power for the alternative innovations’ distributions. These results
are consistent with the asymptotic theory and hold for different levels of persistence
in the GARCH, different break sizes and different locations of the break point. A
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notable exception is found for the heavy tailed distributed t(3) GARCH processes
where the power of the RBC test outperforms that of the KY test even for large T .
The findings in Table 9 show that, for t(3) driven GARCH processes and for all the
cases considered under the alternative, the KY test has no power for T = 500 and
1000 and can only reach a power of 0.27 for T = 3000. In contrast, the RBC test for
the t(3) GARCH model enjoys high power already for T ≥ 1000 and the maximum
difference between the power of the KY and RBC tests is found to be a sizeable
0.6. Note that the Pettitt and Lombard tests give very similar size and power to the
RBC. This simulation evidence is consistent with the properties of rank statistics
which are robust to heavy-tailed distributions. Finally it is worth mentioning that
the size of the rank quadratic residual-based tests for structural breaks also approx-
imates the 5% for AR-GARCH DGPs with symmetric error innovations and there is
no undersizing effect compared to previous tests.11

The size and power of the tests were also evaluated for the Hansen Skewed Stu-
dent’s t-distribution. The choice of the parameters was based on Hansen (1994),
namely SkSt(-0.09,8.1), SkSt(-0.15,5.57), and SkSt(0.05,4.23).12 The results in Ta-
ble 9 show that for the Hansen SkSt distribution with parameters as in Hansen (1994)
(which have low kurtosis and skewness) the size and power are very similar to those
of the normal distribution. In contrast, when the Hansen distribution function be-
comes more skewed and leptokurtic the power of the rank-based tests is higher than
that of the KY test for T ≥ 1000.

Overall, the improved power results of rank-based quadratic standardized residual
tests are consistent with the properties of rank test statistics which are more robust
to different innovation distributions.

5 Empirical Application

5.1 Data

We consider two groups of stock markets returns indices. The first refers to 12
emerging market stock returns indices located in Asia and Latin America, namely
Argentina (ARG), Brazil (BRA), Chile (CHI), Colombia (COL), India (IND), Ko-
rea (KOR), Malaysia (MAL), Mexico (MEX), Pakistan (PAK), Philippines (PHIL),
Thailand (THAI), and Venezuela (VEN). We consider weekly data for the sample

11For conciseness we do not report the size of the breaks tests for the AR-GARCH DGPs but
these are available upon request from the authors.

12This choice matches the parameters of two emerging stock market returns considered in the
empirical section below, namely PAK and VEN.
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period 06/01/1989-15/08/2008 with sample size T = 1024 for all emerging coun-
tries except Venezuela which is 06/01/1989-06/04/2007 with T = 953, due to data
availability. The data source for the emerging stock market index returns is the
emerging markets database (EMDB) of the Standard and Poor’s except for Pak-
istan which is the Global Financial Data database, which has the updated data for
this series. The second group refers to major stock markets represented by the in-
dices of the S&P500 (US), the FTSE100 (UK), the NIKKEI225 (Japan), the DAX
(Germany), the CAC 40 (France), the S&P/TSX (Canada) and the HANG SENG
(Hong Kong). The series were taken from Datastream and the Global Financial
Data database. For comparison purposes we also consider the sample period from
07/01/1989-16/08/2008 for these series. For each price index, we study the sam-
ple ending at the end of August 2008 marking the period before the collapse of
the Lehman Brothers and the recent financial crisis and we obtain the weekly re-
turns defined as rt = 100 (ln (pt)− ln (pt−1)), where pt is the price at time t in local
currency.

Some descriptive statistics for the stock market indices are reported in Table 10.
In general, the emerging markets stock returns indices exhibit similar skewness com-
pared to some of the major stock market indices, except Argentina which exhibits the
relatively highest skewness. The emerging stock market returns indices are relatively
more leptokurtic compared to some of the major stock market returns indices with
Argentina and Malaysia showing considerably large kurtosis. This motivates our use
of rank-based statistics below.

The estimation results reported in Table 11 show that the GARCH coefficients
are significant for all series and the null hypothesis of IGARCH effects is not rejected
in around half of the countries considered here. It is important to note that the
theoretical results for GARCH processes, are also valid for (stationary) IGARCH
models, i.e., finite variance of the observed process is not needed in the QMLE and
LAN results referred to before. On the other hand, the estimated AR coefficients are
relatively small, although they are (statistically) significant for the S&P500 and most
of the emerging markets. For the emerging stock markets, there is relatively higher
kurtosis in the standardized residuals compared to the major markets as shown in
the last two columns of Table 10.

5.2 Empirical results

The empirical results in Tables 12 and 13 lead to some interesting conclusions related
to the normal AR(1)-GARCH(1,1) benchmark model of volatility for some of the
major and emerging stock market returns indices. We allow for an AR(1) given
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that misspecifying the conditional mean can lead to spurious GARCH effects (e.g.,
Lumsdaine and Ng (1999)).

The residual specification tests in Table 12 show that for the major stock market
weekly returns indices considered, the AR(1)-GARCH(1,1) specification captures the
dynamics of these series given that almost all the linear and quadratic autocorrela-
tion tests for the standardized residuals do not provide evidence against the null hy-
potheses. In contrast, the evidence in Table 13 for the linear dynamics of the weekly
emerging stock market returns indices is different from that of most of the major
stock market indices. Namely, in seven of the twelve emerging markets (Argentina,
Brazil, Colombia, Malasia, Pakistan, Philippines and Thailand) the null hypothesis
of no linear autocorrelation in the standardized residuals of the AR(1)-GARCH(1,1)
model is rejected by almost all tests. Interestingly, though the GARCH model cap-
tures the quadratic dynamics of both the emerging and major weekly stock market
returns indices. There are however some sporadic rejections of the null hypothesis
of no remaining quadratic standardised residual autocorrelation by some of the rank
tests.

Testing the null hypothesis that the conditional distribution of the standardized
residuals of the normal AR(1)-GARCH(1,1) model is symmetric, we find empirical
support in most developed and emerging stock markets returns except the US, Ger-
many, Brazil, Chile and Pakistan. In most of these cases Bai and Ng (2001) test
provides evidence against the null hypothesis of symmetry.

In testing for the null hypothesis of no structural breaks in the GARCH coef-
ficients we find an interesting difference between rank residual-based tests vis-à-vis
other recent tests proposed for GARCH type models. While the KY test provides no
evidence of instability in the standardized residuals, the rank tests detect structural
breaks in the squared standardized residuals of this model in three emerging markets,
Brazil, Pakistan and Venezuela, which are associated with some major economic and
political events.13 The descriptive statistics results in Table 10 also show that Brazil
and Venezuela exhibit relatively high skewness and kurtosis in the standardized resid-
uals (as shown in the last two columns). This is consistent with the theoretical and
simulation evidence reported in Table 8 which shows that the power of the rank
statistics is superior than the KY test statistic for non-normal distributions.

13”Real plan” to tackle inflation implemented in Brazil with new currency introduced on
01/07/1994, Pakistan elections for national assembly were held on 06/10/1993 where Benazir Bhutto
was elected prime minister and on 25/05/2000 the Venezuelan authorities declared the postpone-
ment of the presidential elections that were scheduled on 28/05/2000.
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6 Concluding remarks and future work

We consider specification testing for location-scale dynamic models. In particular,
we focus on testing for linear and quadratic residual autocorrelation, testing for sym-
metry of the innovation distribution, and testing for structural breaks. Many speci-
fication tests for these hypotheses have been proposed. We provide exact asymptotic
size corrections needed when applying general innovation-based tests to residuals.
We show that, in many cases though not always, ignoring such size correction makes
the residual-based test conservative. We provide precise conditions under which this
occurs.

We present a number of rank-based tests for the above-mentioned hypotheses.
We show that their strong power properties often outweigh the conservativeness
when applied to residuals. Thus, these rank-based tests are more powerful than their
classical counterparts. Therefore, an empiricist can, in a first-step, rely on the readily
available standard critical values ignoring any adjustment and, only if desired, our
theory can be used to adjust critical values to further improve power. These results
are corroborated by extensive simulations. An application to some of the major and
emerging market stock return indices illustrated this empirical strategy.
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Table 1: Simulation results for the size (using GARCH models) and power (using AR(1)-
GARCH models) of alternative tests for remaining linear residual autocorrelation in the
standardized residuals of AR-GARCH type models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
Model T Test Size P1 P2 P3 Size P1 P2 P3 Size P1 P2 P3

AR(1)-GARCH(1,1) 300 LB 0.039 0.249 0.772 1.000 0.053 0.192 0.691 1.000 0.051 0.157 0.618 1.000
(c0, φ)-(0.1,0.1,0.8) vdW 0.035 0.247 0.766 1.000 0.045 0.180 0.673 1.000 0.041 0.144 0.595 1.000

Wilc 0.048 0.239 0.798 1.000 0.048 0.208 0.700 1.000 0.049 0.151 0.637 1.000
N(0,1) 500 LB 0.052 0.394 0.961 1.000 0.055 0.336 0.924 1.000 0.060 0.237 0.886 1.000

vdW 0.048 0.379 0.957 1.000 0.050 0.320 0.917 1.000 0.052 0.231 0.880 1.000
Wilc 0.067 0.441 0.961 1.000 0.073 0.369 0.929 1.000 0.065 0.304 0.882 1.000

1000 LB 0.052 0.761 1.000 1.000 0.052 0.619 0.998 1.000 0.052 0.561 0.998 1.000
vdW 0.051 0.760 1.000 1.000 0.053 0.616 0.998 1.000 0.047 0.554 0.998 1.000
Wilc 0.070 0.752 1.000 1.000 0.073 0.641 1.000 1.000 0.062 0.589 0.999 1.000

2000 LB 0.044 0.966 1.000 1.000 0.045 0.924 1.000 1.000 0.039 0.901 1.000 1.000
vdW 0.040 0.967 1.000 1.000 0.044 0.923 1.000 1.000 0.035 0.902 1.000 1.000
Wilc 0.049 0.970 1.000 1.000 0.067 0.920 1.000 1.000 0.076 0.909 1.000 1.000

AR(1)-GARCH(1,1) 300 LB 0.046 0.187 0.651 0.992 0.058 0.136 0.495 0.990 0.051 0.132 0.419 0.971
(c0, φ)-(0.1,0.1,0.8) vdW 0.057 0.354 0.868 1.000 0.077 0.255 0.761 0.999 0.096 0.222 0.707 1.000

Wilc 0.040 0.376 0.920 1.000 0.058 0.288 0.852 1.000 0.041 0.257 0.820 1.000
t(3) 500 LB 0.036 0.287 0.849 0.996 0.041 0.227 0.741 0.991 0.050 0.179 0.672 0.992

vdW 0.053 0.511 0.978 1.000 0.067 0.407 0.937 1.000 0.075 0.394 0.919 0.999
Wilc 0.061 0.592 0.996 1.000 0.054 0.512 0.981 1.000 0.068 0.422 0.966 1.000

1000 LB 0.050 0.546 0.974 0.999 0.037 0.411 0.957 1.000 0.046 0.377 0.936 0.996
vdW 0.057 0.812 0.998 1.000 0.059 0.696 0.998 1.000 0.064 0.665 0.997 1.000
Wilc 0.053 0.887 1.000 1.000 0.058 0.798 1.000 1.000 0.065 0.754 1.000 1.000

2000 LB 0.054 0.832 0.998 1.000 0.043 0.762 0.993 0.997 0.051 0.711 0.995 1.000
vdW 0.059 0.980 1.000 1.000 0.044 0.943 1.000 1.000 0.046 0.923 1.000 1.000
Wilc 0.063 0.995 1.000 1.000 0.076 0.985 1.000 1.000 0.060 0.975 1.000 1.000

AR(1)-GARCH(1,1) 300 LB 0.044 0.192 0.725 1.000 0.045 0.160 0.635 0.999 0.056 0.110 0.543 1.000
(c0, φ)-(0.1,0.1,0.8) vdW 0.041 0.218 0.800 1.000 0.051 0.198 0.705 1.000 0.052 0.233 0.596 1.000

Wilc 0.050 0.289 0.855 1.000 0.060 0.260 0.793 1.000 0.074 0.246 0.727 1.000
t(5) 500 LB 0.051 0.351 0.927 1.000 0.038 0.272 0.860 1.000 0.037 0.227 0.825 1.000

vdW 0.052 0.437 0.959 1.000 0.046 0.334 0.918 1.000 0.034 0.272 0.878 1.000
Wilc 0.062 0.508 0.981 1.000 0.067 0.400 0.954 1.000 0.056 0.350 0.937 1.000

1000 LB 0.040 0.663 1.000 1.000 0.054 0.563 0.994 1.000 0.051 0.482 0.993 1.000
vdW 0.043 0.761 1.000 1.000 0.052 0.665 0.998 1.000 0.079 0.557 0.998 1.000
Wilc 0.064 0.815 1.000 1.000 0.073 0.744 1.000 1.000 0.084 0.646 0.999 1.000

2000 LB 0.043 0.935 1.000 1.000 0.049 0.869 1.000 1.000 0.043 0.809 1.000 1.000
vdW 0.050 0.973 1.000 1.000 0.056 0.937 1.000 1.000 0.046 0.888 1.000 1.000
Wilc 0.063 0.988 1.000 1.000 0.080 0.959 1.000 1.000 0.056 0.929 1.000 1.000

AR(1)-GARCH(1,1) 300 LB 0.058 0.251 0.755 1.000 0.059 0.194 0.656 1.000 0.048 0.151 0.574 1.000
(c0, φ)-(0.1,0.1,0.8) vdW 0.049 0.264 0.781 1.000 0.048 0.197 0.677 1.000 0.039 0.155 0.586 1.000

Wilc 0.056 0.308 0.835 1.000 0.073 0.257 0.741 1.000 0.061 0.210 0.683 1.000
t(8) 500 LB 0.055 0.385 0.950 1.000 0.058 0.287 0.907 1.000 0.056 0.255 0.850 1.000

vdW 0.045 0.400 0.965 1.000 0.057 0.299 0.928 1.000 0.051 0.252 0.869 1.000
Wilc 0.059 0.477 0.977 1.000 0.081 0.382 0.951 1.000 0.068 0.319 0.911 1.000

1000 LB 0.049 0.687 1.000 1.000 0.043 0.585 0.998 1.000 0.050 0.538 0.994 1.000
vdW 0.046 0.734 1.000 1.000 0.042 0.615 0.998 1.000 0.045 0.565 0.996 1.000
Wilc 0.057 0.765 1.000 1.000 0.055 0.673 1.000 1.000 0.068 0.647 0.999 1.000

2000 LB 0.050 0.948 1.000 1.000 0.040 0.922 1.000 1.000 0.046 0.854 1.000 1.000
vdW 0.050 0.967 1.000 1.000 0.041 0.930 1.000 1.000 0.044 0.873 1.000 1.000
Wilc 0.069 0.975 1.000 1.000 0.062 0.949 1.000 1.000 0.071 0.904 1.000 1.000

Notes: The table shows the size/power for the Ljung-Box test (LB), the van der Waerden test (vdW) and the Wilcoxon test
(Wilc). For the size calculations a GARCH(1,1) model was generated and estimated. For the power calculations an AR(1)-
GARCH(1,1) model was generated and a GARCH(1,1) was estimated. The AR(1)-GARCH(1,1) model with AR coefficients
(c0,φ) and GARCH(1,1) coefficients (ω,α1,β1) is given by Yt = c0+φYt−1+σtεt with σ2

t = ω+α1v2t−1+β1σ2
t−1 and vt = σtεt.

The models used in the simulations are the AR(1)-GARCH(1,1) model with GARCH(1,1) coefficients (ω,α1,β1):=(0.1,0.1,0.8)
and AR(1) coefficients (c0, φ):=(0,0) for size and (0,0.1) for P1, (0,0.2) for P2 and (0,0.5) for P3, where P refers to the cases
for evaluating the power of the tests. The innovation’s distribution is the normal, the Student’s t(3), t(5) and t(8). The
maximum lag order, K, used in the tests indicate that the first K standardized residual autocorrelations are used in the test
statistic, i.e. s = 1, ...,K. The critical value of the tests is based on the 5% significance level of the χ2

K . The above results
refer to 5000 simulations.
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Table 2: Simulation results for the size (using AR(1)-GARCH) and power (using AR(2)-
GARCH) of alternative tests for remaining linear residual autocorrelation in the standard-
ised residuals of AR-GARCH models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
Model T Test S1 S2 P1 P2 S1 S2 P1 P2 S1 S2 P1 P2

AR(1)-GARCH(1,1) 300 LB 0.010 0.022 0.173 1.000 0.013 0.019 0.162 1.000 0.024 0.025 0.104 0.998
(c0, φ)-(0.1,0.1,0.8) vdW 0.009 0.020 0.163 1.000 0.011 0.016 0.140 1.000 0.021 0.024 0.102 0.997

Wilc 0.013 0.029 0.186 0.999 0.022 0.026 0.170 1.000 0.040 0.040 0.118 0.999
N(0,1) 500 LB 0.013 0.018 0.303 1.000 0.024 0.025 0.258 1.000 0.032 0.028 0.225 1.000

vdW 0.012 0.017 0.282 1.000 0.021 0.021 0.247 1.000 0.023 0.023 0.214 1.000
Wilc 0.015 0.023 0.309 1.000 0.030 0.047 0.281 1.000 0.047 0.042 0.267 1.000

1000 LB 0.016 0.024 0.610 1.000 0.027 0.020 0.564 1.000 0.031 0.025 0.500 1.000
vdW 0.015 0.022 0.605 1.000 0.024 0.020 0.553 1.000 0.028 0.024 0.499 1.000
Wilc 0.024 0.031 0.620 1.000 0.038 0.035 0.577 1.000 0.046 0.035 0.542 1.000

2000 LB 0.015 0.022 0.913 1.000 0.025 0.023 0.907 1.000 0.034 0.023 0.875 1.000
vdW 0.015 0.022 0.911 1.000 0.024 0.022 0.913 1.000 0.029 0.020 0.875 1.000
Wilc 0.016 0.028 0.908 1.000 0.035 0.033 0.916 1.000 0.054 0.037 0.887 1.000

AR(1)-GARCH(1,1) 300 LB 0.021 0.029 0.141 0.981 0.021 0.034 0.113 0.966 0.037 0.032 0.098 0.974
(c0, φ)-(0.1,0.1,0.8) vdW 0.024 0.036 0.232 0.999 0.040 0.055 0.212 0.995 0.061 0.062 0.227 0.998

Wilc 0.019 0.028 0.254 1.000 0.030 0.038 0.213 1.000 0.049 0.028 0.223 1.000
t(3) 500 LB 0.022 0.033 0.229 0.993 0.029 0.039 0.205 0.998 0.025 0.034 0.151 0.987

vdW 0.024 0.032 0.382 0.999 0.043 0.045 0.365 1.000 0.038 0.036 0.290 1.000
Wilc 0.013 0.030 0.428 1.000 0.036 0.036 0.443 1.000 0.032 0.032 0.362 1.000

1000 LB 0.024 0.020 0.450 0.997 0.038 0.042 0.393 0.999 0.037 0.037 0.356 0.997
vdW 0.028 0.024 0.709 1.000 0.035 0.040 0.676 1.000 0.047 0.039 0.622 1.000
Wilc 0.019 0.022 0.781 1.000 0.030 0.036 0.773 1.000 0.042 0.049 0.743 1.000

2000 LB 0.018 0.022 0.769 0.998 0.027 0.039 0.757 0.999 0.044 0.039 0.704 0.999
vdW 0.017 0.021 0.951 1.000 0.036 0.036 0.948 1.000 0.049 0.028 0.924 1.000
Wilc 0.023 0.021 0.986 1.000 0.040 0.042 0.980 1.000 0.046 0.035 0.983 1.000

AR(1)-GARCH(1,1) 300 LB 0.012 0.024 0.144 1.000 0.018 0.032 0.135 0.998 0.027 0.038 0.104 0.995
(c0, φ)-(0.1,0.1,0.8) vdW 0.008 0.022 0.151 1.000 0.011 0.024 0.148 1.000 0.027 0.024 0.122 0.998

Wilc 0.010 0.025 0.186 1.000 0.027 0.033 0.187 1.000 0.036 0.031 0.163 1.000
t(5) 500 LB 0.021 0.029 0.279 1.000 0.021 0.041 0.239 1.000 0.033 0.033 0.194 0.999

vdW 0.017 0.031 0.305 1.000 0.022 0.032 0.273 1.000 0.022 0.026 0.227 1.000
Wilc 0.019 0.041 0.353 1.000 0.028 0.040 0.341 1.000 0.047 0.039 0.302 1.000

1000 LB 0.010 0.026 0.580 1.000 0.023 0.033 0.499 1.000 0.036 0.032 0.431 1.000
vdW 0.006 0.025 0.658 1.000 0.020 0.032 0.588 1.000 0.031 0.033 0.496 1.000
Wilc 0.010 0.031 0.719 1.000 0.028 0.040 0.656 1.000 0.039 0.046 0.605 1.000

2000 LB 0.018 0.023 0.898 1.000 0.039 0.039 0.843 1.000 0.021 0.033 0.806 1.000
vdW 0.021 0.018 0.940 1.000 0.032 0.025 0.894 1.000 0.025 0.032 0.877 1.000
Wilc 0.024 0.031 0.958 1.000 0.037 0.028 0.941 1.000 0.039 0.051 0.925 1.000

AR(1)-GARCH(1,1) 300 LB 0.015 0.017 0.149 0.998 0.029 0.034 0.148 0.999 0.032 0.024 0.101 0.997
(c0, φ)-(0.1,0.1,0.8) vdW 0.010 0.020 0.143 1.000 0.024 0.026 0.140 0.999 0.025 0.023 0.106 0.998

Wilc 0.013 0.031 0.184 1.000 0.031 0.038 0.174 0.999 0.039 0.037 0.146 0.998
t(8) 500 LB 0.017 0.034 0.284 1.000 0.020 0.029 0.228 1.000 0.029 0.024 0.204 1.000

vdW 0.014 0.022 0.290 1.000 0.018 0.023 0.239 1.000 0.024 0.023 0.221 1.000
Wilc 0.018 0.030 0.334 1.000 0.021 0.032 0.318 1.000 0.035 0.034 0.276 1.000

1000 LB 0.013 0.017 0.556 1.000 0.024 0.040 0.541 1.000 0.027 0.033 0.463 1.000
vdW 0.011 0.016 0.575 1.000 0.020 0.036 0.564 1.000 0.023 0.030 0.486 1.000
Wilc 0.016 0.022 0.646 1.000 0.032 0.041 0.647 1.000 0.038 0.046 0.555 1.000

2000 LB 0.013 0.019 0.906 1.000 0.022 0.024 0.888 1.000 0.022 0.035 0.855 1.000
vdW 0.016 0.021 0.916 1.000 0.019 0.023 0.905 1.000 0.021 0.028 0.870 1.000
Wilc 0.016 0.028 0.939 1.000 0.027 0.026 0.930 1.000 0.030 0.053 0.897 1.000

Notes: The table shows the size/power for the Ljung-Box test (LB), the van der Waerden test (vdW) and the Wilcoxon test
(Wilc). For the size calculations an AR(1)-GARCH(1,1) model was generated and estimated. For the power calculations an
AR(2)-GARCH(1,1) model was generated and an AR(1)-GARCH(1,1) was estimated. The AR(1)-GARCH(1,1) model with
AR coefficients (c0,φ) and GARCH(1,1) coefficients (ω,α1,β1) is given by Yt = c0+φYt−1+σtεt with σ2

t = ω+α1v2t−1+β1σ2
t−1

and vt = σtεt. The models used in the simulations are the AR(1)-GARCH(1,1) model with GARCH(1,1) coefficients
(ω,α1,β1):=(0.1,0.1,0.8) and AR(1) coefficients (c0, φ):=(0,0.4) for S1 and (0,0.8) for S2, where S refers to the cases for
evaluating the size of the tests, and (0,0.4,0.1) for P1 and (0,0.4,0.4) for P2, where P refers to the cases for evaluating the
power of the tests. The innovation’s distribution is the normal and the Student’s t with 3, 5 and 8 degrees of freedom. The
maximum lag order, K, used in the tests indicate that the first K standardized residual autocorrelations are used in the test
statistic, i.e. s = 1, ...,K. The critical value of the tests is based on the 5% significance level of the χ2

K . The above results
refer to 5000 simulations.
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Table 3: Simulation results for the size of alternative tests for remaining quadratic residual
autocorrelation in the standardized residuals of GARCH models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
DGP Distr. T LM AvdW vdW Wilc LM AvdW vdW Wilc LM AvdW vdW Wilc

ARCH(1) N(0,1) 300 0.036 0.050 0.038 0.049 0.047 0.050 0.037 0.056 0.042 0.046 0.038 0.049
(0.01,0.1) 500 0.037 0.046 0.050 0.064 0.045 0.047 0.040 0.059 0.051 0.046 0.040 0.060

1000 0.040 0.051 0.053 0.068 0.049 0.039 0.044 0.060 0.053 0.053 0.056 0.075
2000 0.051 0.054 0.060 0.064 0.051 0.059 0.057 0.066 0.054 0.054 0.052 0.077

t(3) 300 0.028 0.045 0.048 0.056 0.030 0.048 0.038 0.051 0.066 0.058 0.049 0.069
500 0.024 0.038 0.057 0.062 0.048 0.047 0.048 0.066 0.041 0.052 0.035 0.055
1000 0.032 0.061 0.055 0.059 0.055 0.050 0.047 0.048 0.060 0.052 0.048 0.071
2000 0.015 0.045 0.044 0.053 0.043 0.038 0.045 0.063 0.050 0.062 0.043 0.066

t(5) 300 0.049 0.055 0.045 0.062 0.044 0.046 0.039 0.054 0.054 0.040 0.034 0.069
500 0.025 0.052 0.044 0.061 0.054 0.042 0.048 0.053 0.058 0.035 0.041 0.067
1000 0.030 0.043 0.054 0.065 0.056 0.062 0.043 0.061 0.061 0.049 0.044 0.058
2000 0.039 0.035 0.051 0.051 0.056 0.047 0.049 0.057 0.070 0.054 0.048 0.069

t(8) 300 0.029 0.044 0.047 0.059 0.036 0.036 0.044 0.050 0.034 0.043 0.023 0.063
500 0.032 0.060 0.046 0.047 0.046 0.051 0.031 0.058 0.051 0.050 0.041 0.064
1000 0.037 0.047 0.048 0.051 0.056 0.051 0.046 0.073 0.048 0.047 0.043 0.075
2000 0.054 0.051 0.045 0.074 0.044 0.050 0.047 0.061 0.056 0.045 0.048 0.066

ARCH(1) N(0,1) 300 0.032 0.050 0.039 0.046 0.047 0.049 0.036 0.052 0.047 0.044 0.042 0.054
(0.01,0.8) 500 0.034 0.040 0.041 0.055 0.043 0.044 0.033 0.050 0.047 0.045 0.039 0.060

1000 0.031 0.045 0.048 0.055 0.044 0.039 0.038 0.062 0.051 0.045 0.051 0.063
2000 0.039 0.047 0.050 0.060 0.048 0.050 0.056 0.062 0.041 0.049 0.048 0.073

t(3) 300 0.029 0.042 0.038 0.045 0.041 0.040 0.029 0.049 0.061 0.047 0.036 0.046
500 0.024 0.032 0.039 0.056 0.042 0.052 0.038 0.053 0.055 0.055 0.035 0.062
1000 0.024 0.047 0.048 0.054 0.044 0.032 0.037 0.056 0.056 0.047 0.038 0.060
2000 0.026 0.047 0.053 0.042 0.037 0.040 0.043 0.060 0.057 0.038 0.045 0.067

t(5) 300 0.029 0.038 0.033 0.036 0.049 0.033 0.037 0.057 0.058 0.050 0.035 0.061
500 0.028 0.039 0.040 0.042 0.056 0.037 0.044 0.057 0.060 0.048 0.035 0.051
1000 0.026 0.041 0.038 0.045 0.041 0.049 0.033 0.058 0.059 0.051 0.050 0.064
2000 0.035 0.036 0.036 0.043 0.055 0.031 0.043 0.062 0.070 0.050 0.040 0.067

t(8) 300 0.028 0.044 0.037 0.056 0.038 0.040 0.037 0.052 0.037 0.039 0.039 0.057
500 0.037 0.042 0.034 0.058 0.051 0.037 0.037 0.043 0.055 0.047 0.036 0.071
1000 0.055 0.034 0.038 0.035 0.054 0.058 0.044 0.055 0.055 0.050 0.036 0.060
2000 0.038 0.047 0.055 0.047 0.054 0.042 0.042 0.066 0.043 0.038 0.043 0.063

GARCH(1,1) N(0,1) 300 0.020 0.035 0.033 0.041 0.028 0.030 0.028 0.046 0.036 0.033 0.025 0.043
(0.01,0.1,0.8) 500 0.018 0.028 0.031 0.040 0.030 0.029 0.031 0.050 0.033 0.036 0.031 0.045

1000 0.024 0.032 0.033 0.045 0.033 0.031 0.037 0.048 0.038 0.037 0.041 0.055
2000 0.024 0.038 0.044 0.054 0.035 0.032 0.041 0.053 0.032 0.033 0.036 0.058

t(3) 300 0.037 0.033 0.031 0.034 0.044 0.038 0.031 0.048 0.060 0.023 0.024 0.035
500 0.026 0.034 0.034 0.040 0.059 0.031 0.035 0.045 0.052 0.030 0.044 0.060
1000 0.025 0.030 0.028 0.030 0.041 0.039 0.039 0.048 0.064 0.038 0.038 0.051
2000 0.022 0.035 0.025 0.042 0.046 0.030 0.028 0.044 0.057 0.035 0.036 0.055

t(5) 300 0.021 0.036 0.034 0.038 0.056 0.034 0.032 0.042 0.054 0.027 0.033 0.050
500 0.026 0.033 0.033 0.038 0.042 0.023 0.036 0.052 0.060 0.044 0.032 0.045
1000 0.024 0.027 0.032 0.053 0.044 0.022 0.029 0.047 0.059 0.033 0.027 0.046
2000 0.022 0.030 0.034 0.040 0.051 0.032 0.033 0.040 0.062 0.036 0.035 0.049

t(8) 300 0.029 0.032 0.027 0.050 0.041 0.024 0.031 0.037 0.036 0.024 0.036 0.052
500 0.026 0.039 0.037 0.036 0.028 0.018 0.027 0.042 0.046 0.033 0.040 0.049
1000 0.033 0.026 0.032 0.044 0.034 0.036 0.031 0.053 0.041 0.027 0.033 0.059
2000 0.041 0.043 0.035 0.055 0.032 0.032 0.038 0.046 0.051 0.030 0.043 0.048

IGARCH(1,1) N(0,1) 300 0.026 0.040 0.034 0.045 0.028 0.034 0.027 0.042 0.036 0.033 0.022 0.044
(0.01,0.1,0.9) 500 0.025 0.037 0.038 0.046 0.033 0.041 0.031 0.054 0.038 0.036 0.037 0.053

1000 0.031 0.045 0.043 0.058 0.037 0.034 0.039 0.057 0.046 0.040 0.048 0.057
2000 0.035 0.037 0.054 0.060 0.039 0.043 0.046 0.058 0.040 0.043 0.045 0.067

t(3) 300 0.038 0.037 0.031 0.044 0.057 0.039 0.037 0.052 0.054 0.039 0.037 0.057
500 0.035 0.047 0.045 0.044 0.048 0.039 0.032 0.048 0.062 0.042 0.037 0.054
1000 0.029 0.052 0.044 0.049 0.045 0.034 0.045 0.054 0.063 0.050 0.044 0.052
2000 0.026 0.041 0.044 0.052 0.044 0.043 0.043 0.052 0.049 0.036 0.046 0.056

t(5) 300 0.037 0.031 0.029 0.042 0.049 0.039 0.025 0.045 0.048 0.038 0.022 0.040
500 0.028 0.033 0.036 0.055 0.035 0.041 0.031 0.043 0.050 0.038 0.038 0.063
1000 0.034 0.046 0.051 0.046 0.066 0.037 0.046 0.052 0.056 0.031 0.039 0.071
2000 0.040 0.044 0.040 0.050 0.049 0.032 0.033 0.043 0.073 0.038 0.044 0.046

t(8) 300 0.020 0.035 0.032 0.035 0.049 0.033 0.027 0.038 0.046 0.043 0.036 0.054
500 0.032 0.029 0.044 0.044 0.041 0.036 0.032 0.041 0.050 0.023 0.036 0.045
1000 0.031 0.046 0.038 0.057 0.042 0.049 0.055 0.053 0.060 0.042 0.036 0.050
2000 0.035 0.031 0.041 0.055 0.033 0.041 0.033 0.054 0.054 0.035 0.035 0.051

Notes: The tests applied in the table are the LiMak test (LM), the AvdW, the van der Waerden test (vdW) and the Wilcoxon test
(Wilc). Size was calculated by generating and estimating a (G)ARCH model. The GARCH(1,1) model with coefficients (ω,α1,β1) is
given by Yt = σtεt with σ2

t = ω+α1Y 2
t−1 + βσ2

t−1. The DGPs used in this table are the low persistence ARCH(1) with parameters
(ω, α1):=(0.01,0.1) and the high persistence ARCH(1) with parameters (ω, α1):=(0.01,0.8), the high persistence GARCH(1,1) with
parameters (ω, α1, β):=(0.01,0.1,0.8) and the IGARCH(1,1) with parameters (ω, α1, β):=(0.01,0.1,0.9). The distributions used for
the innovations are the standard normal N(0,1) and the Student’s t with 3, 5 and 8 degrees of freedom. The maximum lag order, K,
used in the tests indicate that the maximum standardized residual autocorrelations lag used in the test statistic is K, i.e. s = 2, ...,K.
The critical value of the tests is based on the 5% significance level of the χ2

K−1. The above results refer to 5000 simulations.
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Table 4: Simulation results for the power of alternative tests for remaining quadratic residual
autocorrelation in the standardized residuals of GARCH models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
DGP Distr. T LM AvdW vdW Wilc LM AvdW vdW Wilc LM AvdW vdW Wilc

ARCH(2) N(0,1) 300 0.320 0.282 0.182 0.202 0.234 0.207 0.107 0.126 0.207 0.183 0.082 0.121
(0.01,0.1,0.1) 500 0.503 0.435 0.278 0.295 0.381 0.306 0.189 0.212 0.318 0.278 0.147 0.174

1000 0.765 0.710 0.501 0.487 0.644 0.562 0.352 0.378 0.562 0.473 0.274 0.297
2000 0.963 0.929 0.801 0.774 0.912 0.848 0.657 0.627 0.870 0.785 0.563 0.535

t(3) 300 0.154 0.173 0.103 0.136 0.137 0.122 0.068 0.106 0.109 0.129 0.073 0.104
500 0.204 0.295 0.164 0.206 0.163 0.205 0.098 0.131 0.164 0.179 0.083 0.122
1000 0.341 0.526 0.333 0.390 0.241 0.385 0.199 0.249 0.244 0.333 0.201 0.266
2000 0.463 0.829 0.603 0.651 0.352 0.664 0.461 0.524 0.309 0.597 0.369 0.444

t(5) 300 0.239 0.231 0.152 0.170 0.195 0.166 0.093 0.114 0.171 0.132 0.071 0.117
500 0.319 0.370 0.239 0.259 0.266 0.241 0.173 0.178 0.248 0.184 0.126 0.155
1000 0.532 0.649 0.451 0.480 0.412 0.450 0.310 0.328 0.385 0.421 0.249 0.281
2000 0.743 0.913 0.709 0.739 0.666 0.802 0.579 0.588 0.611 0.747 0.489 0.547

t(8) 300 0.265 0.244 0.179 0.168 0.216 0.171 0.086 0.117 0.172 0.161 0.063 0.099
500 0.411 0.404 0.240 0.272 0.330 0.295 0.148 0.192 0.243 0.217 0.137 0.155
1000 0.646 0.650 0.464 0.497 0.554 0.509 0.327 0.352 0.478 0.420 0.265 0.296
2000 0.867 0.911 0.749 0.718 0.808 0.819 0.619 0.616 0.782 0.739 0.520 0.537

ARCH(2) N(0,1) 300 0.978 0.981 0.932 0.907 0.951 0.949 0.853 0.837 0.929 0.928 0.775 0.767
(0.01,0.1,0.4) 500 0.998 1.000 0.994 0.990 0.997 0.998 0.983 0.981 0.993 0.996 0.971 0.963

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t(3) 300 0.535 0.846 0.656 0.684 0.464 0.719 0.509 0.583 0.420 0.677 0.402 0.467
500 0.671 0.975 0.874 0.887 0.606 0.931 0.755 0.797 0.568 0.878 0.679 0.716
1000 0.819 0.999 0.993 0.996 0.747 0.996 0.977 0.983 0.729 0.996 0.956 0.961
2000 0.896 1.000 1.000 1.000 0.860 1.000 0.999 1.000 0.819 1.000 1.000 1.000

t(5) 300 0.805 0.942 0.848 0.829 0.705 0.873 0.726 0.746 0.673 0.825 0.624 0.657
500 0.910 0.994 0.969 0.970 0.881 0.983 0.933 0.921 0.840 0.982 0.874 0.885
1000 0.982 1.000 1.000 1.000 0.967 1.000 1.000 0.999 0.959 1.000 0.998 0.998
2000 0.990 1.000 1.000 1.000 0.983 1.000 1.000 1.000 0.986 1.000 1.000 1.000

t(8) 300 0.880 0.950 0.868 0.876 0.843 0.925 0.784 0.744 0.792 0.880 0.680 0.674
500 0.979 0.997 0.986 0.977 0.953 0.989 0.964 0.942 0.944 0.986 0.926 0.911
1000 0.999 1.000 1.000 1.000 0.995 1.000 1.000 0.997 0.997 1.000 1.000 0.998
2000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

GARCH(1,1) N(0,1) 300 0.278 0.255 0.162 0.186 0.420 0.359 0.198 0.233 0.456 0.400 0.225 0.265
(0.01,0.1,0.8) 500 0.426 0.389 0.257 0.271 0.630 0.549 0.358 0.374 0.683 0.600 0.361 0.406

1000 0.677 0.637 0.457 0.460 0.891 0.844 0.644 0.640 0.938 0.903 0.715 0.723
2000 0.934 0.900 0.757 0.727 0.996 0.987 0.934 0.924 0.999 0.998 0.971 0.962

t(3) 300 0.137 0.223 0.148 0.174 0.209 0.312 0.136 0.200 0.236 0.328 0.167 0.240
500 0.172 0.314 0.220 0.261 0.294 0.460 0.286 0.356 0.314 0.496 0.302 0.383
1000 0.254 0.562 0.410 0.454 0.421 0.788 0.582 0.653 0.495 0.784 0.590 0.668
2000 0.399 0.854 0.691 0.692 0.618 0.969 0.875 0.887 0.688 0.984 0.913 0.927

t(5) 300 0.207 0.219 0.160 0.159 0.324 0.339 0.196 0.235 0.368 0.377 0.227 0.266
500 0.269 0.357 0.225 0.280 0.465 0.512 0.332 0.373 0.522 0.591 0.414 0.422
1000 0.479 0.644 0.455 0.471 0.715 0.812 0.650 0.652 0.786 0.898 0.705 0.747
2000 0.684 0.881 0.737 0.719 0.919 0.991 0.925 0.921 0.950 0.990 0.962 0.956

t(8) 300 0.244 0.214 0.159 0.156 0.357 0.327 0.199 0.260 0.408 0.346 0.203 0.261
500 0.336 0.356 0.218 0.244 0.533 0.537 0.326 0.353 0.586 0.555 0.383 0.424
1000 0.569 0.600 0.464 0.451 0.826 0.819 0.650 0.650 0.862 0.881 0.669 0.726
2000 0.825 0.887 0.730 0.742 0.985 0.985 0.928 0.922 0.994 0.989 0.954 0.952

IGARCH(1,1) N(0,1) 300 0.438 0.513 0.395 0.411 0.714 0.700 0.578 0.585 0.798 0.758 0.663 0.668
(0.01,0.1,0.9) 500 0.669 0.774 0.687 0.688 0.929 0.925 0.862 0.860 0.968 0.954 0.908 0.911

1000 0.910 0.975 0.934 0.931 0.997 0.999 0.991 0.990 0.999 1.000 0.998 0.996
2000 0.981 0.999 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

t(3) 300 0.156 0.410 0.321 0.330 0.274 0.588 0.490 0.525 0.345 0.646 0.553 0.555
500 0.217 0.641 0.513 0.545 0.372 0.828 0.737 0.759 0.469 0.842 0.792 0.818
1000 0.318 0.887 0.803 0.824 0.566 0.981 0.950 0.954 0.676 0.991 0.975 0.978
2000 0.461 0.995 0.981 0.979 0.740 1.000 1.000 1.000 0.801 1.000 1.000 1.000

t(5) 300 0.277 0.450 0.385 0.384 0.474 0.627 0.585 0.607 0.577 0.726 0.641 0.655
500 0.389 0.751 0.653 0.643 0.661 0.920 0.855 0.843 0.757 0.943 0.889 0.890
1000 0.609 0.952 0.910 0.926 0.892 0.996 0.979 0.991 0.942 0.998 0.991 0.993
2000 0.791 1.000 0.999 0.997 0.951 1.000 1.000 1.000 0.968 1.000 1.000 1.000

t(8) 300 0.320 0.472 0.397 0.402 0.572 0.674 0.580 0.589 0.669 0.764 0.632 0.675
500 0.524 0.730 0.631 0.677 0.793 0.921 0.867 0.847 0.896 0.950 0.891 0.906
1000 0.749 0.957 0.928 0.919 0.957 0.999 0.992 0.994 0.984 0.999 0.993 0.996
2000 0.897 1.000 0.996 0.999 0.973 1.000 1.000 1.000 0.989 1.000 1.000 1.000

Notes: The tests applied in the table are the LiMak test (LM), the AvdW, the van der Waerden test (vdW) and the Wilcoxon test
(Wilc). The ARCH(2) model with coefficients (ω,α1,α2) is given by Yt = σtεt with σ2

t = ω + α1Y 2
t−1 + α2Y 2

t−2. The GARCH(1,1)

model with coefficients (ω,α1,β1) is given by Yt = σtεt with σ2
t = ω + α1Y 2

t−1 + β1σ2
t−1. An ARCH(1) model was estimated to

obtain power. The DGPs used are the low persistence ARCH(2) with coefficients (ω, α1, α2):=(0.01,0.1,0.1), the high persistence
ARCH(2) with coefficients (ω, α1, α2):=(0.01,0.1,0.4), the high persistence GARCH(1,1) with coefficients (ω, α1, β1):=(0.01,0.1,0.8),
used by Berkes, Horváth and Kokoszka (2003), and the IGARCH(1,1) with parameters (ω, α1, β):=(0.01,0.1,0.9). The distributions
used for the innovations are the standard normal N(0,1) and the Student’s t with 3, 5 and 8 degrees of freedom. The maximum
lag order, K, used in the tests indicate that the maximum standardized residual autocorrelations lag used in the test statistic is K,
i.e. s = 2, ...,K. The critical value of the tests is based on the 5% significance level of the χ2

K−1. The above results refer to 5000
simulations.
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Table 5: Simulation results for the size of alternative tests for remaining quadratic residual autocor-
relation in the standardized residuals of asymmetric distributions of GARCH models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
DGP Distr. T LM AvdW vdW Wilc LM AvdW vdW Wilc LM AvdW vdW Wilc

ARCH(1) Hansen 300 0.030 0.051 0.047 0.058 0.051 0.042 0.047 0.046 0.046 0.048 0.042 0.058
(0.01,0.1) SkSt 500 0.045 0.055 0.048 0.052 0.043 0.040 0.039 0.066 0.052 0.043 0.040 0.067

(-0.09,8.1) 1000 0.060 0.040 0.043 0.052 0.050 0.054 0.044 0.081 0.056 0.042 0.041 0.058
2000 0.039 0.050 0.047 0.059 0.057 0.067 0.060 0.059 0.051 0.054 0.041 0.067

ARCH(1) Hansen 300 0.040 0.033 0.035 0.053 0.041 0.045 0.042 0.052 0.053 0.047 0.041 0.055
(0.01,0.8) SkSt 500 0.029 0.053 0.043 0.053 0.044 0.041 0.037 0.059 0.051 0.045 0.048 0.057

(-0.09,8.1) 1000 0.042 0.035 0.044 0.046 0.047 0.040 0.046 0.057 0.050 0.052 0.041 0.067
2000 0.040 0.054 0.042 0.040 0.042 0.039 0.035 0.053 0.057 0.041 0.049 0.063

GARCH(1,1) Hansen 300 0.038 0.031 0.029 0.030 0.036 0.039 0.026 0.043 0.037 0.025 0.026 0.040
(0.01,0.1,0.8) SkSt 500 0.023 0.022 0.029 0.043 0.037 0.033 0.023 0.042 0.051 0.033 0.037 0.046

(-0.09,8.1) 1000 0.033 0.029 0.042 0.041 0.036 0.029 0.031 0.043 0.039 0.040 0.029 0.040
2000 0.035 0.030 0.033 0.037 0.041 0.030 0.022 0.044 0.038 0.033 0.028 0.057

IGARCH(1,1) Hansen 300 0.035 0.036 0.030 0.039 0.041 0.044 0.028 0.054 0.051 0.040 0.036 0.069
(0.01,0.1,0.9) SkSt 500 0.033 0.044 0.046 0.046 0.055 0.035 0.038 0.053 0.049 0.033 0.043 0.040

(-0.09,8.1) 1000 0.039 0.040 0.032 0.050 0.052 0.039 0.030 0.056 0.051 0.038 0.038 0.049
2000 0.042 0.034 0.038 0.052 0.055 0.040 0.045 0.058 0.058 0.042 0.046 0.051

ARCH(1) Hansen 300 0.036 0.054 0.038 0.061 0.051 0.044 0.033 0.054 0.055 0.044 0.035 0.048
(0.01,0.1) SkSt 500 0.039 0.048 0.056 0.054 0.056 0.049 0.049 0.055 0.061 0.053 0.038 0.069

(0.99,8.1) 1000 0.032 0.044 0.044 0.049 0.058 0.041 0.051 0.070 0.067 0.047 0.050 0.070
2000 0.031 0.045 0.050 0.058 0.056 0.053 0.044 0.064 0.065 0.051 0.046 0.080

ARCH(1) Hansen 300 0.037 0.057 0.035 0.060 0.053 0.040 0.032 0.054 0.054 0.043 0.032 0.049
(0.01,0.8) SkSt 500 0.037 0.045 0.055 0.053 0.057 0.049 0.050 0.056 0.060 0.058 0.036 0.067

(0.99,8.1) 1000 0.032 0.047 0.039 0.048 0.058 0.042 0.050 0.070 0.066 0.046 0.052 0.070
2000 0.037 0.038 0.056 0.054 0.055 0.063 0.042 0.057 0.068 0.057 0.053 0.074

GARCH(1,1) Hansen 300 0.038 0.049 0.038 0.060 0.047 0.047 0.036 0.057 0.074 0.040 0.044 0.060
(0.01,0.1,0.8) SkSt 500 0.034 0.048 0.043 0.063 0.060 0.048 0.036 0.062 0.070 0.038 0.040 0.071

(0.99,8.1) 1000 0.037 0.052 0.052 0.055 0.053 0.045 0.050 0.068 0.069 0.048 0.058 0.058
2000 0.045 0.048 0.060 0.061 0.053 0.055 0.035 0.056 0.080 0.052 0.043 0.074

IGARCH(1,1) Hansen 300 0.036 0.057 0.055 0.051 0.057 0.060 0.040 0.050 0.061 0.046 0.045 0.060
(0.01,0.1,0.9) SkSt 500 0.035 0.063 0.039 0.044 0.050 0.052 0.038 0.067 0.068 0.056 0.036 0.064

(0.99,8.1) 1000 0.038 0.034 0.057 0.061 0.040 0.056 0.046 0.065 0.056 0.047 0.046 0.060
2000 0.035 0.050 0.033 0.058 0.058 0.048 0.046 0.067 0.052 0.051 0.044 0.073

Notes: The tests applied in the table are the LiMak test (LM), the AvdW, the van der Waerden test (vdW) and the Wilcoxon test (Wilc).
The DGPs used are the low persistence ARCH(1) with parameters (ω, α1):=(0.01,0.1), the high persistence ARCH(1) with parameters
(ω, α1):=(0.01,0.8), the high persistence GARCH(1,1) with parameters (ω, α1, β1):=(0.01,0.1,0.8) used by Berkes, Horváth and Kokoszka
(2003) and the IGARCH(1,1) with parameters (ω, α1, β1):=(0.01,0.1,0.9). The distribution used for the innovations in every generated
and estimated model is the Hansen Skewed t (λ,η) distribution, where λ is the skewness parameter and η is the degrees of freedom. The
parameters used for the Hansen SkSt are (λ,η):=(-0.09,8.1) (skewness is -0.24 and kurtosis is 4.39) and (λ,η):=(0.99,8.1) (skewness is 1.52
and kurtosis is 6.73). The maximum lag order, K, used in the tests indicate that the maximum standardized residual autocorrelations lag
used in the test statistic is K, i.e. s = 2, ...,K. The critical value of the tests is based on the 5% significance level of the χ2

K−1. The above
results refer to 5000 simulations.
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Table 6: Simulation results for the size of alternative tests for remaining quadratic residual
autocorrelation in the standardized residuals of asymmetric distributions of GARCH models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
DGP Distr. T LM AvdW vdW Wilc LM AvdW vdW Wilc LM AvdW vdW Wilc

ARCH(1) Hansen 300 0.028 0.048 0.041 0.049 0.050 0.049 0.042 0.061 0.042 0.057 0.034 0.056
(0.01,0.1) SkSt 500 0.016 0.047 0.035 0.069 0.044 0.052 0.037 0.049 0.057 0.052 0.033 0.073

(0.9,3) 1000 0.021 0.052 0.049 0.061 0.048 0.067 0.050 0.057 0.049 0.050 0.037 0.066
2000 0.015 0.069 0.052 0.052 0.038 0.052 0.057 0.071 0.051 0.052 0.044 0.068

ARCH(1) Hansen 300 0.033 0.067 0.041 0.052 0.034 0.058 0.045 0.047 0.064 0.049 0.045 0.062
(0.01,0.8) SkSt 500 0.033 0.055 0.041 0.058 0.039 0.052 0.037 0.061 0.047 0.046 0.044 0.049

(0.9,3) 1000 0.028 0.048 0.045 0.062 0.047 0.047 0.046 0.066 0.053 0.053 0.045 0.068
2000 0.022 0.050 0.048 0.061 0.050 0.043 0.043 0.068 0.057 0.044 0.047 0.063

GARCH(1,1) Hansen 300 0.027 0.044 0.050 0.050 0.044 0.047 0.039 0.055 0.055 0.047 0.040 0.070
(0.01,0.1,0.8) SkSt 500 0.019 0.050 0.045 0.055 0.043 0.050 0.047 0.047 0.061 0.042 0.043 0.066

(0.9,3) 1000 0.026 0.049 0.048 0.051 0.054 0.045 0.046 0.063 0.053 0.049 0.045 0.068
2000 0.022 0.038 0.038 0.070 0.043 0.053 0.046 0.056 0.047 0.043 0.049 0.058

IGARCH(1,1) Hansen 300 0.023 0.054 0.051 0.058 0.041 0.049 0.046 0.057 0.065 0.055 0.030 0.077
(0.01,0.1,0.9) SkSt 500 0.025 0.054 0.047 0.060 0.047 0.047 0.051 0.060 0.058 0.048 0.050 0.075

(0.9,3) 1000 0.029 0.048 0.048 0.062 0.039 0.057 0.037 0.079 0.058 0.043 0.045 0.062
2000 0.021 0.056 0.047 0.080 0.038 0.047 0.040 0.063 0.057 0.047 0.061 0.076

GARCH(1,1) Hansen 300 0.024 0.030 0.031 0.044 0.046 0.031 0.030 0.041 0.046 0.039 0.041 0.050
(0.01,0.1,0.8) SkSt 500 0.036 0.022 0.031 0.047 0.049 0.035 0.028 0.043 0.060 0.030 0.030 0.050

(-0.09,5) 1000 0.036 0.040 0.052 0.046 0.050 0.029 0.042 0.048 0.059 0.040 0.032 0.050
2000 0.023 0.025 0.037 0.060 0.058 0.023 0.028 0.055 0.049 0.032 0.033 0.060

IGARCH(1,1) Hansen 300 0.035 0.043 0.029 0.039 0.031 0.041 0.031 0.051 0.049 0.033 0.028 0.051
(0.01,0.1,0.9) SkSt 500 0.032 0.036 0.034 0.031 0.051 0.042 0.035 0.049 0.058 0.038 0.038 0.050

(-0.09,5) 1000 0.034 0.020 0.038 0.047 0.050 0.048 0.039 0.054 0.061 0.041 0.028 0.044
2000 0.040 0.047 0.051 0.046 0.053 0.036 0.039 0.054 0.053 0.041 0.033 0.056

GARCH(1,1) Hansen 300 0.042 0.033 0.044 0.049 0.055 0.066 0.036 0.064 0.073 0.052 0.032 0.045
(0.01,0.1,0.8) SkSt 500 0.031 0.058 0.037 0.051 0.061 0.047 0.042 0.060 0.063 0.056 0.046 0.070

(0.99,5) 1000 0.033 0.035 0.045 0.058 0.050 0.054 0.046 0.059 0.076 0.048 0.047 0.063
2000 0.027 0.064 0.058 0.066 0.054 0.052 0.052 0.068 0.065 0.046 0.048 0.071

IGARCH(1,1) Hansen 300 0.031 0.049 0.052 0.055 0.042 0.058 0.039 0.040 0.054 0.065 0.035 0.065
(0.01,0.1,0.9) SkSt 500 0.036 0.051 0.044 0.056 0.045 0.039 0.049 0.063 0.074 0.057 0.044 0.064

(0.99,5) 1000 0.027 0.053 0.052 0.047 0.056 0.058 0.049 0.055 0.077 0.060 0.048 0.054
2000 0.035 0.052 0.053 0.070 0.061 0.051 0.038 0.065 0.075 0.042 0.045 0.071

Notes: The tests applied in the table are the LiMak test (LM), the AvdW, the van der Waerden test (vdW) and the Wilcoxon test
(Wilc). The DGPs used are the low persistence ARCH(1) with parameters (ω, α1):=(0.01,0.1), the high persistence ARCH(1) with
parameters (ω, α1):=(0.01,0.8), the high persistence GARCH(1,1) with parameters (ω, α1, β1):=(0.01,0.1,0.8) used by Berkes, Horváth
and Kokoszka (2003) and the IGARCH(1,1) with parameters (ω, α1, β1):=(0.01,0.1,0.9). The distribution used for the innovations in
every generated and estimated model is the Hansen Skewed t (λ,η) distribution, where λ is the skewness parameter and η is the degrees
of freedom. The parameters used for the Hansen SkSt are (λ,η):=(-0.09,5) (skewness is -0.28 and kurtosis is 6.35), (λ,η):=(0.99,5)
(skewness is 2.07 and kurtosis is 10.96) and (λ,η):=(0.9,3). The maximum lag order, K, used in the tests indicate that the maximum
standardized residual autocorrelations lag used in the test statistic is K, i.e. s = 2, ...,K. The critical value of the tests is based on
the 5% significance level of the χ2

K−1. The above results refer to 5000 simulations.
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Table 7: Simulation results for the power of alternative tests for remaining quadratic residual auto-
correlation in the standardized residuals of asymmetric distributions of GARCH models

Max lag used in tests K=2 Max lag used in tests K=4 Max lag used in tests K=6
DGP Distr. T LM AvdW vdW Wilc LM AvdW vdW Wilc LM AvdW vdW Wilc

ARCH(2) Hansen 300 0.287 0.242 0.189 0.163 0.213 0.157 0.102 0.137 0.164 0.123 0.074 0.104
(0.01,0.1,0.1) SkSt 500 0.413 0.366 0.287 0.252 0.321 0.270 0.142 0.180 0.303 0.220 0.137 0.181

(-0.09,8.1) 1000 0.654 0.642 0.451 0.461 0.565 0.509 0.327 0.345 0.458 0.393 0.240 0.303
2000 0.917 0.921 0.786 0.742 0.813 0.844 0.618 0.602 0.768 0.766 0.521 0.560

ARCH(2) Hansen 300 0.906 0.966 0.872 0.873 0.830 0.923 0.762 0.759 0.797 0.879 0.736 0.687
(0.01,0.1,0.4) SkSt 500 0.978 0.998 0.979 0.984 0.957 0.993 0.965 0.956 0.932 0.981 0.925 0.925

(-0.09,8.1) 1000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.996 1.000 0.998 1.000
2000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000

GARCH(1,1) Hansen 300 0.220 0.224 0.146 0.155 0.360 0.322 0.205 0.238 0.416 0.335 0.205 0.255
(0.01,0.1,0.8) SkSt 500 0.343 0.369 0.246 0.243 0.539 0.510 0.370 0.372 0.605 0.525 0.397 0.437

(-0.09,8.1) 1000 0.559 0.637 0.439 0.433 0.793 0.825 0.653 0.668 0.885 0.879 0.706 0.748
2000 0.845 0.882 0.725 0.747 0.973 0.987 0.925 0.927 0.989 0.991 0.964 0.946

IGARCH(1,1) Hansen 300 0.319 0.464 0.373 0.410 0.543 0.697 0.579 0.590 0.651 0.741 0.664 0.688
(0.01,0.1,0.9) SkSt 500 0.506 0.748 0.623 0.635 0.806 0.921 0.844 0.825 0.893 0.949 0.893 0.912

(-0.09,8.1) 1000 0.717 0.970 0.916 0.916 0.963 1.000 0.991 0.994 0.978 0.998 0.996 0.995
2000 0.885 1.000 0.998 1.000 0.976 1.000 1.000 1.000 0.983 1.000 1.000 1.000

ARCH(2) Hansen 300 0.219 0.335 0.195 0.239 0.173 0.230 0.127 0.169 0.163 0.191 0.099 0.132
(0.01,0.1,0.1) SkSt 500 0.315 0.486 0.316 0.378 0.262 0.346 0.199 0.252 0.250 0.282 0.162 0.239

(0.99,8.1) 1000 0.522 0.781 0.549 0.623 0.422 0.648 0.423 0.505 0.364 0.585 0.330 0.408
2000 0.770 0.979 0.858 0.899 0.662 0.926 0.744 0.785 0.599 0.893 0.671 0.709

ARCH(2) Hansen 300 0.804 0.978 0.912 0.928 0.712 0.933 0.836 0.840 0.657 0.915 0.761 0.794
(0.01,0.1,0.4) SkSt 500 0.927 1.000 0.993 0.993 0.865 0.996 0.974 0.985 0.839 0.993 0.947 0.957

(0.99,8.1) 1000 0.986 1.000 1.000 1.000 0.971 1.000 1.000 1.000 0.965 1.000 1.000 1.000
2000 0.998 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.996 1.000 1.000 1.000

GARCH(1,1) Hansen 300 0.183 0.292 0.187 0.213 0.268 0.449 0.287 0.321 0.327 0.469 0.326 0.374
(0.01,0.1,0.8) SkSt 500 0.250 0.482 0.316 0.354 0.410 0.693 0.489 0.551 0.480 0.706 0.521 0.583

(0.99,8.1) 1000 0.409 0.766 0.571 0.623 0.657 0.944 0.797 0.851 0.739 0.957 0.836 0.866
2000 0.673 0.975 0.859 0.893 0.907 0.999 0.981 0.994 0.935 0.999 0.987 0.991

IGARCH(1,1) Hansen 300 0.218 0.566 0.419 0.458 0.341 0.786 0.663 0.757 0.434 0.842 0.701 0.772
(0.01,0.1,0.9) SkSt 500 0.303 0.794 0.664 0.730 0.554 0.952 0.899 0.912 0.677 0.976 0.744 0.956

(0.99,8.1) 1000 0.517 0.988 0.935 0.945 0.801 1.000 0.998 1.000 0.875 1.000 0.999 1.000
2000 0.673 1.000 0.998 0.997 0.913 1.000 1.000 1.000 0.948 1.000 1.000 1.000

ARCH(2) Hansen 300 0.110 0.272 0.151 0.180 0.102 0.159 0.089 0.133 0.124 0.144 0.068 0.101
(0.01,0.1,0.1) SkSt 500 0.134 0.419 0.244 0.281 0.128 0.288 0.134 0.219 0.133 0.217 0.112 0.161

(0.9,3) 1000 0.182 0.667 0.429 0.533 0.153 0.529 0.304 0.376 0.190 0.471 0.254 0.325
2000 0.317 0.930 0.751 0.789 0.245 0.816 0.588 0.661 0.197 0.798 0.489 0.611

ARCH(2) Hansen 300 0.446 0.866 0.726 0.756 0.312 0.801 0.561 0.635 0.297 0.690 0.477 0.565
(0.01,0.1,0.4) SkSt 500 0.577 0.985 0.915 0.932 0.451 0.951 0.836 0.852 0.426 0.917 0.745 0.799

(0.9,3) 1000 0.716 0.999 0.995 0.997 0.657 0.999 0.990 0.996 0.542 0.998 0.970 0.989
2000 0.825 1.000 1.000 1.000 0.775 1.000 1.000 1.000 0.737 1.000 1.000 1.000

GARCH(1,1) Hansen 300 0.078 0.315 0.170 0.219 0.155 0.420 0.278 0.327 0.180 0.445 0.288 0.335
(0.01,0.1,0.8) SkSt 500 0.123 0.470 0.288 0.337 0.204 0.670 0.424 0.513 0.249 0.678 0.462 0.594

(0.9,3) 1000 0.151 0.771 0.546 0.623 0.245 0.915 0.754 0.819 0.325 0.941 0.803 0.862
2000 0.228 0.965 0.870 0.884 0.356 0.999 0.981 0.988 0.444 0.997 0.983 0.993

IGARCH(1,1) Hansen 300 0.074 0.512 0.348 0.445 0.165 0.677 0.579 0.599 0.175 0.740 0.609 0.685
(0.01,0.1,0.9) SkSt 500 0.115 0.720 0.534 0.636 0.226 0.918 0.809 0.937 0.290 0.947 0.854 0.916

(0.9,3) 1000 0.146 0.950 0.847 0.892 0.282 0.995 0.967 0.991 0.376 0.999 0.989 0.997
2000 0.217 1.000 0.992 0.995 0.420 1.000 1.000 1.000 0.476 1.000 1.000 1.000

Notes: The tests applied in the table are the LiMak test (LM), the AvdW, the van der Waerden test (vdW) and the Wilcoxon test (Wilc).
The DGPs used are the low persistence ARCH(1) with parameters (ω, α1):=(0.01,0.1), the high persistence ARCH(1) with parameters
(ω, α1):=(0.01,0.8), the low persistence ARCH(2) with parameters (ω, α1, α2):=(0.01,0.1,0.1), the high persistence ARCH(2) with parame-
ters (ω, α1, α2):=(0.01,0.1,0.4), the high persistence GARCH(1,1) with parameters (ω, α1, β1):=(0.01,0.1,0.8) used by Berkes, Horváth and
Kokoszka (2003) and the IGARCH(1,1) with parameters (ω, α1, β1):=(0.01,0.1,0.9). The estimated distribution in the power calculations
is an ARCH(1) model with Hansen SkSt errors. The distribution used for the innovations in every generated and estimated model is the
Hansen Skewed t (λ,η) distribution, where λ is the skewness parameter and η is the degrees of freedom. The parameters used for the Hansen
SkSt are (λ,η):=(-0.09,8.1) (skewness is -0.24 and kurtosis is 4.39), (λ,η):=(0.99,8.1) (skewness is 1.52 and kurtosis is 6.73), (λ,η):=(-0.09,5)
(skewness is -0.28 and kurtosis is 6.35), (λ,η):=(0.99,5) (skewness is 2.07 and kurtosis is 10.96) and (λ,η):=(0.9,3). The maximum lag order,
K, used in the tests indicate that the maximum standardized residual autocorrelations lag used in the test statistic is K, i.e. s = 2, ...,K.
The critical value of the tests is based on the 5% significance level of the χ2

K−1. The above results refer to 5000 simulations.
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Table 8: Simulated size and power of alternative test statistics for testing the
null hypothesis of symmetry in the standardized residuals of AR-GARCH and
GARCH models

DGP GARCH(1,1)-(20,0.05,0.9) GARCH(1,1)-(20,0.3,0.5)
Distr. T 200 500 1000 2000 200 500 1000 2000

Size
N(0,1) BN 0.043 0.041 0.035 0.032 0.041 0.040 0.036 0.032

Sign 0.046 0.040 0.039 0.041 0.046 0.040 0.039 0.041
Wilc 0.048 0.040 0.045 0.055 0.044 0.039 0.043 0.055

t(3) BN 0.083 0.071 0.068 0.056 0.091 0.080 0.080 0.072
Sign 0.044 0.049 0.038 0.047 0.053 0.043 0.046 0.042
Wilc 0.039 0.057 0.039 0.046 0.037 0.058 0.043 0.050

t(5) BN 0.054 0.046 0.052 0.045 0.049 0.041 0.057 0.041
Sign 0.036 0.036 0.050 0.052 0.032 0.040 0.048 0.050
Wilc 0.048 0.042 0.060 0.055 0.055 0.052 0.053 0.050

DGP AR-GARCH(1,1)-(0,φ,20,0.05,0.9) AR-GARCH(1,1)-(0,φ,20,0.3,0.5)
Size

N(0,1) BN 0.036 0.049 0.037 0.040 0.033 0.040 0.033 0.039
φ = 0.1 Sign 0.003 0.000 0.002 0.004 0.004 0.007 0.008 0.005

Wilc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N(0,1) BN 0.026 0.041 0.038 0.039 0.035 0.033 0.041 0.040
φ = 0.4 Sign 0.001 0.003 0.000 0.002 0.004 0.010 0.001 0.002

Wilc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N(0,1) BN 0.038 0.037 0.040 0.032 0.039 0.033 0.032 0.037
φ = 0.8 Sign 0.000 0.002 0.002 0.002 0.006 0.007 0.004 0.005

Wilc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Power
DGP GARCH(1,1)-(20,0.05,0.9) GARCH(1,1)-(20,0.3,0.5)

Hansen BN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SkSt Sign 0.989 1.000 1.000 1.000 0.977 1.000 1.000 1.000

(0.9, 3) Wilc 0.838 0.996 1.000 1.000 0.850 0.998 1.000 1.000
Hansen BN 0.970 1.000 1.000 1.000 0.971 1.000 1.000 1.000

SkSt Sign 0.883 1.000 1.000 1.000 0.893 0.999 1.000 1.000
(0.5, 3) Wilc 0.628 0.948 0.999 1.000 0.666 0.949 0.999 1.000
Hansen BN 0.995 1.000 1.000 1.000 0.994 1.000 1.000 1.000

SkSt Sign 0.756 0.987 1.000 1.000 0.745 0.989 1.000 1.000
(0.99, 8.1) Wilc 0.433 0.760 0.971 0.999 0.410 0.762 0.965 1.000

Hansen BN 0.086 0.131 0.231 0.418 0.092 0.137 0.257 0.424
SkSt Sign 0.069 0.091 0.145 0.306 0.064 0.120 0.148 0.269

(-0.09, 8.1) Wilc 0.060 0.063 0.086 0.158 0.065 0.068 0.098 0.144
χ2
2 BN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Sign 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wilc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Lambda 1 BN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(0, -1, -0.001, -0.13) Sign 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Wilc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Lognormal (0,1) BN 0.998 1.000 1.000 1.000 0.998 1.000 1.000 1.000

Sign 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wilc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: The tests used in the table are the Bai and Ng (BN), the Sign test (Sign) and the Wilcoxon test
(Wilc). The AR(1)-GARCH(1,1) model with coefficients (c0,φ,ω,α1,β1) is given by Yt = c0 + φYt−1 + vt,
vt = σtεt and σ2

t = ω + α1Y 2
t−1 + β1σ2

t−1. The DGPs used are the AR(1)-GARCH(1,1) with coefficients
(c0, φ) :=(0,0.1), (0,0.4) and (0,0.8) and (ω, α1, β1):=(20,0.05,0.9) and (20,0.3,0.5). The distribution used
for the residuals under the null is the normal, N(0,1). The GARCH(1,1) model with coefficients (ω,α1,β1)
is given by Yt = σtεt with σ2

t = ω + α1Y 2
t−1 + β1σ2

t−1. The DGPs used are the GARCH(1,1) with co-
efficients (ω, α1, β1):=(20,0.05,0.9) and the GARCH(1,1) with coefficients (ω, α1, β1):=(20,0.3,0.5), both
used by Bai and Ng (2001). The distribution used for the residuals under the null is the normal, N(0,1),
and the Student’s t(v) distribution with v:=3 and 5 degrees of freedom. Under the alternative the dis-
tributions are the Hansen’s Skewed t(λ,η) by Hansen (1994) with skewness parameter λ and η degrees
of freedom, χ2

2 is the Chi-Squared distribution with 2 degrees of freedom, Lambda 1(λ1,λ2,λ3,λ4) is the
Lambda distribution used by Bai and Ng (2001) given by F−1(u) = λ1 +

[
uλ3 − (1− u)λ4

]
/λ2 and the

Lognormal(0,1) distribution is the Lognormal distribution with mean 0 and variance 1. Hansen SkSt
(0.9, 3) has skewness 4.63 and kurtosis 51.51, Hansen SkSt (0.5, 3) has skewness 3.81 and kurtosis 46.02,
Hansen SkSt (0.99, 8.1) has skewness 1.61 and kurtosis 7.57 and lastly, Hansen SkSt (−0.09, 8.1) skewness
-0.26 and kurtosis 4.45. The critical values for the BN, the Sign and the Wilcoxon tests are 2.20, 3.84,
1.96 and 1.96 respectively.The above results refer to 5000 simulations.
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Table 9: Simulation results of the breaks tests on GARCH type models

DGP GARCH(1,1) (0.0002,0.1,0.7) GARCH(1,1) (0.0002,0.1,0.8)
Break point π 0.5 0.7 0.5 0.7

Distr. T Test Size P1 P2 P3 Size P1 P2 P3 Size P1 P2 P3 Size P1 P2 P3
N(0,1) 500 KY 0.021 0.237 0.070 0.165 0.021 0.147 0.055 0.108 0.017 0.122 0.184 0.118 0.017 0.065 0.188 0.191

RBC 0.034 0.061 0.017 0.043 0.034 0.040 0.020 0.033 0.031 0.028 0.057 0.029 0.031 0.016 0.047 0.049
Pet 0.034 0.061 0.017 0.043 0.034 0.044 0.020 0.033 0.031 0.028 0.057 0.029 0.031 0.016 0.047 0.049

Lomb 0.042 0.116 0.047 0.094 0.042 0.023 0.005 0.018 0.047 0.067 0.103 0.063 0.047 0.009 0.031 0.040
1000 KY 0.035 0.708 0.282 0.600 0.035 0.536 0.262 0.441 0.026 0.398 0.628 0.484 0.026 0.246 0.544 0.569

RBC 0.031 0.336 0.092 0.248 0.031 0.181 0.072 0.141 0.028 0.126 0.249 0.139 0.028 0.080 0.179 0.148
Pet 0.031 0.336 0.092 0.248 0.031 0.181 0.072 0.141 0.028 0.126 0.249 0.139 0.028 0.080 0.179 0.148

Lomb 0.048 0.351 0.172 0.284 0.048 0.156 0.042 0.107 0.039 0.195 0.312 0.207 0.039 0.047 0.144 0.137
3000 KY 0.044 0.989 0.999 0.998 0.044 0.994 0.937 0.991 0.046 0.999 0.999 1.000 0.046 0.970 0.999 0.998

RBC 0.044 0.976 0.889 0.984 0.044 0.915 0.614 0.865 0.041 0.896 0.993 0.960 0.041 0.600 0.899 0.879
Pet 0.044 0.976 0.889 0.984 0.044 0.915 0.614 0.865 0.041 0.896 0.993 0.960 0.041 0.600 0.899 0.879

Lomb 0.046 0.943 0.704 0.920 0.046 0.892 0.583 0.851 0.046 0.753 0.929 0.890 0.046 0.549 0.906 0.870
t(3) 500 KY 0.011 0.041 0.018 0.022 0.011 0.034 0.019 0.025 0.019 0.019 0.022 0.026 0.019 0.020 0.018 0.042

RBC 0.022 0.182 0.066 0.133 0.022 0.148 0.063 0.098 0.034 0.124 0.092 0.240 0.034 0.068 0.073 0.179
Pet 0.022 0.182 0.066 0.133 0.022 0.148 0.063 0.098 0.034 0.124 0.092 0.240 0.034 0.068 0.073 0.179

Lomb 0.037 0.206 0.075 0.144 0.037 0.163 0.066 0.114 0.040 0.138 0.111 0.248 0.040 0.081 0.098 0.196
1000 KY 0.017 0.084 0.026 0.056 0.017 0.079 0.033 0.059 0.015 0.059 0.043 0.067 0.015 0.040 0.048 0.088

RBC 0.044 0.432 0.142 0.321 0.044 0.306 0.103 0.219 0.039 0.304 0.200 0.594 0.039 0.204 0.174 0.469
Pet 0.044 0.432 0.142 0.321 0.044 0.306 0.103 0.219 0.039 0.304 0.200 0.594 0.039 0.204 0.174 0.469

Lomb 0.050 0.425 0.147 0.326 0.050 0.304 0.115 0.227 0.048 0.282 0.211 0.572 0.048 0.223 0.177 0.455
3000 KY 0.026 0.269 0.069 0.188 0.026 0.245 0.065 0.157 0.020 0.188 0.116 0.296 0.020 0.163 0.108 0.300

RBC 0.043 0.951 0.378 0.846 0.043 0.827 0.320 0.695 0.039 0.842 0.679 0.989 0.039 0.673 0.596 0.976
Pet 0.043 0.951 0.378 0.846 0.043 0.827 0.320 0.695 0.039 0.842 0.679 0.989 0.039 0.673 0.596 0.976

Lomb 0.041 0.933 0.372 0.817 0.041 0.799 0.312 0.665 0.040 0.807 0.658 0.983 0.040 0.636 0.575 0.952
t(5) 500 KY 0.018 0.061 0.042 0.067 0.018 0.074 0.048 0.061 0.018 0.046 0.051 0.036 0.018 0.034 0.064 0.055

RBC 0.027 0.157 0.088 0.129 0.027 0.096 0.062 0.102 0.028 0.115 0.136 0.168 0.028 0.052 0.095 0.159
Pet 0.027 0.157 0.088 0.129 0.027 0.096 0.062 0.102 0.028 0.115 0.136 0.168 0.028 0.052 0.095 0.159

Lomb 0.039 0.161 0.095 0.144 0.039 0.114 0.076 0.123 0.039 0.124 0.141 0.180 0.039 0.074 0.115 0.175
1000 KY 0.029 0.237 0.116 0.192 0.029 0.193 0.088 0.150 0.012 0.136 0.168 0.176 0.012 0.118 0.138 0.205

RBC 0.041 0.380 0.182 0.296 0.041 0.287 0.158 0.240 0.045 0.225 0.324 0.407 0.045 0.162 0.219 0.351
Pet 0.041 0.380 0.182 0.296 0.041 0.287 0.158 0.240 0.045 0.225 0.324 0.407 0.045 0.162 0.219 0.351

Lomb 0.032 0.387 0.187 0.310 0.032 0.304 0.171 0.258 0.040 0.247 0.342 0.412 0.040 0.161 0.253 0.357
3000 KY 0.035 0.760 0.360 0.655 0.035 0.637 0.309 0.567 0.029 0.557 0.645 0.818 0.029 0.400 0.553 0.817

RBC 0.056 0.928 0.544 0.862 0.056 0.827 0.424 0.741 0.040 0.750 0.864 0.979 0.040 0.589 0.777 0.926
Pet 0.056 0.928 0.544 0.862 0.056 0.827 0.424 0.741 0.040 0.750 0.864 0.979 0.040 0.589 0.777 0.926

Lomb 0.059 0.902 0.535 0.842 0.059 0.785 0.413 0.694 0.047 0.717 0.833 0.961 0.047 0.543 0.742 0.900
t(8) 500 KY 0.019 0.135 0.072 0.091 0.019 0.106 0.057 0.075 0.016 0.059 0.065 0.037 0.016 0.064 0.081 0.094

RBC 0.024 0.152 0.092 0.123 0.024 0.102 0.060 0.086 0.031 0.100 0.135 0.135 0.031 0.053 0.109 0.125
Pet 0.024 0.152 0.092 0.123 0.024 0.102 0.060 0.086 0.031 0.100 0.135 0.135 0.031 0.053 0.109 0.125

Lomb 0.036 0.172 0.113 0.150 0.036 0.107 0.093 0.124 0.036 0.121 0.149 0.151 0.036 0.068 0.122 0.147
1000 KY 0.019 0.409 0.183 0.305 0.019 0.306 0.149 0.244 0.035 0.223 0.299 0.293 0.035 0.176 0.256 0.349

RBC 0.039 0.387 0.194 0.295 0.039 0.265 0.158 0.221 0.037 0.211 0.318 0.355 0.037 0.146 0.244 0.324
Pet 0.039 0.387 0.194 0.295 0.039 0.265 0.158 0.221 0.037 0.211 0.318 0.355 0.037 0.146 0.244 0.324

Lomb 0.050 0.386 0.209 0.298 0.050 0.284 0.176 0.242 0.053 0.239 0.336 0.345 0.053 0.164 0.257 0.341
3000 KY 0.039 0.956 0.675 0.904 0.039 0.878 0.543 0.805 0.044 0.813 0.918 0.981 0.044 0.682 0.891 0.976

RBC 0.051 0.925 0.634 0.883 0.051 0.810 0.492 0.705 0.056 0.748 0.884 0.937 0.056 0.588 0.797 0.900
Pet 0.051 0.925 0.634 0.883 0.051 0.810 0.492 0.705 0.056 0.748 0.884 0.937 0.056 0.588 0.797 0.900

Lomb 0.060 0.912 0.599 0.860 0.060 0.768 0.480 0.688 0.061 0.699 0.847 0.912 0.061 0.556 0.756 0.842

Notes: The tests used in the breaks tests are the KY CUSUM test (KY), the AW CUSUM test (RBC), the Pettitt test (Pet) and the Lombard
test (Lomb). The GARCH(1,1) model with coefficients (ω,α1,β1) is given by Yt = σtεt with σ2

t = ω+α1Y 2
t−1 + β1σ2

t−1. The generated DGPs
are the GARCH(1,1) models used by Kulperger and Yu (2005) with coefficients (ω, α1, β1):=(0.0002,0.1,0.7) and (0.0002,0.1,0.8). For size
calculations a GARCH(1,1) model was estimated. The distributions used for the residuals are the standard normal N(0,1) and the Student’s t(3),
t(5) and t(8). For the power calculations the following alternatives were generated: a GARCH(1,1) with coefficients (ω, α1, β1):=(0.0003,0.1,0.7)
as P1, (0.0002,0.167,0.7) as P2 and (0.0002,0.1,0.767) as P3, for the first DGP, and (0.0003,0.1,0.8) as P1, (0.0002,0.167,0.8) as P2 and
(0.0002,0.1,0.867) as P3, for the second DGP. The break location π is set at 0.5T and at 0.7T . The RBC, KY and Pettitt tests have critical
values 1.358 and the Lombard test has 0.461. The above results refer to 5000 simulations.
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Table 9 Continued: Simulation results of the breaks tests on GARCH type models

DGP GARCH(1,1) (0.0002,0.1,0.7) GARCH(1,1) (0.0002,0.1,0.8)
Break point π 0.5 0.7 0.5 0.7

Distr. T Test Size P1 P2 P3 Size P1 P2 P3 Size P1 P2 P3 Size P1 P2 P3
Hansen 500 KY 0.013 0.114 0.084 0.086 0.013 0.107 0.057 0.089 0.019 0.053 0.069 0.047 0.019 0.057 0.092 0.094
SkSt RBC 0.034 0.137 0.095 0.109 0.034 0.102 0.076 0.093 0.031 0.095 0.130 0.135 0.031 0.070 0.098 0.142
(-0.09,8.1) Pet 0.034 0.137 0.095 0.109 0.034 0.102 0.076 0.093 0.031 0.095 0.130 0.135 0.031 0.070 0.098 0.142

Lomb 0.035 0.151 0.114 0.125 0.035 0.126 0.087 0.098 0.034 0.108 0.159 0.150 0.034 0.079 0.115 0.165
1000 KY 0.033 0.385 0.189 0.304 0.033 0.301 0.152 0.276 0.027 0.221 0.279 0.317 0.027 0.148 0.271 0.341

RBC 0.036 0.372 0.209 0.320 0.036 0.242 0.155 0.225 0.034 0.208 0.314 0.350 0.034 0.134 0.253 0.287
Pet 0.036 0.372 0.209 0.320 0.036 0.242 0.155 0.225 0.034 0.208 0.314 0.350 0.034 0.134 0.253 0.287

Lomb 0.046 0.381 0.223 0.318 0.046 0.239 0.165 0.246 0.043 0.232 0.322 0.372 0.043 0.148 0.266 0.309
3000 KY 0.037 0.951 0.650 0.902 0.037 0.892 0.546 0.833 0.033 0.780 0.916 0.979 0.033 0.648 0.848 0.970

RBC 0.042 0.936 0.619 0.870 0.042 0.822 0.500 0.781 0.045 0.737 0.899 0.933 0.045 0.562 0.791 0.894
Pet 0.042 0.936 0.619 0.870 0.042 0.822 0.500 0.781 0.045 0.737 0.899 0.933 0.045 0.562 0.791 0.894

Lomb 0.033 0.915 0.601 0.853 0.033 0.784 0.479 0.727 0.047 0.715 0.860 0.902 0.047 0.524 0.745 0.856
Hansen 500 KY 0.008 0.069 0.039 0.071 0.008 0.069 0.044 0.047 0.015 0.033 0.044 0.034 0.015 0.031 0.051 0.090
SkSt RBC 0.034 0.150 0.102 0.136 0.034 0.110 0.071 0.106 0.035 0.086 0.127 0.159 0.035 0.075 0.098 0.136
(-0.15,5.57) Pet 0.034 0.150 0.102 0.136 0.034 0.110 0.071 0.106 0.035 0.086 0.127 0.159 0.035 0.075 0.098 0.136

Lomb 0.037 0.141 0.099 0.132 0.037 0.111 0.070 0.105 0.036 0.086 0.125 0.153 0.036 0.078 0.099 0.131
1000 KY 0.022 0.282 0.103 0.201 0.022 0.230 0.131 0.158 0.027 0.143 0.196 0.199 0.027 0.116 0.169 0.215

RBC 0.041 0.420 0.188 0.325 0.041 0.261 0.141 0.238 0.032 0.275 0.333 0.434 0.032 0.177 0.228 0.357
Pet 0.041 0.420 0.188 0.325 0.041 0.261 0.141 0.238 0.032 0.275 0.333 0.434 0.032 0.177 0.228 0.357

Lomb 0.040 0.395 0.181 0.308 0.040 0.236 0.139 0.231 0.035 0.258 0.308 0.413 0.035 0.164 0.214 0.320
3000 KY 0.028 0.811 0.440 0.735 0.028 0.710 0.348 0.621 0.036 0.587 0.713 0.866 0.036 0.476 0.628 0.855

RBC 0.040 0.941 0.620 0.864 0.040 0.835 0.480 0.717 0.039 0.765 0.880 0.966 0.039 0.621 0.771 0.940
Pet 0.040 0.941 0.620 0.864 0.040 0.835 0.480 0.717 0.039 0.765 0.880 0.966 0.039 0.621 0.771 0.940

Lomb 0.043 0.923 0.587 0.832 0.043 0.805 0.448 0.675 0.042 0.741 0.857 0.954 0.042 0.573 0.729 0.914
Hansen 500 KY 0.016 0.049 0.025 0.036 0.016 0.055 0.026 0.030 0.020 0.040 0.034 0.031 0.020 0.029 0.040 0.076
SkSt RBC 0.034 0.148 0.092 0.133 0.034 0.120 0.066 0.096 0.025 0.098 0.126 0.186 0.025 0.067 0.101 0.165
(0.05,4.23) Pet 0.034 0.148 0.092 0.133 0.034 0.120 0.066 0.096 0.025 0.098 0.126 0.186 0.025 0.067 0.101 0.160

Lomb 0.039 0.144 0.089 0.131 0.039 0.117 0.063 0.092 0.027 0.096 0.124 0.184 0.027 0.067 0.101 0.153
1000 KY 0.024 0.191 0.068 0.136 0.024 0.151 0.085 0.103 0.024 0.100 0.143 0.137 0.024 0.084 0.110 0.174

RBC 0.037 0.416 0.164 0.315 0.037 0.270 0.116 0.231 0.034 0.278 0.295 0.473 0.034 0.181 0.203 0.395
Pet 0.037 0.416 0.164 0.315 0.037 0.270 0.116 0.231 0.034 0.278 0.295 0.473 0.034 0.181 0.203 0.395

Lomb 0.040 0.388 0.151 0.303 0.040 0.256 0.109 0.218 0.036 0.260 0.280 0.456 0.036 0.172 0.196 0.372
3000 KY 0.033 0.597 0.240 0.473 0.033 0.514 0.218 0.419 0.033 0.449 0.443 0.694 0.033 0.325 0.390 0.693

RBC 0.050 0.942 0.535 0.851 0.050 0.838 0.424 0.721 0.037 0.767 0.853 0.984 0.037 0.612 0.715 0.950
Pet 0.050 0.942 0.535 0.851 0.050 0.838 0.424 0.721 0.037 0.767 0.853 0.984 0.037 0.612 0.715 0.950

Lomb 0.053 0.926 0.505 0.826 0.053 0.804 0.397 0.674 0.038 0.739 0.822 0.972 0.038 0.567 0.686 0.937

Notes: The tests used in the breaks tests are the KY CUSUM test (KY), the AW CUSUM test (RBC), the Pettitt test (Pet) and the Lombard
test (Lomb). The GARCH(1,1) model with coefficients (ω,α1,β1) is given by Yt = σtεt with σ2

t = ω + α1Y 2
t−1 + β1σ2

t−1. The generated DGPs are
the GARCH(1,1) models used by Kulperger and Yu (2005) with coefficients (ω, α1, β1):=(0.0002,0.1,0.7) and (0.0002,0.1,0.8). For size calculations
a GARCH(1,1) model was estimated. The distribution used for the residuals is the Hansen’s Skewed t(λ,η) by Hansen (1994) with skewness
parameter λ and η degrees of freedom. The choice of the Hansen SkSt parameters was based on those of Hansen (1994) and to match the
parameters of two emerging markets, PAK and VEN. For the power calculations the following alternatives were generated: a GARCH(1,1) with
coefficients (ω, α1, β1):=(0.0003,0.1,0.7) as P1, (0.0002,0.167,0.7) as P2 and (0.0002,0.1,0.767) as P3, for the first DGP, and (0.0003,0.1,0.8) as P1,
(0.0002,0.167,0.8) as P2 and (0.0002,0.1,0.867) as P3, for the second DGP. The break location π is set at 0.5T and at 0.7T . The break location π
is set at 0.5T and at 0.7T . The RBC, KY and Pettitt tests have critical values 1.358 and the Lombard test has 0.461. The above results refer to
5000 simulations.
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Table 10: Descriptive statistics of the stock market returns indices
and the standardised residuals of GARCH type models of the major
and emerging stock markets

Returns Standardised Residuals
N-AR-GARCH N-AR-GARCH

Series Mean Std Dev Skewness Kurtosis Skewness Kurtosis
NIKKEI225 -0.085 2.881 -0.108 4.257 -0.226 4.109
FTSE100 0.109 2.082 -0.059 4.448 -0.135 3.899
SP500 0.150 2.073 -0.455 5.585 -0.416 3.900
DAX 0.112 2.895 -0.314 4.941 -0.310 3.413
CAC40 0.102 2.667 -0.153 3.966 -0.239 3.233
SP/TSX 0.132 1.993 -0.620 6.615 -0.437 4.225
HSI 0.202 3.444 -0.501 6.080 -0.215 4.148
ARG 1.051 7.459 2.515 22.536 0.215 5.449
BRA 1.884 6.384 0.172 7.810 -0.532 5.131
CHI 0.401 2.644 0.007 4.600 0.069 4.125
COL 0.534 3.325 0.397 9.865 0.312 4.827
INDIA 0.318 3.712 -0.122 4.941 -0.208 3.867
KOR 0.104 4.297 -0.060 5.393 -0.048 3.860
MAL 0.137 3.372 0.172 11.776 -0.430 5.485
MEX 0.469 3.242 -0.286 4.814 -0.316 3.830
PAK 0.279 3.617 -0.430 5.708 -0.158 4.335
PHIL 0.140 3.536 -0.609 8.179 -0.654 8.023
THAI 0.121 4.525 -0.043 6.814 -0.230 4.963
VEN 0.681 4.741 0.552 6.735 0.738 6.932

Notes: The first seven series are some of the major stock market returns indices and the
remaining series are the stock market index returns for the 12 emerging countries that are
used in the analysis. The returns series are weekly, measured in local currency and span
from 06/01/1989 up to 15/08/2008 (1024 sample size) for the emerging market return indices,
with the exception of Venezuela which spans from 06/01/1989 up to 06/04/2007 (953 sample
size), due to data availability. The major stock market returns indices span from 07/01/1989-
16/08/2008 (FTSE100 and S&P500 span from 03/01/1989-18/08/2008 and S&P/TSX spans
from 07/01/1989 up to 18/08/2008). The table shows the descriptive statistics for the returns
and the descriptive statistics of the standardized residuals obtained from fitting a normal-
AR(1)-GARCH(1,1) (N-AR-GARCH) model to the returns series.
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Table 11: Normal AR(1)-GARCH(1,1) parameter estimates and tests
for stock market returns indices of some of the major stock markets and
emerging markets in Asia and Latin America

Wald test
Series c ρ ω α β α+ β for IGARCH
NIKKEI225 0.043 -0.024 0.545 0.101 0.836 0.937 7.552**

(0.080) (0.034) (0.201)** (0.031)** (0.044)**
FTSE100 0.210 -0.032 0.116 0.086 0.889 0.975 4.557**

(0.061)** (0.034) (0.041)** (0.021)** (0.023)**
SP500 0.229 -0.125 0.038 0.064 0.929 0.993 0.848

(0.055)** (0.034)** (0.023) (0.015)** (0.015)**
DAX 0.266 -0.027 0.240 0.113 0.859 0.972 4.161**

(0.075)** (0.035) (0.086)** (0.028)** (0.030)**
CAC40 0.194 -0.025 0.209 0.091 0.881 0.972 4.278**

(0.072)** (0.032) (0.085)** (0.025)** (0.029)**
SP/TSX 0.181 0.022 0.064 0.060 0.924 0.984 1.584

(0.055)** (0.033) (0.039) (0.017)** (0.022)**
HSI 0.365 0.012 0.202 0.100 0.888 0.988 1.203

(0.093)** (0.035) (0.100)** (0.032)** (0.032)**
ARG 0.429 0.092 1.116 0.210 0.779 0.989 0.133

(0.134)** (0.038)** (0.404)** (0.056)** (0.040)**
BRA 0.727 0.095 0.428 0.096 0.894 0.990 0.876

(0.155)** (0.037)** (0.244) (0.019)** (0.020)**
CHI 0.287 0.185 0.157 0.087 0.891 0.978 2.358

(0.073)** (0.034)** (0.082) (0.027)** (0.035)**
COL 0.447 0.199 1.307 0.286 0.606 0.892 6.395**

(0.075)** (0.038)** (0.349)** (0.065)** (0.070)**
INDIA 0.352 0.114 0.697 0.125 0.829 0.954 4.720**

(0.100)** (0.033)** (0.252)** (0.029)** (0.037)**
KOR 0.172 -0.039 0.205 0.070 0.920 0.990 1.407

(0.110) (0.034) (0.112) (0.019)** (0.021)**
MAL 0.186 0.077 0.086 0.103 0.896 0.999 0.020

(0.083**) (0.041) (0.050) (0.030)** (0.026)**
MEX 0.524 0.089 0.375 0.084 0.882 0.966 4.231**

(0.094)** (0.033)** (0.155)** (0.023)** (0.030)**
PAK 0.186 0.190 0.489 0.173 0.806 0.979 1.653

(0.090)** (0.037)** (0.153)** (0.032)** (0.033)**
PHIL 0.165 0.110 0.288 0.064 0.916 0.980 1.333

(0.111) (0.034)** (0.168) (0.020)** (0.030)**
THAI 0.254 0.048 0.526 0.092 0.882 0.974 3.755

(0.114)** (0.032) (0.235)** (0.036)** (0.038)**
VEN 0.348 0.149 5.188 0.318 0.484 0.802 15.281**

(0.121)** (0.038)** (1.291)** (0.083)** (0.087)**

Notes: The first seven series are some of the major stock market returns indices and the remaining
series are the stock market index returns for the 12 emerging countries that were used in the analysis
with the AR(1)-GARCH(1,1)-normal model. The estimates and standard errors of the estimates
using the Bollerslev-Wooldridge method for the parameters of the AR(1)-GARCH(1,1) model are
reported. Results with (**) indicate that the parameter estimates are significant using the 5%
critical value. The Wald test statistic for testing the null hypothesis of the IGARCH α + β = 1 is
also reported. The returns series are weekly, measured in local currency and span from 06/01/1989
up to 15/08/2008 (1024 sample size) for the emerging market return indices, with the exception of
Venezuela stock market index returns which spans from 06/01/1989 up to 06/04/2007 (953 sample
size), due to data availability. The major stock market returns indices span from 07/01/1989-
16/08/2008 (FTSE100 and S&P500 span from 03/01/1989-18/08/2008 and S&P/TSX spans from
07/01/1989 up to 18/08/2008).
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Table 12: Residual-based specification tests of the normal AR(1)-GARCH(1,1)
model applied to some of the major stock market returns indices

Series NIKKEI225 FTSE100 SP500 DAX CAC40 SP/TSX HSI

Null
Hypothesis K Test

LB 4.781 1.156 2.131 3.170 0.454 4.502 5.103
2 vdW 4.256 0.987 1.756 1.474 0.042 3.961 2.347

Wilc 4.216 1.752 2.864 2.714 0.153 4.196 3.587
No Linear LB 5.673 2.534 3.614 5.596 1.403 4.506 5.389
Residual 4 vdW 4.807 1.998 3.266 4.279 1.028 4.048 2.568
Autocorrelation Wilc 5.081 2.404 4.836 5.514 1.939 4.529 3.840

LB 6.747 2.769 6.773 8.128 5.305 5.074 9.061
6 vdW 5.638 2.142 7.946 6.907 5.560 5.114 6.516

Wilc 6.043 2.579 12.744** 9.934 6.883 6.624 7.977

2 LM 0.859 1.256 0.028 0.891 3.363 1.446 5.710**
vdW 0.026 2.288 0.455 2.531 0.789 0.014 0.245

AvdW 0.258 3.872** 0.531 1.706 2.246 0.735 0.150
Wilc 0.003 2.617 0.084 3.492 0.871 0.031 0.173

No Quadratic 4 LM 3.650 6.480 1.188 0.960 3.651 1.620 6.543
Residual vdW 2.233 2.609 5.837 2.779 2.322 0.032 0.840
Autocorrelation AvdW 3.812 4.958 6.032 1.819 4.006 0.739 0.806

Wilc 3.043 3.279 5.242 3.774 2.419 0.098 0.498
6 LM 4.075 7.229 2.394 1.548 3.729 1.924 8.306

vdW 3.276 4.739 6.043 4.609 3.289 1.664 1.989
AvdW 5.819 6.503 6.288 3.165 4.439 1.531 1.246
Wilc 5.266 5.729 6.321 6.138 2.965 2.013 1.128

BN CS 1.896 1.472 2.424** 2.511** 1.205 1.796 1.004
Symmetry of BN CS- 1.817 1.371 2.154 2.511** 1.148 1.452 0.859
Conditional BN CS+ 1.896 1.472 2.424** 2.459** 1.205 1.796 1.004
Distribution Sign 0.439 0.281 1.563 0.563 -0.063 1.376 -0.375

Wilc -0.620 -0.752 -0.368 -0.437 -0.390 -0.811 -0.364

RBC 1.046 0.611 1.029 1.190 0.979 0.716 0.795
No Breaks KY 0.663 0.767 0.840 0.923 0.977 1.045 0.845
in GARCH Pet 1.046 0.611 1.029 1.190 0.979 0.716 0.795
coeff.s Lomb 0.373 0.052 0.146 0.219 0.139 0.080 0.173

Notes: The residual-based specification tests are applied to the weekly stock market returns, measured in local cur-
rency, of some of the major stock market returns indices. The indices span from 07/01/1989-16/08/2008 (FTSE100
and S&P500 span from 03/01/1989-18/08/2008 and S&P/TSX spans from 07/01/1989 up to 18/08/2008) and they
are comprised of weekly returns to match the sample period examined for emerging markets. Results with (**)
indicate that the parameter estimates are significant using the 5% critical values. The critical value of the linear
residual autocorrelation tests at the 5% level is 5.992 for K = 2, 9.488 for K = 4 and 12.592 for K = 6. The critical
value of the quadratic residual autocorrelation tests is 3.84 for K = 2, 7.815 for K = 4 and 11.071 for K = 6. For the
symmetry tests, the critical values of the BN, the Sign and the Wilcoxon tests are 2.21, 1.96 and 1.96 respectively.
For the GARCH coefficient breaks tests the RBC, KY and Pettitt tests have critical values 1.358 and the Lombard
test has 0.4614.
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Table 13: Residual-based specification tests of the normal AR(1)-GARCH(1,1) model applied to the stock market
returns indices of 12 emerging stock markets in Asia and Latin America

Country ARG BRA CHI COL INDIA KOR MAL MEX PAK PHIL THAI VEN

Null
Hypothesis K Test

LB 11.317** 20.623** 1.460 15.729** 1.284 3.160 7.301** 2.561 8.588** 11.094** 12.068** 6.377**
2 vdW 8.071** 22.743** 2.327 14.759** 1.311 3.146 6.873** 2.283 9.310** 11.611** 10.305** 6.208**

Wilc 7.522** 24.524** 1.926 12.331** 1.213 2.745 6.086** 2.680 8.550** 8.946** 9.736** 4.757
No Linear LB 12.290** 38.415** 5.001 23.238** 5.408 8.247 8.260 6.951 13.270** 12.744** 12.121** 8.063
Residual 4 vdW 8.858 43.799** 6.471 21.917** 4.789 8.125 8.370 7.013 16.085** 14.025** 10.423** 9.043
Autocorrelation Wilc 8.169 48.998** 4.438 19.049** 3.828 7.085 7.559 7.012 16.538** 10.984** 9.860** 8.981

LB 14.280** 47.256** 6.249 24.583** 6.156 8.347 10.382 7.155 15.553** 12.867** 12.727** 12.413
6 vdW 9.951 55.438** 7.512 22.934** 5.273 8.224 12.021 7.619 17.759** 14.315** 11.345 13.712**

Wilc 9.663 60.861** 5.225 20.629** 4.348 7.144 11.177 8.632 18.594** 11.948 10.466 13.685**

2

LM 0.319 0.433 0.292 0.006 0.730 0.178 0.430 0.341 1.263 0.047 3.038 1.429
vdW 0.121 4.193** 0.619 2.750 0.154 0.661 0.000 1.156 2.868 0.585 0.551 0.000

AvdW 0.003 0.614 1.039 0.479 0.121 0.678 0.155 0.801 2.415 1.110 0.085 0.494
Wilc 0.069 3.885** 0.490 2.125 0.005 0.347 0.026 1.574 2.331 0.145 1.557 0.068

4

LM 0.864 0.839 0.527 1.331 4.463 0.445 0.565 0.651 2.724 0.464 5.755 1.614
No Quadratic vdW 1.557 5.893 1.187 3.055 5.508 1.460 0.979 2.243 5.413 2.134 1.071 8.411**
Residual AvdW 1.380 2.354 1.745 1.475 6.373 0.682 1.051 2.156 5.417 4.187 0.899 7.220
Autocorrelation Wilc 2.529 5.621 1.106 2.233 6.200 1.758 0.713 2.377 4.291 2.285 2.130 10.697**

6

LM 4.259 1.196 1.641 1.794 5.529 2.450 2.335 1.620 3.166 1.121 6.453 4.023
vdW 4.275 6.101 1.308 6.441 7.700 2.569 3.031 3.251 6.983 2.175 1.217 10.488

AvdW 3.416 2.689 2.318 3.826 9.550 2.809 2.954 3.952 6.342 4.566 0.951 10.298
Wilc 5.925 6.163 1.549 3.880 9.534 2.774 2.249 3.205 6.639 2.326 2.565 13.494**

BN CS 0.856 1.324 2.367** 0.886 1.367 1.011 1.171 2.051 1.778 1.327 0.910 2.808**
Symmetry of BN CS- 0.668 1.324 2.367** 0.886 1.329 1.011 1.171 1.930 1.778 1.327 0.910 2.808**
Conditional BN CS+ 0.856 0.709 2.216** 0.502 1.367 0.847 1.021 2.051 1.529 1.215 0.899 2.038
Distribution Sign 0.875 3.252** -1.313 -1.501 0.563 -0.688 0.000 0.563 1.688 -0.375 -0.563 -0.810

Wilc -0.583 -3.489** -0.280 -1.221 -0.082 -0.704 -0.350 -0.107 -2.129** -0.152 -0.637 -0.287

KY 1.180 0.812 0.904 1.209 0.928 0.757 0.610 0.884 0.855 0.912 0.944 1.143

RBC 0.666 1.820** 0.828 1.210 0.600 0.884 0.911 0.832 1.645** 0.880 0.727 2.554**
No Breaks 08/07/1994 01/10/1993 26/05/2000
in GARCH Pet 0.666 1.820** 0.828 1.210 0.600 0.884 0.911 0.832 1.645** 0.880 0.727 2.554**
coeff.s 08/07/1994 01/10/1993 26/05/2000

Lomb 0.060 0.734** 0.128 0.367 0.057 0.122 0.143 0.135 0.996** 0.117 0.139 2.197**
08/07/1994 01/10/1993 26/05/2000

Notes: The residual-based specification tests are applied to the weekly stock market returns of 12 emerging markets for the sample period 06/01/1989 up
to 15/08/2008 (1024 sample size), with the exception of Venezuela which spans from 06/01/1989 up to 06/04/2007 (953 sample size). The table reports the
results for some of the traditional tests and the new tests developed in this paper. Results with (**) indicate that the parameter estimates are significant
using the 5% critical values. The critical value of the linear residual autocorrelation tests at the 5% level is 5.992 for K = 2, 9.488 for K = 4 and 12.592 for
K = 6. The critical value of the quadratic residual autocorrelation tests is 3.84 for K = 2, 7.815 for K = 4 and 11.071 for K = 6. For the symmetry tests,
the critical values of the BN, the Sign and the Wilcoxon tests are 2.21, 1.96 and 1.96 respectively. For the GARCH coefficient breaks tests the RBC, KY and
Pettitt tests have critical values 1.358 and the Lombard test has 0.4614.

52




