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ABSTRACT 

Optimal Student Loans and Graduate Tax under Moral Hazard and 
Adverse Selection* 

We completely characterize the set of second-best optimal "menus" of 
student-loan contracts in a simple economy with risky labour-market 
outcomes, adverse selection, moral hazard and risk aversion. The model 
combines structured student loans and an elementary optimal income-tax 
problem à la Mirrlees. This combination can be called a graduate tax. There 
are two categories of second-best optima: the equal treatment and the 
separating allocations. The equal treatment case is obtained when the social 
weights of student types are close to their population frequencies; the 
expected utilities of different types are then equalized, conditional on the event 
of success on the labor market. But individuals are ex ante unequal because 
of differing probabilities of success, and ex post unequal, because the income 
tax trades off incentives and insurance (redistribution). In separating optima, 
the talented types bear more risk than the less-talented ones; they arise only if 
the social weight of the talented types is sufficiently high. The second-best 
optimal graduate tax provides incomplete insurance because of moral hazard; 
it typically involves cross-subsidies; generically, it cannot be decomposed as 
the sum of an optimal income tax depending only on earnings, and a loan 
repayment, depending only on education. Therefore, optimal loan repayments 
must be income-contingent. 
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1 Introduction

The importance of student loans for the accumulation of human capital, economic growth

and welfare cannot be overestimated. In the United States, the total amount of outstand-

ing student debt has reached $1 trillion at the end of 2011. In Great Britain, the rise of

tuition fees seems to have caused a sharp increase in average student debt1. With the re-

cent economic downturn, it became clear that an increasing number of students experience

di¢ culties to repay their loans2. Student loans pose interesting �nancial engineering and

regulation problems. There are many discussions on the optimal design of these loans: for

instance, the UK and Australia have a form a income-contingent repayment system, since

loan repayments are based on the graduate�s monthly earnings, just like income tax, and

interest rates are subsidized3. In some continental European countries, student loans play

a negligible role but, given the severe shortage of public funds, they could go hand in hand

with a substantial raise in tuition fees, and become a new source of funds for universities4.

There is an important econometric literature on the impact of credit constraints on

university or college attendance5. For recent quantitative studies of alternative student-loan

policies in the US, see, e.g., Ionescu (2009), Lochner and Monge-Naranjo (2010). These

questions are hotly debated, yet, to the best of our knowledge, the micro-economic theory

of student loans is still underdeveloped6. In particular, we need a normative foundation for

the intuition that income-contingent loans are the appropriate solution, when informational

asymmetries between lenders and borrowers are involved in the allocation and design of

loans. In the following, we propose a simple model of student loans, under the combined

e¤ects of risk aversion, moral hazard and adverse selection. We explore the structure of the

set of second-best optimal (or interim incentive-e¢ cient) allocations of credit to risk-averse

1The average student debt is predicted to be around 50,000 pounds, on leaving the university, for those
starting in 2012. for details, see http://www.slc.co.uk/statistics.

2See, for instance, The Economist, October 29th, 2011, p17 and P 73. In the US and in 2009, the default
rate on student loans has reached 8.8%.

3See, e.g., Barr and Johnston (2010).
4See, e.g., Jacobs and Van der Ploeg (2006).
5See, for instance, Carneiro and Heckman (2002), Keane and Wolpin (2001), Stinebrickner and Stine-

brickner (2008). For a survey, see Lochner and Monge-Naranjo (2011).
6See our discussion of the literature below.
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students in an economy in which individual talents and e¤orts are not observed by the lender,

future earnings are subject to risk and incomes can be taxed.

Our main results are the following. We consider an economy with two unobservable

types of students, the talented (or low-risk) and the less-talented (high-risk) students, where

risk a¤ects earnings. The distribution of individual earnings is a¤ected by ex ante and ex

post e¤ort choices. To �x ideas, ex ante e¤ort is exerted during college years, while ex post

e¤ort is exerted on the labor market. An event called success is randomly drawn once ex

ante e¤orts have been chosen. The government observes individual earnings and success, but

observes neither ex ante nor ex post e¤ort. The probability of success depends on ex ante

e¤ort, while the ex post e¤ort choices of workers determine earnings, conditional on success.

The talented types and the hard-working individuals, that is, those who choose a high ex ante

e¤ort, will obtain high-wage job opportunities with a higher probability than the low-e¤ort

or the less-talented types. Since ex post e¤orts are not observed, the student-loan problem

is combined with an elementary form of the Mirrleesian optimal income-tax problem. We

describe the set of second-best Pareto-optima by letting the social weight of types vary in

the social welfare function (i.e., a standard weighted average of expected utilities). The

second-best optima can be implemented by a combination of structured loans and taxes.

We �nd that there are two broad categories of second-best optima, namely, the sepa-

rating and equal treatment optima. When the social weight of types is in the neighborhood

of their frequencies in the population of students, and therefore, in the vicinity of the stan-

dard utilitarian case, the second-best optimal menu of contracts exhibits a form of pooling,

called equal treatment : the students�expected utilities, net of loan repayments, are equal,

conditional on the random individual outcome called success. In other words, the expected

utility of net earnings, as a function of individual �success" or �failure" on the labour mar-

ket, should be independent of the student�s unobservable type. But of course, in spite of

being treated equally in this particular sense, students are ex ante unequal, since the tal-

ented types have a greater probability of success, and they are ex post unequal, since the

optimal income tax trades o¤ the provision of insurance (and redistribution) against that

of incentives. This �rst type of solution is also characterized by bunching in the sense that

it remains constant as a function of social weights on an interval. Hence, in the vicinity
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of the standard utilitarian case, equal treatment (as de�ned above) is incentive compatible

and second-best optimal. This is not the textbook allocation of insurance under adverse

selection à la Rothschild-Stiglitz7. To obtain the familiar separating menu of loan contracts

as a second-best optimum, we need to increase the social weight of the talented types relative

to their natural frequency in the population.

The optimal menu of contracts exhibits incomplete insurance: this is mainly due to

moral hazard. In the case of a separating optimum, both types are incompletely insured but

the talented types bear more risk than the less-talented. The students obtain the maximal

amount of income insurance compatible with high-e¤ort incentives among the less-talented.

The talented types are therefore subjected to an ine¢ ciently large amount of income risk.

As a by-product, we �nd that second-best optimal loan contracts are always income-

contingent, even in the presence of an income tax, and there are no bankruptcies. To be more

precise, we �nd that the second-best cannot be implemented by the sum of an income tax,

that depends only on observed earnings, and a loan repayment, that depends only on the

quality of education (or years of education). It must be that the income tax, either depends

on education, or that the loan repayments depend on income (this is why loans must be

�structured"). Finally, the budget is by construction balanced (we did not explore subsidies

that would be �nanced by means of external sources of funds) but the second-best optima

typically exhibit cross-subsidies between types: the talented repay more and subsidise the

less-talented. The second-best solution can be interpreted as a graduate tax, with a certain

degree of progressivity.

It is well-known that microeconomic models of insurance and models of banking are

formally close. Rothschild and Stiglitz�s approach to screening in insurance markets has

been applied to banking, albeit with adaptations (see, e.g., Bester (1985)). Classic theories

of credit contracts typically treat adverse selection and moral hazard separately (see Freixas

and Rochet (1998)). A contribution of the present paper is to propose a study of the structure

of second-best optima in a screening model à la Rothschild-Stiglitz, but with the added

complication of moral hazard, since outcome probabilities also depend on hidden actions8.

7See Rothschild and Stiglitz (1976), Wilson (1977), Miyazaki (1977), Spence (1978).
8The structure of second-best optima in insurance markets with pure adverse selection has been studied

by Crocker and Snow (1985) and Henriet and Rochet (1990).
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Student loans are a very natural application for the theory of incentives or Mechanism Design

under hidden actions and hidden types. The general theory of optimum (or equilibrium)

contracts under moral hazard, adverse selection and risk aversion is known to be a very hard

problem (see Arnott (1991) for comments and further references to unpublished essays on

this question, see also the more recent synthesis of Boadway and Sato (2012) on optimal

taxation with uncertain earnings). Solutions can be exhibited when principal and agent

are both risk-neutral (see, e.g., Picard (1987) and Caillaud, Guesnerie and Rey (1992); see

also the discussion in La¤ont and Martimort (2002, chapter 7)). In the �eld of optimal

regulation theory, a few contributions have dealt with special cases (see, e.g., McAfee and

McMillan (1986), Baron and Besanko (1987), La¤ont and Rochet (1998)). An extension

of Rothschild and Stiglitz�s insurance market model to moral hazard, and hence the study

of equilibria in such an extended model, is proposed in the often quoted, but unpublished

manuscript of Chassagnon and Chiappori (1997). Our model is close to that of the latter

contribution, but Chassagnon and Chiappori did not study cross-subsidies between types

and the set of Pareto optima. Recent work on the Principal-Agent model in the case at

hand required advanced mathematical optimisation techniques (see Faynzilberg and Kumar

(2000)) or used stochastic calculus, as in the asset-pricing, continuous-time �nance literature

(see, e.g., Sung Jaeyoung (2005)). These intimidating technicalities mainly explain why we

study a simple textbook model here, but it conveys, we think, the essential intuitions and

ideas (and yet, some of the proofs are not straightforward). Chatterjee and Ionescu (2011)

propose a quantitative analysis of a model of student loans with moral hazard, exploring the

feasibility of o¤ering insurance against college-failure risk, but they do not rely onMechanism

Design techniques as we do here. Finally, some contributions have been devoted to education

in an optimal income-taxation model. This has been done in static and two-period settings,

see, e.g., Anderberg (2009), Bovenberg and Jacobs (2005), De Fraja (2002), Fleurbaey et al.

(2002). More recently, and closer to the present contribution, Findeisen and Sachs (2012)

have studied the combination of an income-tax and income-contingent loans in an optimal

tax model with endogenous investment in human capital; they use a more complicated model

than us, with a continuum of types, but have recourse to numerical simulations. They reach

similar conclusions about the usefulness of income-contingent reimbursement.
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In the following, Section 2 describes the model and studies �rst-best optima. Section

3 is devoted to a preliminary analysis of the asymmetric information case and of incentive

constraints. Section 4 presents the main results, characterizing the set of second-best optima

and discusses implementation by means of structured student loans and the income tax.

Concluding remarks are in Section 5. The long proofs are presented in the appendix.

2 A Simple Model

2.1 Basic Assumptions

We consider a population of students with the same von Neumann-Morgenstern utility u(:).

There are two types of students, indexed by i = 1; 2. Each type of student choses a quality

of education qi. Assume that qi is a nonnegative real number. Each student is successful or

fails. The individuals of both types have independent probabilities of success, that depend

on individual e¤ort, denoted ei, and on the type itself. Let pi(ei) denote the probability of

success of a type i student exerting e¤ort ei.

The distribution of earnings takes the form of a two-stage lottery: success is drawn

�rst with probability pi, and the wage w itself is the result of another lottery, given success.

We assume that, in case of success, i.e., with probability pi(ei), type i obtains a random

wage ew on the labor market, with a probability distribution that depends on the quality

of education q. In case of failure, i.e., with probability 1 � pi(ei), the student gets the

basic income w0 � ew. In other words, the event of success on the labour market yields a
wage always greater than w0. A possible interpretation is the following: the probability of

success or failure depends on factors known to the student ex ante, i.e., before the beginning

of work experience, (call them cognitive skills to �x ideas); this de�nes the student type.

Ultimately, the wage w also depends on independent factors (say, on non-cognitive skills)

that are not known by the student ex ante, and not observed by the government. This

speci�c structure is a way of combining a student-loan model with an elementary form of

the optimal income-taxation problem in a simple and relatively tractable manner, as will be

explained below.
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To keep the analysis of the model relatively simple, we assume that ex ante e¤ort

can take only two values, high or low, or ei 2 f0; 1g for all i. E¤ort has a cost ciei for type

i, where ci > 0 is a parameter. Given these assumptions, to simplify notation, we denote

Pi = pi(1) and pi = pi(0). We assume that e¤ort e raises the probability of success for each

type. Type 2, the "talented type", is more likely to succeed given the e¤ort level. Formally,

we assume,

Assumption 1. 0 < pi < Pi < 1, i = 1; 2, and P2 > P1; p2 > p1.

Assume now that type 1 students have chosen an education of quality qi, and, to �x ideas,

that we have q2 > q1. We assume that the distribution of wages ew, given success, takes
the following form. An education of quality q2 normally leads to a position with a wage

w(q2), where w(:) is an increasing function of quality, but there is some probability � that

the student �nds a job with a wage w(q1) < w(q2). In other words, a type 2 student meets

expectations with probability 1� � but gets the same wage as a type 1 with probability �.

A possible interpretation is that this student lacks the necessary skills to really occupy a

position commanding the high wage. We have in mind that � is small and in any case, we

assume that � < 1=2. Symmetrically, a student of type 1, with education q1, gets a wage

w(q1) with probability (1��) and "escapes her fate", that is, obtains a job with a wage w(q2),

with probability �. The probability � is independent of e¤ort ei. We could assume that �

depends on type i but that would not lead to any interesting insight. These assumptions are

a simple way of creating an informational problem for the government, because any type i

can end up with a high wage w(q2), a middle-range wage w(q1) or a low income w0, albeit

with di¤erent probabilities. We also could assume that the low income depends on type i,

and denote it w0i, with w01 6= w02, but again, that would not add anything substantial to

the analysis.

The total cost of education is simply iq for quality q; the unit cost i is positive and

depends on type. In addition, we assume that all students are strictly risk averse and that

there are diminishing returns to education on the labor market.
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Assumption 2.

a) u(:) and w(:) are strictly increasing, strictly concave and continuously di¤erentiable

as a function of w and q, respectively.

b) w(q) � w0 for all q � 0.

c) 1 � 2

We assume that types i and e¤orts ei are not observable, but that the government observes

the individual�s wage w, the quality of education q, which is recorded, and the event of success

or failure in the �rst random draw. In other words, the governement knows if w = w0 or

if w is greater than w0, the result of the �rst lottery, but doesn�t know the result of the

second lottery. This assumption leads to some simpli�cations, because it allows us to reduce

the number of ex post incentive constraints taken into consideration, again without losing

anything essential in the analysis.

By de�nition, a student loan covers the cost of education. So, the amount of a loan to

type i is iqi. Reimbursement is contingent on earnings and on the quality of education qi,

both observed by the government. Let (Ri; R0i; ri) denote the repayment pro�le of a loan to

type i. A type i student choosing education qi earns a net income w(qi)�Ri with probability

pi(ei)(1��), a net income w(qj)�R0i, j 6= i, with probability pi(ei)� and net income w0�ri
with probability 1� pi(ei).

We now nest an elementary income-taxation problem in this model. Assume that,

once on the labour market, a successful student can decide to exert ex post e¤orts "i 2 f0; 1g,

and �i 2 f0; 1g. De�ne a completely successful type 2 as a student who "wins" both lotteries:

this student can occupy a high-pay job. The completely successful type 2 can choose to reduce

her e¤ort ex post to �2 = 0 and earn only w(q1). In doing so, this type 2 agent would change

the cost of her e¤ort by b21 < 0, or equivalently, reduce the disutility of her work by jb21j. In

other words, jb21j is the increase in utility due to a smaller e¤ort on the labour market for a

successful type 2 behaving as a type 1.

Similarly, de�ne a completely successful type 1 as an individual with exceptional skills,

who can for that reason occupy a high-wage position (in spite of being a type 1). We assume

that a completely successful type 1 can save a disutility jb11j by choosing to earn just the
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middle wage w(q1), exerting ex post e¤ort "1 = 0. Hence, b11 < 0 is the (negative) cost of a

completely successful type 1 behaving as an ordinary type 1.

In addition, we assume that a type 1 (respectively, a type 2) with an unlucky draw of

skills in the second lottery could earn the high wage, but at the cost of a very high disutility

b12 > 0 (respectively b22 > 0). For the sake of notational elegance and simplicity, we choose

e¤orts �1 = 0 (respectively, "2 = 0) to be the e¤ort choices that permit a student with

unsuccessful draws of the second lottery to pose as a successful individual.

These assumptions create a Mirrleesian taxation problem, because the most lucky

types can decide to reduce their e¤ort ex post if their income is taxed too heavily, that

is, in our case, if repayments R2 and R01 are too high. The allocation of student loans is

obviously constrained by adverse selection (due to unobserved types), and by a non-trivial

moral hazard problem (due to unobserved e¤ort). These di¢ culties are themselves combined

with an optimal taxation problem, posed by the design of the contingent repayment schedule

(due to unobserved ex post e¤orts). Given our assumptions, the cost of e¤ort of a type i

student can be de�ned as follows,

Ci(ei; "i; �i) = ciei + pi(ei)[(1� �)(1� �i)bij + �(1� "i)bii]: (1)

Remark that when all e¤orts are equal to 1, i.e., if students do the �right thing", given our

conventions, we have Ci(1; 1; 1) = ci.

By de�nition, in this economy, an allocation, is an array f(ei; qi; Ri; R0i; ri; "i; �i)gi=1;2.

A menu of contracts is an array f(qi; Ri; R0i; ri)gi=1;2. Let �i denote the frequency of type i in

the student population, with �1+�2 = 1. Assume that a public lending authority distributes

all loans. Given the above assumptions, if (qi; Ri; R0i; ri) is chosen by type i only, the per

capita resource constraint imposes,

�i�ifpi(ei)[(1��)(�iRi+(1��i)R0i)+�("iR0i+(1�"i)Ri)]+(1�pi(ei))ri�iqig � 0: (RC)

If all e¤ort variables are equal to 1, that is, if (e1; e2) = (1; 1), ("1; "2) = (1; 1), (�1; �2) =

(1; 1), the resource constraint boils down to

�i�ifPi(1� �)Ri + Pi�R0i + (1� Pi)ri � iqig � 0: (2)
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2.2 First-Best Optimality

Denote

Ui = �vi + (1� �)Vi;

the conditional expected utility of a successful type i, where, by de�nition,

Vi = u[�i(w(qi)�Ri) + (1� �i)(w(qj)�R0i)]; (3)

vi = u["i(w(qj)�R0i) + (1� "i)(w(qi)�Ri)];

where j = i+(�1)i+1. The utility of an unsuccessful type i is denoted ui, where by de�nition,

ui = u(w0 � ri): (4)

The ex ante expected utility of a type i student is simply

pi(ei)Ui + (1� pi(ei))ui � Ci(ei; "i; �i): (5)

Let �1 and �2 be the weights of type 1 and type 2 in the welfare function. We assume

�1 + �2 = 1 without loss of generality, and �i > 0 for all i. A �rst-best optimum can be

obtained as a solution of the following problem,

Maximize �i�i[pi(ei)Ui + (1� pi(ei))ui � Ci(ei; "i; �i)] (6)

with respect to f(qi; Ri; R0i; ri; ei; "i; �i)gi=1;2, subject to the resource constraint RC, and

(ei; "i; �i) 2 f0; 1g � f0; 1g � f0; 1g.

To determine the �rst-best e¤ort vector (e�i ; "
�
i ; �

�
i ), we need to compute the optimal

allocation of utility in 24 = 16 cases, that is, consider in turn each possible vector of e¤orts

and compare the value of welfare for each of these combinations. The only really interesting

case is when (ei; "i; �i) = (1; 1; 1) for all i, that is, high e¤ort ei on the part of both types

is required. It can be shown that e = (1; 1) is optimal if the e¤ort costs c1, c2 are small

enough and if the di¤erence Pi � pi is large enough, that is, if e¤ort is su¢ ciently e¤ective

in increasing the probabilities of success in the �rst lottery. We assume that this is indeed

the case.
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In addition, it is intuitively reasonable to assume that a type i with an unlucky

drawing of the second lottery, that is, a type 2 who lacks the skills to occupy a high-

salary job, or an ordinary type 1, could earn the high wage (and pretend to be completely

successful), but would incur a very high ex post e¤ort cost. In other words, we assume that

b12 and b22 are very large. This means that �1 = 1 and "2 = 1 are always optimal, and

the unsuccessful types will never be tempted to pose as completely successful ones. We also

assume that the other two parameters, b21 and b11, are not too large in absolute value, and

that the di¤erence between w(q1) and w(q2) is su¢ ciently large. Under these assumptions,

it is socially e¢ cient to require that the completely successful types occupy high-pay jobs.

We therefore assume that it is socially e¢ cient to set all e¤ort variables equal to one, for

both types.

If all e¤ort variables are equal to 1, we have Vi = u[w(qi) � Ri], vi = u[w(qj) � R0i],

with j = i+ (�1)i+1. De�ne the inverse utility function

z(x) = u�1(x): (7)

We obtain

Ri = w(qi)� z(Vi); R0i = w(qj)� z(vi); and ri = w0 � z(ui); (8)

with j 6= i. With these de�nitions, the �rst-best optimality problem can be rewritten as

follows. Eliminating Ri, R0i and ri from the objective and the resource constraint RC and

denoting Pi = pi(1), we obtain,

Maximize
X
i

�i[PiUi + (1� Pi)ui � ci] (9)

with respect to (qi; Vi; vi; ui)i=1;2, subject to the resource constraint,X
i

�ifBi(q)� PiE(zi)� (1� Pi)z(ui)g � 0; (RC 0)

where, by de�nition,

Bi(q) = Pi[(1� �)w(qi) + �w(qj)] + (1� Pi)w0 � iqi; (10)

E(zi) = (1� �)z(Vi) + �z(vi); (11)
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j 6= i and q = (q1; q2). The function Bi(q) is the expected surplus of education for type i.

It is easy to show that the e¢ cient choice of q must maximize �i�iBi(q). Assuming

that the solution is interior, we necessarily have qi = q�i , where q
�
i solves,

[Pi(1� �) + (�j=�i)Pi�]w0(q�i ) = i; (12)

for all i = 1; 2, j 6= i, and where w0(:) denotes the derivative of w(:). This condition is

necessary and su¢ cient since w(:) is concave. It is easy to check that, for a su¢ ciently small

value of �, we have q�2 > q
�
1 and B2(q

�) > B1(q
�), since we assumed P2 > P1 and 1 � 2.

We would like to ignore some uninteresting corner solutions; we therefore state the following

technical assumption.

Assumption 3. q�2 > q
�
1 > 0 and Bi(q

�) > w0 for all i.

Thus, we assume that the �rst-best education is interior and that the e¢ cient amount of

education is pro�table, on average, for both types.

Under these assumptions, the �rst-best problem becomes easy to solve. Note �rst

that it is a convex programming problem, since z(:) is a convex function and the objective is

a linear function of utility levels Vi, vi, and ui. To write the �rst-order necessary conditions

for optimality, let � denote the Lagrange multiplier of the resource constraint. We �nd, for

i; j = 1; 2,

0 = ��i�i(@Bi(q)=@qj)

�i = ��iz
0(Vi) = ��iz

0(vi) = ��iz
0(ui)

for all i. This immediately yields,

�i
���i

= z0(V �i ) = z
0(v�i ) = z

0(u�i ); (13)

z0(V �1 )

z0(V �2 )
=

�1=�1
�2=�2

=
z0(v�1)

z0(v�2)
=
z0(u�1)

z0(u�2)
; (14)

�� =
1

�i�iz0(u�i )
> 0; (15)

and q = q�. It follows that �rst-best optimality implies full insurance, that is, for all i,

V �i = v
�
i = u

�
i ; (16)
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and the resource constraint must be binding. If, in addition, �i = �i, we get full equality, i.e.,

V �1 = V
�
2 , v

�
1 = v

�
2 and u

�
1 = u

�
2 . These results are standard consequences of risk aversion.

Students are fully insured against labour market risk, but also against the risk of being of

type 1.

The above results describe an extremely idealized situation in which any degree of

redistribution is possible, and politically acceptable. Note that full insurance implies w(q�i )�

R�i = w(q
�
j ) � R0�i = w0 � r�i . Under Assumption 2, this implies R�i � r�i = w(q�i ) � w0 > 0,

or w(q�i )�R�i �w0 = �r�i . So, if we require w(q�i )�R�i � w0, i.e., if we want individuals to

receive weakly more in case of success than if they were not educated, full insurance implies

r�i � 0. We also have w(q�2)� w(q�1) = R�2 �R0�2 = R0�1 �R�1 > 0.

In addition, note that there doesn�t exist an unconstrained optimum with r�i � 0

for all i. If such an optimum did exist, then, because of full insurance, we would have

w(q�i )�R�i = w(q�j )�R0�i = w0� r�i � w0 and therefore, �i�i(PiEz�i +(1�Pi)z(u�i )) � w0 <

�i�iBi(q
�), a contradiction, since resources would then be wasted.

If we do not permit negative repayments (i.e., if the banker is not an insurer), opti-

mality implies r�i = 0: we �nd a contingent reimbursement loan, in the ordinary sense that

no repayment is required in case of "failure".

The logic of political acceptability of the loan and transfer schemes should also lead

to consideration of individual rationality constraints for each type. We take these constraints

to be interim participation constraints, that is, for all i,

Pi[(1� �)u(w(qi)�Ri) + �u(w(qj)�R0i)] + (1� Pi)u(w0 � ri)� ci � u(w0): (IRi)

IRi means that type i prefers to participate in the loan scheme with education over earning

the basic wage w0 for sure. In the following, we will implicitly restrict the discussion of

Pareto optima to allocations satisfying IRi for all i. In practice, this means that we do not

consider values of �2 too close to 0 or to 1.
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3 Asymmetric Information and Second-Best Optima

Let us now study the case in which types are not observed by public authorities. By def-

inition, second-best optimal (or interim e¢ cient) allocations maximize a weighted sum of

the student�s expected utilities, subject to resource-feasibility and incentive-compatibility

constraints. Students self-select in a menu of contracts proposed by the public authorities.

The allocation determines ex post utility values (Vi; vi; ui) and a quality of education qi for

each type i. Although in principle, second-best e¤ort levels could be di¤erent from their

�rst-best counterparts, we now assume that e¤ort levels equal to 1 are second-best optimal.

This is at the same time a reasonable assumption and the only interesting case here, given

that e¤ort variables are discrete. Other cases, in which some or all of the types exert zero

e¤ort, could be studied in a very similar way as the one analyzed below. Again, high e¤orts

will be optimal if the ratios ci=(Pi� pi) and if the disutility costs b11 and b21 of ex post e¤ort

are not too large, for otherwise, the social cost of providing incentives could be higher than

the bene�ts of e¤ort in terms of aggregate surplus. The social bene�ts of e¤ort are clearly

the increased probabilities of success and the increased productivity of agents on the labour

market. In this model, the social cost of providing incentives is due to the addition of the

degree of inequality and risk that the latter impose, on top of the direct disutility of e¤ort

itself.

3.1 Incentive constraints

We consider �rst the ex post incentives. The students know their types. Assume that they re-

veal their types by choosing the quality of their education, that is q1 < q2, and type i students

choose education qi. This result will be obtained if the menu of loans f(qi; Ri; R0i; ri)i=1;2g is

incentive compatible. The completely successful students of type 1 will not decide to choose

a job with a middle-range salary ex post if and only if,

v1 � V1 � b11: (ICX1)

Similarly, a completely successful type 2 student will not be tempted to behave as a type 1

ex post if and only if,

V2 � v2 � b21: (ICX2)
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We will see below that these constraints must be binding at a second-best optimum. The

other constraints, that is, V1 � v1 � b12 and v2 � V2 � b22 will always be satis�ed since b12
and b22 are very large, as assumed above.

Given values of (Vi; vi) satisfying ICX1 and ICX2, we now have a generalized Principal-

Agent problem in the sense of Myerson (1982). See also La¤ont and Martimort (2002). We

apply the extended revelation principle . The constraints bearing on ex ante utilities and ef-

forts are revelation and obedience constraints: the students should simultaneously self-select

by choosing the right contract in the menu of loans and exert the right amount of e¤ort.

Since we assume that high e¤ort is e¢ cient, we can now write the incentive constraints as

follows:

PiUi + (1� Pi)ui � PiUj + (1� Pi)uj; (ICi)

PiUi + (1� Pi)ui � ci � piUi + (1� pi)ui; (MHi)

PiUi + (1� Pi)ui � ci � piUj + (1� pi)uj; (ICi)

where by de�nition,

Ui = �Vi + (1� �)vi: (EU)

for all i = 1; 2 and j 6= i, and recall that pi = pi(0). The self-selection constraint ICi says

that type i should not be tempted to pose as type j ex ante while exerting high e¤ort. The

moral hazard constraint MHi says that type i should prefer to exert high e¤ort over low

e¤ort and honestly revealing her (his) type ex ante. In addition, constraint ICi says that

type i prefers high e¤ort to low e¤ort and posing as type j ex ante.

The second-best optimality problem is the following: maximize �i�i[PiUi+(1�Pi)ui]

subject to, RC 0, ICi, MHi, ICi, ICXi and EU . When the problem is posed in this form,

it is immediate that the variables (Vi; vi) appear only in ICX1, ICX2 and in the resource

constraint RC 0. We can therefore decompose the optimization problem as follows. Fix the

value of Ui. Then, one can easily prove, using Kuhn-Tucker conditions, that (Vi; vi) must be

chosen in such a way that they minimize (1� �)z(Vi)+ �z(vi) subject to ICXi, i = 1; 2 and

EU . Intuitively, this is just the least costly way of providing the incentives ex ante, given

the ex post e¤ort constraints. It is also easy to check that the social planner should choose
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the minimal level of risk compatible with ICXi. It follows that both ICXi constraints must

be binding at the second-best optimum. We can state this result formally.

Result 1. The ex post incentive constraints ICXi, i = 1; 2, must be binding at any second-

best optimum, that is,

v1 = V1 � b11; and v2 = V2 + b21: (17)

Given this result and constraint EU , the (Vi; vi) variables can be completely eliminated from

the welfare maximization problem. To simplify notation, de�ne the new variables:

b1 = �b11 > 0 and b2 = b21 < 0: (18)

Given this de�nition, we have the convenient expression of ex ante utility,

Ui = Vi + �bi: (19)

Eliminating (Vi; vi) from RC 0, we obtain the modi�ed resource constraint,

X
i

�ifBi(q)� Pi[(1� �)z(Ui � �bi) + �z(Ui + (1� �)bi)]� (1� Pi)z(ui)g � 0; (RC)

We now study the consequences of the other, ex ante incentive constraints.

It is not di¢ cult to see that MHi can be rewritten as, (Pi � pi)(Ui � ui) � ci, or

Ui � ui � Ki (MHi)

where by de�nition,

Ki =
ci

Pi � pi
: (20)

Moral hazard will thus force a gap between the reward of success and that of failure. It is

natural to assume that type 2 is more e¢ cient than type 1 while exerting e¤ort. Formally,

we assume the following.

Assumption 4. K1 � K2 � 0.
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Adding up the ICi constraints immediately yields

(P2 � P1)(U2 � U1) � (P2 � P1)(u2 � u1)

and P2 > P1 implies the property

U2 � u2 � U1 � u1: (D)

This property has important consequences. If type 1 is insured against failure in the limited

sense that U1 = u1, then, type 2 gets more in the good state, i.e., U2 � u2. But if type 2 is

insured against failure in the sense that U2 = u2, then, type 1 gets more in the bad state,

i.e., u1 � U1.

Since ICi can be rewritten Pi(Ui � Uj) � (1 � Pi)(uj � ui), we get the string of

inequalities,
P2

1� P2
(U2 � U1) � u1 � u2 �

P1
1� P1

(U2 � U1): (IC)

An immediate consequence is the following.

Result 2.

IC constraints imply

U2 � U1; and u1 � u2: (21)

Proof : Since P2 > P1, if U1 was strictly greater than U2 we would get a contradiction. IC

above shows that U2 � U1 implies u1 � u2 � 0.

Q.E.D.

Result 3.

a) If IC1 and IC2 are simultaneously binding, then U2 = U1 and u1 = u2: we get

equal treatment (but not necessarily full insurance).

b) If equal treatment doesn�t hold, then, either IC1 or IC2 is binding or none of them

(but not both).

c) Under IC1 and IC2, then u1 = u2 if and only if U2 = U1.

17



Proof : The proofs of Results 2a and 2b are trivial, since P2 > P1. Result 2c follows from the

fact that u1 = u2 and IC imply U2 � U1 � 0 � U2 � U1 and therefore U2 = U1. But we also

have that IC and U2 = U1 imply u1 = u2.

Q.E.D.

We then easily �nd the following results.

Result 4. Under Assumption 4, if IC1, IC2 and MH1 hold, then MH2 is satis�ed.

Proof : From ICi, we derive condition D and we obtain the following string of inequalities:

U2 � u2 � U1 � u1 � K1 � K2;

so MH2 is satis�ed.

Q.E.D.

The ICi constraints are an added di¢ culty, but we can in fact ignore them, as shown

by Result 5.

Result 5. Under Assumption 4,

a) if ICi, i = 1; 2 and MH1 hold, then IC1 is satis�ed.

b) if IC2 is satis�ed, and if, in addition, IC1 and MH1 are binding, then, IC2 is

satis�ed.

The proof is in the appendix.

3.2 Some useful properties derived from Kuhn-Tucker conditions

The second-best optimality problem can now be further simpli�ed. The benevolent public

banker should maximize �i�i(PiUi+(1�Pi)ui) with respect to (Ui; ui), subject to ICi,MH1,

IC2 and RC, i = 1; 2. To study this problem, we will also temporarily ignore (i.e., relax)

constraint IC2 and check at the end that it is indeed satis�ed. Let �, �, �1 and �2 be the

nonnegative Lagrange multipliers of, respectively, constraints RC, MH1, IC1 and IC2. The
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�rst-order conditions (i.e., Kuhn-Tucker conditions) for the second-best optimality problem

are the following. For i; j = 1; 2,

��i�i@Bi(q)=@qj = 0; (FOC0)

�1P1 + �1P1 � �2P2 + � = ��1P1Ez
0
1; (FOC1)

�2P2 + �2P2 � �1P1 = ��2P2Ez
0
2; (FOC2)

�1(1� P1) + �1(1� P1)� �2(1� P2)� � = ��1(1� P1)z0(u1); (FOC3)

�2(1� P2) + �2(1� P2)� �1(1� P1) = ��2(1� P2)z0(u2); (FOC4)

with, by de�nition,

Ez0i = (1� �)z0(Ui � �bi) + �z0(Ui + (1� �)bi); (22)

and with the complementary slackness conditions, i.e.,

�(U1 � u1 �K1) = 0; (CS1)

�f�i�i[Bi(q)� PiEzi � (1� Pi)z(ui)]g = 0; (CS2)

�ifPiUi + (1� Pi)ui � PiUj � (1� Pi)ujg = 0; (CS3i)

where j = i+(�1)i+1. These conditions are necessary and su¢ cient for an optimum, because

as noted above, the problem is convex. It follows from this that, if we �nd a solution in

which all multipliers are nonnegative, we have found the solution.

We now prove two useful preliminary results, the proof of which relies on �rst-order

conditions.

Result 6.

(a) RC is binding at a second-best optimum.

(b) If � is su¢ ciently small, and if IC1 and IC2 are binding, then, MH1 must be

binding at a second-best optimum.

The proof is in the appendix.

We then �nd that, if a single IC constraint is binding at the optimum, this constraint must

be IC1.
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Result 7. At a second-best optimum, if IC2 is binding, then, if � is small enough, IC1

must be binding too.

The proof is in the appendix.

4 Characterization of second-best optima

We will consider two broad cases in turn: (i), the pure student-loan problem; (ii), the student

loan problem combined with an income-taxation problem, that we shall call the graduate-tax

problem.

The optima in the pure student-loan problem are obtained when ex post e¤orts can

be ignored. One way of doing this is to assume that the second lottery is degenerate, i.e., set

� = 0, and assume in addition that bij = 0. Under these assumptions, the social planner faces

an adverse selection problem and an ex ante moral hazard problem, but the ex post e¤ort

constraints can be ignored (or the individual�s potential income can be perfectly observed).

Recall that, by assumption, the outcome of the �rst lottery, the mere success or failure, is

observed by public authorities.

The graduate tax problem is the full problem described above, when the outcome of

the second lottery is not observed9, and � > 0. Finally, we ask if the optimal graduate tax

can be decomposed as the sum of an income tax, depending on earnings only, and a loan

repayment that depends only on education: the answer is no in general. To implement the

optimal graduate tax, we need a loan repayment schedule that depends on education and

income: an income-contingent repayment schedule.

9Remark that a pure optimal taxation problem would be obtained by putting additional constraints on
the graduate tax problem, assuming that the loan repayment schedule depends on the observed income, but
not on the quality q of education. In other words, if the public authority forgets the education choices of
individuals, these past choices cannot be used to discriminate among students. We would obtain this case by
assuming � > 0, bij > 0 and adding the constraints R0i = Rj , i 6= j, and r1 = r2, but this is not feasible in our
context (this would violate IC constraints, forcing the pooling of education levels). The allocation problem
described here is more �exible, permits more discrimination among individuals than the pure Mirrleesian
problem.
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4.1 The pure student-loan problem

To study the pure student-loan problem, we assume � = 0 and bij = 0, so that ICXi

constraints can be ignored. A further study of FOCs yields the following result, that we

whall call the equal treatment result.

Proposition 1. (Equal treatment as a second best under moral hazard and adverse selection.)

Assume � = 0 and bij = 0. Then, there exists an open interval (L2; L2), including �2, such

that if �2 2 (L2; L2), then, the second-best optimal solution has the following properties:

U1 = U2 = eU; u1 = u2 = eu (equal treatment);

eU = eu+K1 (incomplete insurance);

RC, MH1, IC1 and IC2 are all binding. If, in addition, K1 > K2, then, MH2, IC1 and IC2

hold as strict inequalities. The quality of education is the �rst-best allocation q�.

Proposition 1 is just a corollary of Proposition 3, proved below. We state it here �rst for

the sake of clarity. This proposition means that if the weight �2 of type 2 in the welfare

function is close to the empirical frequency �2 of type 2 in the student population, and then

possibly for values of �2 that are greater than �2, but not too large, both ICi constraints

are binding, and the two types are treated equally in a speci�c sense. Since � = 0, we have

Vi = Ui and vi plays no rôle. So, the result means that both types should receive the same

payo¤, conditional on success (or failure). It naturally follows that w1 � R1 = w2 � R2
and therefore R2 � R1 = w2 � w1 > 0: the talented types will be taxed from the di¤erence

w2 �w1 in case of success. In case of failure, both types get w0 and repay the same amounter. Thus, the second-best solution says that students may be completely insured against the
risk of being of type 1, behind the veil of ignorance. This is of course the result of risk

aversion, which translates into inequality aversion of the utilitarian social planner. In this

simple case, student loans would be used for redistribution, in a way which is compatible

with incentives. But the students of each given type cannot be completely insured, because

of moral hazard: this is the main ine¢ ciency here; it must be that all students bear some

amount of income risk. Note that since MH1 is the only binding moral-hazard constraint,
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under the reasonable assumption that K1 > K2, the amount of risk imposed on both types

is dictated by that required to induce e¤ort among the less talented types. This is clearly

too much risk for the talented types, who are also exploited ex post by the repayment

schedule. The solution involves a form of exploitation of the talented. The revenues from

high repayments are typically used to �nance cross-subsidies between types, and therefore

to redistribute between types.

But the types remain unequal in an ex ante sense, since the probability of success of

the talented is greater than that of the less-talented, i.e., P2 > P1. It follows that the ex

ante expected utility of the talented, which is equal to

Eu2 = eu+ P2K1;

is higher than the ex ante expected utility of the less-talented, and the di¤erence between

the two is, perhaps surprisingly, Eu2 �Eu1 = K1(P2 � P1) > 0. In a certain sense, the type

2 students bene�t from the relatively lower performances of the type 1 students (recall that

K1 = c1=(P1�p1)). If the type 2 students could be separated from type 1 students, they would

bear a risk induced by the di¤erence U2 � u2 = K2 < K1, but this is not possible without

violating the self-selection constraints, because IC andMH1 imply U2�u2 � U1�u1 = K1.

In spite of the radical form of ex post taxation through repayments, the talented types are

better o¤, on average.

Given that both IC constraints are binding, the types are indi¤erent between the loan

contracts in the menu. As usual in these cases, we assume that the type i choose the loan

contract (qi; Ri; R0i; ri). It may be for instance, that students have lexicographic preferences

on the expected utility of income and the consumption of education, in such a way that,

when indi¤erent between two contracts that have the same expected utility, the type 1 prefer

to study less, while the type 2 prefer to study more.

What can we say about individual rationality here? The fact that Eu2 > Eu1 tells

us that IR1 implies IR2, and IR1 holds if Eu1 = eu + P1K1 � w0. Under Assumption 3,

this will be true if the surplus B generated by students is large enough (i.e., w(qi) � w0 is

large enough). So, typically, we should not worry about IR constraints in this problem.

To fully characterize second-best optimality in this case, we must �nd the second-best
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optimal solution when �2 > L2. We look for a second-best allocation in which a single IC

constraint is binding. Then, by Result 7, we know that IC1 is the binding IC constraint,

and this can happen only if �2 > �2.

Proposition 2. (Separating optima) If this second-best optimum has only one binding

IC constraint, then, IC1 is binding, IC2 is slack, MH1 and RC are binding; we have

U2 > U1 > u1 > u2 and necessarily, �2 > �2. The second-best solution is fully determined

by the following 4 equations: IC1, MH1 and RC, expressed as equalities, and the condition,

�2
�1�2

[P2(1� P�)z0(U2)� P�(1� P2)z0(u2)]
(P2 � P1)

= P1z
0(U1) + (1� P1)z0(u1); (F)

where, by de�nition, P� = �1P1 + �2P2. The quality of education is the �rst-best allocation

q�.

Again, Proposition 2 is just a corollary of Proposition 4, proved below. Given that, under

risk aversion, the function z is strictly convex, the Kuhn-Tucker, �rst-order necessary con-

ditions for optimality are also su¢ cient, and the solution must be either of the form given

by Proposition 1 (equal treatment) or of the form described by Proposition 2 (separating

allocation). As a corollary, we get that the solution is a separating allocation of Proposition

2 if and only if �2 > L2. In a separating optimum, the talented types bear much more risk

than the less-talented, but these optima will typically redistribute less resources from type 2

to type 1, and in spite of the higher risk, the expected utility of type 2 is higher than under

equal treatment. Indeed, we have U2 > U1 = K1 + u1 > u1 > u2. The expected utilities are

such that

Eu2 = u2 + P2(U2 � u2) > u1 + P2(U1 � u1) > u1 + P1K1 = Eu1;

where the �rst inequality is just IC2 while the second one is an immediate consequence of

MH1.

The individual rationality constraint of type 1, IR1, could be violated when �2 ! 1.

We therefore implicitly assume that �2 is not too close to 1, so that Eu1 > u(w0).
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4.2 The optimal graduate tax

To study the optimal graduate tax problem, we now assume that � > 0 , b1 > 0 and b2 < 0,

so that the ICXi constraints can no longer be ignored. A further study of FOCs yields the

following result, that may still be called the equal treatment result. The statement is almost

the same as that of Proposition 1, but the consequences are very di¤erent, because of binding

ICXi constraints.

Proposition 3. (Equal treatment as a second best under adverse selection, ex ante and ex

post moral hazard.) Assume � > 0, b1 > 0 and b2 < 0. Then, there exists � > 0 and an open

interval (�2; �2), including �2, such that if �2 2 (�2; �2) and � < �, then, the second-best

optimal solution has the following properties:

U1 = U2 = U(�); u1 = u2 = u(�) (equal treatment);

U(�) = u(�) +K1 (incomplete insurance);

RC,MH1, IC1, IC2, ICX1 and ICX2 are all binding. If, in addition, K1 > K2, then,MH2,

IC1 and IC2 hold as strict inequalities. The quality of education is the �rst-best value q�.

For proof, see the appendix.

At this point, several remarks can be made. We �rst �nd a bunching property: when

� is close to �, the optimal solution doesn�t depend on �.

Corollary 1. (Bunching with respect to �) The second-best optimal solution of Proposition

3 is independent of �, when �2 is small enough, i.e., if �2 < L2, we have,

@

@�2
(U2; u2; U1; u1) = 0:

Proof: The second-best allocation is the solution of a system of four equations with four

unknowns: (i), U1 = U2; (ii), u1 = u2; (iii), U1 = u1 +K1; and (iv), given these constraints,

RC pins down u1 = u(�). None of these equations involve �.

Q.E.D.
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Next, we need to list the ex post utilities associated with the solution, and derive

the optimal graduate tax schedule. Given that U1 = U2 , we have V1 + �b1 = V2 + �b2 and

therefore,

V2 � V1 = �(b1 � b2) > 0;

(recall that b1 > 0 and b2 < 0). Next, using ICXi constraints, we derive,

v1 = V1 + b1; and v2 = V2 + b2:

and

v2 � v1 = �(1� �)(b1 � b2) < 0:

Corollary 2. (Optimal graduate tax) If �2 < �2 and if � is su¢ ciently small, the optimal

graduate tax has the following properties

u1 = u(�);

u2 = u(�);

V1 = u(�) +K1 � �b1;

V2 = u(�) +K1 � �b2;

v1 = u(�) +K1 + (1� �)b1;

v2 = u(�) +K1 + (1� �)b2: (23)

It follows that,

(a) v1 > V1 and V2 > v2;

(b) if K1 > �b1, we have V1 > u1;

(c) if K1 > (1� �) jb2j, we have v2 > u2;

(d) if jb1j > jb2j, then v1 > V2;

(e) if � is su¢ ciently small, we have V1 > v2;

(f) v1 > V2 > V1 > v2 if and only if

�

1� � < min
�
jb2j
jb1j
;
jb1j
jb2j

�
:
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The proof of this corollary is easy. It follows from this result that, in practice, for su¢ ciently

small values of �, the successful self-made man earns more after tax than the successful

Cambridge graduate, since v1 > V2, and the unsuccessful Cambridge graduate is taxed more

than the ordinary student, since V1 > v2. These consequences of the optimal graduate tax

become explicit when we derive the implications in terms of income-contingent repayment (or

education-contingent income tax). This means that in the general case, the equal treatment

property is achieved by means of an unequal ex post treatment of graduates.

Corollary 3. (Optimal graduate tax repayment schedule) If �2 < �2 and if � is su¢ ciently

small, the optimal graduate tax has the following properties,

(a) u1 = u2 implies r1 = r2 (equal treatment in case of failure);

(b) V2 > V1 implies R2 �R1 < w2 � w1 (the talented cannot be fully exploited);

(c) v1 > V2 implies R2 > R01 (self-made (wo)men repay less);

(d) V1 > v2 implies R02 > R1 (unsuccessful high-level graduates repay more);

Those who studied longer repay more conditional on pre-tax earnings wi. Remark

that in general, this repayment/graduate-tax schedule cannot be implemented by means of

the addition of an ordinary income tax, that would depend only on wi, and of a standard

loan repayment, that would depend only on education qi. In other words, we would like

to choose an income tax schedule Ti = T (wi) and a loan repayment schedule Ai = A(qi),

i = 1; 2 such that for any given 4 numbers (R1; R2; R01; R
0
2), we have,

R1 = T1 + A1;

R2 = T2 + A2;

R01 = T2 + A1;

R02 = T1 + A2: (24)

It is not di¢ cult to check that this linear system�s determinant is zero. But this system also

implies,

R2 �R01 = A2 � A1 = R02 �R1;

R2 �R02 = T2 � T1 = R01 �R1:
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For a generic (R1; R2; R01; R
0
2), these relations will not be true. Indeed, it is easy to see that,

(R2 �R02)� (R01 �R1) = z(v1)� z(V1) + z(v2)� z(V2); (25)

which is generically di¤erent from zero. The above expression would be exactly zero if, for

instance, z was linear and b1 = �b2. But in general, it will not vanish. We can state the

following corollary.

Corollary 4. (Justi�cation of income-contingent loan repayments) It is generically impos-

sible to decompose the second-best transfers as the sum of an income tax, depending only

on earnings, and student-loan repayments, depending only on education. It must be that,

either the student-loan repayments are income-contingent, or the income tax is education-

contingent.

For the sake of completeness, the remaining question is to �nd the second-best optimal

solutions when �2 > �2. We look for a second-best allocation in which a single IC constraint

is binding. Then, by Result 7, we know that IC1 must be the binding constraint, and this

can happen only if �2 > �2.

Proposition 4. If a second-best optimum has only one binding IC constraint, then, there

exists a � > 0, such that for all 0 � � < �, constraint IC1 is binding; IC2 is slack; constraints

MH1, RC, ICX1 and ICX2 are binding; we have U2 > U1 > u1 > u2 and necessarily,

�2 > �2. The second-best solution is fully determined by the following 4 equations: IC1,

MH1 and RC, expressed as equalities, and the condition,

�2
�1�2

[P2(1� P�)Ez02 � P�(1� P2)z0(u2)]
(P2 � P1)

= P1Ez
0
1 + (1� P1)z0(u1) (H)

For proof see the appendix.

We have completely characterized the second-best optima under adverse selection,

ex ante and ex post moral hazard, in the optimal graduate tax problem. Again, since the

Kuhn-Tucker conditions are necessary and su¢ cient, we have shown that when �2 > �2, the

solution is that described by Proposition 4.

Proposition 3 shows that if the social weights of types are close to their true frequency

in the population, the solution exhibits equal treatment in the limited sense that U1 = U2
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and u1 = u2 and incomplete insurance, since U1 = u1+K1. The solution typically involves ex

post inequality since v1 > V2 > V1 > v2. The solution also entails ex ante inequality because

at a second-best optimum,

Eu2 � Eu1 = (P2 � P1)K1 > 0:

Both types obtain the same expected payment in the event of "success" as well as in the

event of "failure" and incomplete insurance takes care of e¤ort incentives, but the talented

have a higher probability of success.

Proposition 4 shows that the second-best optimum is a separating allocation à la

Rothschild-Stiglitz when the social weight of the talented types is su¢ ciently higher than

their frequency in the population, since in this case, U2 > U1 > u1 > u2. In other words, to

get a separating optimum, the social planner must be willing to markedly favor the highly

productive types. It is still true that types are ex ante unequal since, using IC and MH

constraints, exactly as in the above subsection devoted to the pure student-loan problem,

we �nd that

Eu2 = u2 + P2(U2 � u2) > u1 + P1K1 = Eu1:

But the talented types are now less well insured in case of failure, since u1 > u2.

These allocations are trivially not �rst-best e¢ cient, since �rst-best e¢ ciency requires

full insurance. The solutions potentially entail a limited form of exploitation of the talented,

by means of cross-subsidies between types, since the less-talented are also producing less

surplus per capita. In the case described by Proposition 3, this subsidy from the talented

survives as a price paid to solve the incentive problem, in particular since U1 = U2. It is only

when the social welfare function su¢ ciently favors the talented that the incentive problem

is solved by means of screening, imposing a higher level of risk (and return) on the most

productive agents.
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5 Conclusion

We have studied optimal student-loan contracts in a simple private information economy

with two unobservable types of students. Types di¤er in the probability distributions of

individual labour-market outcomes (adverse selection). Future earnings are risky. Students

are risk-averse and choose an ex ante e¤ort variable, a¤ecting the probabilities of success,

that is not observed by the lender (moral hazard). This poses an optimal insurance prob-

lem. Students can also reduce their e¤ort ex post and thus reduce their earnings below

potential. This poses an additional optimal-taxation problem à la Mirrlees. We completely

describe the set of second-best optimal (or interim e¢ cient) incentive-compatible menus of

loan contracts. There are two types of optima: the separating and equal treatment allo-

cations. Equal treatment arises when the social weights of types are in the neighborhood

of their frequencies in the student population. In this case, the expected utility of students

of di¤erent types are equalized, conditional on the student�s observable success. However,

students are ex ante unequal since they di¤er in their probability of success on the labour

market. In addition, students are ex post unequal since the second-best allocation trades

o¤ incentives and insurance-redistribution motives. This type of allocation is di¤erent from

the familiar menus of separating contracts in screening models à la Rothschild-Stiglitz. The

separating menus, in which the talented students bear more risk than the less-talented ones,

appear only if the social weight of talented types is su¢ ciently greater than the latter type�s

frequency. In both cases, the optimal menus of contracts exhibit incomplete insurance, as

a consequence of moral hazard; they typically involve cross-subsidies in favour of the less-

talented. The less-talented obtain the maximal amount of insurance, compatible with e¤ort

incentives. Optimal student loans are always income-contingent, even in the presence of an

income tax. In other words, the second-best transfers cannot be decomposed as the sum

of an income tax, depending only on earnings, and a loan repayment, depending only on

education. It must be that the optimal loan-repayments are income contingent, or that the

income tax is itself education-contingent. The student-loan contracts can be interpreted as

a form of graduate tax.
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7 Appendix: Proofs

Proof of Result 5 :

(a) If IC1 holds, then,

(1� P1)(u1 � u2) � P1(U2 � U1);

and since under IC, U2�U1 � 0, and we assumed P1 > p1, we also have (1� p1)(u1� u2) �

p1(U2 � U1). But MH1 implies c1 � (P1 � p1)(U1 � u1) � 0. This trivially implies

(1� p1)(u1 � u2) � p1(U2 � U1) + c1 � (P1 � p1)(U1 � u1); (26)

and rearranging terms we get the equivalent inequality,

P1U1 + (1� P1)u1 � c1 � p1U2 + (1� p1)u2;

but this is exactly IC1.

(b) Given that MH1 is binding, IC2 can be expressed as follows,

P2U2 + (1� P2)u2 � c2 � p2(u1 +K1) + (1� p2)u1 = u1 + p2K1: (IC2 +MH1)

Combining IC1 and MH1, holding as equalities, we easily obtain,

u1 + P1K1 = P1U2 + (1� P1)u2: (IC1 +MH1)

Substituting the value of u1 derived from (IC1 +MH1) in (IC2 +MH1) yields, after some

rearrangement of terms,

(P2 � P1)(U2 � u2) � c2 + (p2 � P1)K1:

Dividing both sides by (P2 � p2) > 0 and rearranging terms, we obtain,

(U2 � u2)
�
P2 � P1
P2 � p2

�
� K2 +

p2 � P1
P2 � p2

K1:

From condition D and MH1 we know that U2 � u2 � U1 � u1 = K1. In addition, (P2 �

P1)=(P2 � p2) = 1 + (p2 � P1)=(P2 � p2) > 0. Hence, the following string of inequalities:

(U2 � u2)
�
P2 � P1
P2 � p2

�
� K1

�
1 +

p2 � P1
P2 � p2

�
� K2 +

p2 � P1
P2 � p2

K1;
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since, by Assumption 4, K1 � K2. This shows that IC2 is satis�ed when IC2 holds and

when IC1 and MH1 are equalities.

Q.E.D.

Proof of Result 6 :

(a) Adding equations FOC1 to FOC4, we easily �nd,

1=� = �i�ifPiEz0i + (1� Pi)z0(ui)g > 0;

so that � > 0, since z0(:) > 0. Hence, by CS2, it follows that RC is binding.

(b) If IC1 and IC2 are binding, then U1 = U2 = U and u1 = u2 = u. Suppose that MH1 is

slack, i.e., U1 > u1 +K1, at the second-best optimum, then by CS1, we have � = 0. With

� = 0, FOC1 and FOC3 form a linear system in (�1; �2); that is,

�1P1 � �2P2 = P1[��1Ez
0
1 � �1];

�1(1� P1)� �2(1� P2) = (1� P1)[��1z0(u)� �1];

This system has a nonzero determinant, equal to P2 � P1 > 0, and a unique solution

(��1; �
�
2). It is easy to check that,

��2 =
P1(1� P1)
P2 � P1

��1 (z
0(u)� Ez01) :

But,

Ez01 = (1� �)z0(U1 � �b1) + �z0(U1 + (1� �)b1):

Since b1 > 0 and since MH1 implies U > u + K1, it follows that for a su¢ ciently small

value of � > 0, by continuity, Ez01 is close to z
0(U) and thus, z0(u)� Ez01 < 0. We conclude

that ��2 < 0. This is a violation of Kuhn-Tucker conditions, since all multipliers must be

non-negative. We have found a contradiction.

Q.E.D.
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Proof of Result 7 :

If IC2 is binding, and IC1 is slack, then, by CS31, we have �1 = 0. Using FOC2 and FOC4,

we easily obtain, ��2z0(u2) = �2 + �2 = ��2Ez
0
2 and therefore, z

0(u2) = Ez
0
2. If � is small,

Ez02 is close to z
0(U2) and therefore, by continuity of z0, u2 is close to U2. But IC and MH1

together imply U2 � U1 = u1+K1 > u1 � u2, so that U2� u2 > K1. It follows that we have

a contradiction if � is small enough.

Q.E.D.

Proof of Proposition 3 :

The FOCs can be rewritten,

�1P1 � �2P2 + � = P1[��1Ez
0
1 � �1]; (FOC1b)

�2P2 � �1P1 = P2[��2Ez
0
2 � �2]; (FOC2b)

�1(1� P1)� �2(1� P2)� � = (1� P1)[��1z0(u1)� �1]; (FOC3b)

�2(1� P2)� �1(1� P1) = (1� P2)[��2z0(u2)� �2]: (FOC4b)

Our optimum candidate exhibits equal treatment, U1 = U2 = U(�), u1 = u2 = u(�),

and both IC constraints are binding. By Result 6 above, MH1 must then be binding too.

This imposes U(�) = u(�) +K1. Adding the four FOCb equations easily yields, � = �(�),

satisfying the relation,

�(�)[P1�1Ez
0
1 + P2�2Ez

0
2 + (1� P�)z0(u(�))] = 1; (�FOC)

where, by de�nition, P� = P1�1 + P2�2, and where,

Ez0i = (1� �)z0(U(�)� �bi) + �z0(U(�) + (1� �)bi); (27)

for i = 1; 2. We know that RC is binding and it follows that (U(�); u(�)) is fully determined

by the intersection of RC and MH1. It is easy to check that the solution (U(�); u(�)) is a

continuous function of � for � � 0. We also �nd that FOC0 implies q = q�, since �(�) > 0.

We must check that the associated multipliers �i(�) are nonnegative. FOC2b and

FOC4b provide us with a linear system of equations for (�1; �2). The determinant of this
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system is P2 � P1 > 0, so that there is a unique solution (�1(�); �2(�)). We easily derive,

�1(�) =
P2(1� P2)�(�)�2

(P2 � P1)
[Ez02 � z0(u(�))]; (28)

�2(�) =
�2P2(1� P1)
(P2 � P1)

�
�(�)Ez02 �

�2
�2

�
+
�2P1(1� P2)
(P2 � P1)

�
�2
�2
� �(�)z0(u(�))

�
: (29)

Remark �rst that, by continuity of z0and u(�), when � ! 0, we have Ez0i ! z0(U(0))

for all i, and z0(U(0)) > z0(u(0)), since z0 is strictly increasing and since MH1 imposes

U(0) = K1 + u(0). It follows that Ez0i > z0(u(�)) for su¢ ciently small values of �. Using

these inequalities, expression �FOC above, and the fact that z0 > 0, for su¢ ciently small

�, we derive

1 > �(�)z0(u(�)); and 1 < �(�)maxfEz01; Ez02g: (30)

When � is small, then Ez01 ' Ez02 and thus 1 < �(�)minfEz01; Ez02g. From these remarks,

we immediately obtain �1(�) > 0 for su¢ ciently small �. Note that this property is true for

all values of �2 in (0; 1), since �1(�) doesn�t depend on �2. Given the inequalities derived

above, for any �2 � �2, we also have �(�)Ez02 � (�2=�2) > 0, and therefore, using P2 > P1,

we �nd

�2(�) >
�2P1(1� P2)
(P2 � P1)

�
�(�)Ez02 �

�2
�2
+
�2
�2
� �(�)z0(u(�))

�
=

�2�(�)P1(1� P2)
(P2 � P1)

[Ez02 � z0(u(�))] > 0: (31)

In particular, if �2 = �2, then �2(�) > 0. By continuity, there exists an interval of

values of �2, including �2, such that �2(�) is positive. By Result 5, we know that both ICi

constraints are satis�ed. By Result 4, we know that MH2 is also satis�ed.

Finally, we must check that the multiplier � = �(�) > 0. Adding FOC3b and FOC4b,

we derive an expression for �(�), that is,

�(�) = 1� P� � �(�)(1� P�)z0(u(�)); (32)

where by de�nition, P� = �1P1 + �2P2. This can be rewritten

�(�)

(1� P�)
=
(1� P�)
(1� P�)

� �(�)z0(u(�)): (33)

Since for su¢ ciently small �, we have 1 > �(�)z0(u(�)), this means that there is an interval

of values of �2, around �2, such that �(�) > 0. In addition, �(�) > 0 for all values of �2 � �2
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since �2 ! 0 implies P� ! P1 < P�. We conclude that there exists an interval (�2; �2) of

values of �2, including �2, such that all Lagrange multiplers are positive, provided that � is

small enough. Therefore, we have found the optimal solution for these values of �2 and �.

Q.E.D.

Proof of Proposition 4:

If a second-best optimum has only one binding IC constraint, then, by Result 7, IC1 must

be binding and IC2 is slack. Hence, �2 = 0. By Results 4 and 5, we can neglect MH2 and

ICi constraints. Adding equations FOC1 to FOC4, we easily obtain, 1=� = �i�i(PiEz
0
i +

(1 � Pi)z0(ui)) > 0. Hence, RC is binding. Suppose now that MH1 is slack. Then, � = 0.

From FOC1b and FOC3b, we easily derive,

��1z
0(u1) = �1 + �1 = ��1Ez

0
1:

Hence, z0(u1) = Ez01. If � is su¢ ciently small, by continuity, this implies Ez
0
1 ' U1 and

U1 � u1 < K1, a contradiction, since MH1 imposes u1 < U1. Thus, MH1 is binding and

U1 = u1 +K1. From FOC2b, and the requirement that �1 � 0, we derive

�1 =
P2
P1
[�2 � ��2Ez02] � 0: (A6)

From FOC1b, we derive,

�1 +
�

P1
= ��1Ez

0
1 � �1 � 0: (B6)

Combining A6 and B6, we obtain,

�2
�2
� �Ez02 and �Ez01 �

�1
�1
: (C6)

We must compare Ez02 and Ez
0
1. It is easy to see that Ez

0
2 > Ez

0
1 if and only if,

(1� �)[z0(U2 � �b2)� z0(U1 � �b1)] > �[z0(U1 + (1� �)b1)� z0(U2 + (1� �)b2)]: (D6)

Since U2 > U1 and b1 > 0 > b2, we have z0(U2 � �b2) > z0(U1 � �b1), and (D6) is obviously

true, by continuity, for su¢ ciently small �. It follows from (C6) and (D6) that we must have

�2(1� �2) > (1� �2)�2, or �2 > �2.
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Combining A6 and B6 again, assuming that � > 0, we obtain

� = �1P1[�Ez
0
1 � (�1=�1)] + P2�2[�Ez02 � (�2=�2)] > 0;

which implies,

�i�iPiEz
0
i >

P�
�
: (E6)

The allocation U1, U2, u1, u2 is determined by a system of four equations, the �rst

three are obviously IC1, MH1 and RC, expressed as equalities. To �nd the fourth equation,

we eliminate Lagrange multipliers from FOC1b, FOC3b and FOC4b. More precisely, adding

FOC1b and FOC3b yields

�1 = �1�[P1Ez
0
1 + (1� P1)z0(u1)]� 1 + �2: (F6)

On the other hand, substituting A6 yields,

P2
P1
[�2 � ��2Ez02] = �1�[P1Ez01 + (1� P1)z0(u1)]� (1� �2);

or equivalently,
P�
�
= �2P2Ez

0
2 + �1P1[P1Ez

0
1 + (1� P1)z0(u1)]: (G6)

Note that if G6 holds, since Ez01 > z
0(eu1), then, necessarily, (E6) holds: this con�rms that

� > 0. Substituting the expression for �, derived above, in (G6), and rearranging terms,

yields the fourth equation that we need to solve the problem,

�2
�1�2

[P2(1� P�)Ez02 � P�(1� P2)z0(u2)]
(P2 � P1)

= P1Ez
0
1 + (1� P1)z0(u1) (H)

The second-best optimum (U1; u1; U2; u2) is fully determined by RC,MH1; IC1 expressed as

equalities and condition H. The condition �1 � 0 yields a lower bound on the values of �2
that can be derived from (A6), that is, equivalently, from

�2
�2
� �Ez02:

(Note that �Ez02 > 1, so that �2 > �2 is required for this type of solution to be optimal).

Q.E.D.
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