DISCUSSION PAPER SERIES

Certipe for
 www.cepr.org

PRODUCT LAUNCHES AND BUYING FRENZIES: A DYNAMIC PERSPECTIVE

Pascal Courty, University of Victoria and CEPR Javad Nasiry, Hong Kong University of Science and Technology

Discussion Paper No. 9462
May 2013

Centre for Economic Policy Research
77 Bastwick Street, London EC1V 3PZ, UK
Tel: $(44$ 20) 7183 8801, Fax: $(4420) 71838820$
Email: cepr@cepr.org, Website: www.cepr.org

Abstract

This Discussion Paper is issued under the auspices of the Centre's research programme in INDUSTRIAL ORGANIZATION. Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and nonpartisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Pascal Courty and Javad Nasiry

Abstract

\section*{Product Launches and Buying Frenzies: A Dynamic Perspective}

Buying frenzies in which a firm intentionally undersupplies a product during its initial launch phase are a common practice within several industries such as electronics (cell phones, video games, game consoles), luxury cars, and fashion goods. We develop a dynamic model of buying frenzies that captures the production and sales of a product over time by the firm and then characterize the conditions under which frenzies are an optimal policy for the firm. We show that buying frenzies occur when customers are sufficiently uncertain about their product valuations and when customers discount the future but not excessively. Further, we propose a measure of

JEL Classification: D4 and L2
Keywords: advance selling, buying frenzy and customer desperation

Pascal Courty
Department of Economics
University of Victoria
BEC 368
PO Box 1700 STN CSC
Victoria, BC V8W 2 Y2
CANADA
Email: pcourty@uvic.ca

For further Discussion Papers by this author see:
www.cepr.org/pubs/new-dps/dplist.asp?authorid=134679

Javad Nasiry
School of Business and Management Hong Kong University of Science and Technology
Clear Water Bay
Kowloon
HONG KONG
Email: nasiry@ust.edu

For further Discussion Papers by this author see: www.cepr.org/pubs/new-dps/dplist.asp?authorid=177170

Product Launches and Buying Frenzies: A Dynamic Perspective

Pascal Courty
Department of Economics, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 2Y2, Canada, pcourty@uvic.ca Javad Nasiry
School of Business and Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong, nasiry@ust.edu

Buying frenzies in which a firm intentionally undersupplies a product during its initial launch phase are a common practice within several industries such as electronics (cell phones, video games, game consoles), luxury cars, and fashion goods. We develop a dynamic model of buying frenzies that captures the production and sales of a product over time by the firm and then characterize the conditions under which frenzies are an optimal policy for the firm. We show that buying frenzies occur when customers are sufficiently uncertain about their product valuations and when customers discount the future but not excessively. Further, we propose a measure of "customer desperation" to measure the magnitude of frenzies and demonstrate that buying frenzies can have a significant impact on the firm's profit. This paper provides managerial insights on how firms can affect the market response to a new product through their pricing, production, and inventory decisions to induce profitable frenzies.

Key words: Advance Selling, Buying Frenzy, Customer Desperation, Strategic Customer Behavior

1. Introduction

Long queues of enthusiastic customers were common when Apple's iPad 2 hit the Hong Kong markets on April 29, 2010. Given the inclement weather, Apple stores were glad to provide umbrellas and raincoats (bearing Apple's logo) to waiting customers. Each store received a limited number of iPads and distributed them on a first-come, first-served basis. Some customers were willing to pay considerably higher prices to obtain the product in the "gray" market. Such shortage of supply is not confined to Apple's iPad 2. The shortage of Nintendo's game console Wii, for example, lasted from its initial introduction in 2006 until 2009 (Liu and Schiraldi 2012). Sony's PlayStation 2 faced the same problems after entering the US market eight months later than Japan's markets (Stock and Balachander 2005).

A buying frenzy is induced by a firm that intentionally undersupplies a market and excluded customers are strictly worse off. This practice is common in several industries such as luxury cars, fashion, and especially electronics (cell phones, video games, game consoles). Although shortages might be attributed to demand forecasting errors, issues in component supplies or production problems, their repeated occurrence - particularly during the launch phase of innovative products suggests that a conscious marketing strategy is the true reason. The few studies investigating this issue have considered mainly static models. These models capture situations where firms sell the good only once; examples include tickets for sporting or music events, limited edition products, and one-off auctions. Yet, the predictions of static models collapse when the firm produces repeatedly over time, as is the case for most manufactured products. The reason is that the firm wants to serve the customers who were excluded from the early sales. But why should customers be desperate to buy early when products are available in the future? An important gap in the literature is the absence of a dynamic analysis that supports an initial buying frenzy followed by a period of regular sales without frenzies.

We develop a model in which production and sales occur in two periods and then characterize the dynamics of sales, prices, and scarcity. The two-period model that we employ is a stylized representation that features the classical dichotomy between the launch phase of a new product and its subsequent mature phase. We show that the firm's gains from inducing a buying frenzy (relative to matching supply and demand) can be economically substantial. We also investigate the conditions under which buying frenzies are optimal. Finally, we compute customers' loss from being excluded during the initial launch phase, which is a proxy for "customer desperation", and show that this loss can be significant. This explains why customers may invest resources to obtain the good early (e.g., wait in queues) and why prices can be significantly higher in resale markets.

There are several ingredients to our analysis. We assume that customers are initially uncertain about their preferences for the product (see e.g., Xie and Shugan 2001, Gallego and Şahin 2010 and Yu et al. 2011). This assumption applies to the innovative and fashion products that have been the object of buying frenzies. As DeGraba (1995) and Denicolò and Garella (1999), we assume that the firm cannot commit to future prices and quantities. This implies that the firm discounts prices when inventories build up and is consistent with the response of car and electronics manufacturers when products do not sell as expected. For example, HP had to slash prices to clear the unsold inventory of TouchPad only two months after its launch (The Wall Street Journal 2011). Finally, we use Pareto dominance as the selection criterion among the equilibria of the game (Cachon and Netessine 2004). In other words, given the firm policy, the equilibrium selected gives customers the highest payoff. The choice of the Pareto-dominant equilibrium is consistent with the interpretation
that customers coordinate on the equilibrium that gives them the highest surplus which reflects the social dimension of buying frenzies. ${ }^{1}$

In a dynamic model, how does one account for uninformed customers rushing to buy early? Customers can always obtain the good upon waiting, and waiting benefits them because they can then incorporate the information they learn about their preferences in the decision to purchase the product. When a firm produces a large quantity in the first period, customers anticipate that they can get the product at a lower price in the second period in the equilibrium where customers wait. Thus, for a product to sell in the first period, its price must be sufficiently low to prevent such strategic customer waiting. This determines the maximum price a firm can charge in the first period. At that price, customers' expected utility from buying early is equal to the utility they obtain in the waiting equilibrium. But an individual customer is strictly worse-off waiting because the price the firm charges in the second period (on the equilibrium path) is higher than the price the customer could have obtained in the waiting equilibrium (off the equilibrium path). This explains why customers strictly prefer obtaining the good early.

Buying frenzies are more likely to happen when customers are initially uncertain about their preferences for the product. An increase in preference uncertainty increases customers' utility in the waiting equilibrium. Customer valuation uncertainty is likely to play a greater role in the case of an innovative product that will match the needs of some customers but not others. This may explain why frenzies are common for new electronic products (e.g., the iPhone) and not for similar "me too" products (e.g., Android phones) that are released later. It is reasonable to assume that customers have more uncertainty about new products than about knock offs produced later.

There are two main theories of buying frenzies. The first is based, as in our model, on intertemporal price discrimination. Denicolò and Garella (1999) show that a monopolist may ration heterogenous customers to prevent strategic waiting. DeGraba (1995) considers a static model with individual preference uncertainty. In both of these models, buying frenzies exist only for specific rationing rules. Our model is dynamic and the existence of frenzies does not depend on the rationing rule used. Moreover, our analysis delivers a tractable model to study how preference uncertainty influences the existence of buying frenzies and to formally measure customer desperation.

Other papers on inter-temporal price discrimination and scarcity policies that come close to our paper include Liu and van Ryzin (2008), Cachon and Swinney (2009), and Liu and Schiraldi (2012). These papers, however, focus on different issues than we do. In particular, Liu and van Ryzin (2008) show that a stock-out possibility in the second period can prevent customers with known

[^0]preferences from waiting. Cachon and Swinney (2009) suggest that by limiting the initial stocking level and offering optimal markdowns, the firm may constrain the strategic purchase behavior of its customers. Liu and Schiraldi (2012) show that the existence of resale markets can induce the firm to under-stock the product and increase its equilibrium price.
The second theory is based on asymmetric information. Stock and Balachnder (2005) argue that a high-quality firm employs scarcity to signal quality to uninformed customers. Rationing as a signal of quality has also been studied in Debo and van Ryzin (2009), and in Allen and Faulhaber (1991), among others. Papanastasiou et al. (2012) develop a model of "boundedly-rational social learning" and show that a firm may restrict the availability of a product to elicit favorable reviews from early adopters which positively affect the preferences of other customers. Our model is not based on information asymmetry and does not rely on irrationalities to explain frenzies. Neither do we assume that customers are myopic or the firm has to charge a fixed price over time.

Other models of buying frenzies are based on demand externality (Becker 1991) and psychological drive (Verhallen and Robben 1994). Becker's model accounts for social interactions and shows that an upward-sloping demand curve might result in an unstable equilibrium with arbitrarily small frenzies. Verhallen and Robben (1994) argue that scarcity itself can increase customers' willingness to pay - provided customers attribute that scarcity to demand-side variables (such as popularity) and not supply-side variables (such as the firm intentionally limiting supply). Finally, buying frenzies are distinct from herding (Debo and Veeraraghavan 2009), in which customers ignore their private noisy information about a product and merely follow what previous customers did. In contrast, imperfect information is absent from our model of frenzies.
Not much empirical work has been done on buying frenzies. An important exception is Balachander et al. (2009) who present a thorough analysis of buying frenzies in the context of the automobile market. Although their findings are not consistent with DeGraba's (1995) static model of buying frenzies, we argue that they are consistent with a dynamic model. This demonstrates the importance of distinguishing static and dynamic models of buying frenzies.
The rest of the paper is organized as follows. Section 2 outlines the basic model. Section 3 analyzes the dynamic model of buying frenzies when the firm can produce over time; and also defines measures of customer desperation and frenzy intensity. Section 4, extends the model to include second-period arrivals. Section 5 concludes the paper.

2. A Model of Buying Frenzies

A monopolist sells to a population of N_{1} customers who arrive in the first period of a two-period horizon. Customer valuations are identically and independently distributed with density $f(v)$ and survival function $\bar{F}(v)$. We assume that f and F are continuous functions with support $[\underline{v}, \bar{v}] \subset$
$[0, \infty]$ and $E[\mathbf{v}]=\mu$. We also assume that the function $f(x)>0$ is log-concave. ${ }^{2}$ This demand specification approximates a large market in which customers are infinitesimal ${ }^{3}$ and have idiosyncratic preferences that are discovered over time (Lewis and Sappington 1994). The two-period horizon is a stylized representation of a product launch phase followed by a mature phase of sales. It is therefore unnecessary for the two periods to have equal length; the second period can be arbitrarily longer than the first. What matters is that individual customer uncertainty is resolved by the end of the first period. Customers discount future utility by δ^{c}, and the monopolist discounts future profits by δ^{m}. Although we do not restrict the parameter space for $\left(\delta^{c}, \delta^{m}\right)$, it is plausible that customers have a lower discount factor than the firm (Liu and van Ryzin 2008).

The monopolist can produce in both periods. We denote q_{1} and q_{2} as the production quantities in the first and second periods, respectively. To simplify the exposition, we assume that the marginal cost of production is zero. The firm announces $\left(q_{1}, p_{1}\right)$ at the start of the first period. Customers are strategic and form expectations on what will happen in period 2. They buy or wait depending on which option maximizes their discounted utility given these expectations. As DeGraba (1995) and Denicolò and Garella (1999), we assume that all inventory available in the second period (period-2 production plus left-over inventory from period 1) is sold at the market-clearing price. In other words, the firm cannot commit to withhold inventory in the second period. It is a realistic assumption because product launches are rare and isolated in time, which helps keep the firm from developing a reputation for withholding or destroying excess inventory. As discussed in the Introduction, this assumption is consistent with practices observed for manufactured products. In contrast, firms selling perishable products (e.g., in the airline or hotel industry) sometimes commit to policies that do not necessarily discount excess inventories when sales are low; see Liu and van Ryzin (2008) for an extended discussion on this assumption.

We solve for the symmetric rational expectations equilibria (REE) once the firm announces $\left(q_{1}, p_{1}\right) .{ }^{4}$ Denote a customer's decision to buy or wait in an REE by the probability $x \in[0,1]$. A customer waits if $x=0$, buys if $x=1$, and her strategy is mixed if $x \in(0,1)$. We focus on symmetric equilibria-that is, we assume x is the same for all infinitesimal customers. The price that a customer expects to face in period 2 depends on the fraction of customers who have attempted to buy, x, and on the firm's initial production quantity q_{1}. Denote that expected period- 2 price $p_{2}^{e}\left(x \mid q_{1}\right)$. The expected period- 2 surplus is then $T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)=\delta^{c} E\left[\mathbf{v}-p_{2}^{e}\left(x \mid q_{1}\right)\right]^{+} .{ }^{5}$
${ }^{2}$ This is a standard technical assumption to ensure the uniqueness of the equilibrium. However, the results do not hinge on this assumption. Widely applied parametric families - including the uniform, exponential, normal, and logistic-have log-concave density (Bagnoli and Bergstrom 2005).
${ }^{3}$ This means that whether a customer decides to purchase or wait does not affect the payoff of other customers.
${ }^{4}$ Rational expectations equilibrium is a common concept applied in operations management; see e.g., Cachon and Swinney (2009), Liu and van Ryzin (2008), and Su and Zhang (2008); see the latter for a description.
${ }^{5}$ We use subscript ' 1 ' to denote that the expectation is with respect to valuation distribution of customers arriving in period 1. This emphasis will be important in Section 4 where we extend the model to include period- 2 arrivals.

Figure 1 The sequence of events

Definition 1 Assume the firm announces $\left(q_{1}, p_{1}\right)$ in period 1. (a) $x=0$ is a pure strategy $R E E$ if and only if $\mu-p_{1} \leq \delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$. (b) $x=1$ is a pure strategy REE if and only if $\mu-p_{1} \geq$ $\delta^{c} T_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right) .(c) x \in(0,1)$ is a mixed strategy $R E E$ if and only if $\mu-p_{1}=\delta^{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)$.

There are typically multiple symmetric REE for a given announcement $\left(q_{1}, p_{1}\right)$. To resolve the problem of equilibrium multiplicity, we select the Pareto-dominant REE and denote it PDREE. If there are multiple PDREE-that is, customers' expected surplus is the same, we select the PDREE that maximizes the firm's profits. This is consistent with other works in the literature (see Cachon and Netessine (2004) and references therein) and with the notion of social coordination although we do not formally model the mechanism behind coordination.

At the beginning of period 2, the firm observes sales in period $1, Q_{1}=\min \left(x N_{1}, q_{1}\right)$, and sets q_{2}. The second-period price p_{2} is such that the second-period supply $q_{2}+q_{1}-\min \left(x N_{1}, q_{1}\right)$ equals second-period demand. The rational expectations assumption implies that $p_{2}=p_{2}^{e}\left(x \mid q_{1}\right)$. In period 2 , customers buy if their valuation is greater than the market-clearing price. Figure 1 shows the sequence of events.

3. Model Analysis

Profit maximization in period 2 subject to market clearing implies that

$$
\begin{align*}
p_{2}^{e}\left(x \mid q_{1}\right) & =\operatorname{argmax} p \bar{F}(p) \tag{1}\\
\text { s.t. } \quad N_{1}-\min \left(x N_{1}, q_{1}\right) \bar{F}(p) & \geq q_{1}-\min \left(x N_{1}, q_{1}\right) .
\end{align*}
$$

This price is unique for a given announcement $\left(q_{1}, p_{1}\right)$ because f is log-concave. Define $p_{2}^{m} \triangleq$ $\operatorname{argmax}_{p} p \bar{F}(p)$ as the unconstrained period-2 profit-maximizing price. Our first result establishes the properties of $p_{2}^{e}\left(x \mid q_{1}\right)$.

Lemma 1 Assume $x \in[0,1]$ is part of an REE. (a) If $q_{1} \leq N_{1} \bar{F}\left(p_{2}^{m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$ for all $x \in[0,1]$. (b) If $q_{1}>N_{1} \bar{F}\left(p_{2}^{m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=\bar{F}^{-1}\left(\frac{q_{1}-x N_{1}}{N_{1}(1-x)}\right)$ for $x \in\left[0, \frac{q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)}{N_{1} F\left(p_{2}^{m}\right)}\right]$ and is strictly increasing in x and $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$ for $x \in\left[\frac{q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)}{N_{1} F\left(p_{2}^{m}\right)}, 1\right]$ and is constant in x.

Define $p_{1}^{b}\left(q_{1}\right) \triangleq \mu-\delta^{c} T_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)$ and $p_{1}^{w}\left(q_{1}\right) \triangleq \mu-\delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$. Buying, $x=1$, is an REE for any price $p_{1} \leq p_{1}^{b}\left(q_{1}\right)$ and waiting, $x=0$, is an REE for any price $p_{1} \geq p_{1}^{w}\left(q_{1}\right)$. Because $T_{1}(p)$ is decreasing in p, Lemma 1 implies that $p_{1}^{w}\left(q_{1}\right) \leq p_{1}^{b}\left(q_{1}\right)$. This establishes that an REE exists for any announcement $\left(q_{1}, p_{1}\right)$. Our next result shows that whenever $p_{2}^{e}\left(x \mid q_{1}\right)$ is strictly increasing at $x=0$, we can ignore all mixed strategy equilibria.

Lemma 2 Any $x \in(0,1)$ such that $p_{2}^{e}\left(x \mid q_{1}\right)>p_{2}^{e}\left(0 \mid q_{1}\right)$ cannot be part of a PDREE.
To see why, assume $x \in(0,1)$ is a mixed strategy PDREE for a firm announcement $\left(q_{1}, p_{1}\right)$. Therefore, customers are indifferent between buying and waiting, i.e., $\mu-p_{1}=\delta^{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)$. Because $\mu-p_{1}=\delta^{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)<\delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$, we conclude that the pure strategy waiting REE $(x=0)$ exists and gives higher expected surplus than PDREE x; a contradiction.

For any announcement $\left(q_{1}, p_{1}\right)$, we show in the Appendix that any mixed strategy REE is either strictly Pareto-dominated by the waiting pure strategy equilibrium $x=0$ (by Lemma 2) or Paretoequivalent to the pure strategy buying REE $(x=1)$ which is weakly preferred by the firm. We prove the latter by comparing the firm's profits in mixed strategy REE x and REE $x=1$. We subsequently ignore all mixed strategy REE and derive the set of pure strategy PDREE which could be $x=0, x=1$ or both. We then fix q_{1} and solve for the price p_{1} that maximizes firm profits. That is, we consider all possible prices p_{1}, compute the profits in all PDREE associated with (q_{1}, p_{1}), and select the price associated with the highest profits. Denote that price $p_{1}\left(q_{1}\right)$.

Proposition 1 Assume the period-1 production is q_{1}. The profit maximizing period-1 price is $p_{1}\left(q_{1}\right)=p_{1}^{w}\left(q_{1}\right)$ and the associated PDREE is $x=1$.

The firm cannot produce q_{1} and charge $p_{1}^{b}\left(q_{1}\right)$ because waiting is the Pareto-dominant equilibrium. In order to sell q_{1}, the firm can charge at most $p_{1}^{w}\left(q_{1}\right)$. At that price, the two REE (buying and waiting) are Pareto-equivalent.

Proposition 1 implies that the period- 1 price has to be less than customers' expected valuation, μ, which is the profit per customer when the firm can credibly commit not to produce and sell in period 2. Hence, $\delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$ is a measure of the cost to the firm associated with not being able to commit. Further, Proposition 1 shows that the firm maximization problem is well-defined. In particular, the firm chooses q_{1} to maximize

$$
\begin{equation*}
\pi\left(q_{1}\right)=q_{1} p_{1}\left(q_{1}\right)+\delta^{m}\left(N_{1}-q_{1}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) . \tag{2}
\end{equation*}
$$

This expression covers the case where the firm sells only in period 2 . This happens when $q_{1}=0$ and customers have to wait. A frenzy occurs if customers are worse off when they do not obtain
the good early. Because customers can always buy at p_{2}^{m} in period 2 if they wait, this condition is satisfied only if $p_{2}^{e}\left(0 \mid q_{1}\right)<p_{2}^{e}\left(1 \mid q_{1}\right)=p_{2}^{m}$. Therefore, customers' expected loss from being rationed out is

$$
\begin{equation*}
L\left(q_{1}\right)=p_{1}^{b}\left(q_{1}\right)-p_{1}^{w}\left(q_{1}\right)=\delta^{c}\left(T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)-T_{1}\left(p_{2}^{m}\right)\right) . \tag{3}
\end{equation*}
$$

We distinguish two scarcity strategies. A frenzy takes place when customers are strictly worse off being rationed out, i.e., $L\left(q_{1}\right)>0$, and there is excess demand, i.e., $N_{1}>q_{1}$. If, on the other hand, $L\left(q_{1}\right)=0$ and $N_{1}>q_{1}$, we say the firm employs a 'rationing policy'. Note that our definitions of frenzy and rationing policy differ from previous works that have not made a clear distinction between the two concepts. Here, $L\left(q_{1}\right)$ is a measure of the intensity of the frenzy (customer desperation). Conditional on this measure being positive, a measure of the extent of the frenzy is $N_{1}-q_{1}$. Denote the maximum profit per customer obtained by selling in period $2, \bar{\pi}=p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)$. The following proposition characterizes the conditions under which a buying frenzy occurs.

Proposition 2 The firm's optimal policy induces a unique buying frenzy if $\bar{F}\left(p_{2}^{m}\right)<1$ and $\delta_{2}^{c}<$ $\delta^{c}<\delta_{1}^{c}$, where $\delta_{1}^{c}=\frac{\mu-\delta^{m} \bar{\pi}}{T_{1}\left(p_{2}^{m}\right)+\frac{\left[\bar{F}\left(p_{2}^{m}\right)\right]^{2}}{f\left(p_{2}^{m}\right)}}$ and $\delta_{2}^{c}=\frac{\mu-\delta^{m} \bar{\pi}}{\mu-\underline{v}+\frac{1}{f(\underline{v})}}$.

If customers are sufficiently patient $\left(\delta^{c}>\delta_{2}^{c}\right)$, the firm sells in both periods. If customers are excessively patient ($\delta^{c} \geq \delta_{1}^{c}$), then the firm rations supply in the early period without frenzy. In this case, the optimal production quantity is such that customers are indifferent between buying early and waiting as individuals. Finally, if customers are sufficiently but not excessively patient ($\delta_{2}^{c}<\delta^{c}<\delta_{1}^{c}$), the firm's optimal policy is to induce a buying frenzy in the early market. The equilibrium selection rule says that customers are indifferent between buying early and waiting as a group. But an individual customer who waits is strictly worse-off $\left(L_{1}\left(q_{1}\right)>0\right)$. This is because $p_{2}^{m}>p_{2}^{e}\left(0 \mid q_{1}\right)$ and so $\mu-p_{1}\left(q_{1}\right)>\delta^{c} T_{1}\left(p_{2}^{m}\right)$.

To demonstrate the relevance of our dynamic framework, we revisit the finding by Balachander et al. (2009) that the introductory price of a new car is positively correlated with its scarcity (H3B, p. 1627). The concept of scarcity corresponds to $N_{1}-q_{1}$ in our framework. From Proposition 1, it follows that the introductory price decreases with q_{1}. Yet the extent of a frenzy, $N_{1}-q_{1}$, also decreases with q_{1}. Therefore, a decrease in q_{1} (as might be caused by a shift in one of the model's primitives) will increase both the extent of a frenzy and the introductory price.

Corollary 1 (a) The firm's optimal profit is increasing in δ^{m} and decreasing in δ^{c}. (b) The optimal period-1 production q_{1}^{*} is decreasing in both δ^{c} and δ^{m}.

Figure 2 shows the optimal policy for uniform valuation distributions with mean μ and standard deviation σ. A uniform distribution is indexed by its coefficient of variation, σ / μ. The optimal

Figure 2 The firm's optimal policy when the firm can produce in both periods and when customers' valuation
is uniform with coefficient of variation of C.V. C.V. $\leq \sqrt{3} / 3$ to ensure that the support of \mathbf{v} is non-negative.
policy does not induce a buying frenzy if $\sigma / \mu \leq \sqrt{3} / 9$. The reason is that if $\sigma / \mu \leq \sqrt{3} / 9$, then $p_{2}^{m}=\underline{v}$ and Proposition 2 implies that the optimal policy is $q_{1}^{*}=N_{1}$, i.e., to serve the entire market early. Therefore, a buying frenzy can occur only when customers are sufficiently uncertain about their valuations, which is a typical state with respect to new or innovative products.
As δ^{m} increases, the range of customer impatience that supports a buying frenzy shrinks. ${ }^{6}$ In particular, it is never optimal to induce a buying frenzy if $\delta^{c}=\delta^{m}=1$. Our model distinguishes rationing from frenzy policies. Although for $\delta^{c}>\delta_{1}^{c}$ it is not optimal to induce a frenzy, the firm does ration customers (i.e., $q_{1}^{*}<N_{1}$). Customers are indifferent between buying early and waiting and customer desperation, as defined in (3), is zero.

Figure 3(a) shows customer desperation, normalized as $L_{1}\left(q_{1}^{*}\right) /\left(\delta_{c} T_{1}\left(p_{2}^{m}\right)\right)$ and Figure 3(b) plots the extent of the frenzy under the optimal policy. Customer desperation can be economically significant. The loss from not obtaining a good early is 20% of the expected value of consumption when, for example, $\delta^{m}=1$ and $\delta^{c}=0.5$. For a given value of δ^{m}, customers' relative desperation decreases as they become more patient (Figure 3(a)) whereas the extent of the frenzy $N_{1}-q_{1}^{*}$ increases (Figure 3(b)) because q_{1}^{*} is decreasing in δ^{c} (see Corollary 1). Moreover, for a given δ^{c}, customer desperation also decreases in δ^{m} whereas the extent of the frenzy increases because q_{1}^{*} is decreasing in δ^{m} (Corollary 1).

[^1]

Figure 3 Customer desperation $L\left(q_{1}^{*}\right)$ (normalized as $\left.\frac{L\left(q_{1}^{*}\right)}{\delta^{c} T_{1}\left(p_{2}^{m}\right)} \times 100\right)$ and the frenzy intensity $N_{1}-q_{1}^{*}$ in a buying frenzy when customers' valuation is uniform with mean $\mu=12$ and standard deviation $\sigma=4$ (see Appendix B for details). In this figure, $N_{1}=1$. For $\delta^{c} \geq \delta_{1}^{c}$ and $\delta^{c} \leq \delta_{2}^{c}$, we have $L\left(q_{1}^{*}\right)=0$.

Figure 4 compares the firm's optimal profits with two benchmark cases. One corresponds to the firm's profit under period- 2 sales, $N_{1} \bar{F}\left(p_{2}^{m}\right) p_{2}^{m}$, and the other corresponds to the commitment profit-that is charging μ in period 1 to N_{1} customers (and committing, credibly, not to sell in period 2). Figure $4(\mathrm{~b})$ shows that, at $\sigma / \mu=0.5$, the loss due to noncommitment is almost 100% whereas inducing a frenzy recovers 66.7% to 36.2% of the profits (the more patient customers are the lower the percentage recovered). The equivalent profit recovered when $\sigma / \mu=0.25$ is 66.9% to 55.2%; that is, the lower the coefficient of variation the higher the percentage recovered. Furthermore, the percentage of profits recovered by inducing a frenzy decreases with increasing firm impatience (lower δ^{m}).

4. Second-Period Arrivals

A limitation of the analysis in Section 3 is that customers arrive only in period 1. A natural way to generalize the model is to distinguish early adopters, who arrive in period 1 and face valuation uncertainty, and followers, who arrive in period 2 and know their valuations. In this section, we demonstrate that the results are robust to the arrival of followers.

Assume that N_{2} new customers arrive in the second period. These customers have independently and identically distributed valuations with density f_{2} and survival function \bar{F}_{2}. The period- 2 demand is a regular downward-sloping demand $N_{2} \bar{F}_{2}(p)$. This setup in consistent with other models in the literature (see e.g., Gallego and Şahin 2010 and Xie and Shugan 2001).

Figure 4 The optimal profit is bounded from above by commitment profits and from below by profits from selling only in period 2. Dashed and solid lines show the corresponding profits for C.V. $=0.5$ and C.V. $=0.25$, respectively. In panel (a), frenzy profits when C.V. $=0.5$ correspond to the interval $\delta^{c} \in(0.27,0.93)$; when C.V. $=0.25$ they correspond to the interval $\delta^{c} \in(0.50,0.72)$. In panel (b), frenzy profits when $C . V .=0.5$ correspond to the interval $\delta^{c} \in(0.19,0.66)$; when C.V. $=0.25$ they correspond to the interval $\delta^{c} \in(0.31,0.46)$. In this figure, $N_{1}=1$.

We need additional notation to facilitate the exposition in this section. We use subscripts to denote period and superscripts to denote the arrival cohort. Thus, $p_{t}^{i, m}$ denotes the monopoly price in period t for customer cohort i, i.e., $p_{2}^{1, m} \triangleq \operatorname{argmax}_{p} N_{1} p \bar{F}_{1}(p)$ and $p_{2}^{2, m} \triangleq \operatorname{argmax}_{p} N_{2} p \bar{F}_{2}(p)$. We assume that these two optimization problems are strictly concave (e.g., f_{1} and f_{2} are both logconcave). When Q_{1} customers buy in period 1 , we let $Q_{2}^{b}\left(p, Q_{1}\right) \triangleq\left(N_{1}-Q_{1}\right) \bar{F}_{1}(p)+N_{2} \bar{F}_{2}(p)$ denote the demand in period 2. Consistent with Section 3, we let $p_{2}^{m} \triangleq \operatorname{argmax}_{p} p Q_{2}^{b}(p, 0)$ be the monopoly price when the firm sells only in period 2 , and $Q_{2}^{m}=Q_{2}^{b}\left(p_{2}^{m}, 0\right)$ be the corresponding quantity.

Suppose the firm offers q_{1} units for sale in period 1 at a price p_{1}. The period- 2 price $p_{2}^{e}\left(x \mid q_{1}\right)$ maximizes the period-2 profits subject to market clearing constraint. In other words,

$$
\begin{array}{ll}
& p_{2}^{e}\left(x \mid q_{1}\right)=\operatorname{argmax}_{p} p Q_{2}^{b}\left(p, \min \left(x N_{1}, q_{1}\right)\right) \tag{4}\\
\text { s.t. } & Q_{2}^{b}\left(p, \min \left(x N_{1}, q_{1}\right)\right) \geq q_{1}-\min \left(x N_{1}, q_{1}\right)
\end{array}
$$

Define the unconstrained maximizer of (4) as $p_{2}^{b}(y)=\operatorname{argmax}_{p} p Q_{2}^{b}(p, y)$.

Lemma $3 p_{2}^{b}(y)$ is increasing in y if $p_{2}^{1, m}<p_{2}^{2, m}$, constant if $p_{2}^{1, m}=p_{2}^{2, m}$, and decreasing otherwise.

Observe that the constraint in (4) is not binding for $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$. For $x<\frac{q_{1}}{N_{1}}$, define $\hat{p}_{2}\left(x, q_{1}\right)$ as the solution to

$$
\begin{equation*}
N_{1}(1-x) \bar{F}_{1}(p)+N_{2} \bar{F}_{2}(p)=q_{1}-x N_{1} . \tag{5}
\end{equation*}
$$

There is a unique solution to (5) because its left-hand side is decreasing in p, takes a maximum of $N_{1}(1-x)+N_{2} \geq q_{1}-x N_{1}$ at $p=0$ and a minimum of $0 \leq q_{1}-x N_{1}$ at $p=v_{\max }$. The following result characterizes $p_{2}^{e}\left(x \mid q_{1}\right)$.

Lemma 4 Assume $x \in[0,1]$ is part of an REE. If $x \in\left[0, \frac{q_{1}}{N_{1}}\right]$, then $p_{2}^{e}\left(x \mid q_{1}\right)=\min \left(p_{2}^{b}\left(x N_{1}\right), \hat{p}_{2}\left(x, q_{1}\right)\right)$. Otherwise, $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$.

We can show that $p_{2}^{e}\left(x \mid q_{1}\right)$ is (weakly) increasing only when $p_{2}^{1, m} \leq p_{2}^{2, m}$. Thus, we distinguish this case and the case $p_{2}^{1, m}>p_{2}^{2, m}$.

4.1. Buying frenzies when $p_{2}^{1, \mathrm{~m}} \leq \mathrm{p}_{2}^{2, \mathrm{~m}}$

We first show that, similar to Section $3, p_{2}^{e}\left(x \mid q_{1}\right)$ is monotone in x. To do so, we define $\hat{x}\left(q_{1}\right)$ as the solution to

$$
\begin{equation*}
Q_{2}^{b}\left(p_{2}^{b}\left(x N_{1}\right), x N_{1}\right)=q_{1}-x N_{1} . \tag{6}
\end{equation*}
$$

We show in the Appendix that (6) has a unique solution when $Q_{2}^{m} \leq q_{1} \leq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$.
Lemma 5 (a) Assume $p_{2}^{1, m}<p_{2}^{2, m}$. It follows that $p_{2}^{e}\left(x \mid q_{1}\right)$ is continuous and weakly increasing for $x \in[0,1]$ with $\frac{\partial}{\partial x} p_{2}^{e}\left(x \mid q_{1}\right)>0$ at $x=0$. (b) Assume $p_{2}^{1, m}=p_{2}^{2, m}$. (b1) If $q_{1} \leq Q_{2}^{m}$ then $p_{2}^{e}\left(x \mid q_{1}\right)=$ p_{2}^{m}. (b2) If $Q_{2}^{m} \leq q_{1} \leq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$ for $x \geq \hat{x}\left(q_{1}\right)$, and $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$ otherwise. (b3) If $q_{1}>N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$. (b4) $p_{2}^{e}\left(x \mid q_{1}\right)$ is weakly increasing in x.

Lemma 5 shows that $p_{2}^{e}\left(x \mid q_{1}\right)$ is weakly increasing in x. We leverage this property and apply Lemma 2 to eliminate all mixed strategies such that $p_{2}^{e}\left(x \mid q_{1}\right)>p_{2}^{e}\left(0 \mid q_{1}\right)$. We then show that a similar result to that in Proposition 1 holds, i.e., the profit maximizing price for quantity q_{1} is $p_{1}\left(q_{1}\right)=p_{1}^{w}\left(q_{1}\right)$ (see Appendix for proofs). Moreover, an early production quantity larger than the period-1 market size is never strictly profitable for the firm. This is because excess capacity in period 1 lowers the period-2 expected price ($p_{2}^{e}\left(x \mid q_{1}\right)$ is decreasing in q_{1}) and therefore lowers the price the firm can charge in the first period while not increasing sales.
In summary, the monopolist chooses the early production quantity $q_{1} \leq N_{1}$ to maximize

$$
\begin{equation*}
\pi\left(q_{1}\right)=q_{1} p_{1}\left(q_{1}\right)+\delta^{m} p_{2}^{e}\left(1 \mid q_{1}\right) Q_{2}^{b}\left(p_{2}^{e}\left(1 \mid q_{1}\right), q_{1}\right) \tag{7}
\end{equation*}
$$

The measure of customer desperation derived in Section 3 generalizes as $L\left(q_{1}\right)=\delta^{c}\left(T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)\right.$ $\left.T_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)\right)^{+}$. The inequality $p_{2}^{e}\left(0 \mid q_{1}\right) \leq p_{2}^{e}\left(1 \mid q_{1}\right)$ holds as p_{2}^{e} is increasing in x when $p_{2}^{1, m} \leq p_{2}^{2, m}$.

We next investigate the conditions under which a buying frenzy equilibrium exists and is an optimal policy for the firm.

Lemma 6 There is no buying frenzy equilibrium if $\frac{N_{2}}{N_{1}} \geq \frac{F_{1}\left(p_{2}^{m}\right)}{\bar{F}_{2}\left(p_{2}^{m}\right)}$.
One implication of Lemma 6 is that buying frenzies are less likely to be optimal when the customer cohort arriving in period 2 is large relative to the one arriving in period 1 (i.e., when $N_{2} \gg N_{1}$). In this case, the waiting equilibrium involves a relatively small number of period- 1 customers who do not have much of an impact on the second-period price. For the rest of the section, we assume that $\frac{N_{2}}{N_{1}}<\frac{F_{1}\left(p_{2}^{m}\right)}{F_{2}\left(p_{2}^{m}\right)}$; this assumption is equivalent to $Q_{2}^{m}<N_{1}$, which implies that the period-2 price can change when the waiting equilibrium is selected. ${ }^{7}$ The following proposition characterizes when a frenzy occurs.

Proposition 3 Assume that $\frac{N_{2}}{N_{1}}<\frac{F_{1}\left(p_{2}^{m}\right)}{F_{2}\left(p_{2}^{m}\right)}$. Sufficient conditions for the firm's optimal policy to induce a buying frenzy are: (i) $p_{2}^{1, m}<p_{2}^{2, m}$ and $\delta^{c}>\delta_{2}^{c}$; or (ii) $p_{2}^{1, m}=p_{2}^{2, m}$ and $\delta_{2}^{c}<\delta^{c}<\delta_{1}^{c}$ where

$$
\begin{equation*}
\delta_{1}^{c}=\frac{\mu-\delta^{m} p_{2}^{m} \bar{F}_{1}\left(p_{2}^{m}\right)}{T_{1}\left(p_{2}^{m}\right)+\frac{Q_{2}^{m} \bar{F}_{1}\left(p_{2}^{m}\right)}{N_{1} f_{1}\left(p_{2}^{m}\right)+N_{2} f_{2}\left(p_{2}^{m}\right)}}, \delta_{2}^{c}=\frac{\mu-\delta^{m} p_{2}^{2, m} \bar{F}_{1}\left(p_{2}^{2, m}\right)}{T_{1}\left(p_{2}^{w}\left(N_{1}\right)\right)+\frac{N_{1} \bar{F}_{1}\left(p_{2}^{w}\left(N_{1}\right)\right)}{N_{1} f_{1}\left(p_{2}^{w}\left(N_{1}\right)\right)+N_{2} f_{2}\left(p_{2}^{w}\left(N_{1}\right)\right)}} . \tag{8}
\end{equation*}
$$

Proposition 3 establishes sufficient conditions under which $q_{1}^{*}<N_{1}$ and $L\left(q_{1}^{*}\right)>0$ whenever $p_{2}^{1, m}<$ $p_{2}^{2, m}$ or $p_{2}^{1, m}=p_{2}^{2, m}$.

Figure 5 generalizes Figure 2(b) when new customers arrive in period 2. Overall, the main insights from Section 3 carry over. The shape of the parameter space where frenzies occur does not change much relative to Figure 2(b) with one exception. When $p_{2}^{1, m}<p_{2}^{2, m}$, Figure 5(a) reveals such a parameter space that is larger than its counterpart in Figures 2(b) and 5(b). The areas labeled "rationing without frenzy", become "buying frenzy" in Figure 5(a). The area "rationing without frenzy" corresponds to the corner solution at Q_{2}^{m} with $p_{2}^{e}\left(1 \mid Q_{2}^{m}\right) \leq p_{2}^{e}\left(0 \mid Q_{2}^{m}\right)$. In Figure $5(\mathrm{a})$, this area disappears because we have $p_{2}^{e}\left(1 \mid Q_{2}^{m}\right)>p_{2}^{e}\left(0 \mid Q_{2}^{m}\right)$. Figure $5(\mathrm{~b})$ considers the special case where $f_{1}(\cdot)=f_{2}(\cdot)=f(\cdot)$. In that case, we can derive a closed-form solution for the parameter space that generates frenzies. Moreover, the frenzy equilibrium is unique (see the proof of Proposition 3 in Appendix A).

4.2. Buying frenzies when $p_{2}^{1, \mathrm{~m}}>\mathrm{p}_{2}^{2, \mathrm{~m}}$

We first characterize the behavior of $p_{2}^{e}\left(x \mid q_{1}\right)$ which is significantly different in this case.

[^2]

Figure 5 The firm's optimal policy when the valuation distribution of early arrivals is $U\left[0, b_{1}\right]$ and that of late arrivals is $U\left[0, b_{2}\right]$. In this figure, $\delta^{m}=1, N_{1}=1$. Further, $\left(b_{1}, b_{2}\right)=(10,20)$ in panel (a) and $\left(b_{1}, b_{2}\right)=(10,10)$ in panel (b). The dashed line in panel (a) shows the sufficient conditions characterized in Proposition 3. The frenzy parameter space is slightly larger than the one implied by these conditions. Panel (b) shows the necessary and sufficient conditions for $f_{1}(\cdot)=f_{2}(\cdot)$.

Lemma 7 Assume $p_{2}^{1, m}>p_{2}^{2, m}$. (i) If $q_{1} \leq Q_{2}^{m}$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(x N_{1}\right)$ with $\frac{d p_{2}^{e}\left(x \mid q_{1}\right)}{d x}<0$ for $x \in$ $\left[0, \frac{q_{1}}{N_{1}}\right]$ and $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$ for $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$. (ii) If $Q_{2}^{m} \leq q_{1} \leq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=$ $\hat{p}_{2}\left(x, q_{1}\right)$ with $\frac{d p_{2}^{e}\left(x \mid q_{1}\right)}{d x}>0$ for $x \in\left[0, \hat{x}\left(q_{1}\right)\right]$, $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(x N_{1}\right)$ with $\frac{d p_{2}^{p}\left(x \mid q_{1}\right)}{d x}<0$ for $x \in\left[\hat{x}\left(q_{1}\right), \frac{q_{1}}{N_{1}}\right]$ and $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$ for $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$. (iii) If $q_{1} \geq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$ with $\frac{d p_{2}^{p}\left(x \mid q_{1}\right)}{d x}>0$ for $x \in[0,1]$.

In Lemma 7, $\hat{x}\left(q_{1}\right)$ and the conditions under which it exists and is unique are as in Section 4.1. Figure 6 schematically shows $p_{2}^{e}\left(x \mid q_{1}\right)$ in the five possible cases implied by Lemma 7. In effect, $p_{2}^{e}\left(x \mid q_{1}\right)$ can take three shapes. When case (i) in Lemma 7 applies, $p_{2}^{e}\left(x \mid q_{1}\right)$ is weakly decreasing as in Panels (b) and (c). Panels (a) and (d) correspond to case (ii) where $p_{2}^{e}\left(x \mid q_{1}\right)$ is increasing up to a threshold and then weakly decrease. Finally, in Panel (e), $p_{2}^{e}\left(x \mid q_{1}\right)$ is increasing in x.

The important difference, in this section, with the our analysis in Sections 3 and 4.1 is that the period-2 expected price, $p_{e}^{e}\left(x \mid q_{1}\right)$, is increasing in x only in Panel (e). Otherwise, the period- 2 expected price can be decreasing in x implying that $p_{2}^{e}\left(0 \mid q_{1}\right)$ is not always smaller than $p_{2}^{e}\left(x \mid q_{1}\right)$. Thus, the waiting equilibrium does not necessarily Pareto-dominate the mixed strategy REE. We can still rule out all mixed strategy REE such that $p_{2}^{e}\left(x \mid q_{1}\right)>p_{2}^{e}\left(0 \mid q_{1}\right)$ by applying Lemma 2 . We further show in the Appendix that the remaining mixed strategy REE are equivalent to a pure

Figure $6 \quad p_{2}^{e}\left(x \mid q_{1}\right)$ when $p_{2}^{1, m}>p_{2}^{2, m}$.
strategy PDREE associated with a different firm announcement. Therefore, all mixed strategy REE can still be ignored without loss of generality. These results are summarized in the following proposition.

Proposition 4 Assume the period 1 production is q_{1}. We can restrict the analysis, without loss of generality, to the announcement $\tilde{p}_{1}\left(q_{1}\right)=\min \left(p_{1}^{b}\left(q_{1}\right), p_{1}^{w}\left(q_{1}\right)\right)$ and associated PDREE $x=1$.

The interpretation of $\tilde{p}_{1}\left(q_{1}\right)$ differs from that of $p_{1}\left(q_{1}\right)$ in Section 4.1. $\tilde{p}_{1}\left(q_{1}\right)$ is the profit maximizing price conditional on selling q_{1} while $p_{1}\left(q_{1}\right)$ was the profit-maximizing price. The difference is that in the latter, selling q_{1} was always optimal. However, when $p_{2}^{1, m}>p_{2}^{2, m}$, not selling at all, i.e., $x=0$, may dominate selling at $\tilde{p}_{1}\left(q_{1}\right) .{ }^{8}$ But the profits under $x=0$ are weakly dominated by profits under alternative announcement $q_{1}=0$ and $p_{1}>v_{\text {max }}$ implying that such early production volumes will never be the firm's choice in equilibrium.

The firm optimization problem to characterize the production level in period 1 is

$$
\begin{equation*}
\max _{q_{1}} \tilde{p}_{1}\left(q_{1}\right) q_{1}+\delta^{m} p_{2}^{e}\left(1 \mid q_{1}\right) Q_{2}^{b}\left(p_{2}^{e}\left(1 \mid q_{1}\right), q_{1}\right) \tag{9}
\end{equation*}
$$

We now focus on the conditions that induce a frenzy in the market. Figure $6(\mathrm{a}, \mathrm{b})$ are the only equilibrium period- 2 prices that can be part of a frenzy because in a frenzy it must be that $q_{1}^{*}<N_{1}$.

[^3]

Figure 7 The firm's optimal policy when the valuation distribution of early arrivals is $U\left[0, b_{1}\right]$ and that of late arrivals is $U\left[0, b_{2}\right]$. In this figure, $\delta^{m}=1$ and $N_{1}=1$ and $\left(b_{1}, b_{2}\right)=(10,5)$.

However, a buying frenzy cannot happen when $p_{2}^{e}\left(x \mid q_{1}\right)$ is as in Figure 6 (b), i.e., when $q_{1} \leq N_{1}$ and $q_{1}<Q_{2}^{m}$. In this case, $p_{2}^{e}\left(1 \mid q_{1}\right)<p_{2}^{e}\left(0 \mid q_{1}\right)$ which implies $\tilde{p}_{1}\left(q_{1}\right)=p_{1}^{b}\left(q_{1}\right)$ (Proposition 4). Therefore, an individual customer is indifferent between buying and waiting. As a result, a buying frenzy may happen only in Figure $6(\mathrm{a})$. If $p_{2}^{b}\left(q_{1}\right) \leq p_{2}^{e}\left(0 \mid q_{1}\right)$, then an individual customer is indifferent between buying and waiting as both yield the surplus $\mu-p_{1}=\delta^{c} T_{1}\left(p_{2}^{b}\left(q_{1}\right)\right)$. Therefore, a frenzy may happen only if $\hat{p}_{2}\left(0, q_{1}\right)<p_{2}^{b}\left(q_{1}\right)$. For general distributions $f_{i}, i \in\{1,2\}$ this inequality does not yield a threshold value for q_{1} and hence we cannot provide sufficient conditions under which a frenzy happens. One needs to directly check $q_{1}^{*}<N_{1}$ and $\hat{p}_{2}\left(0, q_{1}^{*}\right)<p_{2}^{b}\left(q_{1}^{*}\right)$.

Figure 7 shows the firm optimal policy when customer valuations are uniform distributions.
To demonstrate the relevance of our analysis in Section 4.1 and 4.2, we revisit one of the two key results of Balachander et al. (2009). They find a positive association between buying frenzies and intrinsic preferences for a product that lasts beyond the introductory period of the product (H2A, p. 1626). One needs a dynamic model of sales - such as the one presented here - in order to interpret this finding properly. Assume that customers do not discount excessively. An increase in the strength of the second-period demand can be interpreted as an increase in p_{2}^{m}. When p_{2}^{m} is low, the equilibrium is likely to be a "rationing without frenzy" (upper left area in Figure 7). For p_{2}^{m} sufficiently large, the equilibrium becomes a "buying frenzy" (upper left area in Figure 5(a)). Buying frenzies are therefore associated with a high level of p_{2}^{m}, which can be interpreted as strong and persistent intrinsic preferences.

5. Conclusion

This paper offers a tractable and convenient framework to analyze buying frenzies in a dynamic context. In contrast with other works in the literature, the existence of buying frenzies in our model does not depend on the rule applied by the firm to allocate goods under rationing, or information asymmetry among customers. Buying frenzies occur when customers are sufficiently uncertain about their product valuations and when customers discount the future but not excessively. Overly patient customers wait until they learn their preferences for the product while very impatient customers are served early. The utility loss from not obtaining the good in a frenzy can be substantial. Similarly, the firm's gain from a frenzy policy can be economically large.

The analysis presented here offers a rich framework to interpret stylized facts and empirical findings about buying frenzies. We have illustrated this point by revisiting the two key results presented in Balachander et al. (2009), i.e., the introductory price positively correlated with product scarcity and a positive association between buying frenzies and intrinsic preferences for a product that lasts beyond the introductory period. These finding are difficult to rationalize within static models, but, both are consistent with our analysis.

References

Allen, F., G.R. Faulhaber. 1991. Rational rationing. Economica 58(230) 189-198.
Bagnoli, M., T. Bergstrom. 2005. Log-concave probability and its applications. Economic Theory 26(2) 445-469.

Balachander, S., Y. Liu, A. Stock. 2009. An empirical analysis of scarcity strategies in the automobile industry. Management Science 55(10) 1623-1637.

Balachander, S., A. Stock. 2009. Limited edition products: When and when not to offer them. Marketing Science 28(2) 336-355.

Becker, G.S. 1991. A note on restaurant pricing and other examples of social influences on price. Journal of Political Economy 99(5) 1109-1116.

Cachon, G.P., S. Netessine. 2004. Game theory in supply chain analysis. Chapter 2 in "Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era", Eds. D. Simchi-Levi, S.D. Wu, M. Shen. Kluwer Academic Publishers.

Cachon, G.P., R. Swinney. 2009. Purchasing, pricing, and quick response in the presence of strategic consumers. Management Science 55(3) 497-511.

Debo, L., G.J. van Ryzin. 2009. Creating sales with stock-outs. Working Paper.
Debo, L., S. Veeraraghavan. 2009. Models of herding behavior in operations management. Chapter in Consumer-Driven Demand and Operations Management Models, pp. 81-114, (eds. S. Netessine and C. Tang). Springer Series in Operations Research and Management Science.

DeGraba, P. 1995. Buying frenzies and seller-induces excess demand. RAND Journal of Economics 26(2) 331-342.

Denicolò, V., P.G. Garella. 1999. Rationing in a durable goods monopoly. RAND Journal of Economics 30(1) 44-55.

Gallego, G., Ö. Şahin. 2010. Revenue management with partially refundable fares. Operations Research 58(4) 817-833.

Lewis, T., and D. Sappington. 1994. Supplying Information to Facilitate Price Discrimination. International Economic Review 35(2) 309-327.

Liu, Q., G.J. van Ryzin. 2008. Strategic capacity rationing to induce early purchases. Management Science 54(6) 1115-1131.

Papanastasiou, Y., N. Bakshi, N. Savva. 2012. Strategic stock-outs with boundedly rational social learning. London Business Shcool Working Paper.

Liu, T., P. Schiraldi. 2012. Buying frenzies in durable-goods markets. Working paper.
Stock, A., S. Balachander. 2005. The making of a "hot product": A signaling explanation of marketers' scarcity strategy. Management Science 51(8) 1181-1192.

Su, X., F. Zhang. 2008. Strategic customer Behavior, commitment, and supply chain performance. Management Science 54(10) 1759-1773.

The Wall Street Journal. 2011. Losing $\$ 207$ a Pop, H-P Brings Back Its iPad Rival. August 31 .
Verhallen, T.M.M., H.S.J. Robben. 1994. Scarcity and preference: An experiment on unavailability and product evaluation. Journal of Economic Psychology 15(2) 315-331.

Xie, J., S. M. Shugan. 2001. Electronic tickets, smart cards, and online prepayments: When and how to advance sell. Marketing Science 20(3) 219-243.

Yu, M., R. Kapuscinski, H. Ahn. 2011. Advance selling with interdependent customer valuations. Working Paper.

Appendix A: Proofs

Proof of Lemma 1: The function $p \bar{F}(p)$ is unimodal and $\operatorname{argmax} p \bar{F}(p)=p_{2}^{m}$. (a) In this case, the constraint in (1) is non-binding. This is because $N_{1}-\min \left(x N_{1}, q_{1}\right) \bar{F}(p) \geq q_{1}-\min \left(x N_{1}, q_{1}\right)$ implies $N_{1} \bar{F}(p)+\min \left(x N_{1}, q_{1}\right) F(p) \geq q_{1}$. This inequality holds for $p=p_{2}^{m}$ because $q_{1} \leq N_{1} \bar{F}\left(p_{2}^{m}\right)$ and hence $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$.
(b) Assume first that $x \in\left[0, \frac{q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)}{N_{1} F\left(p_{2}^{m}\right)}\right]$. We have

$$
\begin{aligned}
x & \leq \frac{q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)}{N_{1} F\left(p_{2}^{m}\right)}, \\
x N_{1} F\left(p_{2}^{m}\right) & \leq q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right),
\end{aligned}
$$

$$
\begin{aligned}
& x N_{1} \leq q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)(1-x) \\
& x N_{1} \leq q_{1}
\end{aligned}
$$

Therefore, $p_{2}^{e}\left(x \mid q_{1}\right)=\operatorname{argmax} p \bar{F}(p)$ subject to the constraint $\left(N_{1}-x N_{1}\right) \bar{F}(p) \geq q_{1}-x N_{1}$. Because $\left(N_{1}-x N_{1}\right) \bar{F}\left(p_{2}^{m}\right) \leq q_{1}-x N_{1}$, it follows that the constraint is binding. We conclude that $p_{2}^{e}\left(x \mid q_{1}\right)$ is the unique solution to $\left(N_{1}-x N_{1}\right) \bar{F}(p)=q_{1}-x N_{1}$ (uniqueness follows because f is log-concave), i.e., $p_{2}^{e}\left(x \mid q_{1}\right)=\bar{F}^{-1}\left(\frac{q_{1}-x N_{1}}{N_{1}-x N_{1}}\right)$. Finally, because $\frac{q_{1}-x N_{1}}{N_{1}-x N_{1}}$ is strictly decreasing in x, it follows that $p_{2}^{e}\left(x \mid q_{1}\right)$ is strictly increasing in x_{1}.

Now assume that $x \geq \frac{q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)}{N_{1} F\left(p_{2}^{m}\right)}$ or equivalently $x N_{1} \geq q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)(1-x)$. Two cases are possible: either $x N_{1} \geq q_{1}$ or $q_{1} \geq x N_{1} \geq q_{1}-N_{1} \bar{F}\left(p_{2}^{m}\right)(1-x)$. In either case, the constraint in (1) is non-binding and so $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$ which is constant in x.

Proof of Proposition 1: We first derive the PDREE preferred by the firm for a given $\left(q_{1}, p_{1}\right)$ and then select the profit maximizing price p_{1} for a given q_{1}. We proceed by doing the analysis in two possible cases.
$C A S E$ 1: Assume period-1 production is $q_{1}>N_{1} \bar{F}\left(p_{2}^{m}\right)$. We characterize the PDREE in the next result.

Claim 1 (a) $p_{1}^{w}\left(q_{1}\right)<p_{1}^{b}\left(q_{1}\right)$. (b) Any mixed strategy REE is Pareto-dominated by REE $x=0$. (c1) If $p_{1}<p_{1}^{w}\left(q_{1}\right)$, then $x=1$ is the unique PDREE. (c2)If $p_{1}=p_{1}^{w}\left(q_{1}\right)$, then there are two PDREE $x=0$ and $x=1$ and the latter is preferred by the firm. (c3) Finally, if $p_{1}^{w}\left(q_{1}\right)<p_{1}$, then $x=0$ is the unique PDREE.

Proof: (a) follows directly from Lemma 1. (b) The condition in Lemma 2 holds for any $x \in(0,1)$. (c1) If $p_{1}<p_{1}^{w}\left(q_{1}\right)$, then $\mu-p_{1}>\mu-p_{1}^{w}\left(q_{1}\right)=\delta_{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right) \geq \delta_{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)$ for all x. Hence $x=1$ is the unique PDREE.
(c2) If $p_{1}=p_{1}^{w}\left(q_{1}\right)$, then $x=0$ and $x=1$ are REE and PDREE because $\mu-p_{1}=$ $\delta_{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$. We show that the PDREE $x=1$ is preferred by the firm. The firm profit under the equilibrium $x=0$ is $\pi(x=0)=\delta^{m} N_{1} p_{2}^{e}\left(0 \mid q_{1}\right) \bar{F}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$ and that under the equilibrium $x=1$ is $\pi(x=1)=p_{1} q_{1}+\delta^{m}\left(N_{1}-q_{1}\right) p_{2}^{e}\left(1 \mid q_{1}\right) \bar{F}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)=\left(p_{1}-\delta^{m} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)\right) q_{1}+\delta^{m} N_{1} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)$. The result then follows because $p_{1}-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) \geq 0$ and $p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)>p_{2}^{e}\left(0 \mid q_{1}\right) \bar{F}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$. The former inequality follows because $p_{1}=p_{1}^{w}\left(q_{1}\right)$ and

$$
\begin{aligned}
p_{1}^{w}\left(q_{1}\right)-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) & =\mu-\int_{p_{2}^{e}\left(0 \mid q_{1}\right)}\left(v-p_{2}^{e}\left(0 \mid q_{1}\right)\right) d F-\int_{p_{2}^{m}} p_{2}^{m} d F \\
& >\mu-\int_{p_{2}^{m}}\left(v-p_{2}^{e}\left(0 \mid q_{1}\right)+p_{2}^{m}\right) d F \quad \text { because } p_{2}^{e}\left(0 \mid q_{1}\right)>p_{2}^{m}(\text { Lemma } 1) \\
& =\int_{0}^{p_{2}^{m}} v d F+\int_{p_{2}^{m}}\left(p_{2}^{e}\left(0 \mid q_{1}\right)-p_{2}^{m}\right) d F \\
& >0 .
\end{aligned}
$$

(c3) $x=0$ is an REE because $\delta_{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)>\mu-p_{1}$. Further, $x=1$ is not an REE because $\mu-p_{1}<\delta^{c} T_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)$. Therefore $x=0$ is the only PDREE.
$C A S E$ 2: Assume period-1 production is $q_{1} \leq N_{1} \bar{F}\left(p_{2}^{m}\right)$. We characterize the PDREE in the next result.

Claim 2 (a) $p_{1}^{w}\left(q_{1}\right)=p_{1}^{b}\left(q_{1}\right)$. (b1) If $p_{1}<p_{1}^{w}\left(q_{1}\right)$, then $x=1$ is the unique PDREE. (b2) If $p_{1}=$ $p_{1}^{w}\left(q_{1}\right)$, then all $x \in[0,1]$ are Pareto-equivalent PDREE and $x=1$ is the PDREE preferred by the firm. (b3) If $p_{1}>p_{1}^{w}\left(q_{1}\right)$, then $x=0$ is the unique PDREE.

Proof: (a) This follows from Lemma 1 because $p_{2}^{e}\left(0 \mid q_{1}\right)=p_{2}^{e}\left(1 \mid q_{1}\right)=p_{2}^{m}$ for $q_{1} \leq N_{1} \bar{F}\left(p_{2}^{m}\right)$.
(b1) We have $\mu-p_{1}>\mu-p_{1}^{w}\left(q_{1}\right)=\delta^{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)=\delta^{c} T_{1}\left(p_{2}^{m}\right)$ for all $x \in[0,1]$, hence a customer is better off buying the product and $x=1$ is the unique PDREE.
(b2) Because $\mu-p_{1}=\mu-p_{1}^{w}\left(q_{1}\right)=\delta^{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)=\delta^{c} T_{1}\left(p_{2}^{m}\right)$ for all $x \in[0,1]$, it follows that all $x \in[0,1]$ are PDREE because the customer's expected surplus is the same. We show that $x=1$ in the PDREE that maximizes the firm profits. The firm profit for a given $x \in[0,1]$ is $\pi(x)=Q_{1} p_{1}^{w}\left(q_{1}\right)+\left(N_{1}-Q_{1}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)=Q_{1}\left(p_{1}^{w}\left(q_{1}\right)-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)\right)+N_{1} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)$ where $Q_{1}=\min \left(x N_{1}, q_{1}\right)$ is the sales in period 1. The profit $\pi(x)$ is increasing in x because $p_{1}^{w}\left(q_{1}\right)=\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)$ and

$$
p_{1}^{w}\left(q_{1}\right)-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)=\mu-\int_{p_{2}^{m}}\left(v-p_{2}^{m}\right) d F-\int_{p_{2}^{m}} p_{2}^{m} d F=\int_{0}^{p_{2}^{m}} v d F>0 .
$$

Therefore, $x=1$ is the PDREE that maximizes the firm profits.
(b3) $\mu-p_{1}<\delta^{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}\right)\right)$, hence $x=0$ is the unique PDREE.
We can now conclude by collecting the PDREE preferred by the firm for an announcement $\left(q_{1}, p_{1}\right)$ from the two cases above. For a period- 1 price such that $p_{1}>p_{1}^{w}\left(q_{1}\right)$, customers wait in any PDREE and hence the firm profit is $\pi(x=0)=\delta^{m} p_{2}^{e}\left(0 \mid q_{1}\right) \bar{F}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)$. On the other hand, the firm profit, if it sets $p_{1}=p_{1}^{w}\left(q_{1}\right)$, is $\pi(x=1)=p_{1}^{w}\left(q_{1}\right) q_{1}+\delta^{m}\left(N_{1}-q_{1}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)$. Because $\pi(x=1)>\pi(x=0)$, it follows that any price $p_{1}>p_{1}^{w}\left(q_{1}\right)$ is dominated by $p_{1}(q)=p_{1}^{w}\left(q_{1}\right)$. For a period-1 price such that $p_{1}<$ $p_{1}^{w}\left(q_{1}\right)$, customers buy in any PDREE and the firm profit is $\pi(x=1)=p_{1} q_{1}+\delta^{m}\left(N_{1}-q_{1}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)$. This profit is increasing in p_{1} and it follows that $p_{1}=p_{1}^{w}\left(q_{1}\right)$ dominates $p_{1}<p_{1}^{w}\left(q_{1}\right)$. Therefore, the firm profits are maximized at $p_{1}\left(q_{1}\right)=p_{1}^{w}\left(q_{1}\right)$.
Proof of Proposition 2: If $\bar{F}\left(p_{2}^{m}\right)=1$ then, by Lemma $1, p_{2}^{e}\left(0 \mid q_{1}\right)=p_{2}^{m}=\underline{v}$ and $p_{1}^{w}\left(q_{1}\right)=\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)$. It follows from (2) that $\pi\left(q_{1}\right)=q_{1}\left(\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)\right)+\delta^{m}\left(N_{1}-q_{1}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)$, which is increasing in q_{1}. This is because $\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)-\delta^{m} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) \geq \mu-T_{1}\left(p_{2}^{m}\right)-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)=0^{9}$.

[^4]Hence $q_{1}^{*}=N_{1}$; in other words, the firm serves the entire market in period 1 and customers are indifferent between buying and waiting. Thus, a buying frenzy cannot occur.

Assume for the remainder of the proof that $\bar{F}\left(p_{2}^{m}\right)<1$. Observe that if $q_{1}^{*}=0$ then the firm's optimal policy is to sell only in period 2 . We prove next that the optimal production is strictly positive, which implies that selling only in period 2 is never optimal when the firm has the option of producing over time.

If $q_{1} \leq N_{1} \bar{F}\left(p_{2}^{m}\right)$ then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$ and $p_{1}\left(q_{1}\right)=\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)$, i.e., $p_{1}\left(q_{1}\right)$ becomes independent of q_{1} (Lemma 1 and Proposition 1). The profit function in (2) is then linear and increasing in q_{1} because

$$
\begin{aligned}
\frac{d \pi\left(q_{1}\right)}{d q_{1}} & =\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)-\delta^{m} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) \\
& \geq \mu-T_{1}\left(p_{2}^{m}\right)-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) \\
& =\int \min \left(v, p_{2}^{m}\right) d F-p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) \\
& =\int_{\underline{v}}^{p_{2}^{m}} v d F>0 .
\end{aligned}
$$

The last inequality follows because $\bar{F}\left(p_{2}^{m}\right)<1$. Therefore, $q_{1}=N_{1} \bar{F}\left(p_{2}^{m}\right)$ yields greater profits than any lower q_{1}. However, the production quantity $q_{1}=N_{1} \bar{F}\left(p_{2}^{m}\right)$ cannot induce a buying frenzy because customers are indifferent between buying early and waiting. It follows that a necessary condition for a buying frenzy is that $q_{1}>N_{1} \bar{F}\left(p_{2}^{b}\right)$. We next characterize the sufficient conditions under which it is optimal for the firm to induce a buying frenzy.
If $N_{1} \bar{F}\left(p_{2}^{m}\right) \leq q_{1}$, then $p_{2}^{e}\left(0 \mid q_{1}\right)=\bar{F}^{-1}\left(\frac{q_{1}}{N_{1}}\right)$ (Lemma 1). The firm's profit function is

$$
\pi\left(q_{1}\right)=q_{1}\left(\mu-\delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)\right)+\delta^{m}\left(N_{1}-q_{1}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right),
$$

which is strictly concave in q_{1} because (we suppress the argument in $p_{2}^{e}\left(0 \mid q_{1}\right)$ for brevity)

$$
\frac{d \pi\left(q_{1}\right)}{d q_{1}}=\mu-\delta^{c} T_{1}\left(p_{2}^{e}\right)-\delta^{c} \frac{q_{1}^{2}}{N_{1}^{2} f\left(p_{2}^{e}\right)}-\delta^{m} q_{1} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right),
$$

and

$$
\frac{d^{2} \pi\left(q_{1}\right)}{d q_{1}^{2}}=-\delta^{c} \frac{q_{1}}{N_{1}^{2} f\left(p_{2}^{e}\right)}\left(1+\frac{2\left[f\left(p_{2}^{e}\right)\right]^{2}+\bar{F}\left(p_{2}^{e}\right) f^{\prime}\left(p_{2}^{e}\right)}{\left[f\left(p_{2}^{e}\right)\right]^{2}}\right)<0 .
$$

The inequality holds because f is \log-concave and so $[f(p)]^{2}+\bar{F}(p) f^{\prime}(p)>0$ (Bagnoli and Bergstrom 2005). The first-order conditions then characterize the optimal q_{1}; that is, q_{1}^{*} solves

$$
\begin{equation*}
\frac{d \pi}{d q_{1}}=\mu-\delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)-\delta^{c} \frac{q_{1}^{2}}{N_{1}^{2}} \frac{1}{f\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)}-\delta^{m} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)=0, \tag{10}
\end{equation*}
$$

provided that $N_{1} \bar{F}\left(p_{2}^{m}\right) \leq q_{1} \leq N_{1}$. Since the left-hand side of (10) is strictly decreasing in q_{1} (because π is strictly concave), it follows that if $\left.\frac{d \pi}{d q_{1}}\right|_{q_{1}=N_{1}}<0$ and $\left.\frac{d \pi}{d q_{1}}\right|_{q_{1}=N_{1} \bar{F}\left(p_{2}^{m}\right)}>0$ then there
is a unique interior solution in $\left(N_{1} \bar{F}\left(p_{2}^{m}\right), N_{1}\right)$ and otherwise we obtain a boundary solution. To summarize (1) if $\delta^{c} \leq \frac{\mu-\delta^{m} \bar{p} i}{\mu-\underline{p_{1}} \bar{f}(\underline{\underline{v}})}$, then $q_{1}^{*}=N_{1}$, (2) if $\frac{\mu-\delta^{m} \overline{\overline{1}}}{\mu-\underline{\underline{v}}+\frac{1}{f(\underline{v})}}<\delta^{c}<\frac{\mu-\delta^{m} \overline{\bar{\pi}}}{T_{1}\left(p_{2}^{m}\right)+\frac{\left[\bar{F}\left(p_{2}^{m}\right)\right]^{2}}{f\left(p_{2}^{p}\right)}}$, then $q_{1}^{*} \in$ $\left(N_{1} \bar{F}\left(p_{2}^{m}\right), N_{1}\right)$ and is characterized by (10), and (3) otherwise, $q_{1}^{*}=N_{1} \bar{F}\left(p_{2}^{m}\right)$.

A frenzy can happen only in the second case. It remains to show that is this case $L_{1}\left(q_{1}^{*}\right)>0$. This follows because $N_{1} \bar{F}\left(p_{2}^{m}\right)<q_{1}^{*}<N_{1}$ and so $p_{2}^{e}\left(0 \mid q_{1}^{*}\right)<p_{2}^{m}$ (Lemma 1). Therefore, $L_{1}\left(q_{1}^{*}\right)>0$, because $T_{1}(p)$ is strictly decreasing in p.

Proof of Corollary 1: (a) This part follows from the Envelope Theorem given that, by (2), we have $\frac{d \pi^{*}}{d \delta^{c}}=-q_{1}^{*} T_{1}\left(p_{2}^{e}\left(0 \mid Q_{1}^{*}\right)\right)<0$ and $\frac{d \pi^{*}}{d \delta^{m}}=\left(N_{1}-q_{1}^{*}\right) p_{2}^{m} \bar{F}\left(p_{2}^{m}\right) \geq 0$.
(b) q_{1}^{*} solves (10). Differentiating with respect to δ^{c} and simplifying yields (we suppress the argument in $p_{2}^{e}\left(0 \mid q_{1}^{*}\right)$ for brevity)

$$
\frac{d q_{1}^{*}}{d \delta^{c}}=\frac{T_{1}\left(p_{2}^{e}\right)+\frac{q_{1}^{* 2}}{N_{1}^{2}} \frac{1}{f\left(p_{2}^{e}\right)}}{\delta^{c} \bar{F}\left(p_{2}^{e}\right) \frac{d p_{2}^{e}}{d q_{1}}-\frac{\delta^{c} q_{1}^{*}}{N_{1}^{2}} \frac{2 f\left(p_{2}^{e}\right)-f^{\prime}\left(p_{2}^{e}\right)}{d p_{2}^{e}} q_{q_{1}^{*}}}<0
$$

The inequality follows because $p_{2}^{w}\left(0 \mid q_{1}\right)=\bar{F}^{-1}\left(\frac{q_{1}}{N_{1}}\right)$ and so $\frac{d p_{2}^{e}\left(0 \mid q_{1}\right)}{d q_{1}}=\frac{-1}{N_{1} f\left(p_{2}^{e}\right)}<0$. Moreover, since $\bar{F}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)=\frac{q_{1}}{N_{1}}$, we have $2 f\left(p_{2}^{e}\right)-f^{\prime}\left(p_{2}^{e}\right) \frac{d p_{2}^{e}}{d q_{1}} q_{1}^{*}=\frac{2\left[f\left(p_{2}^{e}\right)\right]^{2}+f^{\prime}\left(p_{p}^{e}\right) \bar{F}\left(p_{2}^{e}\right)}{\left[f\left(p_{2}^{e}\right)\right]^{2}}>0$ (because f is log-concave; see the proof of Proposition 2).

Similarly, it is straightforward to observe that

$$
\frac{d q_{1}^{*}}{d \delta^{m}}=\frac{p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)}{\delta^{c} \bar{F}\left(p_{2}^{e}\right) \frac{d p_{2}^{e}}{d q_{1}}-\frac{\delta^{c} q_{1}^{*}}{N_{1}^{2}} \frac{2 f\left(p_{2}^{e}\right)-f^{\prime}\left(p_{2}^{e}\right) \frac{d p_{2}^{e}}{\left[f\left(q_{2}^{e}\right)\right.}}{\left[f q_{1}^{*}\right.}}<0
$$

Proof of Lemma 3: $p_{2}^{b}(y)$ solves the first-order condition

$$
\left(N_{1}-y\right) \bar{F}_{1}(p)-p\left(N_{1}-y\right) f_{1}(p)+N_{2} \bar{F}_{2}(p)-p N_{2} f_{2}(p)=0
$$

Differentiating both sides with respect to y, we obtain

$$
-\left[\bar{F}_{1}\left(p_{2}^{b}\right)-p_{2}^{b} f_{1}\left(p_{2}^{b}\right)\right]+\left(N_{1}-y\right)\left[-2 f_{1}\left(p_{2}^{b}\right) \frac{d p_{2}^{b}}{d y}-p f_{1}^{\prime}\left(p_{2}^{b}\right) \frac{d p_{2}^{b}}{d y}\right]+N_{2}\left[-2 f_{2}\left(p_{2}^{b}\right) \frac{d p_{2}^{b}}{d y}-p f_{2}^{\prime}\left(p_{2}^{b}\right) \frac{d p_{2}^{b}}{d y}\right]=0,
$$

or

$$
\frac{d p_{2}^{b}}{d y}=\frac{\bar{F}_{1}\left(p_{2}^{b}\right)-p_{2}^{b} f_{1}\left(p_{2}^{b}\right)}{\left(N_{1}-y\right)\left[-2 f_{1}\left(p_{2}^{b}\right)-p f_{1}^{\prime}\left(p_{2}^{b}\right)\right]+N_{2}\left[-2 f_{2}\left(p_{2}^{b}\right)-p f_{2}^{\prime}\left(p_{2}^{b}\right)\right]}
$$

The denominator is negative as $f_{i}, i \in\{1,2\}$ is log-concave and hence $p \bar{F}_{i}(p)$ is strictly concave. Further, the numerator is negative if $p_{2}^{1, m}<p_{2}^{2, m}$, positive if $p_{2}^{1, m}>p_{2}^{2, m}$, and 0 otherwise.

Proof of Lemma 4: If $x \in\left[0, \frac{q_{1}}{N_{1}}\right]$, then the constraint is not binding if $Q_{2}^{b}\left(p_{2}^{b}\left(x N_{1}\right), x N_{1}\right) \geq$ $q_{1}-x N_{1}$ and $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(x N_{1}\right)$. Otherwise, because the objective function is strictly concave, $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$. In other words, the price that clears the inventory remaining from period 1 is optimal. The second part follows because if $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$, the constraint in (4) is not binding.

Proof of Lemma 5: (a) If $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$ (Lemma 4) which is strictly increasing in q_{1} (Lemma 3) and constant in x. If, on the other hand, $x \in\left[0, \frac{q_{1}}{N_{1}}\right]$, then $p_{2}^{e}\left(x \mid q_{1}\right)=$ $\min \left(p_{2}^{b}\left(x N_{1}\right), \hat{p}_{2}\left(x, q_{1}\right)\right)$ which is continuous in x. Further, $p_{2}^{b}\left(x N_{1}\right)$ and $\hat{p}_{2}\left(x, q_{1}\right)$ are strictly increasing in x. The former follows from Lemma 3 . To prove the latter, recall that $\hat{p}_{2}\left(x, q_{1}\right)$ solves (5). Upon differentiating, we obtain

$$
\frac{d \hat{p}_{2}}{d x}=\frac{N_{1} F_{1}\left(\hat{p}_{2}\right)}{\left(N_{1}-x N_{1}\right) f_{1}\left(\hat{p}_{2}\right)+N_{2} f_{2}\left(\hat{p}_{2}\right)}>0 .
$$

It follows that $p_{2}^{e}\left(x \mid q_{1}\right)$ is strictly increasing at $x=0$ and further weakly increasing in $(0,1]$.
(b) We first establish the conditions under which (6) has a unique solution. We then characterize $p_{2}^{e}\left(x \mid q_{1}\right)$ and show that it is (weakly) increasing in x.

Claim 3 There exists a unique solution $x \in[0,1]$ to (6) if and only if $Q_{2}^{m} \leq q_{1} \leq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$.
Proof: Define

$$
\begin{equation*}
G(x)=Q_{2}^{b}\left(p_{2}^{b}\left(x N_{1}\right) ; x N_{1}\right)-\left(q_{1}-x N_{1}\right) . \tag{11}
\end{equation*}
$$

$G(x)$ is increasing in x because $\frac{d G(x)}{d x}=\frac{\partial Q_{2}^{b}}{\partial p} \frac{\partial p_{2}^{b}}{\partial x}+\frac{\partial Q_{2}^{b}}{\partial Q_{1}} \frac{\partial x N_{1}}{\partial x}+N_{1}>0$. The inequality follows because $\frac{\partial Q_{2}^{b}}{\partial p} \leq 0$ and $\frac{\partial p_{2}^{b}}{\partial x} \leq 0$ (Lemma 3). Further, $\frac{\partial Q_{2}^{b}}{\partial Q_{1}} \frac{\partial x N_{1}}{\partial x}+N_{1}=N_{1}\left(-\bar{F}_{1}\left(p_{2}^{b}\right)+1\right)>0$. Therefore, if (6) has a solution, it is unique.
To guarantee the existence of a solution it must be that $G(0) \leq 0 \leq G(1)$ or $Q_{2}^{m} \leq q_{1} \leq N_{1}+$ $N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$.
We can now prove the results in part (b) of the lemma. First, note that from the proof of Claim 3, the function $G(x)$ is increasing in x. We use this property to characterize $p_{2}^{e}\left(x \mid q_{1}\right)$.
(b1) If $q_{1} \leq Q_{2}^{m}$, then $G(x) \geq 0$ for all x which implies $p_{2}^{b}\left(x N_{1}\right) \leq \hat{p}_{2}\left(x, q_{1}\right)$. Therefore, from Lemma 4, we have $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(x N_{1}\right)$ if $x \leq \frac{q_{1}}{N_{1}}$ and else $p_{2}^{b}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$. Because $p_{2}^{1, m}=p_{2}^{2, m}$, then $p_{2}^{1, m}=p_{2}^{2, m}=p_{2}^{b}\left(x N_{1}\right)=p_{2}^{b}\left(q_{1}\right)=p_{2}^{m}$; see (4), i.e., $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$.
(b2) If $Q_{2}^{m} \leq q_{1} \leq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then (6) has a unique solution $\hat{x}\left(q_{1}\right) \in[0,1]$ (Claim 3). Hence, if $x \geq \hat{x}\left(q_{1}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{m}$. Otherwise, $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$. As a caveat, note that if $q_{1}<N_{1}$, then for $x \geq \frac{q_{1}}{N_{1}}$, we have $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$ (Lemma 4). However, when $p_{2}^{1, m}=p_{2}^{2, m}$, we have $p_{2}^{b}\left(q_{1}\right)=p_{2}^{m}$.
(b3) If $q_{1}>N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$ for all $x \in[0,1]$ because $G(x) \leq 0$ for all x and hence $\hat{p}_{2}\left(x, q_{1}\right) \leq p_{2}^{b}\left(x N_{1}\right)=p_{2}^{m}$.
(b4) This result is immediate from the proof of parts (b1)-(b3).
Derivation of $\mathbf{p}_{\mathbf{1}}\left(\mathbf{q}_{1}\right)$ when $\mathbf{p}_{2}^{\mathbf{1 , m}} \leq \mathbf{p}_{\mathbf{2}}^{\mathbf{2 , m}}$. The derivation is similar to that in Section 3 and Proposition 1. We first show that mixed strategy REE are never PDREE. If $p_{1}^{1, m}<p_{2}^{2, m}$, then $p_{2}^{e}\left(x \mid q_{1}\right)$ is increasing in x and Lemma 2 applies. If $p_{1}^{1, m}=p_{2}^{2, m}$, then the proof of Lemma 5 shows that
we should distinguish three subcases (b1)-(b3). In cases (b2) and (b3), we have $p_{2}^{e}\left(0 \mid q_{1}\right)<p_{2}^{e}\left(x \mid q_{1}\right)$ for any $x \in(0,1)$ and Lemma 2 applies again. In case (b1), $p_{2}^{e}\left(x \mid q_{1}\right)$ is constant. Any $x \in(0,1)$ is an REE and a PDREE if and only if $p_{1}=p_{2}^{m}$. A proof similar to Proposition 1, omitted here for brevity, shows that $x=1$ is the weakly preferred PDREE by the firm.

Claim 4 The profit maximizing price is $p_{1}\left(q_{1}\right)=p_{1}^{w}\left(q_{1}\right)$ and the associated PDREE is $x=1$.
Proof: If $p_{1}>p_{1}^{w}\left(q_{1}\right)$ then $x=0$ is the unique PDREE. If $p_{1}=p_{1}^{w}\left(q_{1}\right)$ then $x=1$ is the PDREE preferred by the firm. If $p_{1}<p_{1}^{w}\left(q_{1}\right)$ then $x=1$ is the unique PDREE. The profits are highest for $p_{1}=p_{1}^{w}\left(q_{1}\right)$.

Claim $5 q_{1}>N_{1}$ is never optimal.

Proof: $p_{2}^{e}\left(x \mid q_{1}\right)$ is weakly decreasing in q_{1}. Therefore $p_{1}\left(q_{1}\right)$ is also weakly decreasing in q_{1}. Increasing q_{1} above N_{1} does not increase sales $Q_{1}=\min \left(x N_{1}, q_{1}\right)$ and reduces $p_{1}\left(q_{1}\right)$ and hence suboptimal.
Proof of Lemma 6: The condition in the lemma is equivalent to $N_{2} \bar{F}_{2}\left(p_{2}^{m}\right)+N_{1} \bar{F}_{1}\left(p_{2}^{m}\right) \geq N_{1}$ or $Q_{2}^{m} \geq N_{1}$. To prove the result, it suffices to show that $q_{1}^{*} \geq Q_{2}^{m}$ because this inequality implies that $q_{1}^{*} \geq N_{1}$, in other words, no excess demand in equilibrium and hence no frenzy.

Assume to the contrary that $q_{1}^{*}<Q_{2}^{m}$. Then $p_{2}^{e}\left(0 \mid q_{1}\right)=p_{2}^{m}$ and $p_{1}\left(q_{1}\right)=\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)$, i.e., $p_{1}\left(q_{1}\right)$ becomes independent of q_{1}. The firm's profit function,

$$
\pi\left(q_{1}\right)=q_{1}\left(\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)\right)+\delta^{m} p_{2}^{e}\left(1 \mid q_{1}\right)\left[\left(N_{1}-q_{1}\right) \bar{F}_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)+N_{2} \bar{F}_{2}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)\right],
$$

is increasing in q_{1}. To see this, observe that

$$
\frac{d \pi\left(q_{1}\right)}{d q_{1}}=\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right)-\delta^{m} p_{2}^{e}\left(1 \mid q_{1}\right) \bar{F}_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)>0 .
$$

The inequality follows because

$$
\begin{aligned}
\mu-\delta^{c} T_{1}\left(p_{2}^{m}\right) & >p_{2}^{m} \bar{F}_{1}\left(p_{2}^{m}\right) \\
& \geq p_{2}^{e}\left(1 \mid q_{1}\right) \bar{F}_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right) \\
& \geq \delta^{m} p_{2}^{e}\left(1 \mid q_{1}\right) \bar{F}_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right) .
\end{aligned}
$$

The second inequality follows because $p \bar{F}_{1}(p)$ is single-peaked at $p_{2}^{1, m}$, and further (i) $p_{2}^{1, m}<p_{2}^{m}<$ $p_{2}^{e}\left(1 \mid q_{1}\right)$ if $p_{2}^{2, m}>p_{2}^{1, m}$ and (ii) $p_{2}^{e}\left(1 \mid q_{1}\right) \leq p_{2}^{m} \leq p_{2}^{1, m}$ if $p_{2}^{2, m} \leq p_{2}^{1, m}$. Therefore, $q_{1}=Q_{2}^{m}$; a contradiction.

Proof of Proposition 3: (i) $p_{2}^{1, m}<p_{2}^{2, m}$. Therefore, $p_{2}^{e}\left(0 \mid q_{1}\right)<p_{2}^{e}\left(1 \mid q_{1}\right)$ (Lemma 5). Thus, a frenzy occurs as long as $q_{1}<N_{1}$. In other words, a sufficient condition is

$$
\begin{equation*}
\frac{d \pi\left(q_{1}\right)}{d q_{1}}=\mu-\delta^{c} T_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right)+\delta^{c} q_{1} \bar{F}_{1}\left(p_{2}^{e}\left(0 \mid q_{1}\right)\right) \frac{d p_{2}^{e}\left(0 \mid q_{1}\right)}{d q_{1}}-\left.\delta^{m} p_{2}^{e}\left(1 \mid q_{1}\right) \bar{F}_{1}\left(p_{2}^{e}\left(1 \mid q_{1}\right)\right)\right|_{q_{1}=N_{1}}<0, \tag{12}
\end{equation*}
$$

or, equivalently, $\delta^{c}>\delta_{2}^{c}$. Note that the coefficient of δ^{c} in (12) is negative because $p_{2}^{e}\left(0 \mid q_{1}\right)$ is decreasing in q_{1}. To see this, note that by Lemma $4, p_{2}^{e}\left(0 \mid q_{1}\right)=\min \left(p_{2}^{b}\left(x N_{1}\right), \hat{p}_{2}\left(x, q_{1}\right)\right)$. Because $p_{2}^{b}\left(x N_{1}\right)$ is constant in q_{1} and $\hat{p}_{2}\left(x, q_{1}\right)$ is decreasing in $q_{1}\left(\right.$ see (5)), we conclude that $\frac{d p_{2}^{e}\left(0 \mid q_{1}\right)}{d q_{1}} \leq 0$.
(ii) $p_{2}^{1, m}=p_{2}^{2, m}$. Because the optimal production level is at most N_{1} (Claim 5), it follows from Lemma 5 that $p_{2}^{e}\left(1 \mid q_{1}\right)=p_{2}^{m}=p_{2}^{1, m}=p_{2}^{2, m}$ and so is constant in q_{1}. Unlike case (i), in this case, a frenzy occurs only if $q_{1}^{*} \in\left(Q_{2}^{m}, N_{1}\right)$. That is, we must also eliminate the corner at Q_{2}^{m} in which no frenzy occurs because $p_{2}^{e}\left(1 \mid Q_{2}^{m}\right)=p_{2}^{e}\left(0 \mid Q_{2}^{m}\right)$ (see Lemma 5). Therefore, a set of sufficient conditions for a buying frenzy equilibrium to exist is $\left.\frac{d \pi}{d q_{1}}\right|_{q_{1}=N_{1}}<0$ and $\left.\frac{d \pi}{d q_{1}}\right|_{q_{1}=Q_{2}^{m}}>0$ or $\delta_{2}^{c}<\delta^{c}<\delta_{1}^{c}$. Similar to case (i), these conditions are not necessary and do not guarantee the uniqueness of the frenzy equilibrium (unlike the model in Section 3 and Proposition 2).
Finally, consider the case $f_{2}(\cdot)=f_{1}(\cdot)=f(\cdot)$ discussed in the text. In this case, the firm's optimal policy is to induce a unique buying frenzy when $F\left(p_{2}^{m}\right)>\frac{N_{2}}{N_{1}+N_{2}}$ and $\delta_{2}^{c}<\delta^{c}<\delta_{1}^{c}$ where $\delta_{1}^{c}=\frac{\mu-\delta^{m} p_{2}^{m} \bar{F}\left(p_{2}^{m}\right)}{T_{1}\left(p_{2}^{m}\right)+\frac{Q_{2}^{m} \bar{F}_{1}\left(p_{2}^{m}\right)}{\left(N_{1}+N_{2}\right) f\left(p_{2}^{m}\right)}}$ and $\delta_{2}^{c}=\frac{\mu-\delta^{m} p_{2}^{2, m} \bar{F}\left(p_{2}^{2, m}\right)}{T_{1}\left(p_{2}^{w}\left(N_{1}\right)\right)+\frac{N_{\bar{F}}\left(p_{p}^{w}\left(N_{1}\right)\right)}{\left(N_{1}+N_{2}\right) f\left(p_{2}^{w}\left(N_{1}\right)\right)} \text {. Uniqueness of the equilibrium }}$ follows because the objective function over the relevant values of q_{1} is strictly concave (cf. the proof of Proposition 2).
Proof of Lemma 7: A similar result as Claim 3 holds when $p_{2}^{1, m}>p_{2}^{2, m}$ (the same proof applies). We define the function $G(x)$ as in (11).
(i) From Lemma 4, if $x \in\left[0, \frac{q_{1}}{N_{1}}\right]$, then $p_{2}^{e}\left(x \mid q_{1}\right)=\min \left(p_{2}^{b}\left(x N_{1}\right), \hat{p}_{2}\left(x, q_{1}\right)\right)$. Because $q_{1} \leq Q_{2}^{m}$, it follows that $G(x) \geq 0$ for all $x \in[0,1]$; see (11), hence $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(x N_{1}\right)$ which is decreasing in x because $p_{2}^{1, m}>p_{2}^{2, m}$ (Lemma 3). If $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$ (Lemma 3) which is constant in x.
(ii) If $Q_{2}^{m} \leq q_{1} \leq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $G(x)$ has a solution $\hat{x}\left(q_{1}\right) \in[0,1]$ and consequently $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p}_{2}\left(x, q_{1}\right)$ for $x \in\left[0, \hat{x}\left(q_{1}\right)\right]$ and $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(x N_{1}\right)$ for $x \in\left[\hat{x}\left(q_{1}\right), \frac{q_{1}}{N_{1}}\right]$. From Lemma 3, $p_{2}^{b}\left(x N_{1}\right)$ is decreasing in x while $\hat{p}_{2}\left(x, q_{1}\right)$ is increasing in x (see proof of Lemma 5). Finally, from Lemma 4 if $x \in\left[\frac{q_{1}}{N_{1}}, 1\right]$, then $p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{b}\left(q_{1}\right)$ which is constant in x.
(iii) If $q_{1} \geq N_{1}+N_{2} \bar{F}_{2}\left(p_{2}^{2, m}\right)$, then $G(x) \leq 0$ for all $x \in[0,1]$ implying that $p_{2}^{e}\left(x \mid q_{1}\right)=\hat{p_{2}}\left(x, q_{1}\right)$ which is increasing in x (see proof of Lemma 5).

Proof of Proposition 4: We first show that we can ignore mixed strategy REE without loss of generality. If $p_{2}^{e}\left(1 \mid q_{1}\right) \leq p_{2}^{e}\left(0 \mid q_{1}\right)$, define $\tilde{x}\left(q_{1}\right)=\min \left\{x \in(0,1)\right.$ s.t. $\left.p_{2}^{e}\left(x \mid q_{1}\right)=p_{2}^{e}\left(0 \mid q_{1}\right)\right\}$. Lemma 2 implies that we can ignore mixed strategy REE when $p_{2}^{e}\left(1 \mid q_{1}\right)>p_{2}^{e}\left(0 \mid q_{1}\right)$ and when $p_{2}^{e}\left(1 \mid q_{1}\right) \leq$
$p_{2}^{e}\left(0 \mid q_{1}\right)$ and $x<\tilde{x}\left(q_{1}\right)$. The only case left to consider occurs when $p_{2}^{e}\left(1 \mid q_{1}\right) \leq p_{2}^{e}\left(0 \mid q_{1}\right)$ and mixed strategy $x \geq \tilde{x}\left(q_{1}\right)$. We now focus on this case by dividing the interval into $x \in\left[\tilde{x}\left(q_{1}\right), \min \left(\frac{q_{1}}{N_{1}}, 1\right)\right)$ and $x \geq \min \left(\frac{q_{1}}{N_{1}}, 1\right)$.

Claim 6 We can ignore mixed strategy $x \geq \min \left(\frac{q_{1}}{N_{1}}, 1\right)$ without loss of generality.
Proof: Assume $x_{0} \geq \min \left(\frac{q_{1}}{N_{1}}, 1\right)$ is an REE. Because $p_{2}^{e}\left(x \mid q_{1}\right)$ is constant for $x \in\left[\min \left(\frac{q_{1}}{N_{1}}, 1\right), 1\right]$, $x=1$ is also an REE. The two strategies x_{0} and $x=1$ are Pareto-equivalent and yield the same firm revenue. It is then without loss of generality that we ignore x_{0}.
The only mixed REE left are $x \in\left[\tilde{x}\left(q_{1}\right), \min \left(\frac{q_{1}}{N_{1}}, 1\right)\right)$. We cannot eliminate these mixed strategy REE by showing that they are Pareto-equivalent to the pure strategy REE $x=1$, as we did in the proof of Proposition 1, because we cannot compare the profits under the two REE anymore. Instead, we show that for any $\operatorname{REE} x_{0} \in\left[\tilde{x}\left(q_{1}\right), \min \left(\frac{q_{1}}{N_{1}}, 1\right)\right)$ there exists a different firm announcement that induces a PDREE with the same firm revenue. Thus, x_{0} can be ignored without loss of generality.

Claim 7 Assume $p_{2}^{e}\left(1 \mid q_{1}\right) \leq p_{2}^{e}\left(0 \mid q_{1}\right)$ and $x_{0} \in\left[\tilde{x}\left(q_{1}\right), \min \left(\frac{q_{1}}{N_{1}}, 1\right)\right)$ is an REE for firm announcement $\left(q_{1}, p_{1}\right)$. Then, $x^{\prime}=1$ is a PDREE weakly preferred by the firm for announcement $\left(q_{1}^{\prime}=x_{0} N_{1}, p_{1}^{\prime}=\right.$ p_{1}) and it gives the same revenue as REE x_{0}.

Proof: We first derive the period-2 expected price for firm announcement ($q_{1}^{\prime}, p_{1}^{\prime}$). Because $q_{1}^{\prime}=x_{0} N_{1}<N_{1}$, Lemma 7 implies that $p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)=\hat{p}_{2}\left(x \mid q_{1}^{\prime}\right)$ for $x \leq \hat{x}\left(q_{1}^{\prime}\right), p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)=p_{2}^{b}\left(x N_{1}\right)$ for $x \in\left[\hat{x}\left(q_{1}^{\prime}\right), x_{0}\right]$, and $p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)=p_{2}^{b}\left(x_{0} N_{1}\right)$ for $x \geq x_{0}$. Note that $\hat{x}\left(q_{1}^{\prime}\right)$ might not exist in which case $p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)=p_{2}^{b}\left(x N_{1}\right)$ for $x \in\left[0, x_{0}\right]$ and $p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)=p_{2}^{b}\left(x_{0} N_{1}\right)$ for $x \in\left[x_{0}, 1\right]$. Our proof below applies in both cases.

The next step is to show that $x \in\left[x_{0}, 1\right]$ are the only PDREE for the announcement ($q_{1}^{\prime}=$ $\left.x_{0} N_{1}, p_{1}^{\prime}=p_{1}\right)$. For that, we must rule out $x \in\left[0, x_{0}\right)$. For any $x \in\left[0, x_{0}\right)$. We have $\mu-p_{1}^{\prime}=$ $\mu-p_{1}=\delta_{c} T_{1}\left(p_{2}^{e}\left(x_{0} \mid q_{1}\right)\right)=\delta_{c} T_{1}\left(p_{2}^{e}\left(x_{0} \mid q_{1}^{\prime}\right)\right)>\delta_{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)\right)$. The second equality is because x_{0} is a mixed strategy for the announcement $\left(q_{1}, p_{1}\right)$. The third equality holds because $p_{2}^{e}\left(x_{0} \mid q_{1}\right)=$ $p_{2}^{b}\left(x_{0} N_{1}\right)=p_{2}^{e}\left(x_{0} \mid q_{1}^{\prime}\right)$. Finally, the inequality follows because $p_{2}^{e}\left(x_{0} \mid q_{1}^{\prime}\right)=p_{2}^{b}\left(x_{0} N_{1}\right)$ and $p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)=$ $\min \left(\hat{p}_{2}\left(x, q_{1}^{\prime}\right), p_{2}^{b}\left(x N_{1}\right)\right)$. Moreover, because $\hat{p}_{2}\left(x, q_{1}\right)$ is decreasing in q_{1}, we have $\hat{p}_{2}\left(x, q_{1}^{\prime}\right) \geq$ $\hat{p}_{2}\left(x, q_{1}\right)>p_{2}^{b}\left(x_{0} N_{1}\right)$. Finally, $p_{2}^{b}\left(x N_{1}\right)$ is decreasing in x (Lemma 3) and hence $p_{2}^{b}\left(x N_{1}\right)>p_{2}^{b}\left(x_{0} N_{1}\right)$. We conclude that $p_{2}^{e}\left(x_{0} \mid q_{1}^{\prime}\right)<p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)$. Therefore, buying dominates waiting for $x \in\left[0, x_{0}\right)$ and x cannot be a REE.

Consider next $x \geq x_{0}$. We have $\mu-p_{1}^{\prime}=\mu-p_{1}=\delta_{c} T_{1}\left(p_{2}^{e}\left(x_{0} \mid q_{1}\right)\right)=\delta_{c} T_{1}\left(p_{2}^{e}\left(x_{0} \mid q_{1}^{\prime}\right)\right)=\delta_{c} T_{1}\left(p_{2}^{e}\left(x \mid q_{1}^{\prime}\right)\right)$ (because $x \geq x_{0}=\frac{q_{1}^{\prime}}{N_{1}}$. Any $x \in\left[x_{0}, 1\right]$ is then an REE and also a PDREE because the consumer surplus is constant and equal to $\mu-p_{1}$.

We conclude by comparing the profits under $\left(q_{1}, p_{1}, x_{0}\right)$ and $\left(q_{1}^{\prime}, p_{1}^{\prime}, x\right)$ for $x \in\left[x_{0}, 1\right]$. The prices are equal $p_{1}=p_{1}^{\prime}$ and so are sales $\min \left(x N_{1}, q_{1}^{\prime}\right)=x_{0} N_{1}=\min \left(x_{0} N_{1}, q_{1}\right)$. Firm's revenue are equal in period 1 and also in period 2. Therefore, the firm is indifferent between REE x_{0} for announcement $\left(q_{1}, p_{1}\right)$ and PDREE $x^{\prime}=1$ for the announcement $\left(q_{1}^{\prime}, p_{1}^{\prime}\right)$.

We only have to consider pure strategy PDREE $x=0$ and $x=1$. We distinguish two cases. If $p_{1}^{w}\left(q_{1}\right) \leq p_{1}^{b}\left(q_{1}\right)$, then $p_{1}=p_{1}^{w}\left(q_{1}\right)$ is the highest period- 1 price such that $x=1$ is a PDREE. Otherwise, $p_{1}=p_{1}^{b}\left(q_{1}\right)$ is the highest price such that $x=1$ is a PDREE. The function $\tilde{p}_{1}\left(q_{1}\right)=$ $\min \left(p_{1}^{w}\left(q_{1}\right), p_{1}^{b}\left(q_{1}\right)\right)$ matches the highest period- 1 price in each case.

It is important to observe that, for a given $q_{1}, x=0$ is also a PDREE for $\left(q_{1}, \tilde{p}_{1}\left(q_{1}\right)\right)$. For $x=1$, the firm profits are $\tilde{p}_{1}\left(q_{1}\right) q_{1}+\delta_{m} p_{2}^{b}\left(q_{1}\right) Q_{2}^{b}\left(p_{2}^{b}\left(q_{1}\right), q_{1}\right)$. For $x=0$, the firm profits are $\delta^{m} Q_{2}^{m} p_{2}^{m}$ if $q_{1} \leq Q_{2}^{m}$ and $q_{1} \hat{p}_{2}\left(0, q_{1}\right)$ otherwise. It is possible that the firm prefers PDREE $x=0$. But the profits under $x=0$ are weakly dominated by the profits under firm announcement ($q_{1}=0, p_{1}=\infty$). In other words, at optimality the firm will not choose such values for q_{1}. Therefore, we can assume, without loss of generality, that PDREE $x=1$ is associated to announcement $\tilde{p}_{1}\left(q_{1}\right)$ even though it is not necessarily the preferred PDREE.

[^0]: ${ }^{1}$ Coordination transpires through press reports and social media such as online networking sites (Facebook, Twitter, etc.). Through these channels, customers develop a sense of whether other customers are buying the product and whether they should do the same.

[^1]: ${ }^{6}$ This is because $\delta_{1}^{c}-\delta_{2}^{c}$ is decreasing in δ^{m} (note that $T_{1}(p)+[\bar{F}(p)]^{2} / f(p)$ is decreasing in p and that $p_{2}^{m}>\underline{v}$).

[^2]: ${ }^{7}$ This assumption is similar to the assumption in Section 3 that $p_{2}^{b}>\underline{v}$ (see Proposition 2). The reason is that if $p_{2}^{b}=\underline{v}$ then the size of the period 2 market when the firm sells only in period 2 (i.e., $N_{1} \bar{F}(\underline{v})=N_{1}$) is as large as the period-1 market size.

[^3]: ${ }^{8}$ This will be the case when the profits from selling $\min \left(N_{1}, q_{1}\right)$ at $\tilde{p}_{1}\left(q_{1}\right)$, i.e., $\tilde{p}_{1}\left(q_{1}\right) q_{1}+\delta_{m} p_{2}^{b}\left(q_{1}\right) Q_{2}^{b}\left(p_{2}^{b}\left(q_{1}\right), q_{1}\right)$, are lower than the profits under $x=0$, i.e., $\delta^{m} Q_{2}^{m} p_{2}^{m}$ if $q_{1} \leq Q_{2}^{m}$ and $\min \left(N_{1}, q_{1}\right) \hat{p}_{2}\left(q_{1}\right)$ otherwise.

[^4]: ${ }^{9}$ For the particular case $\delta^{c}=\delta^{m}=1$, the profit function is independent of q_{1} and so all $q_{1} \in\left[0, N_{1}\right]$ are optimal. In this case, customers are still indifferent between buying and waiting and a frenzy does not happen.

