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Buying frenzies in which a firm intentionally undersupplies a product during its 
initial launch phase are a common practice within several industries such as 
electronics (cell phones, video games, game consoles), luxury cars, and 
fashion goods. We develop a dynamic model of buying frenzies that captures 
the production and sales of a product over time by the firm and then 
characterize the conditions under which frenzies are an optimal policy for the 
firm. We show that buying frenzies occur when customers are sufficiently 
uncertain about their product valuations and when customers discount the 
future but not excessively. Further, we propose a measure of 
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Buying frenzies in which a firm intentionally undersupplies a product during its initial launch phase are

a common practice within several industries such as electronics (cell phones, video games, game consoles),

luxury cars, and fashion goods. We develop a dynamic model of buying frenzies that captures the production

and sales of a product over time by the firm and then characterize the conditions under which frenzies are

an optimal policy for the firm. We show that buying frenzies occur when customers are sufficiently uncertain

about their product valuations and when customers discount the future but not excessively. Further, we

propose a measure of “customer desperation” to measure the magnitude of frenzies and demonstrate that

buying frenzies can have a significant impact on the firm’s profit. This paper provides managerial insights on

how firms can affect the market response to a new product through their pricing, production, and inventory

decisions to induce profitable frenzies.

Key words : Advance Selling, Buying Frenzy, Customer Desperation, Strategic Customer Behavior

1. Introduction

Long queues of enthusiastic customers were common when Apple’s iPad 2 hit the Hong Kong mar-

kets on April 29, 2010. Given the inclement weather, Apple stores were glad to provide umbrellas

and raincoats (bearing Apple’s logo) to waiting customers. Each store received a limited number of

iPads and distributed them on a first-come, first-served basis. Some customers were willing to pay

considerably higher prices to obtain the product in the “gray” market. Such shortage of supply is

not confined to Apple’s iPad 2. The shortage of Nintendo’s game console Wii, for example, lasted

from its initial introduction in 2006 until 2009 (Liu and Schiraldi 2012). Sony’s PlayStation 2 faced

the same problems after entering the US market eight months later than Japan’s markets (Stock

and Balachander 2005).

1
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A buying frenzy is induced by a firm that intentionally undersupplies a market and excluded

customers are strictly worse off. This practice is common in several industries such as luxury cars,

fashion, and especially electronics (cell phones, video games, game consoles). Although shortages

might be attributed to demand forecasting errors, issues in component supplies or production

problems, their repeated occurrence—particularly during the launch phase of innovative products—

suggests that a conscious marketing strategy is the true reason. The few studies investigating this

issue have considered mainly static models. These models capture situations where firms sell the

good only once; examples include tickets for sporting or music events, limited edition products, and

one-off auctions. Yet, the predictions of static models collapse when the firm produces repeatedly

over time, as is the case for most manufactured products. The reason is that the firm wants to serve

the customers who were excluded from the early sales. But why should customers be desperate

to buy early when products are available in the future? An important gap in the literature is the

absence of a dynamic analysis that supports an initial buying frenzy followed by a period of regular

sales without frenzies.

We develop a model in which production and sales occur in two periods and then characterize

the dynamics of sales, prices, and scarcity. The two-period model that we employ is a stylized

representation that features the classical dichotomy between the launch phase of a new product

and its subsequent mature phase. We show that the firm’s gains from inducing a buying frenzy

(relative to matching supply and demand) can be economically substantial. We also investigate

the conditions under which buying frenzies are optimal. Finally, we compute customers’ loss from

being excluded during the initial launch phase, which is a proxy for “customer desperation”, and

show that this loss can be significant. This explains why customers may invest resources to obtain

the good early (e.g., wait in queues) and why prices can be significantly higher in resale markets.

There are several ingredients to our analysis. We assume that customers are initially uncertain

about their preferences for the product (see e.g., Xie and Shugan 2001, Gallego and Şahin 2010 and

Yu et al. 2011). This assumption applies to the innovative and fashion products that have been the

object of buying frenzies. As DeGraba (1995) and Denicolò and Garella (1999), we assume that

the firm cannot commit to future prices and quantities. This implies that the firm discounts prices

when inventories build up and is consistent with the response of car and electronics manufacturers

when products do not sell as expected. For example, HP had to slash prices to clear the unsold

inventory of TouchPad only two months after its launch (The Wall Street Journal 2011). Finally,

we use Pareto dominance as the selection criterion among the equilibria of the game (Cachon and

Netessine 2004). In other words, given the firm policy, the equilibrium selected gives customers the

highest payoff. The choice of the Pareto-dominant equilibrium is consistent with the interpretation
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that customers coordinate on the equilibrium that gives them the highest surplus which reflects

the social dimension of buying frenzies.1

In a dynamic model, how does one account for uninformed customers rushing to buy early?

Customers can always obtain the good upon waiting, and waiting benefits them because they can

then incorporate the information they learn about their preferences in the decision to purchase

the product. When a firm produces a large quantity in the first period, customers anticipate that

they can get the product at a lower price in the second period in the equilibrium where customers

wait. Thus, for a product to sell in the first period, its price must be sufficiently low to prevent

such strategic customer waiting. This determines the maximum price a firm can charge in the

first period. At that price, customers’ expected utility from buying early is equal to the utility

they obtain in the waiting equilibrium. But an individual customer is strictly worse-off waiting

because the price the firm charges in the second period (on the equilibrium path) is higher than

the price the customer could have obtained in the waiting equilibrium (off the equilibrium path).

This explains why customers strictly prefer obtaining the good early.

Buying frenzies are more likely to happen when customers are initially uncertain about their

preferences for the product. An increase in preference uncertainty increases customers’ utility in

the waiting equilibrium. Customer valuation uncertainty is likely to play a greater role in the case

of an innovative product that will match the needs of some customers but not others. This may

explain why frenzies are common for new electronic products (e.g., the iPhone) and not for similar

“me too” products (e.g., Android phones) that are released later. It is reasonable to assume that

customers have more uncertainty about new products than about knock offs produced later.

There are two main theories of buying frenzies. The first is based, as in our model, on inter-

temporal price discrimination. Denicolò and Garella (1999) show that a monopolist may ration

heterogenous customers to prevent strategic waiting. DeGraba (1995) considers a static model with

individual preference uncertainty. In both of these models, buying frenzies exist only for specific

rationing rules. Our model is dynamic and the existence of frenzies does not depend on the rationing

rule used. Moreover, our analysis delivers a tractable model to study how preference uncertainty

influences the existence of buying frenzies and to formally measure customer desperation.

Other papers on inter-temporal price discrimination and scarcity policies that come close to our

paper include Liu and van Ryzin (2008), Cachon and Swinney (2009), and Liu and Schiraldi (2012).

These papers, however, focus on different issues than we do. In particular, Liu and van Ryzin

(2008) show that a stock-out possibility in the second period can prevent customers with known

1 Coordination transpires through press reports and social media such as online networking sites (Facebook, Twitter,
etc.). Through these channels, customers develop a sense of whether other customers are buying the product and
whether they should do the same.
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preferences from waiting. Cachon and Swinney (2009) suggest that by limiting the initial stocking

level and offering optimal markdowns, the firm may constrain the strategic purchase behavior of

its customers. Liu and Schiraldi (2012) show that the existence of resale markets can induce the

firm to under-stock the product and increase its equilibrium price.

The second theory is based on asymmetric information. Stock and Balachnder (2005) argue that

a high-quality firm employs scarcity to signal quality to uninformed customers. Rationing as a

signal of quality has also been studied in Debo and van Ryzin (2009), and in Allen and Faulhaber

(1991), among others. Papanastasiou et al. (2012) develop a model of “boundedly-rational social

learning” and show that a firm may restrict the availability of a product to elicit favorable reviews

from early adopters which positively affect the preferences of other customers. Our model is not

based on information asymmetry and does not rely on irrationalities to explain frenzies. Neither

do we assume that customers are myopic or the firm has to charge a fixed price over time.

Other models of buying frenzies are based on demand externality (Becker 1991) and psychological

drive (Verhallen and Robben 1994). Becker’s model accounts for social interactions and shows

that an upward-sloping demand curve might result in an unstable equilibrium with arbitrarily

small frenzies. Verhallen and Robben (1994) argue that scarcity itself can increase customers’

willingness to pay—provided customers attribute that scarcity to demand-side variables (such as

popularity) and not supply-side variables (such as the firm intentionally limiting supply). Finally,

buying frenzies are distinct from herding (Debo and Veeraraghavan 2009), in which customers

ignore their private noisy information about a product and merely follow what previous customers

did. In contrast, imperfect information is absent from our model of frenzies.

Not much empirical work has been done on buying frenzies. An important exception is Bal-

achander et al. (2009) who present a thorough analysis of buying frenzies in the context of the

automobile market. Although their findings are not consistent with DeGraba’s (1995) static model

of buying frenzies, we argue that they are consistent with a dynamic model. This demonstrates the

importance of distinguishing static and dynamic models of buying frenzies.

The rest of the paper is organized as follows. Section 2 outlines the basic model. Section 3

analyzes the dynamic model of buying frenzies when the firm can produce over time; and also

defines measures of customer desperation and frenzy intensity. Section 4, extends the model to

include second-period arrivals. Section 5 concludes the paper.

2. A Model of Buying Frenzies

A monopolist sells to a population of N1 customers who arrive in the first period of a two-period

horizon. Customer valuations are identically and independently distributed with density f(v) and

survival function F̄ (v). We assume that f and F are continuous functions with support [v, v] ⊂
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[0,∞] and E[v] = µ. We also assume that the function f(x)> 0 is log-concave.2 This demand spec-

ification approximates a large market in which customers are infinitesimal3 and have idiosyncratic

preferences that are discovered over time (Lewis and Sappington 1994). The two-period horizon

is a stylized representation of a product launch phase followed by a mature phase of sales. It is

therefore unnecessary for the two periods to have equal length; the second period can be arbitrarily

longer than the first. What matters is that individual customer uncertainty is resolved by the end

of the first period. Customers discount future utility by δc, and the monopolist discounts future

profits by δm. Although we do not restrict the parameter space for (δc, δm), it is plausible that

customers have a lower discount factor than the firm (Liu and van Ryzin 2008).

The monopolist can produce in both periods. We denote q1 and q2 as the production quantities in

the first and second periods, respectively. To simplify the exposition, we assume that the marginal

cost of production is zero. The firm announces (q1, p1) at the start of the first period. Customers

are strategic and form expectations on what will happen in period 2. They buy or wait depending

on which option maximizes their discounted utility given these expectations. As DeGraba (1995)

and Denicolò and Garella (1999), we assume that all inventory available in the second period

(period-2 production plus left-over inventory from period 1) is sold at the market-clearing price.

In other words, the firm cannot commit to withhold inventory in the second period. It is a realistic

assumption because product launches are rare and isolated in time, which helps keep the firm

from developing a reputation for withholding or destroying excess inventory. As discussed in the

Introduction, this assumption is consistent with practices observed for manufactured products. In

contrast, firms selling perishable products (e.g., in the airline or hotel industry) sometimes commit

to policies that do not necessarily discount excess inventories when sales are low; see Liu and van

Ryzin (2008) for an extended discussion on this assumption.

We solve for the symmetric rational expectations equilibria (REE) once the firm announces

(q1, p1).4 Denote a customer’s decision to buy or wait in an REE by the probability x ∈ [0,1]. A

customer waits if x= 0, buys if x= 1, and her strategy is mixed if x∈ (0,1). We focus on symmetric

equilibria—that is, we assume x is the same for all infinitesimal customers. The price that a

customer expects to face in period 2 depends on the fraction of customers who have attempted

to buy, x, and on the firm’s initial production quantity q1. Denote that expected period-2 price

pe2(x|q1). The expected period-2 surplus is then T1(pe2(x|q1)) = δcE[v− pe2(x|q1)]+.5

2 This is a standard technical assumption to ensure the uniqueness of the equilibrium. However, the results do not
hinge on this assumption. Widely applied parametric families—including the uniform, exponential, normal, and
logistic—have log-concave density (Bagnoli and Bergstrom 2005).

3 This means that whether a customer decides to purchase or wait does not affect the payoff of other customers.

4 Rational expectations equilibrium is a common concept applied in operations management; see e.g., Cachon and
Swinney (2009), Liu and van Ryzin (2008), and Su and Zhang (2008); see the latter for a description.

5 We use subscript ‘1’ to denote that the expectation is with respect to valuation distribution of customers arriving
in period 1. This emphasis will be important in Section 4 where we extend the model to include period-2 arrivals.
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Firm announces 
(q1,p1)

Customers form 
expectations about 
period-2 price p2

e

Customers buy 
with probability x

Firm produces q2

and sets p2 to clear 
q1+q2–min(xN1,q1)

N1–min(xN1,q1) 
remaining customers 

observe v

Period 1 Period 2

Figure 1 The sequence of events

Definition 1 Assume the firm announces (q1, p1) in period 1. (a) x = 0 is a pure strategy REE

if and only if µ − p1 ≤ δcT1(pe2(0|q1)). (b) x = 1 is a pure strategy REE if and only if µ − p1 ≥
δcT1(pe2(1|q1)). (c) x∈ (0,1) is a mixed strategy REE if and only if µ− p1 = δcT1(pe2(x|q1)).

There are typically multiple symmetric REE for a given announcement (q1, p1). To resolve the

problem of equilibrium multiplicity, we select the Pareto-dominant REE and denote it PDREE. If

there are multiple PDREE—that is, customers’ expected surplus is the same, we select the PDREE

that maximizes the firm’s profits. This is consistent with other works in the literature (see Cachon

and Netessine (2004) and references therein) and with the notion of social coordination although

we do not formally model the mechanism behind coordination.

At the beginning of period 2, the firm observes sales in period 1, Q1 = min(xN1, q1), and

sets q2. The second-period price p2 is such that the second-period supply q2 + q1−min(xN1, q1)

equals second-period demand. The rational expectations assumption implies that p2 = pe2(x|q1). In

period 2, customers buy if their valuation is greater than the market-clearing price. Figure 1 shows

the sequence of events.

3. Model Analysis

Profit maximization in period 2 subject to market clearing implies that

pe2(x|q1) = argmax pF̄ (p) (1)

s.t. N1−min(xN1, q1)F̄ (p) ≥ q1−min(xN1, q1).

This price is unique for a given announcement (q1, p1) because f is log-concave. Define pm2 ,

argmaxp pF̄ (p) as the unconstrained period-2 profit-maximizing price. Our first result establishes

the properties of pe2(x|q1).

Lemma 1 Assume x ∈ [0,1] is part of an REE. (a) If q1 ≤N1F̄ (pm2 ), then pe2(x|q1) = pm2 for all

x ∈ [0,1]. (b) If q1 >N1F̄ (pm2 ), then pe2(x|q1) = F̄−1( q1−xN1
N1(1−x)

) for x ∈ [0,
q1−N1F̄ (pm2 )

N1F (pm2 )
] and is strictly

increasing in x and pe2(x|q1) = pm2 for x∈ [
q1−N1F̄ (pm2 )

N1F (pm2 )
,1] and is constant in x.
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Define pb1(q1) , µ− δcT1(pe2(1|q1)) and pw1 (q1) , µ− δcT1(pe2(0|q1)). Buying, x = 1, is an REE for

any price p1 ≤ pb1(q1) and waiting, x = 0, is an REE for any price p1 ≥ pw1 (q1). Because T1(p) is

decreasing in p, Lemma 1 implies that pw1 (q1)≤ pb1(q1). This establishes that an REE exists for any

announcement (q1, p1). Our next result shows that whenever pe2(x|q1) is strictly increasing at x= 0,

we can ignore all mixed strategy equilibria.

Lemma 2 Any x∈ (0,1) such that pe2(x|q1)> pe2(0|q1) cannot be part of a PDREE.

To see why, assume x∈ (0,1) is a mixed strategy PDREE for a firm announcement (q1, p1). There-

fore, customers are indifferent between buying and waiting, i.e., µ− p1 = δcT1(pe2(x|q1)). Because

µ− p1 = δcT1(pe2(x|q1))< δcT1(pe2(0|q1)), we conclude that the pure strategy waiting REE (x= 0)

exists and gives higher expected surplus than PDREE x; a contradiction.

For any announcement (q1, p1), we show in the Appendix that any mixed strategy REE is either

strictly Pareto-dominated by the waiting pure strategy equilibrium x= 0 (by Lemma 2) or Pareto-

equivalent to the pure strategy buying REE (x = 1) which is weakly preferred by the firm. We

prove the latter by comparing the firm’s profits in mixed strategy REE x and REE x = 1. We

subsequently ignore all mixed strategy REE and derive the set of pure strategy PDREE which

could be x = 0, x = 1 or both. We then fix q1 and solve for the price p1 that maximizes firm

profits. That is, we consider all possible prices p1, compute the profits in all PDREE associated

with (q1, p1), and select the price associated with the highest profits. Denote that price p1(q1).

Proposition 1 Assume the period-1 production is q1. The profit maximizing period-1 price is

p1(q1) = pw1 (q1) and the associated PDREE is x= 1.

The firm cannot produce q1 and charge pb1(q1) because waiting is the Pareto-dominant equilib-

rium. In order to sell q1, the firm can charge at most pw1 (q1). At that price, the two REE (buying

and waiting) are Pareto-equivalent.

Proposition 1 implies that the period-1 price has to be less than customers’ expected valuation,

µ, which is the profit per customer when the firm can credibly commit not to produce and sell in

period 2. Hence, δcT1(pe2(0|q1)) is a measure of the cost to the firm associated with not being able

to commit. Further, Proposition 1 shows that the firm maximization problem is well-defined. In

particular, the firm chooses q1 to maximize

π(q1) = q1p1(q1) + δm(N1− q1)pm2 F̄ (pm2 ). (2)

This expression covers the case where the firm sells only in period 2. This happens when q1 = 0

and customers have to wait. A frenzy occurs if customers are worse off when they do not obtain



Courty and Nasiry: Dynamic Buying Frenzies
8

the good early. Because customers can always buy at pm2 in period 2 if they wait, this condition is

satisfied only if pe2(0|q1)< pe2(1|q1) = pm2 . Therefore, customers’ expected loss from being rationed

out is

L(q1) = pb1(q1)− pw1 (q1) = δc(T1(pe2(0|q1))−T1(pm2 )). (3)

We distinguish two scarcity strategies. A frenzy takes place when customers are strictly worse off

being rationed out, i.e., L(q1)> 0, and there is excess demand, i.e., N1 > q1. If, on the other hand,

L(q1) = 0 and N1 > q1, we say the firm employs a ‘rationing policy’. Note that our definitions

of frenzy and rationing policy differ from previous works that have not made a clear distinction

between the two concepts. Here, L(q1) is a measure of the intensity of the frenzy (customer des-

peration). Conditional on this measure being positive, a measure of the extent of the frenzy is

N1− q1. Denote the maximum profit per customer obtained by selling in period 2, π̄ = pm2 F̄ (pm2 ).

The following proposition characterizes the conditions under which a buying frenzy occurs.

Proposition 2 The firm’s optimal policy induces a unique buying frenzy if F̄ (pm2 ) < 1 and δc2 <

δc < δc1, where δc1 =
µ− δmπ̄

T1(pm2 ) +
[F̄ (pm2 )]2

f(pm2 )

and δc2 =
µ− δmπ̄

µ− v+ 1
f(v)

.

If customers are sufficiently patient (δc > δc2), the firm sells in both periods. If customers are

excessively patient (δc ≥ δc1), then the firm rations supply in the early period without frenzy. In

this case, the optimal production quantity is such that customers are indifferent between buying

early and waiting as individuals. Finally, if customers are sufficiently but not excessively patient

(δc2 < δc < δc1), the firm’s optimal policy is to induce a buying frenzy in the early market. The

equilibrium selection rule says that customers are indifferent between buying early and waiting as

a group. But an individual customer who waits is strictly worse-off (L1(q1)> 0). This is because

pm2 > pe2(0|q1) and so µ− p1(q1)> δcT1(pm2 ).

To demonstrate the relevance of our dynamic framework, we revisit the finding by Balachander

et al. (2009) that the introductory price of a new car is positively correlated with its scarcity (H3B,

p. 1627). The concept of scarcity corresponds to N1 − q1 in our framework. From Proposition 1,

it follows that the introductory price decreases with q1. Yet the extent of a frenzy, N1 − q1, also

decreases with q1. Therefore, a decrease in q1 (as might be caused by a shift in one of the model’s

primitives) will increase both the extent of a frenzy and the introductory price.

Corollary 1 (a) The firm’s optimal profit is increasing in δm and decreasing in δc. (b) The optimal

period-1 production q∗1 is decreasing in both δc and δm.

Figure 2 shows the optimal policy for uniform valuation distributions with mean µ and standard

deviation σ. A uniform distribution is indexed by its coefficient of variation, σ/µ. The optimal
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Figure 2 The firm’s optimal policy when the firm can produce in both periods and when customers’ valuation

is uniform with coefficient of variation of C.V. C.V.≤
√

3/3 to ensure that the support of v is non-negative.

policy does not induce a buying frenzy if σ/µ ≤
√

3/9. The reason is that if σ/µ ≤
√

3/9, then

pm2 = v and Proposition 2 implies that the optimal policy is q∗1 =N1, i.e., to serve the entire market

early. Therefore, a buying frenzy can occur only when customers are sufficiently uncertain about

their valuations, which is a typical state with respect to new or innovative products.

As δm increases, the range of customer impatience that supports a buying frenzy shrinks.6 In

particular, it is never optimal to induce a buying frenzy if δc = δm = 1. Our model distinguishes

rationing from frenzy policies. Although for δc > δc1 it is not optimal to induce a frenzy, the firm

does ration customers (i.e., q∗1 <N1). Customers are indifferent between buying early and waiting

and customer desperation, as defined in (3), is zero.

Figure 3(a) shows customer desperation, normalized as L1(q∗1)/(δcT1(pm2 )) and Figure 3(b) plots

the extent of the frenzy under the optimal policy. Customer desperation can be economically

significant. The loss from not obtaining a good early is 20% of the expected value of consumption

when, for example, δm = 1 and δc = 0.5. For a given value of δm, customers’ relative desperation

decreases as they become more patient (Figure 3(a)) whereas the extent of the frenzy N1 − q∗1
increases (Figure 3(b)) because q∗1 is decreasing in δc (see Corollary 1). Moreover, for a given δc,

customer desperation also decreases in δm whereas the extent of the frenzy increases because q∗1 is

decreasing in δm (Corollary 1).

6 This is because δc1− δc2 is decreasing in δm (note that T1(p) + [F̄ (p)]2/f(p) is decreasing in p and that pm2 > v).
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Figure 3 Customer desperation L(q∗1) (normalized as
L(q∗1 )

δcT1(pm2 )
× 100) and the frenzy intensity N1− q∗1 in a

buying frenzy when customers’ valuation is uniform with mean µ= 12 and standard deviation σ= 4 (see Appendix

B for details). In this figure, N1 = 1. For δc ≥ δc1 and δc ≤ δc2, we have L(q∗1) = 0.

Figure 4 compares the firm’s optimal profits with two benchmark cases. One corresponds to

the firm’s profit under period-2 sales, N1F̄ (pm2 )pm2 , and the other corresponds to the commitment

profit—that is charging µ in period 1 to N1 customers (and committing, credibly, not to sell in

period 2). Figure 4(b) shows that, at σ/µ= 0.5, the loss due to noncommitment is almost 100%

whereas inducing a frenzy recovers 66.7% to 36.2% of the profits (the more patient customers are the

lower the percentage recovered). The equivalent profit recovered when σ/µ= 0.25 is 66.9% to 55.2%;

that is, the lower the coefficient of variation the higher the percentage recovered. Furthermore,

the percentage of profits recovered by inducing a frenzy decreases with increasing firm impatience

(lower δm).

4. Second-Period Arrivals

A limitation of the analysis in Section 3 is that customers arrive only in period 1. A natural way

to generalize the model is to distinguish early adopters, who arrive in period 1 and face valuation

uncertainty, and followers, who arrive in period 2 and know their valuations. In this section, we

demonstrate that the results are robust to the arrival of followers.

Assume that N2 new customers arrive in the second period. These customers have indepen-

dently and identically distributed valuations with density f2 and survival function F̄2. The period-2

demand is a regular downward-sloping demand N2F̄2(p). This setup in consistent with other models

in the literature (see e.g., Gallego and Şahin 2010 and Xie and Shugan 2001).
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Figure 4 The optimal profit is bounded from above by commitment profits and from below by profits from

selling only in period 2. Dashed and solid lines show the corresponding profits for C.V. = 0.5 and C.V. = 0.25,

respectively. In panel (a), frenzy profits when C.V. = 0.5 correspond to the interval δc ∈ (0.27,0.93); when

C.V. = 0.25 they correspond to the interval δc ∈ (0.50,0.72). In panel (b), frenzy profits when C.V.= 0.5

correspond to the interval δc ∈ (0.19,0.66); when C.V. = 0.25 they correspond to the interval δc ∈ (0.31,0.46). In

this figure, N1 = 1.

We need additional notation to facilitate the exposition in this section. We use subscripts to

denote period and superscripts to denote the arrival cohort. Thus, pi,mt denotes the monopoly price

in period t for customer cohort i, i.e., p1,m
2 , argmaxpN1pF̄1(p) and p2,m

2 , argmaxpN2pF̄2(p). We

assume that these two optimization problems are strictly concave (e.g., f1 and f2 are both log-

concave). When Q1 customers buy in period 1, we let Qb
2(p,Q1), (N1−Q1)F̄1(p)+N2F̄2(p) denote

the demand in period 2. Consistent with Section 3, we let pm2 , argmaxp pQ
b
2(p,0) be the monopoly

price when the firm sells only in period 2, and Qm
2 =Qb

2(pm2 ,0) be the corresponding quantity.

Suppose the firm offers q1 units for sale in period 1 at a price p1. The period-2 price pe2(x|q1)

maximizes the period-2 profits subject to market clearing constraint. In other words,

pe2(x|q1) = argmaxp pQ
b
2(p,min(xN1, q1)) (4)

s.t. Qb
2(p,min(xN1, q1))≥ q1−min(xN1, q1)

Define the unconstrained maximizer of (4) as pb2(y) = argmaxp pQ
b
2(p, y).

Lemma 3 pb2(y) is increasing in y if p1,m
2 < p2,m

2 , constant if p1,m
2 = p2,m

2 , and decreasing otherwise.
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Observe that the constraint in (4) is not binding for x∈ [ q1
N1
,1]. For x< q1

N1
, define p̂2(x, q1) as the

solution to

N1(1−x)F̄1(p) +N2F̄2(p) = q1−xN1. (5)

There is a unique solution to (5) because its left-hand side is decreasing in p, takes a maximum

of N1(1−x) +N2 ≥ q1−xN1 at p= 0 and a minimum of 0≤ q1−xN1 at p= vmax. The following

result characterizes pe2(x|q1).

Lemma 4 Assume x ∈ [0,1] is part of an REE. If x ∈ [0, q1
N1

], then

pe2(x|q1) = min(pb2(xN1), p̂2(x, q1)). Otherwise, pe2(x|q1) = pb2(q1).

We can show that pe2(x|q1) is (weakly) increasing only when p1,m
2 ≤ p2,m

2 . Thus, we distinguish this

case and the case p1,m
2 > p2,m

2 .

4.1. Buying frenzies when p1,m
2 ≤ p2,m

2

We first show that, similar to Section 3, pe2(x|q1) is monotone in x. To do so, we define x̂(q1) as the

solution to

Qb
2(pb2(xN1), xN1) = q1−xN1. (6)

We show in the Appendix that (6) has a unique solution when Qm
2 ≤ q1 ≤N1 +N2F̄2(p2,m

2 ).

Lemma 5 (a) Assume p1,m
2 < p2,m

2 . It follows that pe2(x|q1) is continuous and weakly increasing

for x∈ [0,1] with ∂
∂x
pe2(x|q1)> 0 at x= 0. (b) Assume p1,m

2 = p2,m
2 . (b1) If q1 ≤Qm

2 then pe2(x|q1) =

pm2 . (b2) If Qm
2 ≤ q1 ≤N1 +N2F̄2(p2,m

2 ), then pe2(x|q1) = pm2 for x≥ x̂(q1), and pe2(x|q1) = p̂2(x, q1)

otherwise. (b3) If q1 >N1 +N2F̄2(p2,m
2 ), then pe2(x|q1) = p̂2(x, q1). (b4) pe2(x|q1) is weakly increasing

in x.

Lemma 5 shows that pe2(x|q1) is weakly increasing in x. We leverage this property and apply

Lemma 2 to eliminate all mixed strategies such that pe2(x|q1) > pe2(0|q1). We then show that a

similar result to that in Proposition 1 holds, i.e., the profit maximizing price for quantity q1 is

p1(q1) = pw1 (q1) (see Appendix for proofs). Moreover, an early production quantity larger than the

period-1 market size is never strictly profitable for the firm. This is because excess capacity in

period 1 lowers the period-2 expected price (pe2(x|q1) is decreasing in q1) and therefore lowers the

price the firm can charge in the first period while not increasing sales.

In summary, the monopolist chooses the early production quantity q1 ≤N1 to maximize

π(q1) = q1p1(q1) + δmpe2(1|q1)Qb
2(pe2(1|q1), q1). (7)

The measure of customer desperation derived in Section 3 generalizes as L(q1) = δc(T1(pe2(0|q1))−
T1(pe2(1|q1)))+. The inequality pe2(0|q1)≤ pe2(1|q1) holds as pe2 is increasing in x when p1,m

2 ≤ p2,m
2 .
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We next investigate the conditions under which a buying frenzy equilibrium exists and is an

optimal policy for the firm.

Lemma 6 There is no buying frenzy equilibrium if
N2

N1

≥ F1(pm2 )

F̄2(pm2 )
.

One implication of Lemma 6 is that buying frenzies are less likely to be optimal when the customer

cohort arriving in period 2 is large relative to the one arriving in period 1 (i.e., when N2�N1). In

this case, the waiting equilibrium involves a relatively small number of period-1 customers who do

not have much of an impact on the second-period price. For the rest of the section, we assume that

N2
N1
<

F1(pm2 )

F̄2(pm2 )
; this assumption is equivalent to Qm

2 <N1, which implies that the period-2 price can

change when the waiting equilibrium is selected.7 The following proposition characterizes when a

frenzy occurs.

Proposition 3 Assume that N2
N1

<
F1(pm2 )

F̄2(pm2 )
. Sufficient conditions for the firm’s optimal policy to

induce a buying frenzy are: (i) p1,m
2 < p2,m

2 and δc > δc2; or (ii) p1,m
2 = p2,m

2 and δc2 < δ
c < δc1 where

δc1 =
µ− δmpm2 F̄1(pm2 )

T1(pm2 ) +
Qm2 F̄1(pm2 )

N1f1(pm2 )+N2f2(pm2 )

, δc2 =
µ− δmp2,m

2 F̄1(p2,m
2 )

T1(pw2 (N1)) +
N1F̄1(pw2 (N1))

N1f1(pw2 (N1))+N2f2(pw2 (N1))

. (8)

Proposition 3 establishes sufficient conditions under which q∗1 <N1 and L(q∗1)> 0 whenever p1,m
2 <

p2,m
2 or p1,m

2 = p2,m
2 .

Figure 5 generalizes Figure 2(b) when new customers arrive in period 2. Overall, the main insights

from Section 3 carry over. The shape of the parameter space where frenzies occur does not change

much relative to Figure 2(b) with one exception. When p1,m
2 < p2,m

2 , Figure 5(a) reveals such a

parameter space that is larger than its counterpart in Figures 2(b) and 5(b). The areas labeled

“rationing without frenzy”, become “buying frenzy” in Figure 5(a). The area “rationing without

frenzy” corresponds to the corner solution at Qm
2 with pe2(1|Qm

2 )≤ pe2(0|Qm
2 ). In Figure 5(a), this

area disappears because we have pe2(1|Qm
2 )> pe2(0|Qm

2 ). Figure 5(b) considers the special case where

f1(·) = f2(·) = f(·). In that case, we can derive a closed-form solution for the parameter space that

generates frenzies. Moreover, the frenzy equilibrium is unique (see the proof of Proposition 3 in

Appendix A).

4.2. Buying frenzies when p1,m
2 > p2,m

2

We first characterize the behavior of pe2(x|q1) which is significantly different in this case.

7 This assumption is similar to the assumption in Section 3 that pb2 > v (see Proposition 2). The reason is that if
pb2 = v then the size of the period 2 market when the firm sells only in period 2 (i.e., N1F̄ (v) =N1) is as large as the
period-1 market size.
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Figure 5 The firm’s optimal policy when the valuation distribution of early arrivals is U [0, b1] and that of late

arrivals is U [0, b2]. In this figure, δm = 1, N1 = 1. Further, (b1, b2) = (10,20) in panel (a) and (b1, b2) = (10,10) in

panel (b). The dashed line in panel (a) shows the sufficient conditions characterized in Proposition 3. The frenzy

parameter space is slightly larger than the one implied by these conditions. Panel (b) shows the necessary and

sufficient conditions for f1(·) = f2(·).

Lemma 7 Assume p1,m
2 > p2,m

2 . (i) If q1 ≤Qm
2 , then pe2(x|q1) = pb2(xN1) with

dpe2(x|q1)

dx
< 0 for x ∈

[0, q1
N1

] and pe2(x|q1) = pb2(q1) for x ∈ [ q1
N1
,1]. (ii) If Qm

2 ≤ q1 ≤ N1 + N2F̄2(p2,m
2 ), then pe2(x|q1) =

p̂2(x, q1) with
dpe2(x|q1)

dx
> 0 for x ∈ [0, x̂(q1)], pe2(x|q1) = pb2(xN1) with

dpe2(x|q1)

dx
< 0 for x ∈ [x̂(q1), q1

N1
]

and pe2(x|q1) = pb2(q1) for x ∈ [ q1
N1
,1]. (iii) If q1 ≥ N1 +N2F̄2(p2,m

2 ), then pe2(x|q1) = p̂2(x, q1) with
dpe2(x|q1)

dx
> 0 for x∈ [0,1].

In Lemma 7, x̂(q1) and the conditions under which it exists and is unique are as in Section 4.1.

Figure 6 schematically shows pe2(x|q1) in the five possible cases implied by Lemma 7. In effect,

pe2(x|q1) can take three shapes. When case (i) in Lemma 7 applies, pe2(x|q1) is weakly decreasing as

in Panels (b) and (c). Panels (a) and (d) correspond to case (ii) where pe2(x|q1) is increasing up to

a threshold and then weakly decrease. Finally, in Panel (e), pe2(x|q1) is increasing in x.

The important difference, in this section, with the our analysis in Sections 3 and 4.1 is that

the period-2 expected price, pee(x|q1), is increasing in x only in Panel (e). Otherwise, the period-2

expected price can be decreasing in x implying that pe2(0|q1) is not always smaller than pe2(x|q1).

Thus, the waiting equilibrium does not necessarily Pareto-dominate the mixed strategy REE. We

can still rule out all mixed strategy REE such that pe2(x|q1)> pe2(0|q1) by applying Lemma 2. We

further show in the Appendix that the remaining mixed strategy REE are equivalent to a pure
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Figure 6 pe2(x|q1) when p1,m
2 > p2,m

2 .

strategy PDREE associated with a different firm announcement. Therefore, all mixed strategy

REE can still be ignored without loss of generality. These results are summarized in the following

proposition.

Proposition 4 Assume the period 1 production is q1. We can restrict the analysis, without loss

of generality, to the announcement p̃1(q1) = min(pb1(q1), pw1 (q1)) and associated PDREE x= 1.

The interpretation of p̃1(q1) differs from that of p1(q1) in Section 4.1. p̃1(q1) is the profit maxi-

mizing price conditional on selling q1 while p1(q1) was the profit-maximizing price. The difference

is that in the latter, selling q1 was always optimal. However, when p1,m
2 > p2,m

2 , not selling at all,

i.e., x= 0, may dominate selling at p̃1(q1).8 But the profits under x= 0 are weakly dominated by

profits under alternative announcement q1 = 0 and p1 > vmax implying that such early production

volumes will never be the firm’s choice in equilibrium.

The firm optimization problem to characterize the production level in period 1 is

max
q1

p̃1(q1)q1 + δmpe2(1|q1)Qb
2(pe2(1|q1), q1). (9)

We now focus on the conditions that induce a frenzy in the market. Figure 6(a,b) are the only

equilibrium period-2 prices that can be part of a frenzy because in a frenzy it must be that q∗1 <N1.

8 This will be the case when the profits from selling min(N1, q1) at p̃1(q1), i.e., p̃1(q1)q1 + δmp
b
2(q1)Qb2(pb2(q1), q1), are

lower than the profits under x= 0, i.e., δmQm2 p
m
2 if q1 ≤Qm2 and min(N1, q1)p̂2(q1) otherwise.
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Figure 7 The firm’s optimal policy when the valuation distribution of early arrivals is U [0, b1] and that of late

arrivals is U [0, b2]. In this figure, δm = 1 and N1 = 1 and (b1, b2) = (10,5).

However, a buying frenzy cannot happen when pe2(x|q1) is as in Figure 6(b), i.e., when q1 ≤N1 and

q1 <Qm
2 . In this case, pe2(1|q1)< pe2(0|q1) which implies p̃1(q1) = pb1(q1) (Proposition 4). Therefore,

an individual customer is indifferent between buying and waiting. As a result, a buying frenzy

may happen only in Figure 6(a). If pb2(q1) ≤ pe2(0|q1), then an individual customer is indifferent

between buying and waiting as both yield the surplus µ− p1 = δcT1(pb2(q1)). Therefore, a frenzy

may happen only if p̂2(0, q1) < pb2(q1). For general distributions fi, i ∈ {1,2} this inequality does

not yield a threshold value for q1 and hence we cannot provide sufficient conditions under which a

frenzy happens. One needs to directly check q∗1 <N1 and p̂2(0, q∗1)< pb2(q∗1).

Figure 7 shows the firm optimal policy when customer valuations are uniform distributions.

To demonstrate the relevance of our analysis in Section 4.1 and 4.2, we revisit one of the two

key results of Balachander et al. (2009). They find a positive association between buying frenzies

and intrinsic preferences for a product that lasts beyond the introductory period of the product

(H2A, p. 1626). One needs a dynamic model of sales—such as the one presented here—in order

to interpret this finding properly. Assume that customers do not discount excessively. An increase

in the strength of the second-period demand can be interpreted as an increase in pm2 . When pm2 is

low, the equilibrium is likely to be a “rationing without frenzy” (upper left area in Figure 7). For

pm2 sufficiently large, the equilibrium becomes a “buying frenzy” (upper left area in Figure 5(a)).

Buying frenzies are therefore associated with a high level of pm2 , which can be interpreted as strong

and persistent intrinsic preferences.
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5. Conclusion

This paper offers a tractable and convenient framework to analyze buying frenzies in a dynamic

context. In contrast with other works in the literature, the existence of buying frenzies in our model

does not depend on the rule applied by the firm to allocate goods under rationing, or informa-

tion asymmetry among customers. Buying frenzies occur when customers are sufficiently uncertain

about their product valuations and when customers discount the future but not excessively. Overly

patient customers wait until they learn their preferences for the product while very impatient cus-

tomers are served early. The utility loss from not obtaining the good in a frenzy can be substantial.

Similarly, the firm’s gain from a frenzy policy can be economically large.

The analysis presented here offers a rich framework to interpret stylized facts and empirical

findings about buying frenzies. We have illustrated this point by revisiting the two key results

presented in Balachander et al. (2009), i.e., the introductory price positively correlated with product

scarcity and a positive association between buying frenzies and intrinsic preferences for a product

that lasts beyond the introductory period. These finding are difficult to rationalize within static

models, but, both are consistent with our analysis.
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Appendix A: Proofs

Proof of Lemma 1: The function pF̄ (p) is unimodal and argmax pF̄ (p) = pm2 . (a) In this case,

the constraint in (1) is non-binding. This is because N1 −min(xN1, q1)F̄ (p) ≥ q1 −min(xN1, q1)

implies N1F̄ (p) + min(xN1, q1)F (p) ≥ q1. This inequality holds for p = pm2 because q1 ≤N1F̄ (pm2 )

and hence pe2(x|q1) = pm2 .

(b) Assume first that x∈ [0,
q1−N1F̄ (pm2 )

N1F (pm2 )
]. We have

x ≤ q1−N1F̄ (pm2 )

N1F (pm2 )
,

xN1F (pm2 ) ≤ q1−N1F̄ (pm2 ),
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xN1 ≤ q1−N1F̄ (pm2 )(1−x),

xN1 ≤ q1.

Therefore, pe2(x|q1) = argmaxpF̄ (p) subject to the constraint (N1−xN1)F̄ (p)≥ q1−xN1. Because

(N1− xN1)F̄ (pm2 )≤ q1− xN1, it follows that the constraint is binding. We conclude that pe2(x|q1)

is the unique solution to (N1−xN1)F̄ (p) = q1−xN1 (uniqueness follows because f is log-concave),

i.e., pe2(x|q1) = F̄−1( q1−xN1
N1−xN1

). Finally, because q1−xN1
N1−xN1

is strictly decreasing in x, it follows that

pe2(x|q1) is strictly increasing in x1.

Now assume that x ≥ q1−N1F̄ (pm2 )

N1F (pm2 )
or equivalently xN1 ≥ q1 − N1F̄ (pm2 )(1 − x). Two cases are

possible: either xN1 ≥ q1 or q1 ≥ xN1 ≥ q1−N1F̄ (pm2 )(1−x). In either case, the constraint in (1) is

non-binding and so pe2(x|q1) = pm2 which is constant in x. �

Proof of Proposition 1: We first derive the PDREE preferred by the firm for a given (q1, p1)

and then select the profit maximizing price p1 for a given q1. We proceed by doing the analysis in

two possible cases.

CASE 1: Assume period-1 production is q1 >N1F̄ (pm2 ). We characterize the PDREE in the next

result.

Claim 1 (a) pw1 (q1)< pb1(q1). (b) Any mixed strategy REE is Pareto-dominated by REE x= 0. (c1)

If p1 < pw1 (q1), then x = 1 is the unique PDREE. (c2)If p1 = pw1 (q1), then there are two PDREE

x= 0 and x= 1 and the latter is preferred by the firm. (c3) Finally, if pw1 (q1)< p1, then x= 0 is

the unique PDREE.

Proof : (a) follows directly from Lemma 1. (b) The condition in Lemma 2 holds for any x∈ (0,1).

(c1) If p1 < p
w
1 (q1), then µ− p1 >µ− pw1 (q1) = δcT1(pe2(0|q1))≥ δcT1(pe2(x|q1)) for all x. Hence x= 1

is the unique PDREE.

(c2) If p1 = pw1 (q1), then x = 0 and x = 1 are REE and PDREE because µ − p1 =

δcT1(pe2(0|q1)). We show that the PDREE x = 1 is preferred by the firm. The firm profit under

the equilibrium x = 0 is π(x= 0) = δmN1p
e
2(0|q1)F̄ (pe2(0|q1)) and that under the equilibrium

x= 1 is π(x= 1) = p1q1 + δm(N1− q1)pe2(1|q1)F̄ (pe2(1|q1)) = (p1− δmpm2 F̄ (pm2 ))q1 + δmN1p
m
2 F̄ (pm2 ).

The result then follows because p1− pm2 F̄ (pm2 )≥ 0 and pm2 F̄ (pm2 )> pe2(0|q1)F̄ (pe2(0|q1)). The former

inequality follows because p1 = pw1 (q1) and

pw1 (q1)− pm2 F̄ (pm2 ) = µ−
∫
pe2(0|q1)

(v− pe2(0|q1))dF −
∫
pm2

pm2 dF

> µ−
∫
pm2

(v− pe2(0|q1) + pm2 )dF because pe2(0|q1)> pm2 (Lemma 1)

=

∫ pm2

0

vdF +

∫
pm2

(pe2(0|q1)− pm2 )dF

> 0.
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(c3) x = 0 is an REE because δcT1(pe2(0|q1)) > µ− p1. Further, x = 1 is not an REE because

µ− p1 < δ
cT1(pe2(1|q1)). Therefore x= 0 is the only PDREE. �

CASE 2: Assume period-1 production is q1 ≤N1F̄ (pm2 ). We characterize the PDREE in the next

result.

Claim 2 (a) pw1 (q1) = pb1(q1). (b1) If p1 < pw1 (q1), then x= 1 is the unique PDREE. (b2) If p1 =

pw1 (q1), then all x ∈ [0,1] are Pareto-equivalent PDREE and x= 1 is the PDREE preferred by the

firm. (b3) If p1 > p
w
1 (q1), then x= 0 is the unique PDREE.

Proof : (a) This follows from Lemma 1 because pe2(0|q1) = pe2(1|q1) = pm2 for q1 ≤N1F̄ (pm2 ).

(b1) We have µ− p1 >µ− pw1 (q1) = δcT1(pe2(x|q1)) = δcT1(pm2 ) for all x∈ [0,1], hence a customer

is better off buying the product and x= 1 is the unique PDREE.

(b2) Because µ − p1 = µ − pw1 (q1) = δcT1(pe2(x|q1)) = δcT1(pm2 ) for all x ∈ [0,1], it fol-

lows that all x ∈ [0,1] are PDREE because the customer’s expected surplus is the same.

We show that x = 1 in the PDREE that maximizes the firm profits. The firm profit for

a given x ∈ [0,1] is π(x) =Q1p
w
1 (q1) + (N1−Q1)pm2 F̄ (pm2 ) =Q1(pw1 (q1)− pm2 F̄ (pm2 )) +N1p

m
2 F̄ (pm2 )

where Q1 = min(xN1, q1) is the sales in period 1. The profit π(x) is increasing in x because

pw1 (q1) = µ− δcT1(pm2 ) and

pw1 (q1)− pm2 F̄ (pm2 ) = µ−
∫
pm2

(v− pm2 )dF −
∫
pm2

pm2 dF =

∫ pm2

0

vdF > 0.

Therefore, x= 1 is the PDREE that maximizes the firm profits.

(b3) µ− p1 < δ
cT1(pe2(x|q1)), hence x= 0 is the unique PDREE. �

We can now conclude by collecting the PDREE preferred by the firm for an announcement (q1, p1)

from the two cases above. For a period-1 price such that p1 > p
w
1 (q1), customers wait in any PDREE

and hence the firm profit is π(x= 0) = δmpe2(0|q1)F̄ (pe2(0|q1)). On the other hand, the firm profit,

if it sets p1 = pw1 (q1), is π(x= 1) = pw1 (q1)q1 + δm(N1− q1)pm2 F̄ (pm2 ). Because π(x= 1)>π(x= 0), it

follows that any price p1 > p
w
1 (q1) is dominated by p1(q) = pw1 (q1). For a period-1 price such that p1 <

pw1 (q1), customers buy in any PDREE and the firm profit is π(x= 1) = p1q1 + δm(N1− q1)pm2 F̄ (pm2 ).

This profit is increasing in p1 and it follows that p1 = pw1 (q1) dominates p1 < p
w
1 (q1). Therefore, the

firm profits are maximized at p1(q1) = pw1 (q1). �

Proof of Proposition 2: If F̄ (pm2 ) = 1 then, by Lemma 1, pe2(0|q1) = pm2 = v and

pw1 (q1) = µ− δcT1(pm2 ). It follows from (2) that π(q1) = q1(µ − δcT1(pm2 )) + δm(N1 − q1)pm2 F̄ (pm2 ),

which is increasing in q1. This is because µ− δcT1(pm2 )− δmpm2 F̄ (pm2 )≥ µ−T1(pm2 )−pm2 F̄ (pm2 ) = 09.

9 For the particular case δc = δm = 1, the profit function is independent of q1 and so all q1 ∈ [0,N1] are optimal. In
this case, customers are still indifferent between buying and waiting and a frenzy does not happen.
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Hence q∗1 = N1; in other words, the firm serves the entire market in period 1 and customers are

indifferent between buying and waiting. Thus, a buying frenzy cannot occur.

Assume for the remainder of the proof that F̄ (pm2 ) < 1. Observe that if q∗1 = 0 then the firm’s

optimal policy is to sell only in period 2. We prove next that the optimal production is strictly

positive, which implies that selling only in period 2 is never optimal when the firm has the option

of producing over time.

If q1 ≤N1F̄ (pm2 ) then pe2(x|q1) = pm2 and p1(q1) = µ− δcT1(pm2 ), i.e., p1(q1) becomes independent

of q1 (Lemma 1 and Proposition 1). The profit function in (2) is then linear and increasing in q1

because

dπ(q1)

dq1

= µ− δcT1(pm2 )− δmpm2 F̄ (pm2 )

≥ µ−T1(pm2 )− pm2 F̄ (pm2 )

=

∫
min(v, pm2 )dF − pm2 F̄ (pm2 )

=

∫ pm2

v

vdF > 0.

The last inequality follows because F̄ (pm2 )< 1. Therefore, q1 =N1F̄ (pm2 ) yields greater profits than

any lower q1. However, the production quantity q1 = N1F̄ (pm2 ) cannot induce a buying frenzy

because customers are indifferent between buying early and waiting. It follows that a necessary

condition for a buying frenzy is that q1 >N1F̄ (pb2). We next characterize the sufficient conditions

under which it is optimal for the firm to induce a buying frenzy.

If N1F̄ (pm2 )≤ q1, then pe2(0|q1) = F̄−1( q1
N1

) (Lemma 1). The firm’s profit function is

π(q1) = q1(µ− δcT1(pe2(0|q1))) + δm(N1− q1)pm2 F̄ (pm2 ),

which is strictly concave in q1 because (we suppress the argument in pe2(0|q1) for brevity)

dπ(q1)

dq1

= µ− δcT1(pe2)− δc q2
1

N 2
1 f(pe2)

− δmq1p
m
2 F̄ (pm2 ),

and
d2π(q1)

dq2
1

=−δc q1

N 2
1 f(pe2)

(
1 +

2[f(pe2)]2 + F̄ (pe2)f ′(pe2)

[f(pe2)]2

)
< 0.

The inequality holds because f is log-concave and so [f(p)]2 +F̄ (p)f ′(p)> 0 (Bagnoli and Bergstrom

2005). The first-order conditions then characterize the optimal q1; that is, q∗1 solves

dπ

dq1

= µ− δcT1(pe2(0|q1))− δc q
2
1

N 2
1

1

f(pe2(0|q1))
− δmpm2 F̄ (pm2 ) = 0, (10)

provided that N1F̄ (pm2 ) ≤ q1 ≤ N1. Since the left-hand side of (10) is strictly decreasing in q1

(because π is strictly concave), it follows that if dπ
dq1
|q1=N1

< 0 and dπ
dq1
|q1=N1F̄ (pm2 ) > 0 then there
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is a unique interior solution in (N1F̄ (pm2 ),N1) and otherwise we obtain a boundary solution. To

summarize (1) if δc ≤ µ−δmp̄i
µ−v+ 1

f(v)

, then q∗1 = N1, (2) if µ−δmπ̄
µ−v+ 1

f(v)

< δc < µ−δmπ̄
T1(pm2 )+

[F̄ (pm2 )]2

f(pm2 )

, then q∗1 ∈

(N1F̄ (pm2 ),N1) and is characterized by (10), and (3) otherwise, q∗1 =N1F̄ (pm2 ).

A frenzy can happen only in the second case. It remains to show that is this case L1(q∗1) > 0.

This follows because N1F̄ (pm2 )< q∗1 <N1 and so pe2(0|q∗1)< pm2 (Lemma 1). Therefore, L1(q∗1)> 0,

because T1(p) is strictly decreasing in p. �

Proof of Corollary 1: (a) This part follows from the Envelope Theorem given that, by (2), we

have dπ∗

dδc
=−q∗1T1(pe2(0|Q∗1))< 0 and dπ∗

dδm
= (N1− q∗1)pm2 F̄ (pm2 )≥ 0.

(b) q∗1 solves (10). Differentiating with respect to δc and simplifying yields (we suppress the

argument in pe2(0|q∗1) for brevity)

dq∗1
dδc

=
T1(pe2) +

q∗21

N2
1

1
f(pe2)

δcF̄ (pe2)
dpe2
dq1
− δcq∗1

N2
1

2f(pe2)−f ′ (pe2)
dpe2
dq1

q∗1
[f(pe2)]2

< 0.

The inequality follows because pw2 (0|q1) = F̄−1( q1
N1

) and so
dpe2(0|q1)

dq1
= −1

N1f(pe2)
< 0. Moreover, since

F̄ (pe2(0|q1)) = q1
N1

, we have 2f(pe2)− f ′(pe2)
dpe2
dq1
q∗1 =

2[f(pe2)]2+f ′(pe2)F̄ (pe2)

[f(pe2)]2
> 0 (because f is log-concave;

see the proof of Proposition 2).

Similarly, it is straightforward to observe that

dq∗1
dδm

=
pm2 F̄ (pm2 )

δcF̄ (pe2)
dpe2
dq1
− δcq∗1

N2
1

2f(pe2)−f ′ (pe2)
dpe2
dq1

q∗1
[f(pe2)]2

< 0. �

Proof of Lemma 3: pb2(y) solves the first-order condition

(N1− y)F̄1(p)− p(N1− y)f1(p) +N2F̄2(p)− pN2f2(p) = 0.

Differentiating both sides with respect to y, we obtain

−[F̄1(pb2)− pb2f1(pb2)] + (N1− y)[−2f1(pb2)
dpb2
dy
− pf ′1(pb2)

dpb2
dy

] +N2[−2f2(pb2)
dpb2
dy
− pf ′2(pb2)

dpb2
dy

] = 0,

or
dpb2
dy

=
F̄1(pb2)− pb2f1(pb2)

(N1− y)[−2f1(pb2)− pf ′1(pb2)] +N2[−2f2(pb2)− pf ′2(pb2)]
.

The denominator is negative as fi, i ∈ {1,2} is log-concave and hence pF̄i(p) is strictly concave.

Further, the numerator is negative if p1,m
2 < p2,m

2 , positive if p1,m
2 > p2,m

2 , and 0 otherwise. �

Proof of Lemma 4: If x ∈ [0, q1
N1

], then the constraint is not binding if Qb
2(pb2(xN1), xN1) ≥

q1 − xN1 and pe2(x|q1) = pb2(xN1). Otherwise, because the objective function is strictly concave,

pe2(x|q1) = p̂2(x, q1). In other words, the price that clears the inventory remaining from period 1 is

optimal. The second part follows because if x∈ [ q1
N1
,1], the constraint in (4) is not binding. �
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Proof of Lemma 5: (a) If x ∈ [ q1
N1
,1], then pe2(x|q1) = pb2(q1) (Lemma 4) which is strictly

increasing in q1 (Lemma 3) and constant in x. If, on the other hand, x ∈ [0, q1
N1

], then pe2(x|q1) =

min(pb2(xN1), p̂2(x, q1)) which is continuous in x. Further, pb2(xN1) and p̂2(x, q1) are strictly increas-

ing in x. The former follows from Lemma 3. To prove the latter, recall that p̂2(x, q1) solves (5).

Upon differentiating, we obtain

dp̂2

dx
=

N1F1(p̂2)

(N1−xN1)f1(p̂2) +N2f2(p̂2)
> 0.

It follows that pe2(x|q1) is strictly increasing at x= 0 and further weakly increasing in (0,1].

(b) We first establish the conditions under which (6) has a unique solution. We then characterize

pe2(x|q1) and show that it is (weakly) increasing in x.

Claim 3 There exists a unique solution x∈ [0,1] to (6) if and only if Qm
2 ≤ q1 ≤N1 +N2F̄2(p2,m

2 ).

Proof: Define

G(x) =Qb
2(pb2(xN1);xN1)− (q1−xN1). (11)

G(x) is increasing in x because dG(x)

dx
=

∂Qb2
∂p

∂pb2
∂x

+
∂Qb2
∂Q1

∂xN1
∂x

+N1 > 0. The inequality follows because
∂Qb2
∂p
≤ 0 and

∂pb2
∂x
≤ 0 (Lemma 3). Further,

∂Qb2
∂Q1

∂xN1
∂x

+N1 =N1(−F̄1(pb2) + 1)> 0. Therefore, if (6)

has a solution, it is unique.

To guarantee the existence of a solution it must be that G(0) ≤ 0 ≤ G(1) or Qm
2 ≤ q1 ≤ N1 +

N2F̄2(p2,m
2 ). �

We can now prove the results in part (b) of the lemma. First, note that from the proof of Claim 3,

the function G(x) is increasing in x. We use this property to characterize pe2(x|q1).

(b1) If q1 ≤ Qm
2 , then G(x) ≥ 0 for all x which implies pb2(xN1) ≤ p̂2(x, q1). Therefore, from

Lemma 4, we have pe2(x|q1) = pb2(xN1) if x ≤ q1
N1

and else pb2(x|q1) = pb2(q1). Because p1,m
2 = p2,m

2 ,

then p1,m
2 = p2,m

2 = pb2(xN1) = pb2(q1) = pm2 ; see (4), i.e., pe2(x|q1) = pm2 .

(b2) If Qm
2 ≤ q1 ≤ N1 + N2F̄2(p2,m

2 ), then (6) has a unique solution x̂(q1) ∈ [0,1] (Claim 3).

Hence, if x ≥ x̂(q1), then pe2(x|q1) = pm2 . Otherwise, pe2(x|q1) = p̂2(x, q1). As a caveat, note that if

q1 < N1, then for x ≥ q1
N1

, we have pe2(x|q1) = pb2(q1) (Lemma 4). However, when p1,m
2 = p2,m

2 , we

have pb2(q1) = pm2 .

(b3) If q1 >N1 +N2F̄2(p2,m
2 ), then pe2(x|q1) = p̂2(x, q1) for all x∈ [0,1] because G(x)≤ 0 for all x

and hence p̂2(x, q1)≤ pb2(xN1) = pm2 .

(b4) This result is immediate from the proof of parts (b1)-(b3). �

Derivation of p1(q1) when p1,m
2 ≤ p2,m

2 . The derivation is similar to that in Section 3 and

Proposition 1. We first show that mixed strategy REE are never PDREE. If p1,m
1 < p2,m

2 , then

pe2(x|q1) is increasing in x and Lemma 2 applies. If p1,m
1 = p2,m

2 , then the proof of Lemma 5 shows that
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we should distinguish three subcases (b1)-(b3). In cases (b2) and (b3), we have pe2(0|q1)< pe2(x|q1)

for any x ∈ (0,1) and Lemma 2 applies again. In case (b1), pe2(x|q1) is constant. Any x ∈ (0,1) is

an REE and a PDREE if and only if p1 = pm2 . A proof similar to Proposition 1, omitted here for

brevity, shows that x= 1 is the weakly preferred PDREE by the firm. �

Claim 4 The profit maximizing price is p1(q1) = pw1 (q1) and the associated PDREE is x= 1.

Proof: If p1 > p
w
1 (q1) then x= 0 is the unique PDREE. If p1 = pw1 (q1) then x= 1 is the PDREE

preferred by the firm. If p1 < pw1 (q1) then x= 1 is the unique PDREE. The profits are highest for

p1 = pw1 (q1). �

Claim 5 q1 >N1 is never optimal.

Proof: pe2(x|q1) is weakly decreasing in q1. Therefore p1(q1) is also weakly decreasing in q1.

Increasing q1 above N1 does not increase sales Q1 = min(xN1, q1) and reduces p1(q1) and hence

suboptimal. �

Proof of Lemma 6: The condition in the lemma is equivalent to N2F̄2(pm2 ) +N1F̄1(pm2 )≥N1

or Qm
2 ≥N1. To prove the result, it suffices to show that q∗1 ≥Qm

2 because this inequality implies

that q∗1 ≥N1, in other words, no excess demand in equilibrium and hence no frenzy.

Assume to the contrary that q∗1 <Q
m
2 . Then pe2(0|q1) = pm2 and p1(q1) = µ− δcT1(pm2 ), i.e., p1(q1)

becomes independent of q1. The firm’s profit function,

π(q1) = q1(µ− δcT1(pm2 )) + δmpe2(1|q1)
[
(N1− q1)F̄1(pe2(1|q1)) +N2F̄2(pe2(1|q1))

]
,

is increasing in q1. To see this, observe that

dπ(q1)

dq1

= µ− δcT1(pm2 )− δmpe2(1|q1)F̄1(pe2(1|q1))> 0.

The inequality follows because

µ− δcT1(pm2 ) > pm2 F̄1(pm2 )

≥ pe2(1|q1)F̄1(pe2(1|q1))

≥ δmpe2(1|q1)F̄1(pe2(1|q1)).

The second inequality follows because pF̄1(p) is single-peaked at p1,m
2 , and further (i) p1,m

2 < pm2 <

pe2(1|q1) if p2,m
2 > p1,m

2 and (ii) pe2(1|q1)≤ pm2 ≤ p1,m
2 if p2,m

2 ≤ p1,m
2 . Therefore, q1 =Qm

2 ; a contradic-

tion. �
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Proof of Proposition 3: (i) p1,m
2 < p2,m

2 . Therefore, pe2(0|q1) < pe2(1|q1) (Lemma 5). Thus, a

frenzy occurs as long as q1 <N1. In other words, a sufficient condition is

dπ(q1)

dq1

= µ− δcT1(pe2(0|q1)) + δcq1F̄1(pe2(0|q1))
dpe2(0|q1)

dq1

− δmpe2(1|q1)F̄1(pe2(1|q1))

∣∣∣∣
q1=N1

< 0, (12)

or, equivalently, δc > δc2. Note that the coefficient of δc in (12) is negative because pe2(0|q1) is

decreasing in q1. To see this, note that by Lemma 4, pe2(0|q1) = min(pb2(xN1), p̂2(x, q1)). Because

pb2(xN1) is constant in q1 and p̂2(x, q1) is decreasing in q1 (see (5)), we conclude that
dpe2(0|q1)

dq1
≤ 0.

(ii) p1,m
2 = p2,m

2 . Because the optimal production level is at most N1 (Claim 5), it follows from

Lemma 5 that pe2(1|q1) = pm2 = p1,m
2 = p2,m

2 and so is constant in q1. Unlike case (i), in this case, a

frenzy occurs only if q∗1 ∈ (Qm
2 ,N1). That is, we must also eliminate the corner at Qm

2 in which no

frenzy occurs because pe2(1|Qm
2 ) = pe2(0|Qm

2 ) (see Lemma 5). Therefore, a set of sufficient conditions

for a buying frenzy equilibrium to exist is dπ
dq1
|q1=N1

< 0 and dπ
dq1
|q1=Qm2

> 0 or δc2 < δc < δc1. Similar

to case (i), these conditions are not necessary and do not guarantee the uniqueness of the frenzy

equilibrium (unlike the model in Section 3 and Proposition 2).

Finally, consider the case f2(·) = f1(·) = f(·) discussed in the text. In this case, the firm’s opti-

mal policy is to induce a unique buying frenzy when F (pm2 ) >
N2

N1 +N2

and δc2 < δc < δc1 where

δc1 =
µ− δmpm2 F̄ (pm2 )

T1(pm2 ) +
Qm2 F̄1(pm2 )

(N1+N2)f(pm2 )

and δc2 =
µ− δmp2,m

2 F̄ (p2,m
2 )

T1(pw2 (N1)) +
N1F̄ (pw2 (N1))

(N1+N2)f(pw2 (N1))

. Uniqueness of the equilibrium

follows because the objective function over the relevant values of q1 is strictly concave (cf. the proof

of Proposition 2). �

Proof of Lemma 7: A similar result as Claim 3 holds when p1,m
2 > p2,m

2 (the same proof applies).

We define the function G(x) as in (11).

(i) From Lemma 4, if x ∈ [0, q1
N1

], then pe2(x|q1) = min(pb2(xN1), p̂2(x, q1)). Because q1 ≤ Qm
2 , it

follows that G(x)≥ 0 for all x ∈ [0,1]; see (11), hence pe2(x|q1) = pb2(xN1) which is decreasing in x

because p1,m
2 > p2,m

2 (Lemma 3). If x ∈ [ q1
N1
,1], then pe2(x|q1) = pb2(q1) (Lemma 3) which is constant

in x.

(ii) If Qm
2 ≤ q1 ≤ N1 + N2F̄2(p2,m

2 ), then G(x) has a solution x̂(q1) ∈ [0,1] and consequently

pe2(x|q1) = p̂2(x, q1) for x ∈ [0, x̂(q1)] and pe2(x|q1) = pb2(xN1) for x ∈ [x̂(q1), q1
N1

]. From Lemma 3,

pb2(xN1) is decreasing in x while p̂2(x, q1) is increasing in x (see proof of Lemma 5). Finally, from

Lemma 4 if x∈ [ q1
N1
,1], then pe2(x|q1) = pb2(q1) which is constant in x. �

(iii) If q1 ≥ N1 +N2F̄2(p2,m
2 ), then G(x) ≤ 0 for all x ∈ [0,1] implying that pe2(x|q1) = p̂2(x, q1)

which is increasing in x (see proof of Lemma 5).

Proof of Proposition 4: We first show that we can ignore mixed strategy REE without loss

of generality. If pe2(1|q1) ≤ pe2(0|q1), define x̃(q1) = min{x ∈ (0,1) s.t. pe2(x|q1) = pe2(0|q1)}. Lemma

2 implies that we can ignore mixed strategy REE when pe2(1|q1) > pe2(0|q1) and when pe2(1|q1) ≤
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pe2(0|q1) and x < x̃(q1). The only case left to consider occurs when pe2(1|q1)≤ pe2(0|q1) and mixed

strategy x≥ x̃(q1). We now focus on this case by dividing the interval into x ∈ [x̃(q1),min( q1
N1
,1))

and x≥min( q1
N1
,1).

Claim 6 We can ignore mixed strategy x≥min( q1
N1
,1) without loss of generality.

Proof: Assume x0 ≥min( q1
N1
,1) is an REE. Because pe2(x|q1) is constant for x ∈ [min( q1

N1
,1),1],

x= 1 is also an REE. The two strategies x0 and x= 1 are Pareto-equivalent and yield the same

firm revenue. It is then without loss of generality that we ignore x0. �

The only mixed REE left are x ∈ [x̃(q1),min( q1
N1
,1)). We cannot eliminate these mixed strategy

REE by showing that they are Pareto-equivalent to the pure strategy REE x= 1, as we did in the

proof of Proposition 1, because we cannot compare the profits under the two REE anymore. Instead,

we show that for any REE x0 ∈ [x̃(q1),min( q1
N1
,1)) there exists a different firm announcement that

induces a PDREE with the same firm revenue. Thus, x0 can be ignored without loss of generality.

Claim 7 Assume pe2(1|q1)≤ pe2(0|q1) and x0 ∈ [x̃(q1),min( q1
N1
,1)) is an REE for firm announcement

(q1, p1). Then, x′ = 1 is a PDREE weakly preferred by the firm for announcement (q′1 = x0N1, p
′
1 =

p1) and it gives the same revenue as REE x0.

Proof: We first derive the period-2 expected price for firm announcement (q′1, p
′
1). Because

q′1 = x0N1 < N1, Lemma 7 implies that pe2(x|q′1) = p̂2(x|q′1) for x ≤ x̂(q′1), pe2(x|q′1) = pb2(xN1) for

x ∈ [x̂(q′1), x0], and pe2(x|q′1) = pb2(x0N1) for x≥ x0. Note that x̂(q′1) might not exist in which case

pe2(x|q′1) = pb2(xN1) for x∈ [0, x0] and pe2(x|q′1) = pb2(x0N1) for x∈ [x0,1]. Our proof below applies in

both cases.

The next step is to show that x ∈ [x0,1] are the only PDREE for the announcement (q′1 =

x0N1, p
′
1 = p1). For that, we must rule out x ∈ [0, x0). For any x ∈ [0, x0). We have µ − p′1 =

µ − p1 = δcT1(pe2(x0|q1)) = δcT1(pe2(x0|q′1)) > δcT1(pe2(x|q′1)). The second equality is because x0 is

a mixed strategy for the announcement (q1, p1). The third equality holds because pe2(x0|q1) =

pb2(x0N1) = pe2(x0|q′1). Finally, the inequality follows because pe2(x0|q′1) = pb2(x0N1) and pe2(x|q′1) =

min(p̂2(x, q′1), pb2(xN1)). Moreover, because p̂2(x, q1) is decreasing in q1, we have p̂2(x, q′1) ≥
p̂2(x, q1)> pb2(x0N1). Finally, pb2(xN1) is decreasing in x (Lemma 3) and hence pb2(xN1)> pb2(x0N1).

We conclude that pe2(x0|q′1)< pe2(x|q′1). Therefore, buying dominates waiting for x ∈ [0, x0) and x

cannot be a REE.

Consider next x≥ x0. We have µ−p′1 = µ−p1 = δcT1(pe2(x0|q1)) = δcT1(pe2(x0|q′1)) = δcT1(pe2(x|q′1))

(because x≥ x0 =
q′1
N1

). Any x ∈ [x0,1] is then an REE and also a PDREE because the consumer

surplus is constant and equal to µ− p1.
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We conclude by comparing the profits under (q1, p1, x0) and (q′1, p
′
1, x) for x ∈ [x0,1]. The prices

are equal p1 = p′1 and so are sales min(xN1, q
′
1) = x0N1 = min(x0N1, q1). Firm’s revenue are equal in

period 1 and also in period 2. Therefore, the firm is indifferent between REE x0 for announcement

(q1, p1) and PDREE x′ = 1 for the announcement (q′1, p
′
1). �

We only have to consider pure strategy PDREE x = 0 and x = 1. We distinguish two cases.

If pw1 (q1) ≤ pb1(q1), then p1 = pw1 (q1) is the highest period-1 price such that x = 1 is a PDREE.

Otherwise, p1 = pb1(q1) is the highest price such that x = 1 is a PDREE. The function p̃1(q1) =

min(pw1 (q1), pb1(q1)) matches the highest period-1 price in each case.

It is important to observe that, for a given q1, x= 0 is also a PDREE for (q1, p̃1(q1)). For x= 1,

the firm profits are p̃1(q1)q1 + δmp
b
2(q1)Qb

2(pb2(q1), q1). For x = 0, the firm profits are δmQm
2 p

m
2 if

q1 ≤Qm
2 and q1p̂2(0, q1) otherwise. It is possible that the firm prefers PDREE x= 0. But the profits

under x = 0 are weakly dominated by the profits under firm announcement (q1 = 0, p1 =∞). In

other words, at optimality the firm will not choose such values for q1. Therefore, we can assume,

without loss of generality, that PDREE x= 1 is associated to announcement p̃1(q1) even though it

is not necessarily the preferred PDREE. �




