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Stock Return Serial Dependence and Out-of-Sample Portfolio 
Performance* 

We study whether investors can exploit stock return serial dependence to 
improve out-of- sample portfolio performance. To do this, we first show that a 
vector-autoregressive (VAR) model estimated with ridge regression captures 
daily stock return serial dependence in a stable manner. Second, we 
characterize (analytically and empirically) expected returns of VAR-based 
arbitrage portfolios, and show that they compare favorably to those of existing 
arbitrage portfolios. Third, we evaluate the performance of VAR-based 
investment (positive-cost) portfolios. We show that, subject to a suitable norm 
constraint, these portfolios outperform the traditional (unconditional) portfolios 
for transaction costs below 10 basis points. 
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1 Introduction

There is extensive empirical evidence that stock returns are serially dependent, and that this

dependence can be exploited to produce abnormal positive expected returns. For instance,

Jegadeesh and Titman (1993) find momentum in asset returns. Specifically, they find that

assets with high (low) returns over the last twelve months tend to have high (low) returns

for the next six months, and that “strategies which buy stocks that have performed well in

the past and sell stocks that have performed poorly in the past generate significant positive

returns over 3- to 12-month holding periods.” Lo and MacKinlay (1990) show that returns

of large firms lead those of small firms. Specifically, they estimate the cross-correlation

matrices for the vector of returns on the five size-sorted quintiles of a sample of stocks from

CRSP, and find that “current returns of smaller stocks are correlated with past returns

of larger stocks, but not vice versa, a distinct lead-lag relation based on size.” Moreover,

they show that a contrarian portfolio that takes advantage of this lead-lag pattern in stock

returns by being long past losing stocks and short past winners produces abnormal positive

expected returns.1

Our objective is to study whether investors can exploit the stock return serial depen-

dence that has been documented in the literature to select portfolios of risky assets that

perform well out-of-sample. We tackle this task in three steps. First, we propose a vector

autoregressive (VAR) model to capture stock return serial dependence, and test its statis-

tical significance. Second, we characterize, both analytically and empirically, the expected

return of an arbitrage (zero-cost) portfolio based on the VAR model, and compare it to that

of other arbitrage portfolios from the literature. Third, we evaluate empirically the out-of-

sample gains from using investment (positive-cost) portfolios that exploit serial dependence

in stock returns.

1There is substantial empirical evidence of serial and cross-serial correlation in returns. For example,
there is a large body of research that documents momentum at the level of individual firms in the U.S.
(Jegadeesh (1990), Lehman (1990), Jegadeesh and Titman (1993)), at the level of industries (Moskowitz and
Grinblatt (1999)), in size, book-to-market, and double-sorted size and book-to-market portfolios (Lewellen
(2002)), and internationally (Rouwenhorst (1998)). There is also substantial evidence on serial dependence
in stock returns (Fama and French (1988), Conrad and Kaul (1988, 1989, 1998), Lehman (1990), Boudoukh,
Richardson, and Whitelaw (1994), Daniel, Hirshleifer, and Subrahmanyam (1998), and Ahn, Boudoukh,
Richardson, and Whitelaw (2002)), and reversal/overreaction (DeBondt and Thaler (1985)). Finally, a
number of papers have documented the presence of cross-correlations, where the magnitude is related to
factors such as firm size (Lo and MacKinlay (1990)), firm size within industries (Hou (2007)), trading volume
(Chordia and Swaminathan (2000)), analyst coverage (Brennan, Jegadeesh, and Swaminathan (1993)), and
institutional ownership (Badrinath, Kale, and Noe (1995)).
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To identify the optimal portfolio weights, our work uses conditional forecasts of expected

returns for individual stocks. This is in contrast to the recent literature on portfolio selec-

tion, which finds it optimal to ignore estimates of expected returns based only on historical

return data. Merton (1980) explains the theoretical reason why it is much more difficult

to get precise estimates of first moments than second moments. And, Jagannathan and

Ma (2003) confirm this in practice: they find that the minimum-variance portfolio (which

ignores estimates of expected returns) outperforms portfolios that rely on forecasts of ex-

pected returns, even when performance is measured using the Sharpe ratio, which depends

on both the portfolio mean and variance. DeMiguel, Garlappi, and Uppal (2009) also find

that portfolios that use estimated expected returns perform poorly out of sample, achieving

substantially lower Sharpe ratios and higher turnovers compared to portfolios that ignore

estimates of expected returns. Consequently, a large part of the literature on portfolio se-

lection has focussed on improving the estimation of the covariance matrix: see, for example,

Chan, Karceski, and Lakonishok (1999), Ledoit and Wolf (2003, 2004), DeMiguel and No-

gales (2009), and DeMiguel, Garlappi, Nogales, and Uppal (2009). The focus on conditional

expected returns for individual stocks distinguishes our work from these papers.

Our paper makes three contributions to the literature on portfolio selection. First, we

propose using a vector autoregressive (VAR) model to capture serial dependence in stock

returns. Our VAR model allows tomorrow’s expected return on every stock to depend

linearly on today’s realized return on every stock, and hence it is general enough to capture

any linear relation between stock returns in consecutive periods, irrespective of whether

its origin is momentum, lead-lag relations, or some other feature of the data.2 We verify

2A broad variety of explanations have been offered for autocorrelations and cross-correlations of asset
returns. Some of these explanations are based on time-varying expected returns (Conrad and Kaul (1988)),
with more recent work showing how to generate this variation in rational models (Berk, Green, and Naik
(1999) and Johnson (2002)). Other explanations rely on economic links, such as those between suppliers
and customers (Cohen and Frazzini (2008)), and upstream and downstream industries (Menzly and Ozbas
(2010)). Then, there are explanations that are based on imperfections in markets, such as: segmentation of
the market for securities (Merton (1987)); transaction costs (Mech (1993)); asymmetric information (Bren-
nan, Jegadeesh, and Swaminathan (1993)); ambiguous (uncertain) information (Zhang (2006)); the slow
transmission of information across investors (Hong and Stein (1999), Hong, Lim, and Stein (2000)); investor
inattention that leads to a delay with which prices incorporate information (Ramnath (2002), Hirshleifer
and Teoh (2003), Hou and Moskowitz (2005)), Peng and Xiong (2006), Hong, Torous, and Valkanov (2007),
and Hou, Peng, and Xiong (2009)), and heterogeneity across investors in responding to information (Hong
and Stein (1999) and DellaVigna and Pollet (2007)). Finally, there are behavioral explanations based on
noise traders (De Long, Shleifer, Summers, and Waldmann (1990a)); herd behavior (Scharfstein and Stein
(1990)); and the characteristics of investors such as overreaction (De Long, Shleifer, Summers, and Wald-
mann (1990b)), overconfidence (Daniel, Hirshleifer, and Subrahmanyam (1998)), and conservatism (Barberis,
Shleifer, and Vishny (1998)).
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the validity of the VAR model for stock returns by performing extensive statistical tests

on five empirical datasets, and conclude that the VAR model is significant for all datasets.

Moreover, we use our significance tests to identify the origin of the predictability in the data

and we find autocorrelation of portfolio and individual stock returns. We also find lead-lag

relations between: big-stock portfolios and small-stock portfolios, growth-stock portfolios

and value-stock portfolios, the HiTec industry portfolio and other industry portfolios, and

big individual stocks and small individual stocks.

Our second contribution is to characterize, both analytically and empirically, the ex-

pected return of zero-cost arbitrage portfolios based on the VAR model and to compare them

to other arbitrage strategies. Analytically, we compare the expected return of the VAR ar-

bitrage portfolio to that of the contrarian arbitrage portfolio studied by Lo and MacKinlay

(1990), who show that the expected return on the contrarian arbitrage portfolio is positive

if the stock return autocorrelations are negative and the stock return cross-correlations are

positive. We show that the VAR arbitrage portfolio achieves a positive expected return

in general, regardless of the sign of the autocorrelations and cross-correlations. Moreover,

we find that the expected returns of the VAR arbitrage portfolio are large if the principal

components of the covariance matrix provide a discriminatory forecast of tomorrow’s stock

returns; that is, if today’s return on the principal components allow one to tell which stocks

will achieve high returns, and which low returns tomorrow. Empirically, we show that the

VAR arbitrage portfolio substantially outperforms (out of sample) the contrarian arbitrage

portfolio and an arbitrage portfolio based on the unconditional sample mean.

Our third contribution is to evaluate the out-of-sample gains associated with invest-

ing in two (positive-cost) portfolios that exploit stock return serial dependence. The first

portfolio is the conditional mean-variance portfolio of a myopic investor who believes stock

returns follow the VAR model. This portfolio relies on the assumption that stock returns

in consecutive periods are linearly related. We consider a second portfolio that relaxes this

assumption. Specifically, we consider the conditional mean-variance portfolio of a myopic

investor who believes stock returns follow a nonparametric autoregressive (NAR) model,

which does not require that the relation across stock returns be linear.3 To control the

3We have also considered the dynamic portfolio of Campbell, Chan, and Viceira (2003), which is the
optimal portfolio of an intertemporally optimizing investor with Epstein-Zin utility, who believes that the
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high turnover associated with the conditional mean-variance portfolios, we focus on norm-

constrained portfolios similar to those studied by DeMiguel, Garlappi, Nogales, and Uppal

(2009).

Our empirical results show that, for the majority of the datasets we consider, the norm-

constrained conditional mean-variance portfolios outperform the traditional (unconditional)

portfolios out of sample for transaction costs below 10 basis points. Moreover, for a dataset

containing high-turnover individual stocks, we find that the conditional portfolios from

the VAR model substantially and significantly outperform the traditional portfolios even

in the presence of transaction costs of 10 basis points. To understand the origin of the

predictability exploited by the conditional portfolios, we consider the conditional mean-

variance portfolios obtained from a lagged-factor model using as factors the Fama-French

factors (market, small minus big, and high minus low book-to-market), and we find that

the market and high-minus-low factors drive most of the predictability exploited by the

conditional portfolios. Moreover, we also observe that the gains from exploiting stock

return serial dependence come in the form of higher expected return, since the out-of-sample

variances of the conditional portfolios is higher than that of the unconditional (traditional)

portfolios; that is, stock return serial dependence can be exploited to forecast stock mean

returns much better than using the traditional (unconditional) sample estimator. Finally,

we find that a substantial proportion of the gains from exploiting time serial dependence

in stock returns is obtained by exploiting cross-covariances in stock returns, as opposed to

just autocovariances.

The rest of this manuscript is organized as follows. Section 2 describes the datasets and

the methodology we use for our empirical analysis. Section 3 states the VAR model of stock

returns, tests its statistical significance, and uses the significance tests to identify the origin

of the predictability in stock returns. Section 4 characterizes (analytically and empirically)

the performance of a VAR zero-cost arbitrage portfolio, and compares it to that of other

arbitrage portfolios. Section 5 describes the different investment portfolios we consider,

and discusses their empirical performance. Section 6 concludes. Robustness checks for our

empirical findings and proofs for all propositions are relegated to the appendix.

returns follow a VAR model. We find that its performance is similar to that of the conditional mean-variance
portfolios from VAR and thus to conserve space we do not report the results.
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2 Data and Evaluation Methodology

2.1 Datasets

We consider five datasets for our empirical analysis: four datasets from Ken French’s web-

site, and one from CRSP, and for every dataset we report the results for close-to-close

as well as open-to-close returns. The first two datasets contain the returns on 6 and 25

value-weighted portfolios of stocks sorted on size and book-to-market (6FF, 25FF). The

third and fourth datasets contain the returns on the 10 and 48 industry value-weighted

portfolios (10Ind, 48Ind). For close-to-close returns we use data from 1970 to 2011 down-

loaded from Ken French’s website, while we build open-to-close returns from 1992 to 2011

using open-to-close data for individual stocks downloaded from the CRSP database, which

records open-to-close returns only from 1992.

We also consider a fifth dataset containing individual stock returns from the CRSP

database containing close-to-close and open-to-close returns on all stocks that were part

of the S&P500 index at some point in time between 1992 and 2011 (100CRSP). To avoid

any stock-survivorship bias, we randomly select 100 stocks every year using the following

approach. At the beginning of each calendar year, we find the set of stocks for which we

have returns for the entire period of our estimation window as well as for the next year.

From those stocks, we randomly select 100 and use them for portfolio selection until the

beginning of the next calendar year, when we randomly select stocks again.4

2.2 Evaluation methodology

We compare the performance of the different portfolios using four criteria, all of which

are computed out of sample using a “rolling-horizon” procedure similar to that used by

4Observe that these five datasets are close to being tradable in practice, except for the illiquidity of the
smaller stocks in the datasets from French’s website. To see this, note first that for the French’s datasets we
use the value-weighted portfolios, which implies that no “internal” rebalancing is required for these portfolios.
Second, the quantiles and industry definitions used to form French’s datasets are updated only once a year,
and thus the “internal” rebalancing due to this is negligible at the daily and weekly rebalancing periods
that we consider. Therefore, the main barrier to the practical tradability of French’s datasets is that these
portfolios contain small illiquid stocks. This implies that when using daily return data and rebalancing, the
historical portfolio return data may suffer from asynchronous trading at the end of the day. Regarding the
CRSP datasets, we focus on stocks that are part of the S&P500 index, and thus, are relatively liquid. In
order to understand whether our results are due to the effect of asynchronous trading, in Appendix A.1 we
study the robustness of our results to the use of open-to-close returns (instead of close-to-close) and weekly
returns (instead of daily), both of which suffer much less from the effects of asynchronous trading, and we
find that indeed our results are robust.
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DeMiguel, Garlappi, and Uppal (2009): (i) portfolio mean return; (ii) portfolio variance;

(iii) Sharpe ratio, defined as the sample mean of out-of-sample returns divided by their

sample standard deviation;5 and, (iv) portfolio turnover (trading volume).

To measure the impact of proportional transactions costs on the performance of the

different portfolios, we also compute the portfolio returns net of transactions costs as

rkt+1 =

1− κ
N∑
j=1

∣∣∣wk
j,t − wk

j,(t−1)+
∣∣∣
 (wk

t )
>rt+1,

where wk
j,(t−1)+ is the portfolio weight in asset j at time t under strategy k before rebal-

ancing, wk
j,t is the desired portfolio weight at time t after rebalancing, κ is the proportional

transaction cost, wk
t is the vector of portfolio weights, and rt+1 is the vector of returns. We

then compute the Sharpe ratio as described above, but using the out-of-sample returns net

of transactions costs.6

3 A Vector Autoregressive (VAR) Model of Stock Returns

We now introduce the VAR model. In Section 3.1, we describe the VAR model of stock

returns, and in Section 3.2, we test the statistical significance of the VAR model for the

five datasets described in Section 2.1. Finally, in Section 3.3, we use statistical tests to

understand the nature of the relation between stock returns.

3.1 The VAR model

We use the following vector autoregressive (VAR) model to capture serial dependence in

stock returns:

rt+1 = a+Brt + εt+1, (1)

5Note that because we are considering investments in only risky assets, the numerator of the Sharpe
ratio is the expected return, instead of the expected return in excess of the risk-free rate. To measure the
statistical significance of the difference between the Sharpe ratios of two given portfolios, we use the (non-
studentized) stationary bootstrap of Politis and Romano (1994) to construct a two-sided confidence interval
for the difference between the Sharpe ratios (or certainty equivalents). We use 1, 000 bootstrap resamples
and an expected block size equal to 5. Then we use the methodology suggested in Ledoit and Wolf (2008,
Remark 3.2) to generate the resulting bootstrap p-values.

6In Section A.3 we also consider the case where the investor’s optimization problem incorporates trans-
action costs explicitly.
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where rt ∈ IRN is the stock return vector for period t, a ∈ IRN is the vector of intercepts,

B ∈ IRN×N is the matrix of slopes, and εt+1 is the error vector, which is independently

and identically distributed as a multivariate normal with zero mean and covariance matrix

Σε ∈ IRN×N , assumed to be positive definite.7

Our VAR model considers multiple stocks and assumes that tomorrow’s expected return

on each stock (conditional on today’s return vector) may depend linearly on today’s return

for any of the multiple stocks. This linear dependence is characterized by the slope matrix

B (for instance, Bij represents the marginal effect of rj,t on ri,t+1 conditional on rt). Thus,

our model is sufficiently general to capture any linear relation between stock returns in

consecutive periods, independent of whether its source is momentum, lead-lag relations, or

any other 1-lag time-series feature of the data.

VAR models have been used before for strategic asset allocation—see Campbell and

Viceira (1999, 2002); Campbell, Chan, and Viceira (2003); Balduzzi and Lynch (1999);

Barberis (2000)—where the objective is to study how an investor should dynamically allo-

cate her wealth across a few asset classes (e.g., a single risky asset (the index), a short-term

bond, and a long-term bond), and the VAR model is used to capture the ability of certain

variables (such as the dividend yield and the short-term versus long-term yield spread) to

predict the returns on the single risky asset.8 Our objective, on the other hand, is to study

whether an investor can exploit stock return serial dependence to choose a portfolio of mul-

tiple risky stocks with better out-of-sample performance, and thus, we use the VAR model

to capture the ability of today’s stock returns to predict tomorrow’s stock returns.

VAR models have also been used before to model serial dependence among individual

stocks or international indexes. For instance, Tsay (2005, Chapter 8) estimates a vector

autoregressive model for a case with only two risky assets, IBM stock and the S&P500

index, Eun and Shim (1989) estimate a VAR model for nine international markets, and

7To conserve space, we report only the results for the first-order vector autoregressive model, VAR(1),
which is given in equation (1), but we have also estimated a general pth-order vector autoregressive model,
VAR(p) using Schwarz’s Bayesian criterion (Schwarz (1978)) to choose the order, and we have found the
order p = 1 to be optimal.

8Lynch (2001) considers three risky assets (the three size and three book-to-market portfolios), but he
does not consider the ability of each of these risky assets to predict the return on the other risky assets;
instead, he considers the predictive ability of the dividend yield and the yield spread. The effectiveness
of predictors such as size, value, and momentum in forecasting individual stock returns is examined in
Section 5.4. The paper by Jurek and Viceira (2011) is a notable exception because it considers a VAR model
that captures (among other things) the ability of the returns on the value and a growth portfolios to predict
each other.
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Chordia and Swaminathan (2000) estimate a vector autoregressive model for two portfolios,

one composed of high-trading-volume stocks and the other of low-trading-volume stocks.

However, to the best of our knowledge, our paper is the first to investigate whether a VAR

model at the individual stock level can be used to choose portfolios with better out-of-sample

performance.

3.2 Significance of the VAR model

Estimating the VAR model in (1) requires estimating a large number of parameters,9 and

thus standard ordinary least squares (OLS) estimators of the VAR model are noisy.10 To

obtain stable estimators, we use ridge regression, see Hoerl and Kennard (1970), which is

designed to give stable estimators even for models with a large numbers of parameters.

Moreover, to test the statistical significance of the ridge estimator of the slope matrix, we

use the stationary bootstrap method of Politis and Romano (1994).

In this section, we assume that rt is a jointly covariance-stationary process with finite

mean µ = E[rt] and finite cross-covariance matrices Γk = E[(rt−k−µ)(rt−µ)>] for k = 0, 1.

We also assume that the covariance matrix Γ0 is positive definite.

To test whether the VAR model is statistically significant, we propose a bootstrap test

when the model is estimated by ridge regression. In particular, for the VAR model (1), to

test the null hypothesis

H0 : B = 0, (2)

we first estimate equation (1) using ridge regression with an estimation window of τ = 2000

days. Then, we propose the following test statistic

M = − (τ −N) ln

(
|Ω̂1|
|Γ̂0|

)
,

where Ω̂1 is the covariance matrix of the residuals ε̂ obtained after fitting the VAR equa-

tion (1) to the data.

9One can show that the number of parameters to be estimated is 3(N2 +N)/2.
10For instance, the OLS estimator of the matrix of slopes is B̂ = Γ−1

0 Γ1, where Γ0 is the covariance matrix
and Γ1 is the lag-one cross-covariance matrix, and it is well-known that the covariance matrix of asset returns
Γ0 is ill conditioned, which implies that the OLS estimator of the slope matrix is likely to be very noisy.
Indeed, our empirical results have demonstrated that the OLS estimator of the slope matrix is unstable.
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Because the distribution of M is not known when estimating the model using ridge

regression, we approximate this distribution through a bootstrap procedure. To do that,

we obtain S = 100 bootstrap errors from the residuals ε̂. Then, we generate recursively the

bootstrap returns in equation (1) using the parameter estimates by ridge regression and

the bootstrap errors. Then, we fit the VAR model to the bootstrap returns to obtain S

bootstrap replicates of the covariance matrix of the residuals, Ω̂1. Analogously, we repeat

this procedure to generate recursively the bootstrap returns under the null hypothesis (B =

0) to obtain S bootstrap replicates of the covariance matrix of the returns, Γ̂0. Finally, we

use these S bootstrap replicates to approximate the distribution of the test statistic M and

the corresponding p-value for the hypothesis test (2).

To verify the validity of the VAR model for stock returns, we perform the above test

every month (roughly 22 trading days) of the time period spanned by each of the five

datasets, using an estimation window of τ = 2000 days each time. In all cases, the test

rejects the null hypothesis in (2) at a 1% significance level; that is, for every period and

each dataset, there exists at least one significant element in the matrix of slopes B. Hence,

we infer that the VAR model is statistically significant for the five datasets we consider.

3.3 Interpretation of the VAR model

In this section, we test the significance of each of the elements of the estimated slope matrix

B to improve our general understanding of the specific character of the serial dependence in

stock returns present in the data. For exposition purposes, we first study two small datasets

with only two assets each, and we then provide summary information for the full datasets.

3.3.1 Results for two portfolios formed on size

We consider a dataset with one small-stock portfolio and one large-stock portfolio. The

return on the first asset is the average equally-weighted return on the three small-stock

portfolios in the 6FF dataset with six assets formed on size and book-to-market, and the

return on the second asset is the average equally-weighted return on the three large-stock

portfolios.

9



We first estimate the VAR model for a particular 2,000-day estimation window and test

the significance of each element (i, j) of the matrix of slopes B with the null hypothesis:

H0 : Bij = 0. The estimated VAR model is:

rt+1,small = 0.0001 + 0.171rt,small + 0.151rt,big,

rt+1,big = 0.0002 + 0.076rt,small + 0.133rt,big.

Both off-diagonal elements of the slope matrix are significant, but note that the B12 element

0.151 is substantially larger than the B21 element 0.076, which suggests that there is a

lead-lag relation between big-stock and small-stock, with big-stock returns leading small-

stock returns. Also, both small and large-stock portfolio returns have significant first-order

autocorrelations.

To check whether the ridge estimator of the VAR model is stable, we perform the above

test every trading day in our sample. Figure 1 shows the time evolution of the estimated

diagonal and off-diagonal elements of the slope matrix, respectively. The solid lines give

the estimated value of these elements, and we set the lines to be thicker for periods when

the elements are statistically significant. Our main observation is that the estimators of

the slope matrix elements are reasonably stable, both in terms of magnitude and statistical

significance. The stability of the estimated slope matrix shows that the ridge estimator of

the VAR model deals well with estimation error. Note also that the estimators are time

varying, which is to be expected as market conditions change during such a long period

(1978–2011). The key is that the VAR model estimated with ridge regression is able to

capture the current serial dependence of stock returns in a stable manner.

3.3.2 Results for two portfolios formed on book-to-market ratio

We now study a second dataset with one low book-to-market stock portfolio (growth port-

folio) and one high book-to-market stock portfolio (value portfolio). The return on the

first asset is the average equally-weighted return on the two portfolios corresponding to low

book-to-market stocks in the 6FF dataset, and the return on the second portfolio is the av-

erage equally-weighted return on the two portfolios corresponding to high book-to-market

stocks.
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The estimated VAR model for a particular 2,000-day estimation window is:

rt+1,growth = 0.0007 + 0.176rt,growth + 0.079rt,value,

rt+1,value = 0.0006 + 0.141rt,growth + 0.119rt,value.

Both off-diagonal elements of the slope matrix are significant, but the B21 element 0.141

is substantially larger than the B12 element 0.079, which indicates that there is a lead-lag

relation between growth stock and value stock, with growth-stock returns leading value-

stock returns. Also, both growth- and value-stock portfolio returns have significant first-

order autocorrelations.

To check whether the ridge estimator of the VAR model is stable, we perform the

previous test every trading day in our sample. Figure 2 shows the time evolution of the

estimated diagonal and off-diagonal elements of the slope matrix. The solid lines give the

estimated value of these elements, and we set the lines to be thicker for periods when the

elements are statistically significant. We again observe that the estimators of the slope

matrix elements are stable, although they reflect the time-varying market conditions.

3.3.3 Results for the full datasets

We now summarize our findings for the five datasets described in Section 2.1. We start with

the dataset with six portfolios of stocks sorted by size and book-to-market. Figure 3 shows

the time evolution of the estimated diagonal and off-diagonal elements of the slope matrix.

To make it easy to identify the most important elements of the slope matrix, we depict

only those elements that are significant for long periods of time, and the legend labels are

ordered in decreasing order of the length of the period when the element is significant. Note

also that we number the different portfolios as follows: 1 = small-growth, 2 = small-neutral,

3 = small-value, 4 = big-growth, 5 = big-neutral, and 6 = big-value. We observe that the

estimators of the slope matrix elements are reasonably stable, although they reflect the

time-varying market conditions.

Figure 3a shows that there exist substantial and significant first-order autocorrelations

in small-growth and big-growth portfolio returns, and smaller but also significant autocor-

relations on all other portfolios. Figure 3b shows that there is strong evidence (in terms
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of magnitude and significance) that big-growth portfolios lead small-growth portfolios (el-

ement B14) and big-neutral lead small-neutral (B25); that is, the “big” portfolios lead the

corresponding version of the “small” portfolios. Finally, we observe that small-growth port-

folios lead both small-neutral (B21) and small-value portfolios (B31), and small-neutral lead

small-value (B32); that is, growth leads value among small-stock portfolios. We have ob-

tained similar insights from the tests on the 25FF but to conserve space we do not report

the results in the manuscript.

We now turn to the industry datasets, and to make the interpretation easier, we start

with the dataset with five industry portfolios downloaded from Ken French’s website, which

contains the returns for the five industries: 1 = Cnsmr (Consumer Durables, NonDurables,

Wholesale, Retail, and Some Services), 2 = Manuf (Manufacturing, Energy, and Utilities), 3

= HiTec (Business Equipment, Telephone and Television Transmission), 4 = Hlth (Health-

care, Medical Equipment, and Drugs), and 5 = Other (Mines, Constr, BldMt, Trans, Hotels,

Bus Serv, Entertainment, Finance). Figure 4 shows the time evolution of the estimated di-

agonal and off-diagonal elements of the slope matrix, where the element numbers correspond

to the industries as numbered above. Figure 4a shows that there exist strong first-order

autocorrelations in Hlth, Other, and HiTec returns. Moreover, there is strong evidence that

HiTec returns lead all other returns except Hlth (elements B23 , B53, and B13), and that

Hlth returns lead Cnsmr returns (B14). The conclusions are similar for the 10Ind and 48Ind

datasets, but we do not report the results in the manuscript to conserve space.

Finally, to understand the characteristics of the serial dependence in individual stock

returns, we consider a dataset formed with the returns on individual stocks. For expositional

purposes, we consider a dataset consisting of only four individual stocks. Two of these stocks

correspond to relatively large companies (Exxon and General Electric) and two correspond

to relatively small companies (Rowan Drilling and Genuine Parts). Figure 5 shows the time

evolution of the estimated diagonal and off-diagonal elements of the slope matrix, where

we label the four companies as follows: 1 = Exxon, 2 = General Electric, 3 = Rowan, and

4 = Genuine Parts. We observe that Exxon and Genuine Parts both display significant

negative autocorrelation. This is consistent with results in the literature that indicate that

while portfolio returns are positively autocorrelated, individual stock returns are negatively
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autocorrelated. Also, there is evidence that both General Electric and Exxon lead Rowan

Drilling.

4 Analysis of VAR Arbitrage Portfolios

To gauge the potential of the VAR model to improve portfolio selection, we study the

performance of an arbitrage (zero-cost) portfolio based on the VAR model, and compare it

analytically and empirically to that of other arbitrage portfolios considered in the literature.

4.1 Analytical comparison

In this section, we compare analytically the expected return of the VAR arbitrage portfolio

to that of the contrarian arbitrage portfolio studied by Lo and MacKinlay (1990).11

4.1.1 The contrarian arbitrage portfolio

To study whether contrarian profits are due exclusively to market overreaction, Lo and

MacKinlay (1990) consider the following contrarian (“c”) arbitrage portfolio:

wc,t+1 = − 1

N
(rt − rete), (3)

where e ∈ IRN is the vector of ones and ret = e>rt/N is the return of the equally-weighted

portfolio at time t. Note that the weights of this portfolio add up to zero, and thus it is

an arbitrage portfolio. Also, the portfolio weight for every stock is equal to the negative of

the stock return in excess of the return of the equally-weighted portfolio. That is, if a stock

obtains a high return at time t, then the contrarian portfolio assigns a negative weight to

it for period t+ 1, and hence this is a contrarian portfolio. Lo and MacKinlay (1990) show

that the expected return of the contrarian arbitrage portfolio is:

E[w>ctrt] = C +O − σ2(µ), (4)

11Note that Lo and MacKinlay (1990) did not propose the contrarian strategy as a practical investment
strategy for choosing portfolios of stocks, but rather to show that contrarian profits are not necessarily due
to stock market overreaction. We, however, find the comparison between the VAR and contrarian arbitrage
portfolios helpful in the context of testing the potential of the VAR model for portfolio selection.
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where

C =
1

N2
(e>Γ1e− tr(Γ1)),

O = −N − 1

N2
tr(Γ1),

σ2(µ) =
1

N

N∑
i=1

(µi − µm)2, (5)

and where µi is the mean return on the ith stock, µm is the mean return on the equally-

weighted portfolio, and “tr” denotes the trace of matrix. Note that C is a positive multiple

of the sum of the cross-covariances of stock returns, O is a negative multiple of the sum

of the autocovariances, and σ2(µ) is the cross-sectional variance of expected stock returns.

Therefore, equation (4) shows that the contrarian arbitrage portfolio has a positive expected

return if the cross-covariances are positive, the autocovariances are negative, and their

combined effect on the expected return, measured through the sum C + O, is larger than

the cross-sectional variance of expected stock returns; that is, if C +O > σ2(µ).

4.1.2 The VAR arbitrage portfolio

We consider the following VAR (“v”) arbitrage portfolio:

wv,t+1 =
1

N
(a+Brt − rvte),

where a + Brt is the VAR model forecast of the stock return at time t + 1 conditional

on the return at time t, and rvt = (a + Brt)
>e/N is the VAR model prediction of the

equally-weighted portfolio return at time t + 1 conditional on the return at time t. Note

that the weights of wv,t+1 add up to zero, and thus it is also an arbitrage portfolio. Also,

the portfolio wv,t+1 assigns a positive weight to those stocks whose VAR-based conditional

expected return is above that of the equally-weighted portfolio, and a negative weight to

the rest of the stocks.

The following proposition gives the expected return of the VAR arbitrage portfolio, and

shows that it is positive in general. For tractability, in the proposition we assume we can

estimate the VAR model exactly, and hence we set B = Γ>1 Γ−10 and a = (I−B)µ, which are

the VAR parameters that result in a stock return process with an expected return equal to
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µ, a covariance matrix equal to Γ0, and a lag-1 cross-covariance matrix equal to Γ1. Note

that we do not make this assumption in our empirical analysis in Section 4.2, and instead

estimate the VAR model from empirical data.

Proposition 1 Assume that rt is a jointly covariance-stationary process with mean µ =

E[rt] and cross-covariance matrices Γk = E[(rt−k − µ)(rt − µ)>] for k = 0, 1. Assume also

that the covariance matrix Γ0 is positive definite. Finally, assume we can estimate the VAR

model exactly; that is, let B = Γ>1 Γ−10 and a = (I − B)µ. Then the expected return of the

VAR arbitrage portfolio is

E[w>vtrt] = G+ σ2(µ) ≥ 0, (6)

where

G =
tr(Γ>1 Γ−10 Γ1)

N
− e>Γ>1 Γ−10 Γ1e

N2
≥ 0. (7)

Proposition 1 shows that the expected return of the VAR arbitrage portfolio is the

sum of two terms, G + σ2(µ). From (7) we see that G depends only on the covariance

matrix Γ0 and the lag-one cross-covariance matrix Γ1, while σ2(µ) depends exclusively on

the stock mean returns. Moreover, the proposition shows that each of these two terms

makes a nonnegative contribution to the expected return of the VAR arbitrage portfolio.

Furthermore, Proposition 1 also shows that the expected return of the VAR arbitrage

portfolio is strictly positive in general because σ2(µ) > 0 except for the degenerate case

where all assets have the same expected return.

4.1.3 Comparing the contrarian and VAR arbitrage portfolios

Proposition 1 shows that the VAR arbitrage portfolio can always exploit the structure of the

covariance and cross-covariance matrix, as well as that of the mean stock returns, to obtain a

strictly positive expected return. This result contrasts with that obtained for the contrarian

arbitrage portfolio. Essentially, the VAR arbitrage portfolio can exploit the autocorrelations

and cross-correlations in stock returns regardless of their sign, whereas, as explained above,

the expected return of the contrarian portfolio is positive if the autocorrelations are positive

and the cross-correlations negative.
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Note also that the cross-sectional variance of mean stock returns enters the expression

for the contrarian portfolio expected return as a negative term, but it enters the expression

for the VAR portfolio’s expected return as a positive term. The reason for this is that the

contrarian portfolio assigns a negative weight to those assets whose realized return at time t

is above that of the equally-weighted portfolio and, as a result, the contrarian portfolio tends

to assign a negative weight to assets with a mean return that is above average. This results

in the negative contribution of the cross-variance of mean stock returns to the expected

return of the contrarian arbitrage portfolio.

4.1.4 Identifying the origin of predictability using principal components

We now use principal component analysis to identify the origin of the predictability in stock

returns exploited by the VAR arbitrage portfolio. Specifically, we show that the ability of

the VAR arbitrage portfolio to generate positive expected returns can be traced back to the

ability of the principal components to forecast which stocks will perform well and which

poorly in the next period.

To see this, note first that given a symmetric and positive definite covariance matrix Γ0,

we have that Γ0 = QΛ0Q
>, where Q is an orthogonal matrix (QQ> = I) whose columns are

the principal components of Γ0, and Λ0 is a diagonal matrix whose elements are the variances

of the principal components. Therefore we can rewrite the VAR model in Equation (1) as

rt+1 = a+BQQ>rt + εt+1

rt+1 = a+ B̂pt + εt+1,

where pt = Q>rt ∈ IRN is the return of the principal components at time t, and B̂ = BQ

is the slope matrix expressed in the reference frame defined by the principal components of

the covariance matrix.

Proposition 2 Let the assumptions in Proposition 1 hold, then the expected return of the

VAR arbitrage portfolio can be written as

E[w>vtrt] =
N − 1

N

∑
j

λjvar(B̂•j) + σ2(µ),

where λj is the variance of the jth principal component of the covariance matrix Γ0, and

var(B̂•j) is the variance of the elements in the jth column of matrix B̂.
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Proposition 2 shows that the VAR arbitrage portfolio attains high expected return

when the variances of the columns of B̂ multiplied by the variances of the corresponding

principal components are high. The main implication of this result is that the information

provided by today’s return on the jth principal component is particularly useful when it has

a variable impact on tomorrow’s returns on the different assets; that is, when the variance of

the jth column of B̂ is high. Clearly, when this occurs, today’s return on the jth principal

component allows us to discriminate between stocks we should go long and stocks we should

short tomorrow. Moreover, if the variance of the jth principal component is high, then its

realized values will lie in a larger range and this will also allow us to realize higher expected

returns with the VAR arbitrage portfolios.

Finally, note that the results in Proposition 2 can be used to identify empirically the

origin of the predictability exploited by the arbitrage VAR portfolio by estimating the

principal components that contribute most to its expected return. For instance, for the size

and book-to-market portfolio datasets we find that the principal components with highest

contribution are a portfolio long on big-stock portfolios and short on small-stock portfolios,

and a portfolio long on value-stock portfolios and short on growth-stock portfolios; and for

the industry datasets we find that the principal component with highest contribution is long

on the HiTec industry portfolio and short on the other industries.

4.1.5 Identifying the origin of predictability using factor models

Another approach to understand the origin of the predictability exploited by the VAR

arbitrage portfolio is to consider a lagged-factor model instead of the VAR model. For

instance, one could consider the following lagged-factor model:

rt+1 = af +Bfft + εft+1 (8)

where af ∈ IRN is the vector of intercepts, Bf ∈ IRN×F is the matrix of slopes, ft ∈ IRF

is the factor return vector for period t, and εft+1 is the error vector. This model will be

particularly revealing when we choose factors that have a clear economic interpretation such

as the Fama-French and momentum factors.
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We then consider the following lagged-factor arbitrage portfolio:

wf,t+1 =
1

N
(af +Bfft − rfte),

where af + Bfft is the lagged-factor model forecast of the stock return at time t + 1

conditional on the factor return at time t, and rft = (af +Bfft)
>e/N is the lagged-factor

model prediction of the equally-weighted portfolio return at time t + 1 conditional on the

factor return at time t.

The following proposition gives the result corresponding to Proposition 2 in the context

of the easier-to-interpret lagged-factor model.

Proposition 3 Assume that rt is the jointly covariance-stationary process described in (8),

and the factor covariance matrix Γf0 = E((ft−µf )>(ft−µf )) is positive definite. Moreover,

assume we can estimate the lagged-factor model exactly, then the expected return of the

lagged-factor arbitrage portfolio is

E[w>vtrt] =
N − 1

N

∑
j

λfj var(B̂f
•j) + σ2(µ),

where λfj is the variance of the jth principal component of the factor covariance matrix Γf0 ,

var(B̂f
•j) is the variance of the elements in the jth column of matrix B̂f , and B̂f is the

slope matrix expressed in the frame of reference defined by the principal components for the

factor covariance matrix; that is, B̂f = BfQ, where Q is the matrix whose columns are the

principal components of the factor covariance matrix.

Proposition 3 shows that the ability of the lagged-factor arbitrage portfolio to generate

positive expected returns can be traced back to the ability of the principal components of

the factor covariance matrix to forecast which stocks will perform well and which poorly

in the next period. Moreover, because it is reasonable to expect that the factors will be

relatively uncorrelated, in which case the principal components coincide with the factors,

the predictability can be traced back to the ability of the factors to provide a discriminating

forecast of which stocks will perform well and which poorly in the next period.
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4.2 Empirical comparison

In this section, we compare empirically the performance of the VAR arbitrage portfolio to

those of the contrarian arbitrage portfolio and an arbitrage portfolio based on sample mean

returns. We first compare the in-sample expected return of the contrarian and VAR arbi-

trage portfolios by using the analytical expressions in Equation (4) and Proposition 1. We

then compare the out-of-sample expected return and Sharpe ratio of the different arbitrage

portfolios, using the rolling horizon methodology described in Section 2.2.

4.2.1 In-sample comparison of performance

The first panel of Table 1 gives the in-sample values of C, O, σ2(µ), G, as well as the

in-sample expected returns of the contrarian and VAR arbitrage portfolios, which are cal-

culated using equations (4)–(5) and (6)–(7), for the five datasets considered.12 The results

show that the contrarian portfolio achieves a positive in-sample expected return only for

the 100CRSP dataset. This is not surprising because the contrarian strategy makes sense

in the context of individual stocks, as is the case for the CRSP datasets. The rest of the

datasets we consider consist of assets that are portfolios of stocks, and it is well known—see

Campbell, Lo, and MacKinlay (1997)—that portfolio returns have positive autocorrelation,

which implies that O is negative, and hence the contrarian strategy has a negative expected

return. Finally, note from the second panel of Table 1 that the in-sample expected return

of the VAR arbitrage portfolio is positive for all datasets, and it is larger than that of the

contrarian portfolio for the 100CRSP dataset.

4.2.2 Out-of-sample comparison of performance

We now compare the out-of-sample expected return and Sharpe ratio of the VAR arbitrage

portfolio to that of two other arbitrage portfolios: (i) the contrarian arbitrage portfolio given

in (3); and, (ii) an arbitrage portfolio based on the unconditional sample mean return, which

12To make a fair comparison (both in sample and out of sample) between the expected return of the
different arbitrage portfolios, we normalize the arbitrage portfolios so that the sum of all positive weights
equals one for all portfolios. We have tested also the raw (non-normalized) arbitrage portfolios, and the
insights are similar.
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we compute as:

ws,t+1 =
1

N

(
µ̂− µ̂>e

N
e

)
,

where µ̂ is the sample mean return vector, and µ̂>e/N is the equally-weighted portfolio

sample mean return; that is, this portfolio assigns a positive weight to stocks that have a

larger sample mean return than the equally-weighted portfolio, and a negative weight to

the rest.

The third and fourth panels in Table 1 give the out-of-sample expected returns and

Sharpe ratios, respectively, of the contrarian, VAR, and unconditional arbitrage portfolios

computed using the rolling-horizon methodology described in Section 2.2. We first compare

the VAR and contrarian arbitrage portfolios. Note that similar to the in-sample results,

the contrarian arbitrage portfolio attains a negative out-of-sample expected return for all

datasets except the 100CRSP dataset. On the other hand, the VAR arbitrage portfolios

attains positive out-of-sample expected returns for all datasets, which are also substantially

larger than the expected returns of the contrarian arbitrage portfolio in absolute value.13

The relative performance of the arbitrage portfolios in terms of Sharpe ratios is similar

to that in terms of expected returns. The VAR arbitrage portfolio attains positive Sharpe

ratios for all datasets, while the contrarian arbitrage portfolio attains a negative Sharpe ratio

for all datasets except the 100CRSP dataset, where its Sharpe ratio is still substantially

lower than that of the VAR arbitrage portfolio. As with the in-sample results in the previous

subsection, the reason for the negative value of the out-of-sample expected return and

Sharpe ratio of the arbitrage contrarian portfolio is that the assets in the Fama-and-French

and industry datasets are portfolios of stocks, which tend to be positively autocorrelated,

and it is intuitively clear that contrarian portfolios will, in general, have negative returns

when applied to datasets with positively autocorrelated assets. We also observe that the

out-of-sample expected return and Sharpe ratio of the VAR arbitrage portfolio are much

larger than those of the arbitrage portfolio based on the unconditional sample mean.

Observe that the VAR arbitrage portfolio attains surprisingly high out-of-sample Sharpe

ratios (ranging from 3.32 for the 100CRSP dataset to 4.90 for the 25FF dataset). We must

13Therefore the VAR arbitrage portfolio outperforms also the momentum arbitrage portfolio obtained by
reversing the sign of the contrarian portfolio weights.
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note, however, that these high Sharpe ratios are associated with very high trading volumes,

and hence it is not clear whether the VAR arbitrage portfolios can be implemented in the

presence of transaction costs, and especially the costs entailed when shorting assets. We

study this issue in the next section, where we evaluate the performance of the conditional

mean-variance portfolios based on the VAR model with shortsales prohibited, both without

and with transaction costs.

5 Analysis of VAR Mean Variance Portfolios

In this section, we describe the various investment (positive-cost) portfolios that we con-

sider, and we compare their out-of-sample performance on the five datasets listed in Sec-

tion 2.1. Section 5.1 discusses portfolios that ignore stock return serial dependence and

Section 5.2 describes portfolios that exploit stock return serial dependence. Then, in Sec-

tion 5.3 we characterize what proportion of the gains from exploiting serial dependence in

stock returns comes from exploiting autocovariances and what proportion from exploiting

cross-covariances, and in Section 5.4 we use a lagged-factor model to trace the origin of the

predictability in stock returns exploited by the conditional portfolios.

5.1 Portfolios that ignore stock return serial dependence

We describe below three portfolios that do not take into account serial dependence in stock

returns: the equally-weighted (1/N) portfolio, the shortsale-constrained minimum-variance

portfolio, and the norm-constrained mean-variance portfolio.

5.1.1 The 1/N portfolio

The 1/N portfolio studied by DeMiguel, Garlappi, and Uppal (2009) is simply the portfolio

that assigns an equal weight to all N stocks. In our evaluation, we consider the 1/N portfolio

with rebalancing; that is, we rebalance the portfolio every day so that the weights for every

asset are equal.
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5.1.2 The shortsale-constrained minimum-variance portfolio

The shortsale-constrained minimum-variance portfolio is the solution to the problem

min
w

w>Σw, (9)

s.t. w>e = 1, (10)

w ≥ 0, (11)

where Σ ∈ IRN×N is the covariance matrix of stock returns, w>Σw is the portfolio return

variance, and the constraint w>e = 1 ensures that the portfolio weights sum up to one, and

the constraint w ≥ 0 precludes any short positions.14 For our empirical evaluation, we use

the shortsale-constrained minimum-variance portfolio computed by solving problem (9)–

(11) after replacing the covariance matrix by the shrinkage estimator proposed by Ledoit

and Wolf (2003).15

5.1.3 The norm-constrained mean-variance portfolio

The mean-variance portfolio is the solution to:

min
w

w>Σw− 1

γ
w>µ, (12)

s.t. w>e = 1, (13)

where µ is the mean stock return vector and γ is the risk-aversion parameter. Because

the weights of the unconstrained mean-variance portfolio estimated from empirical data

tend to take extreme values that fluctuate over time and result in poor out-of-sample

performance (see DeMiguel, Garlappi, and Uppal (2009)), we report the results only for

constrained mean-variance portfolios. Specifically, we consider a 1-norm-constraint on the

difference between the mean-variance portfolio and the benchmark shortsale-constrained

minimum-variance portfolio; see DeMiguel, Garlappi, Nogales, and Uppal (2009) for an

analysis of norm constraints in the context of portfolio selection.16 Specifically, we compute

14We focus on the shortsale-constrained minimum-variance portfolio because the unconstrained minimum-
variance portfolio for our datasets typically includes large short positions that are associated with high costs.
Nevertheless, we have replicated all of our analysis using also the unconstrained minimum-variance portfolio
and the relative performance of the different portfolios is similar.

15We use an estimation window of 1000 days, which results in reasonably stable estimators, while allowing
for a reasonably long time series of out-of-sample returns for performance evaluation.

16We have also considered imposing shortsale constraints, instead of norm-constraints, on the conditional
mean-variance portfolio, but we find that the resulting conditional portfolios have very high turnover, so we
do not report the results to conserve space.
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the norm-constrained mean-variance portfolios by solving problem (12)–(13) after imposing

the additional constraint that the norm of the difference between the mean-variance port-

folio and the shortsale-constrained minimum-variance portfolio is smaller than a certain

threshold δ; that is, after imposing that ‖w − w0‖1 =
∑N

i=1 |wi − (w0)i| ≤ δ, where w0

is the shortsale-constrained minimum-variance portfolio. We use the shortsale-constrained

minimum-variance portfolio as the target because of the stability of its portfolio weights.

We consider three values of the threshold parameter: δ1 = 2.5%, δ2 = 5%, and δ3 = 10%.

Thus, for the case where the norm constraint has a threshold of 2.5% and the benchmark

is the shortsale-constrained minimum-variance portfolio, the sum of all negative weights in

the norm-constrained conditional portfolios must be smaller than 2.5%.

For our empirical evaluation, we compute the norm-constrained (unconditional) mean-

variance portfolio by solving problem (12)–(13) after replacing the mean stock return vector

by its sample estimate, and the covariance matrix by the shrinkage estimator of Ledoit and

Wolf (2003). We consider values of the risk aversion parameter γ = {1, 2, 10}, but our main

insights are robust to the value of the risk aversion parameter and thus to conserve space

we report the results for only γ = 2.

5.1.4 Empirical performance

The top panel in Table 2 gives the out-of-sample Sharpe ratio of the portfolios that ignore

serial dependence in stock returns together with the p-value that the Sharpe ratio is dif-

ferent from that of the shortsale-constrained minimum-variance portfolio. We observe that

the minimum-variance portfolio attains a substantially higher out-of-sample Sharpe ratio

than the equally-weighted portfolio for all datasets except the 100CRSP dataset, where the

two portfolios achieve a similar Sharpe ratio. The explanation for the good performance

of the shortsale-constrained minimum-variance portfolio is that the estimator of the covari-

ance matrix we use (the shrinkage estimator of Ledoit and Wolf (2003)) is a very accurate

estimator and, as a result, the performance of the minimum-variance portfolio is very good.

We also observe that the norm-constrained unconditional mean-variance portfolio out-

performs the shortsale-constrained minimum-variance portfolio for two of the five datasets

(6FF, 25FF), but the difference in performance is neither substantial nor significant. Fi-
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nally, the turnover of the different portfolios is reported in Table 3. We observe from this

table that the turnover of the different portfolios that ignore stock return serial dependence

is moderate ranging for the different portfolios and datasets from 0.2% to 3% per day.

Hereafter, we use the shortsale-constrained minimum-variance portfolio as our main

benchmark because of its good out-of-sample performance, reasonable turnover, and absence

of shortselling.17

5.2 Portfolios that exploit stock return serial dependence

We consider two portfolios that exploit stock return serial dependence. The first portfolio

is the conditional mean-variance portfolio of an investor who believes stock returns follow

the VAR model. This portfolio relies on the assumption that stock returns in consecutive

periods are linearly related. We also consider a portfolio that relaxes this assumption.

Specifically, we consider the conditional mean-variance portfolio of an investor who believes

stock returns follow a nonparametric autoregressive (NAR) model, which does not require

that stock returns be linearly related.

Because it is well-known that conditional mean-variance portfolios estimated from his-

torical data have extreme weights that fluctuate substantially over time and have poor out-

of-sample performance, we will consider only norm-constrained conditional mean-variance

portfolios. Specifically, we consider a 1-norm-constraint on the difference between the condi-

tional mean-variance portfolio and the benchmark shortsale-constrained minimum-variance

portfolio.18

5.2.1 The conditional mean-variance portfolio from the VAR model

One way to exploit serial dependence in stock returns is to use the conditional mean-variance

portfolios based on the VAR model. These portfolios are optimal for a myopic investor (who

17Note that one could also use the norm-constrained unconditional mean-variance portfolio as the bench-
mark, but because our norm-constraints impose a restriction on the difference between the computed portfolio
weights and the weights of the shortsale-constrained minimum-variance portfolio, it makes more sense to use
the shortsale-constrained minimum-variance portfolio as the benchmark. However, in our discussion below
we also explain how the norm-constrained conditional portfolios perform compared to the norm-constrained
unconditional mean-variance portfolios.

18We also considered imposing a shortsale-constraint on the conditional mean-variance portfolios, but we
find that the daily turnover of the resulting portfolios is still too large to give meaningful results, and thus
we report the performance of only the norm-constrained conditional mean-variance portfolios.
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cares only about the returns tomorrow) who believes stock returns follow a linear VAR

model. They are computed by solving problem (12)–(13) after replacing the mean and

covariance matrix of asset returns with their conditional estimators obtained from the VAR

model. Specifically, these portfolios are computed from the mean of tomorrow’s stock return

conditional on today’s stock return:

µV = a+Brt,

where a and B are the ridge estimators of the coefficients of the VAR model obtained from

historical data, and the conditional covariance matrix of tomorrow’s stock returns:

ΣV =
1

τ

t∑
i=t−τ+1

(ri − a−Bri−1)(ri − a−Bri−1)>.

In addition, we apply the shrinkage approach of Ledoit and Wolf (2003) to obtain a more

stable estimator of the conditional covariance matrix. Moreover, to control the turnover of

the resulting portfolios, we focus on the case with 1-norm-constraints on the difference with

the weights of the shortsale-constrained minimum-variance portfolio. As for the uncondi-

tional portfolios, we evaluate the performance of the conditional portfolios for values of the

risk aversion parameter γ = {1, 2, 10}, but the insights from the results are robust to the

value of the risk aversion parameter, and thus, we report the results only for the case of

γ = 2.

5.2.2 The conditional mean-variance portfolio from the NAR model

One assumption underlying the VAR model is that the relation between stock returns

in consecutive periods is linear. To gauge the effect of this assumption, we consider a

nonparametric autoregressive (NAR) model.19 We focus on the nonparametric technique

known as nearest-neighbor regression. Essentially, we find the set of, say, 50 historical dates

when asset returns were closest to today’s asset returns, and we term these 50 historical dates

the “nearest neighbors”. We then use the empirical distribution of the 50 days following

the 50 nearest-neighbor dates as our conditional empirical distribution of stock returns for

19See Gyorfi, Kohler, Krzyzak, and Walk (1987) for an in-depth discussion of nonparametric regression
and Gyorfi, Udina, and Walk (2008, 2007) for an application to portfolio selection, and Mizrach (1992) for
an application to exchange rate forecasting.
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tomorrow, conditional on today’s stock returns. The main advantage of this nonparametric

approach is that it does not assume that the time serial dependence in stock returns is of a

linear type, and in fact, it does not make any assumptions about the type of relation between

them. The conditional mean-variance portfolios from NAR are the optimal portfolios of a

myopic investor who believes stock returns follow a nonparametric autoregressive (NAR)

model.

The conditional mean-variance portfolios based on the NAR model are obtained by solv-

ing the problem (12)–(13) after replacing the mean and covariance matrix of asset returns

with their conditional estimators obtained from the NAR model. That is, we use the mean

of tomorrow’s stock return conditional on today’s return:

µN =
1

k

k∑
i=1

rti+1,

where ti for i = 1, 2, ..., k are the time indexes for the k nearest neighbors in the historical

time series of stock returns, and the covariance matrix of tomorrow’s stock return conditional

on today’s return:

ΣN =
1

k − 1

k∑
i=1

(rti+1 − µN )(rti+1 − µN )>.

In addition, we apply the shrinkage approach of Ledoit and Wolf (2003) to obtain a more

stable estimator of the conditional covariance matrix. Moreover, to control the turnover

of the resulting portfolios, we focus on the case 1-norm-constraints on the difference with

the weights of the shortsale-constrained minimum-variance portfolio. As before, we report

results for the risk aversion parameter γ = 2.

Sections 5.2.3 and 5.2.4 discuss the performance of the portfolios described above in the

absence and presence of proportional transaction costs, respectively.

5.2.3 Empirical performance

The last panel in Table 2 gives the out-of-sample Sharpe ratios of the portfolios that exploit

serial dependence in stock returns. Our main observation is that both the VAR and NAR

portfolios that exploit stock return serial dependence substantially outperform the three tra-

ditional (unconditional) portfolios in terms of out-of-sample Sharpe ratio. For instance, the
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norm-constrained conditional mean-variance portfolio from VAR substantially outperforms

the shortsale-constrained minimum-variance portfolio for all datasets, and the difference in

performance widens as we relax the norm constraint from δ1 = 2.5% to δ3 = 10%. We also

note that the performance of the conditional portfolios from the VAR and NAR models is

similar for the datasets with a small number of assets, but the portfolios from the VAR

model outperform the portfolios from the nonparametric approach for the largest datasets

(48Ind and 100CRSP). This is not surprising as it is well known that the performance

of the nonparametric nearest-neighbor approach relative to that of the parametric linear

approach deteriorates with the number of explanatory variables; see Hastie, Tibshirani,

Friedman, and Franklin (2005, Section 7.3).

Table 3 gives the turnover of the various portfolios we study. We observe that impos-

ing norm-constraints is an effective approach for reducing the turnover of the conditional

mean-variance portfolios from VAR while preserving their good out-of-sample performance.

Specifically, although the Sharpe ratio of the conditional mean-variance portfolios from

VAR decreases, in general, when we make the norm constraint tighter (decrease δ), it stays

substantially larger than the Sharpe ratio of the shortsale-constrained minimum-variance

and norm-constrained unconditional mean-variance portfolios for all datasets. Moreover,

the turnover of the norm-constrained conditional mean-variance portfolios from VAR de-

creases drastically as we make the norm constraint tighter. For the case with δ1 = 2.5%,

the turnover of the conditional mean-variance portfolio from VAR stays below 3% for all

datasets, for the case with δ2 = 5%, it stays below 6%, and for the case with δ3 = 10%,

it stays below 15%. The effect of the norm constraints on the conditional mean-variance

portfolios from NAR is similar to that on the conditional portfolios from VAR.

We observe from our empirical results on out-of-sample mean and variance (not reported

in the tables to conserve space) that the gains from using the norm-constrained portfolios

come in the form of higher expected return, since the out-of-sample variance of these port-

folios is much higher than that of the unconditional (traditional) portfolios; that is, stock

return serial dependence can be used to obtain stock mean return forecasts that are much

better than those from the traditional sample mean estimator based on historical data.
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5.2.4 Empirical performance in the presence of transaction cost

We now evaluate the relative performance of the different portfolios in the presence of

proportional transactions costs. Tables 4 and 5 give the out-of-sample Sharpe ratio of the

different portfolios after imposing a transaction costs of 5 and 10 basis points, respectively.

From Table 4 we observe that, in the presence of a proportional transactions cost of

5 basis points, the norm-constrained conditional portfolios from the VAR model substan-

tially outperform the benchmark minimum-variance portfolio for all five datasets, and the

differences increase as we relax the norm constraint from δ1 = 2.5% to δ3 = 10%. The

norm-constrained conditional portfolios from NAR perform similar to those from VAR ex-

cept for the largest datasets (48Ind and 100CRSP), where their performance is worse—again

this is to be expected when we use the nonparametric nearest-neighbor approach. Table 5

demonstrates that in the presence of a transactions cost of 10 basis points, the conditional

portfolios from the VAR outperform the shortsale-constrained minimum-variance portfolio

for only three of the five datasets (25FF, 48Ind, and 100CRSP), which have a larger number

of assets. We conclude that the conditional portfolios from the VAR model generally out-

perform the shortsale-constrained minimum-variance portfolio for transaction costs below

10 basis points.

French (2008, p. 1553) estimates that the trading cost in 2006, including “total commis-

sions, bid-ask spreads, and other costs investors pay for trading services,” and finds that

these costs have dropped significantly over time: “from 146 basis points in 1980 to a tiny 11

basis points in 2006.” His estimate is based on stocks traded on NYSE, Amex, and NAS-

DAQ, while the stocks that we consider in our CRSP datasets are limited to those that are

part of the S&P500 index. Note also that the trading cost in French, and in earlier papers

estimating this cost, is the cost paid by the average investor, while what we have in mind

is a professional trading firm that presumably pays less than the average investor. From

the above results it is clear that to take advantage of the VAR-based strategies, efficient

execution of trades will be important.
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5.3 Exploiting autocovariances versus cross-covariances

In this section, we investigate what proportion of the gains from exploiting time serial

dependence in stock returns is obtained by exploiting autocovariances in stock returns, and

what proportion is obtained by exploiting cross-covariances. To do this, we compare the

performance of the conditional mean-variance portfolios from VAR defined in Section 5.2.1,

with that of a conditional mean-variance portfolio obtained from a diagonal VAR model,

which is a VAR model estimated under the additional restriction that only the diagonal

elements of the slope matrix B can be different from zero.20

Our empirical analysis shows that a substantial part of the gains comes from exploiting

cross-covariances in stock returns. We find that for the 6FF dataset, most of the gains come

from exploiting cross-covariances; for the 25FF dataset, 72% of the gains come from exploit-

ing cross-covariances; for the 10Ind dataset, 25% of the gains come from cross-covariances;

for the 48Ind dataset, 29% of the gains come from cross-covariances; and finally, for the

100CRSP dataset, 19% of the gains come from cross-covariances. This is not surprising, be-

cause we already found in Section 4 that there exist statistically significant lead-lag relations

between the assets in our datasets.

5.4 Origin of the predictability exploited by conditional portfolios

To understand the origin of the predictability exploited by the conditional portfolios from

the VAR model, we compare the performance of the conditional portfolios based on the

VAR model to that of conditional portfolios based on the lagged-factor model defined in

Equation 8. To identify the origin of the predictability exploited by the conditional portfo-

lios, we first consider a four-factor model including the Fama-French and momentum factors

(MKT, SMB, HML, and UMD), and then four separate one-factor models, each of them

including only one of the four factors listed above.

Table 6 reports the performance of the conditional portfolios from these five models, the

first with four factors, and the rest with a single factor. First, we observe that the condi-

tional portfolios from the four-factor model outperform the benchmark shortsale-constrained

20To make this comparison we relax the norm constraint so that we can disentangle the effect of the diago-
nal versus off-diagonal elements of the slope matrix, without the confounding effect of the norm constraints.
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minimum-variance portfolio for all datasets except 100CRSP. Second, comparing the Sharpe

ratios for the portfolios based on the factor model in Table 6 to the Sharpe ratios for the con-

ditional portfolios based on the full VAR model in Table 2, we notice that the performance

of the conditional portfolios from the four-factor model is similar to that of the conditional

portfolios from the VAR model for the 6FF and 25FF datasets, a bit worse for the 10Ind

and 48Ind datasets, and substantially worse for the 100CRSP dataset. The reason for this

is that the Fama-French and momentum factors capture most of the predictability in the

datasets of portfolios of stocks sorted by size and book-to-market, but reflect only part of

the predictability captured by the full VAR model for the datasets of industry portfolios

and individual stocks. These results justify the importance of considering the full VAR

model.

Moreover, comparing the performance of the conditional portfolios from the four differ-

ent one-factor models, we observe that most of the predictability in all datasets comes from

the MKT and HML factors. The implication is that the conditional portfolios are exploiting

the ability of today’s return on the MKT and HML factors to forecast individual stock re-

turns tomorrow. Note that this is very different from the type of predictability exploited in

the literature before, where typically today’s dividend yield and today’s short-term versus

long-term yield spread have been used to predict tomorrow’s return on a single risky index.

The conditional portfolios we study exploit the ability of today’s return on the MKT and

HML factors to forecast which individual stocks will have high returns and which individual

stocks will have low returns tomorrow.

6 Conclusion

In this paper, we have investigated whether investors can use a vector autoregressive (VAR)

model to exploit the autocorrelation and cross-correlation documented in the literature to

improve the out-of-sample performance of static and dynamic portfolios. Our VAR model

allows tomorrow’s expected return on every stock to depend linearly on today’s realized

return on every stock, and hence it is general enough to capture any linear relation between

stock returns in consecutive periods, irrespective of whether its origin is momentum, lead-lag
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relations, or some other feature of the data. We also consider a nonparametric autoregressive

(NAR) model, which does not require that the relation across stock returns be linear.

We find that the VAR model is statistically significant for all five datasets that we

consider, which include four datasets from Ken French’s website (consisting of daily returns

on 6 and 25 value-weighted portfolios of stocks sorted on size and book-to-market, and

the 10 and 48 industry value-weighted portfolios) and a dataset containing individual stock

returns from the CRSP database. For all these datasets, we consider two versions: one that

has close-to-close returns and a second that has open-to-close returns, with the results for

the latter reported in the robustness section.

Next, we characterize, both analytically and empirically, the expected return of an arbi-

trage (zero-cost) portfolio based on the VAR model, and show that it compares favorably to

that of other arbitrage portfolios in the literature, such as the contrarian portfolio considered

in Lo and MacKinlay (1990) and Khandani and Lo (2010). In contrast to the contrarian

arbitrage portfolio, whose expected return is positive if the stock return autocorrelations are

negative and the stock return cross-correlations are positive, the VAR arbitrage portfolio

achieves a positive expected return in general, regardless of the sign of the autocorrelations

and cross-correlations. Empirically, we show that the VAR arbitrage portfolio outperforms

(out of sample) the contrarian arbitrage portfolio and an arbitrage portfolio based on the

unconditional sample mean.

Finally, we evaluate the performance of two investment (positive-cost) portfolios: a con-

ditional mean-variance myopic portfolio based on the linear VAR model, and a conditional

mean-variance portfolio using a nonparametric autoregressive (NAR) model. We find that,

subject to a norm constraint on the portfolio weights, these conditional investment portfo-

lios outperform the traditional (unconditional) mean-variance portfolio and the shortsale-

constrained minimum-variance portfolio for transaction costs below 10 basis points. We

show that a substantial part of the gains from using the VAR model arise from exploiting

cross-covariances in stock returns.

In order to understand the origin of the predictability exploited by the conditional

portfolios from the VAR model, we compare the performance of the conditional portfolios

based on the VAR model to that of the conditional portfolios based on a lagged-factor
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model, where the factors are the Fama-French and momentum factors (MKT, SMB, HML,

and UMD), and then four separate one-factor models, each of them including only one of the

four factors listed above. We find that most of the predictability in all datasets comes from

the MKT and HML factors. Note that this is very different from the type of predictability

exploited in the literature before, where typically today’s dividend yield and today’s short-

term versus long-term yield spread have been used to predict tomorrow’s return on a single

risky index. We also find that, while the conditional portfolios from the four-factor model

typically outperform the benchmark shortsale-constrained minimum-variance portfolio, they

do not perform as well as the portfolios based on the full VAR model. The reason for this

is that the Fama-French and momentum factors capture most of the predictability in the

datasets of portfolios of stocks sorted by size and book-to-market, but reflect only part of

the predictability captured by the full VAR model for the datasets of industry portfolios

and individual stocks. These results justify the importance of considering the full VAR

model.
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A Robustness Checks

In this appendix, we report the results of several additional analysis that we have undertaken

to test the robustness of our findings.

A.1 Robustness to asynchronous trading

To check whether our results are driven by asynchronous trading, we evaluate the per-

formance of the different portfolios on open-to-close and weekly return versions of all five

datasets we consider, as well as a dataset containing open-to-close industry ETF returns.

We find that the results are generally robust to using open-to-close and weekly re-

turn data. This shows that there is serial dependence in open-to-close and weekly return

data, which are much less likely to be affected by asynchronous or infrequent trading than

the close-to-close daily data. This result is in agreement with the observation by Lo and

MacKinlay (1990, p. 197) and Anderson, Eom, Hahn, and Park (2005) that the lead-lag

relations in stock returns they document cannot be completely attributed to asynchronous

or infrequent trading.

A.1.1 Open-to-close return data

We evaluate the performance of the different portfolios on open-to-close return versions of all

five datasets we consider, which are less likely to be affected by the effects of asynchronous

trading. The out-of-sample Sharpe ratios for the different portfolios for open-to-close return

data are reported in Tables A1, A3, and A4 in the appendix, for transaction costs of 0, 5,

and 10 basis points, respectively, with the turnover reported in Table A2. We find that the

conditional portfolios from the VAR model outperform the shortsale-constrained minimum-

variance portfolio for transaction costs below 5 basis points.

A.1.2 Open-to-close industry ETF return data

We evaluate the performance of the different portfolios on a dataset with open-to-close

returns for nine industry ETFs for which we have obtained daily return data from 1998 to

2013 from Bloomberg.21 The results, not reported in the manuscript to conserve space, show

that the conditional portfolios outperform the benchmark substantially and significantly for

21The nine US equity ETFs we consider have tickers XLY, IYZ, XLP, XLE, XLF, XLV, XLB, XLK, XLU.
We selected these nine ETFs because they are the ETFs for which data is available for a reasonably long
time period (1998–2013) and they also have large trading volumes.
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transaction costs of 5 basis points, and their performance is similar to that of the benchmark

for transaction costs of 10 basis points.

A.1.3 Weekly return data and rebalancing

We evaluate the performance of the different portfolios on weekly return data for the five

datasets we consider in the manuscript. The results are reported in Tables A5 and A6 in

the appendix for the cases with transaction costs of 0 and 5 basis points, respectively.

We find that our results are generally robust to the use of weekly data. For instance, we

find that even with weekly data the norm-constrained conditional mean-variance portfolios

with δ1 = 2.5% generally outperform the minimum-variance portfolios in terms of Sharpe

ratio on all datasets.22 Comparing the performance of the conditional portfolios for daily

and weekly return data, we find that the conditional portfolios perform slightly better with

daily than with weekly data. We believe the reason for this is that the magnitude of the

serial dependence that the VAR model captures is larger for higher frequency data.

Table A6 shows that the norm-constrained conditional portfolios with δ1 = 2.5% tend to

outperform the minimum-variance portfolio for most weekly datasets even in the presence of

proportional transactions costs of 5 basis points, but the differences are not substantial; that

is, the insight that the conditional portfolios outperform the benchmark for transaction costs

of 5 basis points is generally robust to the use of weekly return data. This is a bit surprising

because as one decreases the amount of trading, one would expect that the transactions

costs associated with the conditional mean-variance portfolios would be smaller, and hence

these portfolios would perform better than their daily-rebalanced counterparts. But as we

discussed previously, the degree of predictability decreases with data frequency, and hence

the advantage of trading less frequently (and thus incurring lower transactions costs) is

offset by the lower degree of predictability in the lower frequency data.

Summarizing, we find that the overall relative performance in the presence of transac-

tions costs is roughly the same independent of the frequency.

A.2 High turnover, size, and price stocks and Dow Jones stocks

We have evaluated the performance of the conditional portfolios on the 100CRSP dataset

where at the beginning of each calendar year we choose the 100 stocks with highest turnover,

size, or price as our investment universe, and also where we choose the stocks in the Dow

Jones index.

22We use an estimation window of 260 weeks.
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Table A7 in the appendix reports the results for the sample of stocks with high turnover.

We find that the conditional portfolios outperform the benchmark for transaction costs of

10 basis points, and the difference in Sharpe ratios is both substantial and statistically

significant; that is, the performance of the conditional portfolios is better for high turnover

stocks that for our base case with stocks selected from the S&P500 index. This results

is particularly relevant as high turnover stocks are unlikely to suffer from the effects of

asynchronous or infrequent trading.

The results for stocks with large size, high price, and stocks in the Dow-Jones, not re-

ported to conserve space, show that the conditional portfolios outperform the benchmark

for transaction costs of up to 5 basis points. They also outperform the benchmark for

transaction costs below 10 basis points, when the threshold of the norm constraint is suf-

ficiently low (δ2 = 5%). Summarizing, we find that our results are better for stocks with

large turnover, and robust for stocks with large size and price, and for stocks in the Dow

Jones index.

A.3 In-sample optimal portfolios with proportional transactions costs

In this manuscript, we have used norm constraints to control the high turnover of the condi-

tional mean-variance portfolios and reduce the impact of transactions costs. An alternative

approach is to impose the transactions costs explicitly in the mean-variance portfolio opti-

mization problem, and thus, obtain a portfolio that is optimal (at least in-sample) in the

presence of proportional transactions costs. In particular, one could solve the following

mean-variance problem with proportional transactions costs:

min
w

w>Σw− 1

γ
w>µ+ κ‖w− w0‖1, (A1)

s.t. w>e = 1, (A2)

where κ is the rate of proportional transactions cost, w0 is the portfolio before trading,

‖w− w0‖1 is the one norm of the difference between the portfolio weights before and after

trading, and hence, κ‖w− w0‖1 is the transactions cost.

To understand whether this alternative approach is effective, we have evaluated the

out-of-sample performance of the conditional portfolios from VAR and NAR computed by

solving Problem (A1)–(A2). Surprisingly, we find that their out-of-sample performance

in the presence of transaction costs is only slightly better than that of the unconstrained

conditional mean variance portfolios, which are computed ignoring transaction costs. More-

over, we find that the performance of the conditional portfolios computed by solving Prob-
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lem (A1)–(A2) is much worse in the presence of transaction costs than that of the norm-

constrained conditional mean-variance portfolios studied in Section 5.2.23

The explanation for this is that the portfolios computed by solving Problem (A1)–(A2)

are much more sensitive to estimation error than the norm-constrained conditional portfolios

that we consider. To illustrate this, we consider the following simple two-asset example

adapted from the example in Footnote 8 of DeMiguel, Garlappi, and Uppal (2009). Suppose

that the true per annum conditional mean and conditional volatility of returns for both

assets are the same, 8% and 20%, respectively, and that the conditional correlation is 0.99.

In this case, because the two assets are identical, the optimal conditional mean-variance

weights for the two assets would be 50%. Moreover, assume that there are transaction

costs of 5 basis points, the starting portfolio w0 is equal to the optimal equal-weighted

portfolio, and the benchmark portfolio for the norm constraints is also equal to the optimal

equal-weighted portfolio.

Then it is straightforward to see that if all conditional moments where estimated without

error, all three conditional portfolios (the unconstrained conditional portfolio that ignores

transaction costs, the conditional portfolio computed by solving Problem (A1)–(A2), and

the norm-constrained conditional portfolio) would be equal to the optimal equal-weighted

portfolio. If, on the other hand, the conditional mean return on the first asset is esti-

mated with error to be 9% instead of 8%, then simple computations show that the uncon-

strained conditional mean-variance portfolio that ignores transaction costs would recom-

mend a weight of 635% in the first asset and −535% in the second asset; the conditional

portfolio computed by solving Problem (A1)–(A2) would recommend a weight of 612% in the

first asset and −512% in the second asset; and the norm-constrained conditional portfolio

with δ = 5% would recommend a weight of 52.5% in the first asset and 47.5% in the second

asset. That is, the norm-constrained conditional portfolios would be much closer to the

optimal portfolio than the conditional portfolio computed by solving Problem (A1)–(A2).

Roughly speaking, the advantage of the norm-constraint is that it imposes an absolute

limit on trading (a limit of δ around the benchmark portfolio), whereas the transaction

costs in the objective function of Problem (A1)–(A2) do not impose a limit, but rather

induce a comparison between the size of the estimated conditional utility and the size of

the transaction costs, where the conditional utility is estimated with error. As a result, we

observe that the weights of the portfolios computed solving Problem (A1)–(A2) fluctuate

excessively from one period to the next due to estimation error, and their performance is

quite poor in the presence of transaction costs.

23To conserve space we have not included the tables with these results, but they are available upon request.
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B Proofs for all the Propositions

Proof for Proposition 1

We first show that E[w>vtrt] = G + σ2(µ). To see this, note that E[w>vtrt] = c1 − c2, where

c1 = 1
NE[(a+Brt−1)

>rt] and c2 = 1
NE[(rv,t−1e)

>rt].

We start by computing c1:

Nc1 = E((a+Brt−1)
>rt)

= E(a>rt) + E(r>t−1B
>rt)

= a>µ+ E(tr(r>t−1B
>rt))

= µ>(1−B>)µ+ E(tr(B>rtr
>
t−1))

= µ>µ− µ>B>µ+ tr(B> E(rtr
>
t−1))

= µ>µ− µ>B>µ+ tr(B> (Γ>1 + µµ>))

= µ>µ− µ>B>µ+ tr(B> Γ>1 ) + µ>B>µ

= µ>µ+ tr(Γ>1 Γ−10 Γ1).

We now compute c2:

c2 =
1

N
E(rv,t−1 e

>rt)

=
1

N2
E(e>a>ert + e> (r>t−1B

>e) rt)

=
1

N2
e> (a>) eµ+

1

N2
(tr(B>ee>E(rtr

>
t−1)))

=
1

N2
((µ>e)2 − e>(µ>B>e)µ) +

1

N2
(e>Γ>1 Γ−10 Γ1e+ e>(µ>B>e)µ).

Hence

c1 − c2 =
1

N
(tr(Γ>1 Γ−10 Γ1)−

1

N
e>Γ>1 Γ−10 Γ1e) +

1

N
(µ>µ− 1

N
(µ>e)2)

=
1

N
(tr(Γ>1 Γ−10 Γ1)−

1

N
e>Γ>1 Γ−10 Γ1e) +

1

N

N∑
i=1

(µi − µm)2,

= G+
1

N

N∑
i=1

(µi − µm)2 = G+ σ2(µ),

which proves that equation (6) holds.

We now show that the two terms on the right-hand side of (6) are nonnegative. The

term σ2(µ) is obviously greater than or equal to zero, so it only remains to show that G is

nonnegative. To see this, note that

G =
1

N

(
tr(Γ>1 Γ−10 Γ1)−

1

N
e>Γ>1 Γ−10 Γ1e

)
=

1

N
(‖Γ−1/20 Γ1‖2F −

1

N
‖Γ−1/20 Γ1e‖22), (B1)

37



where Γ
−1/2
0 is the Cholesky factor of the positive definite matrix Γ0, and ‖A‖F =

∑N
i=1

∑N
j=1 a

2
ij

is the Frobenius norm of matrix A. Also, note that

‖Γ−1/20 Γ1e‖2 ≤ ‖Γ−1/20 Γ1‖F ‖e‖2 =
√
N‖Γ−1/20 Γ1‖F , (B2)

where the inequality follows from basic matrix norm properties; see Golub and Loan (1996,

Ch. 2). Equation (B1) together with inequality (B2) imply that G ≥ 0.

Proof for Proposition 2

From Proposition 1 we have that

E[w>vtrt] = G+ σ2(µ) =
tr(BΓ0B

>)

N
− e>BΓ0B

>e

N2
+ σ2(µ).

Because the covariance matrix Γ0 is symmetric and positive definite, we know that we can

write Γ0 = QΛ0Q
>, where Q is an orthogonal matrix (Q>Q = I) whose columns are the

principal components of Γ0, and Λ0 is a diagonal matrix whose elements are the eigenvalues

of Γ0, which are equal to the variances of the principal components of Γ0. Hence,

E[w>vtrt] =
tr(BQΛ0Q

>B>)

N
− e>BQΛ0Q

>B>e

N2
+ σ2(µ).

Let B̂ = BQ, then

E[w>vtrt] =
tr(B̂Λ0B̂

>)

N
− e>B̂Λ0B̂

>e

N2
+ σ2(µ)

=

∑
i,j λjB̂

2
ij

N
−
∑

i,j,k λjB̂ijB̂kj

N2
+ σ2(µ)

=
1

N2

∑
i,j,k

λjB̂ij(B̂ij − B̂kj) + σ2(µ)

=
1

N

∑
i,j

λjB̂ij(B̂ij − B̂−j) + σ2(µ),

where B̂−j =
∑

i B̂ij/N . Moreover, because
∑

i B̂−j(B̂ij − B̂−j) = 0, we have that

E[w>vtrt] =
1

N

∑
j

λj
∑
i

(B̂ij − B̂−j)2 + σ2(µ),

=
N − 1

N

∑
j

λjvar(B̂•j) + σ2(µ),

where var(B̂•j) is the variance of the elements in the jth column of matrix B̂.

Proof for Proposition 3

The proof is very similar to those of Propositions 1 and 2.
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Table 1: Empirical results for arbitrage (zero-cost) portfolios

This table reports the in- and out-of-sample characteristics of the contrarian, VAR, and unconditional arbitrage
portfolios for the five datasets considered. The first and second panels give the in-sample values of C, O, σ2(µ),
G, as well as the in-sample expected returns of the contrarian and VAR arbitrage portfolios, which are calculated
using equations (4)–(5) and (6)–(7). The third and fourth panels give the out-of-sample expected return and Sharpe
ratios, respectively, of the contrarian, VAR, and unconditional arbitrage portfolios computed using the rolling-horizon
methodology described in Section 2.2.

Quantity/strategy 6FF 25FF 10Ind 48Ind 100CRSP

In-sample values of C, O, σ2(µ), G

C 1.1817 1.4719 0.4569 0.7531 -0.1763
O -1.4050 -1.7076 -0.8773 -1.0163 0.4915
σ2(µ) 0.0017 0.0019 0.0003 0.0007 0.0028
G 0.0704 0.1685 0.0842 0.1679 0.8178

In-sample expected returns

Contrarian -0.2250 -0.2376 -0.4207 -0.2640 0.3124
Conditional VAR 0.0721 0.1705 0.0845 0.1686 0.8206

Out-of-sample expected returns

Contrarian -0.1932 -0.1865 -0.4002 -0.2796 0.2289
Conditional VAR 0.3080 0.3983 0.4308 0.4514 0.5298
Unconditional 0.0383 0.0446 -0.0099 0.0255 -0.0598

Out-of-sample Sharpe ratios

Contrarian -2.0804 -2.2784 -3.0846 -2.1028 0.9719
Conditional VAR 3.6806 4.9082 3.8043 4.0190 3.3238
Unconditional 0.4830 0.6554 -0.0758 0.2055 -0.2675
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Table 2: Sharpe ratios for investment (positive-cost) portfolios

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets,
together with the P-value that the Sharpe ratio for a strategy is different from that for the shortsale-constrained
minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.8100 0.8458 0.7669 0.7690 0.6244
(0.00) (0.00) (0.01) (0.00) (0.90)

Minimum variance 1.0697 1.0331 0.9507 1.0165 0.6132
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 1.0696 1.0332 0.9506 1.0165 0.6132

(0.89) (0.00) (0.90) (0.68) (0.16)
norm cons. (δ2) 1.0766 1.0334 0.9522 1.0165 0.5657

(0.00) (0.00) (0.76) (0.61) (0.09)
norm cons. (δ3) 1.0898 1.0454 0.9519 1.0152 0.4456

(0.00) (0.01) (0.92) (0.93) (0.02)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 1.0956 1.0460 0.9766 1.0251 0.6273

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ2) 1.1308 1.0957 1.0285 1.1092 0.7381

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ3) 1.2037 1.2250 1.1350 1.2879 0.9666

(0.00) (0.00) (0.00) (0.00) (0.00)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 1.1012 1.0433 0.9853 1.0215 0.6245

(0.00) (0.00) (0.00) (0.00) (0.22)
norm cons. (δ2) 1.1394 1.0971 1.0367 1.0719 0.6772

(0.00) (0.00) (0.00) (0.00) (0.04)
norm cons. (δ3) 1.2206 1.2185 1.1367 1.2039 0.7233

(0.00) (0.00) (0.00) (0.00) (0.11)
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Table 3: Turnovers for investment (positive-cost) portfolios

This table reports the daily turnovers for the different investment portfolios and datasets.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.0027 0.0031 0.0044 0.0065 0.0144
Minimum variance 0.0042 0.0097 0.0049 0.0196 0.0232

Unconditional mean variance portfolio
norm cons. (δ1) 0.0043 0.0097 0.0049 0.0196 0.0232
norm cons. (δ2) 0.0049 0.0097 0.0068 0.0196 0.0251
norm cons. (δ3) 0.0067 0.0122 0.0106 0.0228 0.0310

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.0209 0.0135 0.0168 0.0223 0.0261
norm cons. (δ2) 0.0479 0.0363 0.0476 0.0593 0.0562
norm cons. (δ3) 0.1059 0.1075 0.1100 0.1487 0.1237

Conditional mean variance portfolio from NAR
norm cons. (δ1) 0.0263 0.0131 0.0286 0.0213 0.0333
norm cons. (δ2) 0.0594 0.0436 0.0733 0.0560 0.0828
norm cons. (δ3) 0.1308 0.1395 0.1606 0.1713 0.2011
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Table 4: Sharpe ratios for investment (positive-cost) portfolios and transactions
costs of 5 basis points

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets in
the presence of a proportional transactions cost of 5 basis points, together with the P-value that the Sharpe ratio for
a strategy is different from that for the shortsale-constrained minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.8079 0.8433 0.7634 0.7641 0.6161
(0.00) (0.00) (0.01) (0.00) (0.86)

Minimum variance 1.0659 1.0246 0.9460 0.9968 0.5943
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 1.0658 1.0246 0.9459 0.9968 0.5943

(0.55) (0.00) (0.79) (0.56) (0.21)
norm cons. (δ2) 1.0723 1.0249 0.9456 0.9969 0.5454

(0.00) (0.00) (0.96) (0.50) (0.09)
norm cons. (δ3) 1.0838 1.0347 0.9417 0.9926 0.4210

(0.00) (0.03) (0.74) (0.84) (0.01)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 1.0769 1.0341 0.9603 1.0028 0.6060

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ2) 1.0881 1.0639 0.9823 1.0497 0.6927

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ3) 1.1091 1.1305 1.0280 1.1390 0.8681

(0.00) (0.00) (0.00) (0.00) (0.00)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 1.0777 1.0318 0.9575 1.0001 0.5974

(0.00) (0.00) (0.00) (0.00) (0.74)
norm cons. (δ2) 1.0864 1.0587 0.9655 1.0158 0.6101

(0.00) (0.00) (0.00) (0.01) (0.62)
norm cons. (δ3) 1.1037 1.0958 0.9810 1.0328 0.5639

(0.00) (0.00) (0.00) (0.07) (0.62)
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Table 5: Sharpe ratios for investment (positive-cost) portfolios and transactions
costs of 10 basis points

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets in
the presence of a proportional transactions cost of 10 basis points, together with the P-value that the Sharpe ratio
for a strategy is different from that for the shortsale-constrained minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.8058 0.8409 0.7600 0.7591 0.6077
(0.00) (0.00) (0.01) (0.00) (0.78)

Minimum variance 1.0622 1.0160 0.9413 0.9771 0.5754
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 1.0619 1.0161 0.9411 0.9771 0.5754

(0.35) (0.00) (0.80) (0.42) (0.23)
norm cons. (δ2) 1.0679 1.0164 0.9389 0.9772 0.5250

(0.01) (0.00) (0.71) (0.39) (0.10)
norm cons. (δ3) 1.0778 1.0240 0.9314 0.9699 0.3963

(0.00) (0.12) (0.51) (0.70) (0.00)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 1.0583 1.0222 0.9440 0.9804 0.5848

(0.01) (0.00) (0.14) (0.03) (0.01)
norm cons. (δ2) 1.0453 1.0320 0.9360 0.9901 0.6472

(0.00) (0.00) (0.26) (0.13) (0.00)
norm cons. (δ3) 1.0144 1.0359 0.9211 0.9901 0.7695

(0.00) (0.02) (0.07) (0.55) (0.00)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 1.0543 1.0204 0.9298 0.9786 0.5703

(0.00) (0.00) (0.00) (0.00) (0.56)
norm cons. (δ2) 1.0334 1.0204 0.8943 0.9596 0.5429

(0.00) (0.19) (0.00) (0.01) (0.28)
norm cons. (δ3) 0.9869 0.9730 0.8252 0.8616 0.4046

(0.00) (0.00) (0.00) (0.00) (0.02)
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Table 6: Sharpe ratios for conditional portfolios based on lagged-factor models
with tct = 0bps

This table reports the annualized out-of-sample Sharpe ratios for the different constrained portfolios and datasets,
together with the P-value that the Sharpe ratio for a strategy is different from that for the shortsale-constrained
minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.8518 0.8947 0.7654 0.7740 0.6389
(0.00) (0.00) (0.02) (0.00) (0.22)

Minimum variance 1.1087 1.0809 0.9498 1.0153 0.7456
(1.00) (1.00) (1.00) (1.00) (1.00)

Portfolios that exploit stock return serial dependence

Four factors
norm cons. (δ1) 1.1400 1.0977 0.9662 1.0238 0.7491

(0.00) (0.00) (0.00) (0.00) (0.03)
norm cons. (δ2) 1.1790 1.1581 1.0004 1.0786 0.7911

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ3) 1.2621 1.2805 1.0819 1.2145 0.9255

(0.00) (0.00) (0.00) (0.00) (0.00)

Market factor
norm cons. (δ1) 1.1279 1.0912 0.9613 1.0199 0.7462

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ2) 1.1531 1.1257 0.9855 1.0659 0.7493

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ3) 1.2059 1.1990 1.0370 1.1833 0.7911

(0.00) (0.00) (0.00) (0.00) (0.01)

SMB factor
norm cons. (δ1) 1.1122 1.0825 0.9537 1.0160 0.7455

(0.00) (0.00) (0.00) (0.00) (0.73)
norm cons. (δ2) 1.1171 1.0883 0.9613 1.0262 0.7439

(0.00) (0.00) (0.00) (0.00) (0.20)
norm cons. (δ3) 1.1278 1.1121 0.9820 1.0660 0.7404

(0.00) (0.00) (0.00) (0.00) (0.48)

HML factor
norm cons. (δ1) 1.1313 1.0939 0.9612 1.0178 0.7471

(0.00) (0.00) (0.00) (0.00) (0.22)
norm cons. (δ2) 1.1588 1.1339 0.9838 1.0468 0.7648

(0.00) (0.00) (0.00) (0.00) (0.02)
norm cons. (δ3) 1.2171 1.2232 1.0334 1.1219 0.7900

(0.00) (0.00) (0.00) (0.00) (0.13)

UMD factor
norm cons. (δ1) 1.1087 1.0820 0.9475 1.0154 0.7448

(0.96) (0.01) (0.03) (0.80) (0.26)
norm cons. (δ2) 1.1093 1.0835 0.9477 1.0161 0.7203

(0.72) (0.15) (0.42) (0.84) (0.00)
norm cons. (δ3) 1.1095 1.0830 0.9466 1.0057 0.6804

(0.86) (0.76) (0.63) (0.37) (0.01)
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Table A1: Sharpe ratios for investment (positive-cost) portfolios with open-to-
close returns

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets,
together with the P-value that the Sharpe ratio for a strategy is different from that for the shortsale-constrained
minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.5107 0.5768 0.3603 0.3810 0.3504
(0.00) (0.00) (0.01) (0.01) (0.08)

Minimum variance 0.8712 0.8983 0.6772 0.7288 0.5573
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 0.8816 0.8984 0.6777 0.7288 0.5579

(0.00) (0.00) (0.82) (0.00) (0.00)
norm cons. (δ2) 0.8952 0.9080 0.7022 0.7293 0.6181

(0.00) (0.00) (0.01) (0.00) (0.05)
norm cons. (δ3) 0.9271 0.9738 0.7414 0.7917 0.7477

(0.00) (0.00) (0.00) (0.01) (0.02)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.8754 0.9031 0.6800 0.7325 0.5577

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ2) 0.8823 0.9284 0.6908 0.7675 0.5745

(0.00) (0.00) (0.00) (0.00) (0.05)
norm cons. (δ3) 0.8978 0.9762 0.7071 0.8411 0.5973

(0.00) (0.00) (0.00) (0.00) (0.06)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 0.8931 0.9071 0.6933 0.7337 0.5886

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ2) 0.9179 0.9532 0.7160 0.7953 0.6495

(0.00) (0.00) (0.00) (0.00) (0.00)
norm cons. (δ3) 0.9667 1.0363 0.7513 0.9407 0.6186

(0.00) (0.00) (0.00) (0.00) (0.57)
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Table A2: Turnovers for investment (positive-cost) portfolios with open-to-close
returns

This table reports the daily turnovers for the different investment portfolios and datasets.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.0029 0.0037 0.0047 0.0066 0.0131
Minimum variance 0.0056 0.0115 0.0071 0.0149 0.0287

Unconditional mean variance portfolio
norm cons. (δ1) 0.0056 0.0115 0.0074 0.0149 0.0287
norm cons. (δ2) 0.0059 0.0124 0.0082 0.0148 0.0302
norm cons. (δ3) 0.0074 0.0151 0.0106 0.0179 0.0351

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.0096 0.0138 0.0093 0.0163 0.0288
norm cons. (δ2) 0.0202 0.0279 0.0216 0.0407 0.0335
norm cons. (δ3) 0.0497 0.0674 0.0507 0.1123 0.0513

Conditional mean variance portfolio from NAR
norm cons. (δ1) 0.0280 0.0163 0.0288 0.0170 0.0391
norm cons. (δ2) 0.0603 0.0591 0.0768 0.0572 0.0827
norm cons. (δ3) 0.1226 0.1550 0.1650 0.1852 0.2025
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Table A3: Sharpe ratios for investment (positive-cost) portfolios and transac-
tions costs of 5 basis with open-to-close returns points

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets in
the presence of a proportional transactions cost of 5 basis points, together with the P-value that the Sharpe ratio for
a strategy is different from that for the shortsale-constrained minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.5086 0.5741 0.3566 0.3759 0.3411
(0.00) (0.00) (0.01) (0.00) (0.07)

Minimum variance 0.8668 0.8889 0.6707 0.7138 0.5325
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 0.8771 0.8891 0.6709 0.7138 0.5331

(0.00) (0.00) (0.96) (0.00) (0.01)
norm cons. (δ2) 0.8904 0.8978 0.6946 0.7143 0.5921

(0.00) (0.00) (0.02) (0.00) (0.04)
norm cons. (δ3) 0.9212 0.9614 0.7315 0.7735 0.7180

(0.00) (0.00) (0.00) (0.01) (0.02)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.8677 0.8919 0.6715 0.7161 0.5329

(0.14) (0.00) (0.47) (0.00) (0.00)
norm cons. (δ2) 0.8661 0.9058 0.6709 0.7266 0.5456

(0.66) (0.00) (0.96) (0.24) (0.11)
norm cons. (δ3) 0.8579 0.9213 0.6604 0.7287 0.5531

(0.04) (0.00) (0.31) (0.53) (0.35)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 0.8706 0.8938 0.6668 0.7167 0.5548

(0.06) (0.00) (0.26) (0.00) (0.01)
norm cons. (δ2) 0.8695 0.9051 0.6451 0.7378 0.5783

(0.52) (0.00) (0.00) (0.03) (0.13)
norm cons. (δ3) 0.8682 0.9101 0.5995 0.7546 0.4560

(0.88) (0.06) (0.00) (0.21) (0.58)
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Table A4: Sharpe ratios for investment (positive-cost) portfolios and transac-
tions costs of 10 basis points with open-to-close returns

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets in
the presence of a proportional transactions cost of 10 basis points, together with the P-value that the Sharpe ratio
for a strategy is different from that for the shortsale-constrained minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.5066 0.5715 0.3529 0.3708 0.3318
(0.00) (0.00) (0.00) (0.00) (0.13)

Minimum variance 0.8623 0.8795 0.6642 0.6989 0.5077
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 0.8726 0.8797 0.6641 0.6989 0.5083

(0.00) (0.00) (0.98) (0.00) (0.01)
norm cons. (δ2) 0.8857 0.8877 0.6870 0.6994 0.5661

(0.00) (0.00) (0.03) (0.00) (0.07)
norm cons. (δ3) 0.9153 0.9490 0.7216 0.7553 0.6882

(0.00) (0.00) (0.01) (0.02) (0.02)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.8600 0.8807 0.6629 0.6997 0.5081

(0.00) (0.12) (0.25) (0.34) (0.02)
norm cons. (δ2) 0.8499 0.8831 0.6510 0.6857 0.5166

(0.00) (0.40) (0.00) (0.23) (0.28)
norm cons. (δ3) 0.8180 0.8664 0.6137 0.6162 0.5088

(0.00) (0.18) (0.00) (0.00) (0.98)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 0.8481 0.8805 0.6403 0.6996 0.5210

(0.00) (0.42) (0.00) (0.18) (0.15)
norm cons. (δ2) 0.8211 0.8569 0.5743 0.6803 0.5070

(0.00) (0.00) (0.00) (0.13) (0.99)
norm cons. (δ3) 0.7698 0.7839 0.4478 0.5686 0.2933

(0.00) (0.00) (0.00) (0.00) (0.04)
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Table A5: Sharpe ratios for investment (positive-cost) portfolios with weekly
returns

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets
using weekly returns, together with the P-value that the Sharpe ratio for a strategy is different from that for the
shortsale-constrained minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.8304 0.8486 0.8351 0.7917 0.6020
(0.00) (0.00) (0.07) (0.01) (0.05)

Minimum variance 0.9955 1.0166 1.0182 1.0315 0.9495
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 1.0001 1.0245 1.0193 1.0353 0.9545

(0.01) (0.00) (0.77) (0.44) (0.84)
norm cons. (δ2) 1.0056 1.0376 1.0196 1.0456 0.9711

(0.00) (0.00) (0.89) (0.23) (0.73)
norm cons. (δ3) 1.0156 1.0573 1.0192 1.0560 0.9561

(0.00) (0.00) (0.92) (0.32) (0.95)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 1.0038 1.0274 1.0194 1.0377 0.9505

(0.00) (0.00) (0.62) (0.07) (0.94)
norm cons. (δ2) 1.0171 1.0444 1.0239 1.0521 0.9636

(0.00) (0.00) (0.31) (0.02) (0.59)
norm cons. (δ3) 1.0498 1.0866 1.0285 1.0696 0.9804

(0.00) (0.00) (0.39) (0.08) (0.57)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 1.0119 1.0429 1.0252 1.0409 0.9369

(0.00) (0.00) (0.03) (0.09) (0.52)
norm cons. (δ2) 1.0283 1.0718 1.0315 1.0510 0.9194

(0.00) (0.00) (0.06) (0.11) (0.44)
norm cons. (δ3) 1.0610 1.1269 1.0432 1.0647 0.8746

(0.00) (0.00) (0.08) (0.16) (0.32)
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Table A6: Sharpe ratios for investment (positive-cost) portfolios and transac-
tions costs of 5 basis points with weekly returns

This table reports the annualized out-of-sample Sharpe ratios for the different investment portfolios and datasets
with weekly returns, in the presence of a proportional transaction cost of 5 basis points, together with the P-value
that the Sharpe ratio for a strategy is different from that for the shortsale-constrained minimum-variance portfolio.

Strategy 6FF 25FF 10Ind 48Ind 100CRSP

Portfolios that ignore stock return serial dependence

1/N 0.8294 0.8475 0.8333 0.7894 0.5982
(0.00) (0.00) (0.07) (0.03) (0.04)

Minimum variance 0.9921 1.0098 1.0140 1.0226 0.9393
(1.00) (1.00) (1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 0.9965 1.0174 1.0146 1.0260 0.9435

(0.03) (0.00) (0.83) (0.54) (0.84)
norm cons. (δ2) 1.0018 1.0301 1.0143 1.0355 0.9591

(0.00) (0.00) (0.95) (0.27) (0.76)
norm cons. (δ3) 1.0113 1.0490 1.0125 1.0447 0.9425

(0.02) (0.00) (0.91) (0.33) (1.00)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.9986 1.0189 1.0134 1.0265 0.9370

(0.00) (0.00) (0.79) (0.26) (0.80)
norm cons. (δ2) 1.0088 1.0324 1.0145 1.0358 0.9434

(0.00) (0.00) (0.94) (0.16) (0.86)
norm cons. (δ3) 1.0346 1.0656 1.0126 1.0428 0.9497

(0.00) (0.00) (0.91) (0.34) (0.81)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 1.0036 1.0305 1.0137 1.0259 0.9181

(0.00) (0.00) (0.87) (0.52) (0.30)
norm cons. (δ2) 1.0141 1.0516 1.0115 1.0243 0.8918

(0.00) (0.00) (0.71) (0.88) (0.23)
norm cons. (δ3) 1.0347 1.0922 1.0060 1.0195 0.8303

(0.00) (0.00) (0.50) (0.93) (0.18)

50



Table A7: Sharpe ratios for dataset with returns on the 100 stocks with highest
turnover in the S&P500, for different levels of transaction costs

This table reports the annualized out-of-sample Sharpe ratios for the different portfolios and for the dataset with
returns on the 100 stocks with highest turnover in the S&P500, for different levels of transaction costs, together with
the P-value that the Sharpe ratio for a strategy is different from that for the shortsale-constrained minimum-variance
portfolio.

Strategy 100CRSP 100CRSP 100CRSP
Strategy 0 bp 5 bp 10 bp

Portfolios that ignore stock return serial dependence

1/N 0.4175 0.4095 0.4015
(0.80) (0.82) (0.93)

Minimum variance 0.4580 0.4368 0.4156
(1.00) (1.00) (1.00)

Unconditional mean variance portfolio
norm cons. (δ1) 0.4622 0.4409 0.4197

(0.35) (0.38) (0.38)
norm cons. (δ2) 0.3958 0.3723 0.3488

(0.10) (0.07) (0.06)
norm cons. (δ3) 0.3103 0.2815 0.2527

(0.05) (0.05) (0.03)

Portfolios that exploit stock return serial dependence

Conditional mean variance portfolio from VAR
norm cons. (δ1) 0.4879 0.4614 0.4350

(0.00) (0.00) (0.05)
norm cons. (δ2) 0.6176 0.5645 0.5114

(0.00) (0.00) (0.00)
norm cons. (δ3) 0.8335 0.7302 0.6267

(0.00) (0.00) (0.00)

Conditional mean variance portfolio from NAR
norm cons. (δ1) 0.5154 0.4802 0.4450

(0.00) (0.00) (0.02)
norm cons. (δ2) 0.5987 0.5213 0.4438

(0.00) (0.01) (0.39)
norm cons. (δ3) 0.7364 0.5853 0.4340

(0.00) (0.02) (0.74)

51



Figure 1: Two Size-Sorted Portfolios

Figure (a) depicts the time evolution of the diagonal elements of the slope matrix, while Figure (b) depicts
the time evolution of the off-diagonal elements of the slope matrix. The solid lines give the estimated value
of these elements, and we use thicker lines for periods when the elements are statistically significant.

(a) Diagonal elements of the slope matrix

(b) Off-diagonal elements of the slope matrix
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Figure 2: Two Book-to-Market-Sorted Portfolios

Figure (a) depicts the time evolution of the diagonal elements of the slope matrix, while Figure (b) depicts
the time evolution of the off-diagonal elements of the slope matrix. The solid lines give the estimated value
of these elements, and we use thicker lines for periods when the elements are statistically significant.

(a) Diagonal elements of the slope matrix

(b) Off-diagonal elements of the slope matrix
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Figure 3: Six Size- and Book-to-Market-Sorted Portfolios

Figure (a) depicts the time evolution of the diagonal elements of the slope matrix, while Figure (b) depicts
the time evolution of the off-diagonal elements of the slope matrix. The solid lines give the estimated value
of these elements, and we use thicker lines for periods when the elements are statistically significant.

(a) Diagonal elements of the slope matrix

(b) Off-diagonal elements of the slope matrix
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Figure 4: Five Industry Portfolios

Figure (a) depicts the time evolution of the diagonal elements of the slope matrix, while Figure (b) depicts
the time evolution of the off-diagonal elements of the slope matrix. The solid lines give the estimated value
of these elements, and we use thicker lines for periods when the elements are statistically significant.

(a) Diagonal elements of the slope matrix

(b) Off-diagonal elements of the slope matrix
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Figure 5: Four Individual Stocks

Figure (a) depicts the time evolution of the diagonal elements of the slope matrix, while Figure (b) depicts
the time evolution of the off-diagonal elements of the slope matrix. The solid lines give the estimated value
of these elements, and we use thicker lines for periods when the elements are statistically significant.

(a) Diagonal elements of the slope matrix

(b) Off-diagonal elements of the slope matrix
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