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measuring catching up through spillovers depending on the technology gap of 
a unit to the industry leader and the local human capital endowment. We find 
evidence of a non-monotonic relationship between the technology gap to the 
leader as well as human capital and growth. Spillovers are strongest for units 
with a small technology gap to the leader and with abundant human capital. 
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1 Introduction

A large body of empirical work in macroeconomics emphasizes the role of
total factor productivity (TFP) spillovers through knowledge diffusion for
catching up and convergence. Nelson and Phelps (1966) suggested that the
extent of knowledge spillovers depends on two factors, the distance to the
technological frontier (the technology gap) and an economic units’ knowl-
edge stock or human capital endowment. There is now broad evidence on
the importance of either one of the two for catching up and convergence.
Virtually all of this evidence assumes a parametric if not a (log-)linear re-
lationship between spillovers and TFP growth. Little is known about the
appropriateness of this assumption and the actual form of the relationship.

For instance, Benhabib and Spiegel (1994) identified two roles of human
capital levels for economic growth in a large cross section of countries in
1965-1985: for steady-state growth of TFP and for catching up, i.e., the ab-
sorption of spillovers from the technology leader. Griffith, Redding, and van
Reenen (2004) assessed the determinants of TFP growth in a panel of OECD
countries and manufacturing industries in 1974-1990. Their findings suggest
that human capital as well as R&D levels affect TFP growth and conver-
gence. Kneller and Stevens (2006) found further support along those lines in
a panel of industries and OECD countries in 1973-1991, though suggesting
that human capital was more robust a driver of spillovers than R&D in their
data.1 In all of the just-mentioned work, a parametric relationship between
human capital and catching up was assumed.

The goal of this paper is to apply nonparametric rather than parametric
estimation techniques in assessing the functional form of the relationship
between the technology gap and human capital for TFP growth and catching
up. This is accomplished in a (panel) data-set on 231 NUTS2 subnational
regions (of 17 European Union member countries) and 12 industries over the
period 1992-2006.2 The findings are aligned with ones in earlier work to the
extent that the speed of convergence is positively related to the size of the
TFP gap on average, and that the speed of convergence towards the TFP
leader is positively related to a unit’s level of human capital on average. Yet,

1Griffith, Harrison, and van Reenen (2006) found firm-level evidence in support of R&D
as a key determinant of TFP spillovers. Keller (2004) surveys the evidence on international
TFP spillovers.

2NUTS2 is a classification adopted by the statistical office of the European Union,
Eurostat. It refers to regions of a size of mn 0.8-3 inhabitants all over the European
Union.
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the semi- and nonparametric evidence reveals large areas in technology-gap
and human-capital-endowment space where monotone convergence is absent
and leapfrogging or low-growth traps exist. There is standard, monotone
convergence in TFP growth to the industry leader for only 66% of the region-
industry units in the data.

The nonparametric estimator explains more than twice as much of the
variation in the data on TFP growth than the parametric estimator in the
data at hand. It outperforms the parametric estimator in particular where
catching up is relatively strong, i.e., where the gap to the leader is small and
human capital is abundant. Moreover, the nonparametric estimator reveals a
much greater variance in the marginal effect of human capital across regions
and industries. Hence, allowing for flexible functional forms when assessing
convergence processes and spillovers appears desirable and quantitatively im-
portant, in particular, for observations where spillovers are strong.

The remainder of the paper is organized as follows. Section 2 summarizes
the data. Section 3 outlines two flexible estimation strategies and summa-
rizes the corresponding estimation results. The last section concludes with a
summary of the key findings.

2 Data

The empirical analysis in this paper involves two types of variables, one
relating to TFP (a region’s gap to the industry leader in an initial period
as well as its average annual growth) and one relating to human capital
endowments. Since TFP is not observed directly, we follow Griffith, Redding,
and van Reenen (2004) for measurement.

2.1 Construction of TFP indices

Define Δ lnYit ≡ lnYit − lnYit−1 as the log change in region-industry dyad
i’s value added in real terms between periods t− 1 and t, Δ lnLit ≡ lnLit −
lnLit−1 as the log change in labor, Δ lnKit ≡ lnKit − lnKit−1 as the log
change in capital stock, and �̃it ≡ 0.5(�it + �it−1) as the average cost share
of labor in value added in periods t and t − 1. Then, the log change in i’s
TFP can be defined as

TFP growthit ≡ Δ lnAit = Δ lnYit − �̃itΔ lnLit − (1− �̃it)Δ lnKit. (1)
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Use ln V̄it to denote the geometric mean of a generic variable lnVit within
an industry and a year across all regions,3 D lnVit ≡ lnVit − ln V̄it to denote
the i’s deviation from ln V̄it in the same industry and year t, D lnVit ≡
D lnVLjt − D lnVit to denote the difference between the technology leader
and unit i in D lnVit, and �it ≡ 0.5(�it + �̄it). Then, we may define

TFP gapit ≡ D lnAit = D lnYit − �itD lnLit − (1− �it)D lnKit. (2)

Hence, information on the cost share of labor in value added, �it, on value
added in real terms, Yit, on employment, Lit, and on the capital stock, Kit

is required to measure TFP growthit and TFP gapit.

2.2 Data sources

Information about �it, Yit, Lit, and Kit is based on data from Cambridge
Econometrics. Lit and Yit are measured directly with 2006 being the base
year for the deflator. Kit is calculated by using the perpetual inventory
method, using data on gross fixed capital formation, Iit, assuming a de-
preciation rate of 15%, � = 0.15 (see Harrigan, 1999), and an initial cap-
ital stock of Ki,1991 =

∑1985
t=1980 Iit, so that Kit = (1 − �)Ki,t−1 + Iit for all

t = 1992, ..., 2006. As in Harrigan (1997) and Griffith, Redding, and van
Reenen (2004), we exploit the properties of the translog production function
to smooth region-industry specific labor shares �it, which are obtained as
predicted values of a regression of the observed labor shares on a country-
industry-specific fixed effect and the log of the capital-labor ratio, whose
parameter is industry-specific. Data on regional human capital stocks Hit

as one measure of absorptive capacity are based on the European Union’s
Labour Force Survey and the European Values Study. We employ informa-
tion on the share of workers with at least secondary education which varies
across NUTS2 regions but not across industries. Overall we have data for 12
industries across 231 regions and 15 years such that our estimates correspond
to n = 41, 580 observations.

3Note that ln V̄it carries an index i since i refers to region-industry dyads and the
geometric mean is industry(-year)-specific.
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3 Empirical framework

3.1 An empirical model of total factor productivity
growth and convergence

A general, semi- or nonparametric catching up process for TFP growth of
region-industry dyad i at time t in the spirit of Benhabib and Spiegel (1994)
and Griffith, Redding, and van Reenen (2004) may be formulated as

Δ lnAit = f(Xit−1) + uit, where Xit−1 = (Hit−1,D lnAit−1) . (3)

Of course, the process in (3) is not consistent with convergence (e.g., non-
leapfrogging) in general terms. However, there will be convergence to the
same steady-state – an absence of leapfrogging and of no-growth regions at a
high TFP gap – as long as Δ lnAit increases monotonically with D lnAit−1.
The latter should not be expected to generally emerge empirically.4 This
paper’s main interest is to reveal the functional form of f(Xit−1), to contrast
the findings with a parametric form as assumed in earlier work on the matter,
and to outline conclusions for economic policy and future research.

3.2 Semi- and nonparametric estimation of technology
spillovers

In this subsection, we are concerned with the specification of f(Xit−1). By
considering convergence forces in TFP as a potentially nonlinear function of
two arguments, the technology gap to the leader, D lnAit−1, and human cap-
ital endowment, Hit−1, we are interested in estimating semiparametric and
fully nonparametric models about f(Xit−1).

Semiparametric estimation of technology spillovers:

In semiparametric models, we allow f(Xit−1) to be fully nonparametric about
D lnAit−1 but parametric about Hit−1. A partially linear model with no in-
teraction of Hit−1 and D lnAit−1 is

Δ lnAit = �HHit−1 + g(D lnAit−1) + uit. (4)

4For instance, it is well known that some countries are locked at least locally (in time)
in what macro-economists call a poverty trap so that there is divergence between richer
and poorer economies (see, e.g., Sachs, McArthur, Schmidt-Traub, Kruk, Bahadur, Faye,
and McCord, 2004).
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We estimate (4) by applying a differencing approach as proposed by DiNardo
and Tobias (2001) and Yatchew (2003). For this, we sort the data in terms
of D lnAit such that D lnALt ≤ D lnAL−1,t ≤ . . . ≤ D lnA2t ≤ D lnA1t and
then replace every generic variable Vit in (4) by its differenced counterpart,

Ṽit ≡ Vit−Vi−1,t. By this strategy, ˜g(D lnAit−1) is differenced out, and we can

estimate �H by regressing Δ̃ lnAit on H̃it−1. Then, we use Δ lnAit− �̂HHit−1

as a new dependent variable and estimate the nonparametric component
g(D lnAit−1) by way of local linear regression based on a radially symmetric
Epanechnikov kernel Kb(⋅) with bandwidth b. The optimal bandwidth b∗ is
chosen from a leave-one-out cross-validation procedure as proposed in Fan
and Gijbels (1996) and Härdle, Müller, Sperlich, and Werwatz (2004). Con-
fidence intervals of the local point estimates are computed via the bootstrap
procedure suggested by Yatchew (2003).5 To increase the efficiency of the
estimator we perform a third-order differencing which follows the procedure
described above but employs optimal differencing weights.6 One important
feature of the semiparametric approach in (4) is that the derivative of pre-

dicted outcome with respect to the technology gap, ∂Δ̂ lnAit

/
∂D lnAit−1,

is independent of Hit−1 and vice versa unlike as in earlier work.7

5One adds the residuals from an under-smoothed estimation of g(D lnAit−1) to the
predictions of the nonparametric component from an over-smoothed local linear regression
to construct a bootstrap sample from which one resamples. As suggested by Yatchew
(2003, p.161), we use the 0.9 and 1.1-fold of the optimal bandwidth for under- and over-
smoothed local linear regressions, respectively. For each draw from the bootstrap sample,
we estimate local linear regressions using b∗ which obtains a distribution of g(D lnAit−1).

This distribution is merged with a distribution of �̂H to obtain a distribution of Δ lnAit.
The 0.025 and 0.975 quantiles of that distribution determine the 95% confidence interval.

6With P th-order differencing, any generic variable Vit is differenced as Ṽit ≡∑P
p=0 wpVi−p,t, where the weights wp sum up to unity,

∑P
p=0 wp = 1, and optimal weights

are tabulated in Yatchew (2003, p.61). With the data at hand, first- and second-order dif-
ferencing turn out very similar to third-order differencing, but the latter yields the lowest
root mean squared error.

7It is advisable to estimate derivatives of nonparametric functions by utilizing higher-
order polynomial regressions for the derivative than for the level of the function. In general
an odd difference between the polynomial order of the level function and the derivative
function is preferable in terms of bias reduction (see Härdle, Müller, Sperlich, and Wer-

watz, 2004, p.99). We estimate ∂Δ̂ lnAit

/
∂D lnAit−1 by employing a local quadratic

regressions for g(D lnAit−1) based on a radially symmetric Epanechnikov kernel and op-
timal bandwidth.
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Nonparametric estimation of technology spillovers:

For fully nonparametric estimation of the model in (3), we employ a mul-
tivariate local linear estimator based on an Epanechnikov product kernel
KbH (Hit−1 −Hst−1)KbA(D lnAit−1 −D lnAst−1) with bandwidths bH and bA
(see Fan and Gijbels, 1996).8 The local linear regression model for all units
i in the neighborhood of unit s (3) employs

n∑
i=1

{Δ lnAit − (Xit−1 −Xst−1) �}2KbH (Hit−1−Hst−1)KbA(D lnAit−1−D lnAst−1).

(5)
f(Xit−1) is based on this smoother, and its confidence bounds are esti-
mated by the same bootstrap procedure, using over- and under-smoothing,
as outlined above.9 Again, the optimal bandwidths bH and bA are chosen
from a leave-one-out cross-validation procedure. An important difference
to the semiparametric approach is that in the fully nonparametric frame-

work ∂Δ̂ lnAit

/
∂D lnAit−1 depends on Hit−1. Accordingly, we utilize three-

dimensional plots of ∂Δ̂ lnAit

/
∂D lnAit−1 against D lnAit−1 and Hit−1 for

illustration.

3.3 Results

In this section, we summarize the results of the semiparametric and nonpara-
metric empirical analysis by way of plots. For each estimator, there are two

plots, one for the level function Δ̂ lnAit (panel A) and one for the gradient

function ∂Δ̂ lnAit

/
∂D lnAit−1 (panel B). With two estimators – a 3rd-order

differencing semiparametric model and a fully nonparametric model – this
results in two figures and, altogether, four panels. In all three-dimensional
plots we use the following coloring to illustrate significance at the 5% level:
dark-red for negative values of outcome (level or derivative) that are signifi-
cantly different from zero; light-red for negative values of outcome (level or
derivative) that are not significantly different from zero; dark-blue for pos-
itive values of outcome (level or derivative) that are significantly different

8Using a bivariate radially symmetric Epanechnikov kernel instead yields almost iden-
tical results.

9For estimation of ∂Δ̂ lnAit

/
∂D lnAit−1, we employ a local quadratic regression in

H-D lnA-space.
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from zero at; light-blue for positive values of outcome (level or derivative)
that are not significantly different from zero;

– Figures 1 and 2 –

Semiparametric estimates:

The semiparametric results are qualitatively very similar between 1st, 2nd,
and 3rd order differencing (we only present 3rd order differencing results in

the interest of brevity) with regard to both the levels function Δ̂ lnAit =

f(Xit−1) and the derivative function ∂Δ̂ lnAit

/
∂D lnAit−1. We focus on

third-differenced estimation results for robustness and efficiency reasons.
Moreover, �̂H based on (4) amounts to about 0.115 (at a robust standard
error of 0.004). Hence, the semiparametric estimates suggest that human
capital abundance allows region-industry dyads to entertain positive TFP
growth, even if the gap to the leader is small. Under human capital scarcity,
regions may face negative TFP growth in spite of a big gap to the technol-
ogy leader. Both features work against mean reversion (convergence). The
highest level of TFP growth is predicted for the maximum level of human
capital and an intermediate gap to the technology leader (D lnAit−1 ≃ 3).

The (two-dimensional) estimate of ∂Δ̂ lnAit

/
∂D lnAit−1 in Figure 1B

suggests the following conclusions. First, when starting with the smallest
gap to the technology leader and then raising the gap, the derivative func-
tion is positive and significantly different from zero at 5% up to a value of
D lnAit−1 ≃ 2.4 or for about 64% of (region-industry) units with the smallest
gaps. These units significantly benefit from spillovers from the technologi-

cal leader. Second, ∂Δ̂ lnAit

/
∂D lnAit−1 is indistinguishably different from

zero for about 33% of the units in the center of the distribution of TFP

gaps or in the interval D lnAit−1 ∈ (2.4, 6.5). Third, ∂Δ̂ lnAit

/
∂D lnAit−1

is positive and significantly different from zero again for TFP gaps in the
interval D lnAit−1 ∈ (6.5, 7) or for about 1.3% of the units. The difference
between the second and third segment points to leapfrogging in that part
of the distribution. Finally, the derivative is not significantly different from
zero (positive or negative) for values of D lnAit−1 > 7. The latter points to
a low-growth trap for about 1.7% of the units. The non-monotonicity of the
spillovers with respect to the TFP gap is also evident when focusing on the
fractions of units where a positive significant point estimate for the gradient
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is found. The plot in Figure 2 suggests that a positive, statistically signif-
icant TFP-growth gradient is more likely at either a quite small or a very
large gap to the leader. Overall, the semiparametric estimates suggest that
the relationship between the gap to the leader and TFP growth is not mono-
tonic, a salient feature that is concealed in previous parametric work on TFP
growth. Moreover, about 34% of the industry-region-dyads do not display
convergence to the technology leader in a large region in D lnA-space with a
medium-to-large TFP gap, according to Figure 1B, when applying 95% con-
fidence bounds. Finally, along the whole range of productivity gaps sufficient
levels of human capital can ensure significantly positive TFP growth rates.

Nonparametric estimates:

Let us now relax the assumption that ∂Δ̂ lnAit

/
∂D lnAit is independent

of Hit−1 through fully nonparametric estimation. The corresponding results
are illustrated in Figure 3 and can be summarized as follows. First, the

estimated levels function Δ̂ lnAit = ˆf(Xit−1) is unsurprisingly similar to its
semiparametric counterpart. The nonparametric estimates are somewhat less
smooth and somewhat less efficient (see the larger size of light-colored regions
in Figure 3A relative to Figure 1A). While having not too big of a technol-
ogy gap to the leader is best for convergence in general and independent of
human capital endowments, convergence to the leader is more likely possible
with a medium-high level of human capital as the technology gap rises. The
gradient plot in Figure 3B suggests that significant convergence to the leader
(indicated by dark-blue dots) surfaces more frequently at medium-high levels
of Hit−1.

The relative importance of a technology gap to the leader and of hu-
man capital for convergence can be visualized by plotting the fractions of
units at certain levels of a technology gap or human capital where the point
estimate for the gradient is positive and significant. The corresponding frac-

tions for ∂Δ̂ lnAit

/
∂D lnAit−1 across different levels of D lnAit−1 and Hit−1

are displayed in Figures 4A and 4B. Again, a positive, statistically signif-
icant TFP-growth gradient is more likely at either a quite small or a very
large gap to the leader. Moreover, the fraction of positive significant values

of ∂Δ̂ lnAit

/
∂D lnAit−1 rises with human capital endowments according to

Figure 4B. The latter indicates a positive cross derivative which reinforces the
importance of human capital in addition to its direct effect on TFP growth.
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There is evidence of a lack of catching up at intermediate levels of technology
gaps and at scarce human capital endowments.

– Figures 3-4B –

The nonparametric estimates reveal a larger variation in the role of Hit

compared to a parametric counterpart in the spirit of Griffith, Redding, and
van Reenen (2004), where Δ lnAit is (log-)additive in a constant, Hit−1,
D lnAit−1, and an interaction Hit−1D lnAit−1. While such a parametric
approach yields for our sample an average marginal effect of about 0.088
for Hit−1 the fully nonparametric approach predicts only about 0.043. The
standard deviation of the marginal effect of Hit−1 is 0.007 and 0.723 in the
parametric and the nonparametric model, respectively. Either approach is
relatively parsimonious, since TFP growth is explained by just two factors of
influence. Yet, the parametric approach explains about 2.7% of the variation
in Δ lnAit, while the fully nonparametric framework explains 6.6%, which is
more than twice as much. In particular, the nonparametric estimator out-
performs the parametric approach where the technology gap to the leader is
small and human capital is abundant, hence, for units where catching up is
particularly likely according to Figures 4A-4B.10

4 Conclusions

This paper studies the role of the technology gap and absorptive capacity of
regions and industries for catching up. The functional relationship between
TFP growth and the technology gap and human capital endowments features
considerable nonlinearities and even non-monotonicities that can typically
not be captured by parametric specifications. The estimates suggest that
spillover effects from the technological leader are strongest to regions within
an industry where the technology gap is either quite small or sufficiently
large, at least in Europe. For a medium-sized technology gap, we do not
identify positive spillovers. This provides evidence for leapfrogging at large

10The D lnAit−1-Hit−1 combinations where the nonparametric estimator performs su-
perior can be determined as follows: Define a binary variable which is unity whenever the
residuals of the parametric estimator are at least as large in absolute value as the ones of
the nonparametric estimator. Regressing this binary indicator on the technology gap to
the leader, D lnAit−1, in a linear model yields a coefficient of −0.024 (at a robust standard
error of 0.001). Regressing the binary indicator on human capital endowments, Hit−1, in
a linear model yields a coefficient of 0.163 (at a robust standard error of 0.017).
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to medium-sized technology gaps to the leader. Moreover, we find evidence of
a low-growth trap at very large technology gaps to the leader. Regarding the
effects of human capital in facilitating spillovers from the technology leader
the nonparametric estimation reveals a much bigger variation at a much
smaller average than the conventional approach. This appears particularly
important when thinking of returns to human capital across regions and
industries and the funding of education in federal unions that operate under
financial constraints.
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Tables and Figures

Figure 1: Semiparametric Spillovers - Third Order Differencing

A. TFP Growth

B. TFP Gradient

Note: The estimates base on a sample of 41,580 observations. Panel A illustrates the estimates
for the level Δ lnAit where we use the following coloring: dark-red for for negative values of
outcome that are significantly different from zero at 5%; light-red for negative values of outcome
that are not significantly different from zero at 5%; dark-blue for positive values of outcome
that are significantly different from zero at 5%; light-blue for positive values of outcome that
are not significantly different from zero at 5%. Panel B refers to the estimates for the gradient

∂Δ̂ lnAit

/
∂D lnAit−1 where the red lines mark the 95% confidence interval.



Figure 2: Positive and Significant Spillovers - Semiparametric

Note: The above figure plots the fractions of observations within 25 equally sized bins of
D lnAit−1 for which the semiparametric estimator predicts a significantly positive gradient

∂Δ̂ lnAit

/
∂D lnAit−1.



Figure 3: Nonparametric Spillovers

A. TFP Growth

B. TFP Gradient

Note: The estimates base on a sample of 41,580 observations. Panel A illustrates the estimates
for the level Δ lnAit where we use the following coloring: dark-red for for negative values of
outcome that are significantly different from zero at 5%; light-red for negative values of outcome
that are not significantly different from zero at 5%; dark-blue for positive values of outcome
that are significantly different from zero at 5%; light-blue for positive values of outcome that
are not significantly different from zero at 5%. Panel B refers to the estimates for the gradient

∂Δ̂ lnAit

/
∂D lnAit−1 using the same coloring as in Panel A.



Figure 4: Positive and Significant Spillovers - Nonparametric

A. Technology Gap

B. Human Capital

Note: Panel A plots the fractions of observations within 25 equally sized bins of
D lnAit−1 for which the semiparametric estimator predicts a significantly positive gradient

∂Δ̂ lnAit

/
∂D lnAit−1. Panel B plots these fractions against 25 equally sized bins of Hit−1.
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