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We examine the validity of a macroeconomic version of the Modigliani-Miller 
theorem. For this purpose, we develop a general equilibrium model with two 
production sectors, risk-averse households and financial intermediation by 
banks. Banks are funded by deposits and (outside) equity and monitor 
borrowers in lending. We impose favorable manifestations of the underlying 
frictions and distortions. We obtain two classes of equilibria. In the first class, 
the debt-equity ratio of banks is low. The first-best allocation obtains and 
banks' capital structure is irrelevant for welfare: a macroeconomic version of 
the Modigliani-Miller theorem. However, there exists a second class of 
equilibria with high debt-equity ratios. Banks are larger and invest more in 
risky technologies. Default and bailouts financed by lump sum taxation occur 
with positive probability and welfare is lower. Imposing minimum equity capital 
requirements eliminates all inefficient equilibria and guarantees the global 
validity of the macroeconomic version of the Modigliani-Miller theorem. 
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1 Introduction

Motivation

The socially optimal capital structure of banks has become the focus of an extended

debate among policy-makers and academics. New regulatory standards epitomized in

Basel III aim at increasing bank capital requirements by moderate amounts. Some coun-

tries have considered a further strengthening of these requirements.1 There is, however,

no consensus among academics regarding the net effects of higher capital requirements

on welfare. On the one hand, several studies point to higher and potentially signifi-

cant welfare costs when capital requirements are substantially heightened (e.g. Van den

Heuvel (2008), Angelini et al. (2011) or Bolton and Samama (2012)). On the other

hand, a variety of papers stress that welfare costs of substantially heightened capital

requirements are small or vanishing (see e.g. Brealey (2006)).2 Recently, Admati et al.

(2011) have set out and scrutinized the underlying logic for this line of reasoning.

It has long been recognized that the examination of bank capital regulation has to

start with the Modigliani-Miller theorem.3 Modigliani and Miller (1958) state that

changes in the capital structure of a firm — and in particular changes of the ratio of

debt and equity funding — only redistribute the total risk of the firm’s asset returns

among those who fund the firm. However, investment opportunities, total risk of the

firm’s (the bank’s) asset returns and overall funding costs are not affected.4 A large

strand of literature has identified how deviations from the underlying assumptions of the

Modigliani-Miller theorem in the form of distortions and market frictions can imply that

particular capital structures are preferred over others from the perspective of an investor

or from a social point of view (see Admati et al. (2011) for a comprehensive account). If

a social perspective requires a lower debt-equity ratio than a private perspective, then

1See, for example, Siegenthaler et al. (2010) for Switzerland, where stricter capital requirements came
into force on 1 March 2012.

2Furthermore, several studies acknowledge some costs of higher capital requirements over Basel II but
conclude that the benefits exceed the costs (e.g. Basel Committee on Banking Supervision (2010),
Hanson et al. (2011) or Miles et al. (2012)).

3See Schaefer (1990), King (1990), Berger et al. (1995) and Admati et al. (2011). Miller (1995) discussed
whether the irrelevance result holds for banks and why enhanced capital requirements could protect
depositors at comparatively low costs.

4See also the later succinct account in Miller (1977).
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raising capital requirements above the level prevailing in unfettered markets is justified.

In the context of banking, we consider one friction and two potential distortions that

have been at the center of the discussion on the foundations of capital requirements:

• Moral hazard of entrepreneurs,

• Deposit guarantees by governments,

• Bailout by governments in case of default, financed by taxes.

Alleviating moral hazard of entrepreneurs is standard in rationalizing the need for fi-

nancial intermediaries. The guarantee of deposits and the associated bailout of banks

in case of default are usually justified by high social costs of bank defaults, in particular

when many banks fail simultaneously. They are also justified by protection of risk-averse

depositors or the special role of deposits as a means of payment and the corresponding

need to have a large amount of safe assets in the economy.

We are interested in types of bank capital structures that can occur in economies when

there appears to be a rationale for making deposits safe. This may be because of social

costs of bank failures or the protection of deposits of risk-averse households.5

Model

We adopt a general equilibrium perspective to investigate the validity of a macroeco-

nomic version of the Modigliani-Miller theorem. We address this issue in the simplest

model with the following characteristics:

• There is a homogeneous group of risk-averse households.

• Two technologies are available for real investments. In one technology, households

can invest without frictions (henceforth called frictionless technology or FT). Fund-

ing of investments in the other technology is plagued by moral hazard and returns

are risky (henceforth called risky technology or MT).

5In the final section we comment on how our findings may be applied to economies in which deposits
function as a medium of exchange and should be safe for this reason.
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• Banks alleviate moral hazard in lending to MT. Banks fund themselves by means

of debt and outside equity (henceforth called equity).

• The government guarantees bank debt. If banks default they are bailed out and

rescue funds are obtained via taxation.

On purpose, we make two assumptions that allow for the possibility for this economy to

achieve Pareto efficient allocations that would occur in an Arrow-Debreu version of the

economy:

• Banks can eliminate moral hazard in MT at no cost. There is no moral hazard on

the part of bank managers monitoring entrepreneurs.

• Taxation to fund the bailout of defaulting banks is lump sum and thus non-

distortionary.

Given these favorable manifestations of the underlying frictions and distortions, it is a

priori unclear whether bank capital structures matter at the macroeconomic level. For

instance, if the government guarantees deposits and bails out banks in case of default,

then depositors are rescued; but they may be taxed by the same amount that they

receive in rescue funds. Hence, when taxes are lump sum, such bailouts may not affect

the total risk investors are facing and thus may not affect welfare.

Main Results

We first establish existence, uniqueness and Pareto efficiency in the Arrow-Debreu ver-

sion of the economy. In this version, frictions and banks are absent and households can

invest frictionlessly in both technologies via complete contingent commodity markets or

complete security markets.

When frictions and distortions — in the favorable manifestation outlined above — as well

as banks are present, two classes of equilibria occur. In the first class, a macroeconomic

version of the Modigliani-Miller theorem holds: The first-best allocation obtains in all

equilibria, and the capital structure of banks is irrelevant to investment, total risk and

consumption allocation. Specifically, banks attract and channel the socially optimal

amount of resources to the risky technology exposed to moral hazard. Banks are funded
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by a portfolio of debt and (outside) equity, with a sufficient amount of equity such that

debt can be repaid in all states, and no bailout is necessary. Up to a critical debt-equity

ratio, above which banks default with positive probability, every capital structure is an

equilibrium outcome. The resulting allocation replicates the Arrow-Debreu solution.

In the second class of equilibria, debt-equity ratios are high. Banks attract more funds

than in the efficient equilibria, over-invest in the risky technology and are financed

considerably by debt. Banks generate high returns on equity in the good state and

default in the bad state. In the case of default, banks receive funds from the government

to pay out their debt holders. Those government expenditures are financed by lump sum

taxes levied on households and thus on the debt holders themselves. Ex post, the bailout

is neutral for households as they essentially finance their deposit claims with their own

taxes. Ex ante, however, households are willing to hold large amounts of deposits. This

is due to the fact that repayments of deposits are guaranteed and households have no

influence on the risky investments of banks, the implied riskiness of bank equity, and on

the ensuing tax burden when those banks default.

We conclude that the macroeconomic version of the Modigliani-Miller theorem fails to

hold globally, i.e. for all debt-equity ratios. Ratios above a critical level cause changes

in aggregate investment decisions and an increase in total risk of the assets held in the

banking sector.

Furthermore, to avoid the inefficiencies associated with high debt-equity ratios, the reg-

ulator can impose bank equity capital requirements (henceforth “bank capital require-

ments”). Such requirements essentially prevent the occurrence of inefficient equilibria

— so that only efficient equilibria emerge. With suitable capital requirements in place,

the macroeconomic version of the Modigliani-Miller theorem holds for all permissible

capital structures: all equilibria yield the same resource allocation and total risk for the

economy. Finally, if bankruptcy costs were absent, the same welfare implications would

prevail when the regulator could commit to forcing failing banks into bankruptcy. More

specifically, equilibria with and without bank defaults can occur. However, all of them

are efficient.
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Broader Policy Implications

The concern here and in the contemporary policy debates is not risk taking by banks

per se. Extending credit to firms with the risky technology and monitoring those firms

is the key role of banks in our model. As long as these loans are primarily financed by

bank equity, banks will not default and the equilibrium outcome is efficient.

But as soon as banks’ debt-equity ratio exceeds a certain threshold, banks can find

themselves in a situation where they can no longer keep their promises to depositors

and default. Depositors are indemnified by deposit insurance. Banks obtain more total

funds, which they channel into some sectors, thereby diverting funds from other sectors.

An inefficient outcome results.

Our findings show that bank regulators do not necessarily have to face a trade-off between

avoiding the adverse consequences of major bank failures and an efficient allocation of

investment goods. In our model, capital requirements help prevent default of banks

without tightening credit to businesses.

Organization of the Paper

Our paper is organized as follows. In the next section, we present the setup of our model

in detail. The frictionless equilibrium as a benchmark case is established in Section

3. In Section 4, the implication of frictions and distortions on equilibria and welfare is

analyzed. We also provide several examples. In Section 5, we examine how regulation

can eliminate inefficient equilibria. Section 6 concludes.

2 Model Setup

We consider a two-period economy (t = 1, 2). At t = 1, there is a single physical good

– called investment good – that can neither be stored nor consumed. Total endowment

with this good in the economy is W (W > 0). Different technologies can transform this

investment good into a consumption good in period t = 2. There are two different types

of agents: households and entrepreneurs. All agents live for two periods.
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2.1 Technologies

The model includes two different technologies that convert the investment good at t = 1

into a consumption good at t = 2. One is called the frictionless technology (FT) and is

supposed to represent established businesses. There is no uncertainty about the returns

in this sector. The other sector runs a risky technology that is plagued by moral or

other hazards (MT). The returns from this technology are uncertain and subject to

a sector-specific shock. This technology stands for innovative and risky new business

ventures.

The amount KF (KF ∈ [0, W ]) invested in FT at t = 1 yields f(KF ) of the consumption

good in period t = 2. This technology features decreasing returns to scale with f ′(KF ) >

0 and f ′′(KF ) < 0. We assume that f( · ) satisfies the Inada conditions lim
KF →0

f ′(KF ) = ∞
and lim

KF →W
f ′(KF ) = 0. The return of investing in FT is given by

RF := f ′(KF ).

When W = 1, two explicit examples of such a production function are f(KF ) =√
2KF − K2

F and f(KF ) = 2
√

KF − KF for KF ∈ [0, 1].

The amount invested in MT is denoted by KM . Its return R̃ is a binomially distributed

random variable. There are two states of the world: good and bad. In the good state,

occurring with probability σ, every unit invested in period one will turn into R units in

period two. With probability 1 − σ, we will end up in the bad state and the return will

be R (0 ≤ R < R). The expected return of investing one unit of the investment good in

MT is given by

RM := E[R̃] = σR + (1 − σ)R.

2.2 Households

There is a continuum of households h ∈ [0, 1] that derive utility from consumption in

period t = 2. Preferences are represented by a utility function with constant relative risk

aversion, u(c) = c1−θ

1−θ where θ > 0 and θ 6= 1. All households have the same preferences

and own the same amount of the investment good in the first period. Furthermore, they
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are all equally endowed with property rights to the FT and MT technology. Property

rights cannot be traded.6 Under these assumptions, we can proceed as if there was a

single representative household with utility function u and endowment bundle W .

2.3 Entrepreneurs

The technologies are operated by representative entrepreneurs that only play a pas-

sive role in our model. The representative entrepreneurs stand for a continuum of en-

trepreneurs and thus are assumed to behave competitively.7 The entrepreneur operating

FT is denoted by eF and can be directly financed by households. The entrepreneur

operating MT is denoted by eM . She needs to be monitored and, hence, will be funded

by banks. Related to the technology they run, one can interpret entrepreneur eF as a

manager of an established company while entrepreneur eM can be taken as an innovator

or a start-up founder.

3 Frictionless Economy – Arrow-Debreu Equilibrium

Before we introduce banks, we characterize the Arrow-Debreu equilibrium of the econ-

omy and assume that no frictions are present. Both entrepreneurs can be financed

directly, and all agents can trade in markets with complete asset structures or contin-

gent commodity markets. We follow first the latter approach and define the following

variables:

• (1, pg, pb) is the price vector, where the price of the investment good has been

normalized to 1. The price at t = 1 for obtaining one unit of the consumption

good in the good state and nothing in the bad state is denoted by pg. The price

for at t = 1 for obtaining one unit of the consumption good in the bad state and

nothing in the good state is denoted by pb.

• (cg, cb) denotes demand of households in states g and b, respectively.

6As asset markets are complete in all variants of the model, this assumption merely simplifies the
analysis.

7In the case of FT, one typically assumes that each entrepreneur operates a project of size 1 with a
specific productivity. The distribution of entrepreneurs’ productivities generates the function f(KF ).
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• (yF , yM ) denotes demand of entrepreneurs for investment goods for operating tech-

nology FT and MT, respectively.

• (ΠF , ΠM ) denotes (aggregate) profits of firms in sector FT and MT, respectively.

We will next derive consumption and factor demand and state the market clearing con-

ditions. Then, we establish existence and uniqueness of market equilibria.

3.1 Production

Consumption goods are produced in the production sector. Entrepreneurs operating

the technologies maximize profits, taking prices of input and output goods as given.

Entrepreneur eF running FT solves

max {ΠF (yF ) = (pg + pb)f(yF ) − yF } .

This yields the following factor demand function8

yF (pg, pb) = f ′−1

(
1

pg + pb

)
. (1)

Operating MT, entrepreneur eM solves

max
{

ΠM (yM ) = yM (pgR + pbR − 1)
}

.

We observe that in any equilibrium,

pgR + pbR = 1. (2)

Otherwise entrepreneur eM would either demand an infinite amount of the investment

good or none. Prices pg and pb adjust in equilibrium such that demand yF + yM equals

supply W . Therefore, infinite demand cannot occur in equilibrium. Furthermore, yM = 0

would imply that yF = W . But the first-order condition from profit maximization

(pg + pb)f
′(W ) − 1 = 0 and the Inada condition f ′(W ) = 0 cannot hold simultaneously.

As a result, yM = 0 can be ruled out in equilibrium as well. Hence, 0 < yM < W , which

requires (2). Equilibrium condition (2) implies that ΠM = 0.

8Note that this demand function is well defined as f( · ) is concave and the Inada conditions hold.
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3.2 Consumption

As households own all technologies and the total endowment, they are the only agents

consuming. Risk-averse households face the following utility maximization problem:

max

{
uh(cg, cb) = σ

c1−θ
g

1 − θ
+ (1 − σ)

c1−θ
b

1 − θ

}

s.t. W + ΠF + ΠM ≥ pgcg + pbcb. (3)

The corresponding demand functions for risk-averse households are given by

cg(pg, pb) =

[
pg +

(
pg

pb

1 − σ

σ

) 1

θ

pb

]−1

(W + ΠF + ΠM ), (4)

cb(pg, pb) =



(

pb

pg

σ

1 − σ

) 1

θ

pg + pb




−1

(W + ΠF + ΠM ). (5)

We note that for pg = pb and σ = 1

2
, cg(pg, pb) = cb(pg, pb) = W +ΠF +ΠM

pg+pb
. We also note

that equilibrium prices p∗

g and p∗

b have to be positive as otherwise cg(p∗

g, p∗

b) or cb(p
∗

g, p∗

b)

would be infinite.

3.3 Market Clearing

We have derived factor and consumption demand functions. For markets to clear at

prices pb > 0, pg > 0, the values of all excess demand functions must be equal to zero:

yF (pg, pb) + yM (pg, pb) − W = 0, (6)

zg := cg(pg, pb) − f(yF (pg, pb)) − yM R = 0, (7)

zb := cb(pg, pb) − f(yF (pg, pb)) − yM R = 0. (8)

Next we show existence and uniqueness of market equilibria.

3.4 Equilibria

We first aim at an existence result. Assume first R > R > 0. Because of the Inada

conditions, yF ∈ (0, W ) and because of the equilibrium condition (6),

yM = W − yF . (9)
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It remains to clear the market at t = 1 in the good state and in the bad state. We

consider the aggregate excess demand function z(p) where p = (pg, pb) and z = (zg, zb).

Using the equilibrium condition (2), we can restrict ourselves to price pairs in the simplex

∆ = {(pg, pb) ∈ R
2
+| pgR + pbR = 1}.

z is well defined and continuous in the relative interior of ∆ and satisfies a boundary

condition. Therefore, we can apply the argument of the proof of Proposition 17.C.1 in

Mas-Colell et al. (1995) to z and ∆ and obtain existence of p∗ ∈ Relative Interior(∆)

with z(p∗) = 0.

Suppose next R > R = 0. Then the equilibrium condition (2) implies pg = 1/R, while it

imposes no restriction on pb. Now the formulas (1), (5) and (8) imply lim
pb→0

zb(1/R, pb) > 0

and zb(1/R, pb) < 0 for pb sufficiently large. For the second claim, consider



(

pb

pg

σ

1 − σ

) 1

θ

pg + pb


 · zb(1/R, pb) = f(yF ) ·


pg −

(
pb

pg

σ

1 − σ

) 1

θ

pg


+ W − yF .

Hence by the intermediate value theorem, there exists p∗

b > 0 with zb(1/R, p∗

b) = 0.

Because of Walras Law, the market for the consumption good in state g is cleared as

well.

We have established:

Proposition 1

An equilibrium exists.

Since the only household is locally non-satiated, the first welfare theorem applies. More-

over, if a′ = (c′

g, c′

b, y′

F , y′

M ) and a′′ = (c′′

g , c′′

b , y′′

F , y′′

M ) denote two equilibrium outcomes,

then, because of the first welfare theorem, the only household must attain the same

utility level in both cases, that is u(c′

g, c′

b) = u(c′′

g , c′′

b ). Suppose a′ 6= a′′. Then they differ

in all coordinates due to the particular features of the model. Because of the convexity

of the consumption set and both technologies, the convex combination 1

2
a′ + 1

2
a′′ is also

feasible. But because of the strict convexity of the household’s preferences for bundles

(cg, cb), u(1

2
(c′

g, c′

b) + 1

2
(c′′

g , c′′

b )) > 1

2
u(c′

g, c′

b) + 1

2
u(c′′

g , c′′

b ) = u(c′

g, c′

b), contradicting the
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optimality of equilibrium consumption. Hence to the contrary, a′ = a′′. We have shown:

Proposition 2

Equilibrium allocations are efficient and unique.

The above uniqueness argument further shows:

Corollary 1

The Arrow-Debreu equilibrium allocation is the only Pareto optimal allocation.

It is useful to collect some of the findings obtained during the foregoing analysis:

Corollary 2

At equilibrium, (1), (2), yF ∈ (0, W ), and (9) have to hold.

We conclude this section with some remarks on the role of the Inada conditions. First,

one might be concerned that the second Inada condition at KF = W is not maintained

if W changes — unless f would be altered as well. Imposing the Inada conditions on

f helps simplify the analysis. But observe that if the economy has an equilibrium with

0 < yF < W , then it also has an equilibrium with the same outcomes pg, pb, cg, cb, yF , yM

when ceteris paribus f is replaced by another production function f̄ satisfying decreasing

returns to scale, f̄ ′(yF ) = f ′(yF ), and f̄(yF ) = f(yF ). This observation does not require

(or rule out) any Inada conditions for f̄ . An example is f̄(KF ) = f(KF ) for KF < yF

and f̄(KF ) = 2(
√

KF − √
yF )

√
yF f ′(yF ) + f(yF ) for KF ≥ yF .

Second, existence, uniqueness and efficiency of equilibria still obtain if the Inada con-

dition at 0 is violated while the one at W is satisfied. However, then yF = 0 can but

need not occur in equilibrium. In case both Inada conditions fail to hold, yF = 0 and

yF = W are possible equilibrium outcomes. Equilibrium is unique and efficient provided

it exists. General existence in that case remains an open question. Next, we will provide

several examples illustrating these facts.

3.5 Examples

We next provide several examples. We first present one example that satisfies all as-

sumptions. Then, we present two examples in which the Inada condition at 0 is violated.
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In Appendix A, we provide two further examples in which both Inada conditions are

violated and which entail corner solutions. In all examples, we treat the investment good

as numéraire.

� Example 1: 0 < yF < W when both Inada conditions are satisfied.

Let W = 1, f(KF ) = 2
√

KF − KF , θ = 2, σ = 2/3, R = 1/2 and R = 2. We obtain the

following results:

yF =

(
q

1 + q

)2

, (10)

f(yF ) =
2q + q2

(1 + q)2
, (11)

yM = 1 −
(

q

1 + q

)2

, (12)

ΠF =
q2

1 + q
, (13)

where q = pg + pb. Furthermore, we can see that cg = [2pg]−1[1 + ΠF ] from (4).

Combining this with (10) to (13) and market clearing conditions (6) and (7) yields

(
1 +

q2

1 + q

)
= 2pg

[
2 + 2

q

1 + q
− 3

(
q

1 + q

)2
]

,

1 + 2q + 2q2 + q3 − 2pg

(
2 + 6q + q2

)
= 0. (14)

Combining (2) with (14), we can assert that the markets for the investment good and

the consumption good in the good state are cleared at prices pg = 1/3 and pb = 2/3. By

Walras law, market clearing in the bad state obtains as well. Hence, (pg, pb) = (1/3, 2/3)

constitutes the equilibrium. The allocation of the investment good to the production

sectors is given by yF = 1/4 and yM = 3/4. Profit in the FT sector is ΠF = 1/2 and

households consume cg = 9/4 and cb = 9/8.
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� Example 2: yF = 0 when f ′(0) < ∞.

Let W = 1, f(KF ) = (KF − 1

2
K2

F ), θ = 1/2, R = 2, R = 3. Then pgR + pbR ≤ 1

implies pg + pb < 1. Suppose pg =
1

2R
, pb =

1

2R
. Then pgR + pbR = 1 and pg + pb < 1.

Since f ′(0) = 1, ΠF is maximized at yF = 0. The market for the investment good is

cleared when yM = W . The resulting maximum profits are ΠF = ΠM = 0. Demand for

consumption goods becomes

cg(pg, pb) =

[
pg +

(
pg

pb

1 − σ

σ

) 1

θ

pb

]−1

· W ;

cb(pg, pb) =



(

pb

pg

σ

1 − σ

) 1

θ

pg + pb




−1

· W.

Choose σ ∈ (0, 1) so that (
pg

pb

)1−θ

=
σ

1 − σ

and consequently, (
pg

pb
· 1 − σ

σ

)1/θ

=
pg

pb
.

Then cg = [2pg]−1 · W = W R, cb = [2pb]
−1 · W = W R and with yM = W all markets

are cleared. In this example, returns on investments in FT are such that entrepreneurs

prefer to invest in the risky MT technology only. This is possible because the Inada

condition at zero is not satisfied.

� Example 3: 0 < yF < W when f ′(0) < ∞.

We set W = 1, σ = 1/2, θ = 1/2, R = 0, R = 2, and assume that f(KF ) = 2(KF − K2

F

2
).

We immediately obtain the following results:

yF = 1 − 1

2q
, (15)

f(yF ) = 1 − 1

4q2
, (16)

yM =
1

2q
, (17)

ΠF = q +
1

4q
− 1, (18)

where q = pg + pb. Note that since this production function does not satisfy the Inada

14



condition at 0, f ′(0) = 2 < ∞,

pg + pb >
1

2
(19)

must hold in order for yF to be positive. For an equilibrium to exist, we need all three

market clearing conditions to hold. If (15), (17) and (19) are satisfied, then the market

for the investment good is cleared. It remains to clear the market for consumption in

both states. Because of Walras law, it suffices to clear the market in the bad state. We

set pg = 1/R to meet (2). Substituting (5), pg = 1/R = 1/2, (16) and (18) in (8), we

get

[
2q2 − q

]
· [q2 − 1

4
] = q3 +

1

4
q or

4q4 − 4q3 − q2 = 0,

which has roots 0 and 1

2
(1±

√
2). Hence q = 1

2
(1+

√
2), pg = 1

2
, pb = 1

2

√
2, yF = 2−

√
2,

yM =
√

2 − 1 will do. Profit in the FT sector is ΠF =
√

2 − 1, households consume

cg = 4(
√

2 − 1) and cb = 2(
√

2 − 1).

3.6 Radner Equilibrium - Equivalence Result

We have derived a frictionless general equilibrium model under uncertainty in the spirit

of Arrow and Debreu (see Debreu (1959)). We cannot readily compare the equilibrium

prices for contingent goods with returns we will obtain in the financial intermediation

case. It is therefore helpful to transform the contingent goods setup from above into

one with assets (also called Radner equilibrium in reference to Radner (1982)). Let us

introduce two assets with the following returns:

Asset Price in t = 1 Return in state g Return in state b

a1 q1 RS RS (20)

a2 q2 R R, (21)

where RS (RS > 0) is an arbitrary safe return.

15



Remark: Throughout the paper, RF denotes the marginal product of the FT technology

and RS is the return on safe assets.

Proposition 3

The Radner equilibrium defined by the asset structure given by (20) and (21) is equivalent

to the Arrow-Debreu equilibrium we have derived above.

For a general proof of the equivalence of Arrow-Debreu and Radner equilibria, see Mas-

Colell et al. (1995), Proposition 19.D.1.

Notice that in our model, there are no future spot markets. We can express the two

assets as bundles a1 = (RS , RS) and a2 = (R, R) in the Arrow-Debreu setting. Hence

q1 = RSpg + RSpb, q2 = Rpg + Rpb. (22)

The matrix of coefficients

M =

(
RS RS

R R

)

has inverse

M
−1 =

1

RS(R − R)
·
(

R −RS

−R RS

)
=

1

RS(R − R)
·
(

−R RS

R −RS

)
.

Hence

pg =
1

RS(R − R)
· (−Rq1 + RSq2),

pb =
1

RS(R − R)
· (Rq1 − RSq2).

We conclude this section by the observation that the equilibrium asset price of a2 in the

Radner equilibrium is unity. This follows from (22) and (2). Hence,

Corollary 3

The Radner equilibrium with the asset structure given by (20) and (21) involves q2 = 1

and q1 = RS

R∗

F
, where R∗

F := f ′(y∗

F ) is the equilibrium return in FT in the Arrow-Debreu

setting.
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4 Allocation with Financial Intermediation

Up to this point, we have assumed absence of any frictions and distortions in the economy

and analyzed equilibria without considering financial intermediation. In this section, we

are going to abandon the assumption of frictionless trade.

4.1 Frictions and Distortions

We assume that households cannot directly invest in MT as financing of entrepreneurs

eM is plagued by moral hazard.9 Banks can alleviate this moral hazard problem by

monitoring borrowers and enforcing contractual obligations. As for the production tech-

nologies, we assume that there is a continuum of banks that have access to a monitoring

technology operated by bank managers. Bank managers play only a passive role in our

model by operating the monitoring technology.

Banks are funded by households through equity acquisition and deposits. Banks take all

funds they receive from households and lend to entrepreneurs eM or invest in FT. Banks

monitor entrepreneurs and maximize expected profits. The details of bank behavior

are set out in Section 4.4. Furthermore, we assume that deposits are guaranteed by

governments in case banks default and that the rescue funds needed for bailouts are

raised via taxes. Hence there are two possible distortions — deposit guarantees and

taxation — and one financial friction due to moral hazard present in our model.

We make three additional assumptions that promise to be favorable to the validity of a

macroeconomic version of the Modigliani-Miller theorem, i.e. that the capital structure

of banks may be irrelevant for welfare. First, we assume that banks can eliminate

the moral hazard friction completely when investing in the MT technology and that

monitoring costs are zero.10 Consequently, MT becomes simply a risky technology banks

can invest in. Second, there is no moral hazard associated with bank managers.11 Third,

9See Freixas and Rochet (2008) for an overview of the microeconomic foundations.
10This assumption is more stringent than needed. For instance, our results can be extended to situations

when entrepreneurs in MT can only pledge a fraction of the output to bankers even if they are
monitored. In such circumstances, however, market equilibria have to be compared to appropriate
second-best allocations. (Details are available upon request.)

11They perform the monitoring activities without compensation.
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taxation is lump sum and thus non-distortionary. Figure 1 gives an overview of the model

with frictions and distortions present and banks intermediating funds.

Risk-averse households

Competitive banks
Equity

Direct

investment
Deposits

Direct

investment

Flow of investment goods in period 1

Government

Payments in period 2

Bail-out

Lump sum taxes

Endowment of

investment good

Monitored

investment

Profits

Figure 1: Model setup with financial intermediation.

All agents in our economy are price (or contract) takers and thus perfect competition

prevails in all markets. Next we characterize the optimal choices of all three agents —

households, entrepreneurs, and banks — given the aforementioned friction and distor-

tions.

4.2 Optimal Choices of Households

Due to the moral hazard friction, households cannot or would not directly finance en-

trepreneur eM . They can, however, lend to entrepreneur eF if investment returns are

more attractive than those of bank deposits.12

12If households are indifferent between depositing money at a bank or investing in FT, the allocation of
funds to these two risk-free assets is determined by equilibrium requirements.
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In this subsection, we investigate the portfolio choice of households. For this purpose, we

denote by RF the return on investment KF,h in FT, by RD the return on deposits D and

by RE and RE the returns on bank equity E in the good and bad state, respectively.13

Hence part of initial wealth W can be saved risk-free, paying out RS = max{RF , RD}
per unit of investment. Alternatively, a household can purchase bank equity with return

RE or RE. In period two, it consumes its returns from both investments after having

received its share of profits from the firm operating the FT technology and paid the tax

T (if any).14

The solution to the households’ optimal portfolio choice problem can be expressed by

means of a variable γ, the optimal share of wealth held in risk-free assets. A fraction of

risk-free assets consists of bank deposits, while the rest accounts for direct investment

in FT. The first-order conditions for the households’ optimal portfolio choice yield (see

Appendix B):

Lemma 1

γ =
(1/W )[ΠF (1 − A1) + T A1] + RE − A1RE

RE − RS + A1(RS − RE)
, (23)

where A1 :=

[
σ(RE − RS)

(1 − σ)(RS − RE)

] 1

θ

.

Observe that A1 > 0 holds if RE > RS > RE and A1 > 1 holds if σRE +(1−σ)RE > RS .

The variables ΠF , T , RE, RE and RS are determined in equilibrium. In turn, they

determine A1 and γ. We will show that in equilibrium 0 < γ ≤ 1.

13D and E denote the amount of investment goods households supply to banks in the form of safe
deposits and equity, respectively. KF,h denotes the amount of investment goods households supply
to firms in FT.

14As profits of entrepreneurs eM will be zero in equilibrium, we neglect them in this subsection already.
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Households will supply their wealth as follows:

D = λγW,

KF,h = (1 − λ)γW,

E = (1 − γ)W.

Here λ denotes the share of risk-free assets held in the form of deposits and 1−λ denotes

the share held in the form of direct investment in FT. We have

λ =





0 if RF > RD,
1 if RF < RD,

∈ [0, 1] if RF = RD.
(24)

4.3 Optimal Choices of Entrepreneurs

As in the Arrow-Debreu case, entrepreneurs are passive in the sense that they only run

the technologies. Again, entrepreneurs – as agents of their firm – maximize profits. But

instead of maximizing present value, they are going to maximize future value in this

section.15 In order to do so, they borrow in period one.

Entrepreneur eF solves the following problem:

max {ΠF (KF ) = f(KF ) − RF KF } , (25)

where RF is the repayment obligation (principal plus interest) per unit at which she can

borrow funds from banks and households (see below). The entrepreneur optimally raises

the amount KF of funds in period one. In lieu of (1) we get

KF = f ′−1(RF ). (26)

15For convenience, we use the same symbols ΠF and ΠM to denote the future value of profits.
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Entrepreneur eM solves the following problem:

max
{

ΠM (KM ) =
[
σ(R − RM ) + (1 − σ)(R − RM )

]
KM

}

s.t. σ(R − RM )KM ≥ 0,

(1 − σ)(R − RM )KM ≥ 0.

Due to moral hazard (see Section 4.1), banks monitor this entrepreneur. Therefore, they

are able to offer state contingent repayment rates RM = 1 + rM and RM = 1 + rM ,

where rM and rM are the state contingent interest rates. The two constraints mean that

the entrepreneur is able to fulfill his repayment obligation in both states. Moreover, we

assume that perfect monitoring prevails and banks can enforce the terms of the loan

contract: The entrepreneur cannot cheat, threaten to voluntarily default or renegotiate

the credit terms in period 2. The production function is linear and, therefore, profits

will be zero in equilibrium. Otherwise, entrepreneur eM will either demand no funds at

all from banks or an infinite amount. As a result, we need RM = R and RM = R in any

potential equilibrium. Consequently, the optimal choice of funds raised in period one is

KM ∈ [0, ∞]. In equilibrium, we have again (9).

4.4 Optimal Choices of Banks

There is a continuum of banks v ∈ [0, 1] that are financed by equity ev and interest

bearing deposits dv .16 They can lend lF,v to entrepreneur eF and lM,v to entrepreneur

eM . The typical balance sheet of a bank v in period t = 1 looks like:

lF,v dv

lM,v ev

av ov

Table 1. Bank balance sheet

Here, av and ov stand for total assets (activa) and total liabilities (passiva, obligations),

respectively. Assets av equal liabilities ov in period t = 1. Initially, banks are only a label

16Equity is outside equity in our model as consumers are passive shareholders. As stressed in Section 4.1,
there is no moral hazard of bank managers and thus no need to have inside equity. For foundations
of counter-cyclical capital ratios in the presence of inside equity and moral hazard of bankers, see
Gersbach and Rochet (2012).

21



or index. After they have received equity, the objective of banks is to maximize expected

profits or, equivalently, return on equity (ROE).17 The objective of a bank without

equity is questionable. However, bank equity is positive in the equilibria depicted in

Propositions 4, 5 and 6. In Proposition 7, we assume that bank equity is non-zero so

that maximization of the expected return on equity is a meaningful objective.

Since banks are equal, we may assume that they all receive the same amount of equity

E and deposits D. Hence, total assets av are the same for all banks and equal to D + E.

Otherwise, we would just have banks of different scale, but the same relative size of

various assets and liabilities in equilibrium. Therefore, we proceed as if there is only one

representative bank and drop the subscript v in the following. Then av becomes simply

a etc. and all variables in banking are understood as aggregate quantities.

Let us denote by α ∈ [0, 1] the share of risky loans a bank has granted to entrepreneur

eM . Now we can express the amount lM of loans to entrepreneur eM as α(D + E) and

the amount lF of funds provided to entrepreneur eF as (1 − α)(D + E).

An important remark is in order. D and E are the amount of investment goods banks

receive in the form of deposits and equity, respectively. D and E are also the amount of

deposits and equity contracts. Of course, we have to check in any equilibrium that the

prices of deposits and equity are 1, justifying the use of D and E in these two meanings.

In Proposition 6 and Proposition 7, we will have to differentiate explicitly the amounts

of contracts and amounts of investment goods banks receive. Then D and E denote the

amount of contracts and pdD and peE are the amount of investment goods banks receive

when pd and pe are the prices of deposits and equity in units of the investment good,

respectively.

Perfect competition in the banking sector ensures that banks lend to eF at the same rate

RF as households.18 For entrepreneur eM , repayment rates are R and R respectively

17We stress that there are two equivalent ways to specify the objective of banks when banks are bailed
out in case of default. First, banks maximize expected profits. Since deposits are guaranteed by the
government, banks anticipate that profits in case of default are zero. Second, banks maximize the
expected return on equity (ROE) and are subject to limited liability and thus return on equity in
case of default is zero as well.

18More precisely, there exists no equilibrium in which those returns can be different and households and
banks invest a positive amount in FT.
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(see above). Furthermore, perfect competition leads to

RD = RF , (27)

that is, banks borrow and lend at the same (endogenous) risk-free rate.19

Banks’ objective is

max
α

E [ROE(α)] = E


max



0,

[
αR̃ + (1 − α)RF

]
(D + E) − RF D

E






 .

Recall that R̃ is the random return in MT. Let us define B1 := R(D + E) − RF D,

B2 := σR + (1 − σ)R − RF and B3 := [σR − RF ](D + E) + (1 − σ)RF D. We obtain the

following optimal values for α:20

If B1 ≥ 0 and B2 < 0, then α = 0.

If B1 ≥ 0 and B2 > 0, then α = 1.

If B1 ≥ 0 and B2 = 0, then α ∈ [0, 1].

If B1 < 0 and B3 > 0, then α = 1.

If B1 < 0 and B3 < 0, then α = 0.

If B1 < 0 and B3 = 0, then α = {0, 1} .

If B1 < 0 and B2 ≥ 0, then B3 > 0.

Total supply of funds is

LM = α(D + E) and (28)

LF = (1 − α)(D + E) (29)

for the MT and the FT sector, respectively. Next, we will prove existence of equilib-

ria when frictions and distortions are present and financial intermediation by banks is

needed.

19Again, there is no equilibrium in which households invest in FT and in bank deposits in which RD 6=
RF .

20For a complete characterization of optimal α, see Appendix C.
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4.5 Equilibria

We distinguish between different equilibria depending on whether defaults happen with

positive probability or not. Note that KF = KF,h + LF and KM = LM in the financial

intermediation case are equivalent to the variables yF and yM , respectively, in the Arrow-

Debreu case. Throughout this section, we will use the equilibrium values obtained in

the Arrow-Debreu setting. To avoid confusion, these equilibrium values are denoted by

p∗

g, p∗

b , c∗

g, c∗

b , y∗

F , y∗

M and R∗

F .

Equilibria without default

We first consider equilibria with financial intermediation, yet without defaults and T = 0.

This corresponds to the frictionless case except for the condition that investment in the

risky technology can only take place through banks. The next proposition establishes

existence of an equilibrium with financial intermediation that is equivalent to the Arrow-

Debreu equilibrium derived in Section 3.

Proposition 4

Suppose the Arrow-Debreu equilibrium allocation satisfies 0 < y∗

F < W . Then there

exists an equilibrium with financial intermediation where the investment in FT is y∗

F ,

the investment in the risky technology is y∗

M , D = 0, banks only invest in the risky

technology and never default.

The proof of Proposition 4 can be found in Appendix D. This equilibrium corresponds

to a banking system in which all banks are funded by equity only.21

Proposition 4 means that the efficient Arrow-Debreu equilibrium allocation is still an

equilibrium outcome when households cannot directly invest in the risky technology and

banks are maximizing return on equity. When banks are funded by equity only, the

return on equity is solely determined by the return of the risky technology. Intuitively,

this can be interpreted as the removal of financial frictions without changing households’

investment options from the Arrow-Debreu setup (i.e., the variant with assets; see Section

21The deposit return is indeterminate. Apart from RD = R∗

F , any values RD < R∗

F can occur in
equilibrium. They do not affect the allocation.
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3.6). We stress that the result hinges on the fact that banks can perfectly monitor eM

at no cost, can charge eM state-contingent interest rates and are perfectly competitive.

Next we investigate to what extent this particular equilibrium is unique.

Proposition 5

Suppose the Arrow-Debreu equilibrium allocation satisfies 0 < y∗

F < W . Then the

equilibrium with financial intermediation and no default in Proposition 4 is unique if

R = 0. In case R > 0, there exists an equilibrium with financial intermediation for

each D ∈ [0, y∗

M · R/R∗

F ] where the investment in FT is y∗

F , the investment in the risky

technology is y∗

M = E + D, banks only invest in the risky technology and never default.

The proof of Proposition 5 is given in Appendix D. These equilibria correspond to a

stable banking system in which banks are funded by equity and deposits.

Proposition 5 states that up to a critical debt-equity ratio, the capital structure of banks

is irrelevant to aggregate investment and risk. Banks’ debt-equity ratio is low enough so

that losses are absorbed by equity holders and there are no defaults. Banks raise and

invest the socially optimal amount of resources. Intuitively, the more a bank is financed

with debt, the riskier its equity becomes. Facing riskier investment choices, risk-averse

households desire more risk-free debt and less risky equity. The extra amount of risk-

free debt required due to increased risk equals exactly the amount of deposits that have

increased the risk of equity in the first place. Thus, under moderate debt-equity ratios,

a macroeconomic version of the Modigliani-Miller theorem emerges. We next investigate

the case where the debt-equity ratio exceeds the critical level.

Equilibria with default

In the following, we explore equilibria where banks default in the bad state and con-

sequently T > 0 has to hold. We consider again the case where the Arrow-Debreu

equilibrium allocation satisfies 0 < y∗

F < W .
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Proposition 6

Suppose the Arrow-Debreu equilibrium allocation satisfies 0 < y∗

F < W . Then there exist

equilibria with financial intermediation where the investment in FT is strictly smaller

than y∗

F , the investment in the risky technology is E + D, banks only invest in the risky

technology and default in the bad state. The resulting equilibrium allocation is inefficient.

The proof of Proposition 6 can be found in Appendix D. These equilibria describe a

fragile banking system. The debt-equity ratio of banks is too high in the sense that

equity does not suffice to absorb losses in the bad state.

Proposition 6 means that above a certain debt-equity ratio, inefficient equilibria arise.

While too little is invested in the FT sector, there is over-investment in the risky tech-

nology. Within this class of equilibria, banks raise too much funds. They achieve high

returns on equity in the good state and default in the bad state. The macroeconomic ver-

sion of the Modigliani-Miller theorem fails to hold in this setting as the capital structure

of banks alters aggregate investment and risk: welfare is lower than in the Arrow-Debreu

allocation. This is remarkable insofar as we assume no monitoring costs and taxes are

lump sum.

4.6 Examples

Next, we reconsider the examples from Section 3 and adopt them to the case with

financial intermediation. We focus on Example 1 and 3, which we re-label Example 1’

and 3’. This allows to illustrate all main findings.

� Example 1’

Recall that W = 1, f(KF ) = 2
√

KF − KF , σ = 2/3, θ = 2, R = 1/2 and R = 2. We

obtain

KF =

(
1

1 + RF

)2

, (30)

f(KF ) =
1

1 + RF

[
2 − 1

1 + RF

]
, (31)
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KM = 1 −
(

1

1 + RF

)2

, (32)

ΠF =
1

1 + RF
. (33)

Efficient Equilibria

We first consider the case without any deposits. We set RF = R∗

F = 1/(p∗

g +p∗

b) and thus

RF = 1. Entrepreneur eF optimally chooses KF = 1/4, implying ΠF = 1/2. KM = 3/4

is an optimal choice for entrepreneur eM . Provided D = 0, we can assert that T = 0

and returns on equity are RE = R and RE = R. Thus we are given B1 = 3/8 ≥ 0

and B2 = 1/2 > 0. Banks optimally choose α = 1 and invest in the risky technology

only. Applying (23), we conclude that households optimally choose γ = 1/4, i.e. they

optimally invest one forth of their wealth in riskless assets. For D = 0, they invest

KF = 1/4 directly in FT and E = 3/4 in bank equity. The resulting equilibrium yields

the same allocation as in the Arrow-Debreu case. We obtain yF = 1/4 and yM = 3/4.

Households consume cg = 9/4 and cb = 9/8.

Next we investigate an efficient equilibrium with deposits. Proposition 5 implies that for

allocations with total amount of deposits below a certain threshold, the efficient Arrow-

Debreu allocation is attained. Here we need D ≤ 3/8. Again, we set RF = R∗

F = 1,

implying KF = 1/4 and ΠF = 1/2. We set D = 1/4. As B2 = 1/2 > 0, banks invest

in the risky technology only. Return on equity is given by RE = 5/2 and RE = 1/4.

Applying (23), we obtain that households optimally choose γ = 1/2. Thus they invest

E = 1/2 in bank equity, D = 1/4 in deposits and KF = 1/4 directly in the frictionless

technology. The allocation of investment goods to the production sectors is still the

same as in the Arrow-Debreu case and given by yF = 1/4 and yM = 3/4. Households

consume cg = 9/4 and cb = 9/8.

Inefficient Equilibria

Proposition 6 states that there exist inefficient equilibria in which banks attract too

many resources and default in the bad state. We illustrate this class of equilibria by

setting RF = 5/4 > R∗

F . Entrepreneur eF optimally chooses KF = 16/81, implying
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ΠF = 4/9. Since B2 = 1/4 > 0, banks only invest in the risky technology. Return on

equity is given by RE = 2 + 3D
4E and RE = 0, as banks default in the bad state. Taxes

are given by T = 3

4
D − 1

2
E. Applying (23), we can write the market clearing condition

for equity as

E = 1 −

[
27D−18E−16

36

] [
6

5

D+E
E

]1/2

+ 88E+27D
36E

27

36

[
1 + D

E

]
+ 45

36

[
6

5

D+E
E

]1/2
. (34)

Since banks invest in the risky technology only, we can assert that E = 65/81 − D.

Combining this with (34) and simplifying, we obtain

(
59

√
78

65 − 81D
− 124

)
(81D − 65) = 0.

An inefficient equilibrium exists in which households invest E = 45253

207576
≈ 0.22 in bank

equity, D = 363961

622728
≈ 0.58 in deposits and KF = 16

81
≈ 0.20 directly in the frictionless

technology. Bank bailouts in the bad state are financed via lump sum taxes T = 273455

830304
≈

0.33. We obtain yF = 16

81
≈ 0.20 and yM = 65

81
≈ 0.80 and households consume cg =

62

27
≈ 2.30 and cb = 59

54
≈ 1.09.

� Example 3’

Recall that W = 1, σ = 1/2, θ = 1/2, R = 0, R = 2, and f(KF ) = 2(KF − K2

F

2
). As

f ′(0) = 2 < ∞, for KF to be positive

RF < 2 (35)

must hold. We obtain the following results:

KF = 1 − 1

2
RF , (36)

f(KF ) = 1 − 1

4
R2

F , (37)

ΠF = 1 +
1

4
R2

F − RF . (38)

28



Efficient Equilibrium

We set RF = R∗

F = 1/(p∗

g + p∗

b) and thus RF = 2
√

2 − 2. Entrepreneur eF optimally

chooses KF = 2 −
√

2, implying ΠF = 6 − 4
√

2.22 KM =
√

2 − 1 is an optimal choice for

entrepreneur eM . Provided D = 0, we can assert that T = 0 and returns on equity are

RE = R and RE = R. Since B1 = 0 ≥ 0 and B2 = 3 − 2
√

2 > 0, banks optimally choose

α = 1, i.e. invest in the risky technology only. Applying (23), we obtain that households

optimally choose γ = 2 −
√

2. For D = 0, they invest KF = 2 −
√

2 directly in FT and

E =
√

2 − 1 in bank equity. The resulting allocation is the same as in the Arrow-Debreu

case. We obtain yF = 2 −
√

2 and yM =
√

2 − 1. Households consume cg = 4(
√

2 − 1)

and cb = 2(
√

2 − 1). This is the only efficient equilibrium in this example as banks will

default in the bad state with any positive amount of deposits.

Inefficient Equilibria

Proposition 6 states that there exist inefficient equilibria in which banks attract too

many resources and default in the bad state. We illustrate this class of equilibria by

setting RF = 1 > R∗

F . Entrepreneurs optimally choose KF = 1/2, implying ΠF = 1/4.

Since B2 = 0 ≥ 0 and B1 < 0 for every positive amount of D, banks invest in the risky

technology only. Return on equity is given by RE = 2 + D/E and RE = 0, as banks

default in the bad state. Taxes are given by T = D. Applying (23), we can write the

market clearing condition for equity as

E = 1 −
1

4
+
[
D − 1

4

] [
D+E

E

]2
+ D+2E

E[
D+E

E

] [
D+2E

E

] . (39)

Since banks invest in the risky technology only, we can assert that E = 1/2 − D.

Combining this with (39) and simplifying, we obtain

7D2 − 7D + 1 = 0.

An inefficient equilibrium exists in which households invest D = 1

2
(1 −

√
3

7
) ≈ 0.17

22Note that this profit is denoted in period two consumption goods. Hence, it cannot be readily com-
pared to the present value profit obtained in the Arrow-Debreu case, which is denoted in period one
investment goods.
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in deposits, E = 1

2

√
3

7
≈ 0.33 in bank equity and KF = 1

2
directly in the frictionless

technology. Bank bailouts in the bad state are financed via lump sum taxes T = 1

2
(1 −√

3

7
) ≈ 0.17. We obtain yF = 1

2
and yM = 1

2
. Households consume cg = 7

4
and cb = 3

4
.

5 Bank Regulation

We next introduce and discuss two regulatory measures that can eliminate all inefficient

equilibria.23

5.1 Bank Capital Regulation

We have shown that the macroeconomic version of the Modigliani-Miller theorem fails

to hold globally. Above a certain debt-equity ratio in the banking sector, banks’ capital

structure is relevant as aggregate investment can deviate from the socially optimal level.

From Propositions 5 and 6 we obtain:

Corollary 4

The class of inefficient equilibria can be eliminated by imposing a minimum bank capital

requirement in the form of an upper bound on the debt-equity ratio:

D

E
≤ ϕ :=

R

R∗

F − R
. (40)

We note that at the regulatory debt-equity ratio we have

D

E
=

R

R∗

F − R
=

y∗

M
R

R∗

F

y∗

M − y∗

M
R

R∗

F

.

In this case, D and E correspond to the critical values of the maximal debt-equity

ratio that can be supported in an equilibrium that yields the same allocations as the

Arrow-Debreu equilibrium. Hence, first-best allocations are guaranteed if banks are

required to operate with debt-equity ratios below R
R∗

F
−R . Given this constraint, the

23A third regulatory measure could be private insurance along the lines of Gersbach (2009), in which
banks need to buy insurance against default in the private market place. An entirely different policy
approach would be to tax risky investments made by banks and to use these revenues to bail out
banks in case of default.
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macroeconomic version of the Modigliani-Miller theorem holds. The capital structure

of banks is irrelevant and equilibria are efficient. We further note that the regulatory

capital requirement can also be expressed in terms of a minimum requirement for the

ratio of equity to assets:

E

y∗

M

≥
y∗

M − y∗

M
R

R∗

F

y∗

M

=
R∗

F − R

R∗

F

.

An important consequence of Corollary 4 is that for a given risk-free interest rate and

a given amount of deposits, banks have to be funded the more by equity, the lower are

the returns of the risky technology in the bad state. This is intuitive as the interest on

deposits determines banks’ repayment obligations and the returns of the risky technology

determines how much funds banks have available to meet those obligations.

We conclude the discussion of optimal bank capital regulation with two remarks. First,

bank capital regulation in the spirit of the one displayed in Corollary 4 can be inter-

preted as a risk-sensitive capital requirement as it is calculated using the returns of the

asset in the bad state. Second, an important consequence of our results is that more

stringent capital requirements do not impose costs on the economy. Thus, stricter capi-

tal requirements than ϕ, which do not rely on precise measurements of the asset risks,

will also implement first-best allocations.24

5.2 Commitment to Bankruptcy

We conclude the regulatory section with the observation that Pareto-efficiency could also

be achieved by forcing failing banks into bankruptcy when bankruptcy costs are zero.

This means that default of banks does not impede efficiency if bankruptcy costs are zero

and the government can commit itself not to intervene.

24In our model, even extremely low bounds on debt-equity ratios are consistent with Pareto-efficiency.
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Proposition 7

Suppose costs of bank bankruptcy are zero independently of how many banks fail. Sup-

pose further that bank equity is non-zero so that maximization of the expected return on

equity is a meaningful objective. Then the allocation in any equilibrium is efficient if the

regulator forces all failing banks into bankruptcy.

The proof of Proposition 7 is given in Appendix D. Here we provide the intuition.

First, all equilibria without default continue to be equilibria under the conditions of

the proposition. Second, all equilibria with default are ultimately equivalent to Radner

equilibria characterized in Proposition 3.

6 Conclusion

We have analyzed the socially optimal capital structure of banks in a macroeconomic

setting. It turned out that the macroeconomic version of the Modigliani-Miller theorem

fails to hold globally. Even in a basic general equilibrium model, the capital structure of

the banking sector can distort the optimal risk allocation in the economy and inefficient

equilibria can arise. Regulatory measures such as minimal capital requirements can

eliminate these inefficient equilibria. There are several potential extensions to our model.

First, we could introduce heterogeneous households with respect to risk aversion. While

this extension promises valuable insights into distributional effects of different capital

structures, they will not fundamentally alter the core insight of the paper. Second,

the special role of bank deposits as a medium of exchange is well known and could be

introduced. When deposits provide payment services above their role as a store of value,

the debt-equity ratio in unregulated markets will likely remain above some level, i.e.

banks funded by equity only will not emerge in equilibrium. However, this does not

alter the policy guideline for keeping the debt-equity ratio in the banking sector below

a certain threshold in order to avoid an inefficient investment allocation in the economy.
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A Appendix - Additional Examples

In the following two examples both Inada conditions are violated and corner solutions

emerge.

� Example A1: yF = W when f ′(0) < ∞ and f ′(W ) > 0.

We set W = 1, σ = 0.5, θ ∈ (0, 1), R = 0, R ∈ (0, 3], and assume that

f(KF ) = KF + ln(1 + KF ). Setting pg = pb = 1/3 will clear the market with

yF = W, yM = 0. In this example, the returns in the risky sector are too low in order to

attract any funds from households. Hence households invest in the safe technology FT

only.

� Example A2: yF = 0 when f ′(0) < ∞ and f ′(W ) > 0.

Let us use f(KF ) = KF

1+KF
instead of f(KF ) = (KF − 1

2
K2

F ) in Example 2. In this case,

markets are cleared with yF = 0, yM = W , i.e. no investment in the safe technology.

This example is similar to Example 2. Again, returns on investments in FT are so low

that people prefer to invest in the risky technology only.

B Appendix - Households’ Optimal Portfolio Choice Problem

Household utility is given by

U(γ) =
1

1 − θ

{
σc1−θ

g + (1 − σ)c1−θ
b

}
,

where cg = W ((1 − γ)RE + γRS) + ΠF ,

cb = W ((1 − γ)RE + γRS) + ΠF − T.

The representative household solves the following problem:

max
γ

U(γ) =
1

1 − θ

{
σ
[
W ((1 − γ)RE + γRS) + ΠF

]1−θ

+(1 − σ) [W ((1 − γ)RE + γRS) + ΠF − T ]1−θ
}

.
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The first-order condition for γ is

σ(RS − RE)

cθ
g

+
(1 − σ)(RS − RE)

cθ
b

= 0. (41)

Rearranging this expression, we obtain

cg

cb
= A1, (42)

where A1 :=

[
σ(RE − RS)

(1 − σ)(RS − RE)

] 1

θ

.

Using cb and cg to get an expression for γ, we obtain

[
W ((1 − γ)RE + γRS) + ΠF

]
= [W ((1 − γ)RE + γRS) + ΠF − T ] A1 or

γ =
(1/W )[ΠF (1 − A1) + T A1)] + RE − A1RE

RE − RS + A1(RS − RE)
.

C Appendix - Banks’ Return on Equity Maximization Problem

We ignore the denominator E in E [ROE(α)] and work with the bank’s expected profit

instead. Without limited liability, bank profits would be

α[R − RF ](D + E) + RF E in the good state and

α[R − RF ](D + E) + RF E in the bad state.

In case RF ≤ R, α = 1 is optimal.

In case RF ≥ R, α = 0 is optimal.

From hereon, we consider the case R < RF < R. In that case, there is never a default

in the good state. Let us focus on the bad state. At α = 0, the bank makes a positive

profit. At α = 1, the bank’s profit is B1 = R(D + E) − RF D.
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If B1 ≥ 0, the bank never defaults in either state and its expected profit is

[ασR + α(1 − σ)R + (1 − α)RF ](D + E) − RF D

= α[σR + (1 − σ)R − RF ](D + E) + RF E

= αB2(D + E) + RF E.

Hence,
α = 0 is optimal if B2 < 0,
α = 1 is optimal if B2 > 0,
α ∈ [0, 1] is optimal if B2 = 0.

Next we consider the case B1 < 0. The bank breaks even in the bad state at α̂ ∈ (0, 1)

satisfying α̂[R − RF ](D + E) + RF E = 0.

• If B2 > 0, then the bank’s expected profit is increasing in α in the entire interval

[0, 1] and α = 1 is optimal.

• If B2 = 0, then the bank’s expected profit is constant in the interval [0, α̂] and

increasing in the interval [α̂, 1] and, hence, α = 1 is optimal.

• If B2 < 0, then the bank’s expected profit is decreasing in the interval [0, α̂]

and increasing in the interval [α̂, 1]. Therefore, the optimal α is obtained from

comparing σ · {[R − RF ](D + E) + RF E}, the expected profit when α = 1, and

RF E, the expected profit when α = 0.

The comparison of σ · {[R − RF ](D + E) + RF E} and RF E also provides the answer if

B2 ≥ 0. Denote the difference

B3 = σ · {[R − RF ](D + E) + RF E} − RF E

= [σR − RF ](D + E) + (1 − σ)RF D.

Then B3 > 0 means that α = 1 is optimal, B3 < 0 means that α = 0 is optimal while

B3 = 0 means that both α = 0 and α = 1 are optimal. Further note that B1 < 0 and

B2 ≥ 0 imply B3 > 0.
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D Appendix - Proofs

Proof of Proposition 4

Let p∗

g and p∗

b be the Arrow-Debreu equilibrium prices. We set RF =
1

p∗

g + p∗

b

. Since

f ′(y∗

F ) =
1

p∗

g + p∗

b

, it follows that RF = R∗

F .

� Firms

The two problems

max
KF

(p∗

g + p∗

b) · f(KF ) − KF and

max
KF

f(KF ) − R∗

F KF

have the same solution y∗

F . In the first problem, the firm maximizes the present value

of profits whereas in the second problem, it maximizes the future value. Again, ΠM = 0

and y∗

M = W − y∗

F is an optimal choice.

� Households

For the household, investing in FT amounts to buying bonds with return a1 = (R∗

F , R∗

F )

at price q1 = 1. Buying equity in the bank amounts to buying shares in the risky asset

with returns a2 = (R, R) at price q2 = 1. But by (22), the market clearing asset prices

in the corresponding Radner equilibrium are

q1 = R∗

F (p∗

g + p∗

b) = 1 because of R∗

F = 1/(p∗

g + p∗

b) and

q2 = Rp∗

g + Rp∗

b = 1 because of (2).

Hence for the household, investing y∗

F in FT and y∗

M in equity is optimal and yields the

same consumption bundle as in the Arrow-Debreu case, provided D = 0 and lF = 0.

� Banks

For the bank, Rp∗

g + Rp∗

b = 1 and R∗

F (p∗

g + p∗

b) = 1 imply R < R∗

F < R. If D = 0, then

B1 ≥ 0 and α = 1 provided that B2 > 0, i.e.,

σR + (1 − σ)R > R∗

F or

σ(R − R∗

F ) + (1 − σ)(R − R∗

F ) > 0. (43)
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To prove (43), note that (2) and p∗

gR∗

F + p∗

bR∗

F = 1 further imply p∗

g(R − R∗

F ) + p∗

b(R −

R∗

F ) = 0. (43) follows if we can demonstrate that
σ

1 − σ
>

p∗

g

p∗

b

. To see the latter, notice

that y∗

M > 0 implies c∗

g > c∗

b and, hence,

(
p∗

b

p∗

g

· σ

1 − σ

) 1

θ

p∗

g + p∗

b >

(
p∗

g

p∗

b

· 1 − σ

σ

) 1

θ

p∗

b + p∗

g or

(
p∗

b

p∗

g

· σ

1 − σ

) 1

θ p∗

g

p∗

b

+ 1 >

(
p∗

g

p∗

b

· 1 − σ

σ

) 1

θ

+
p∗

g

p∗

b

or, with π =
p∗

g

p∗

b

, τ = σ
1−σ ,

(τ/π)
1

θ π + 1 > (π/τ)
1

θ + π.

Suppose π/τ ≥ 1. Then lhs ≤ 1 + π and rhs ≥ 1 + π, a contradiction. Hence to the

contrary, π/τ < 1 or π < τ or
σ

1 − σ
>

p∗

g

p∗

b

. Consequently, (43) has to hold. It follows

that D = 0 implies that α = 1 is optimal. This completes the proof. �

Proof of Proposition 5

In order for y∗

F to solve max f(KF ) − RF KF , we set again RF =
1

p∗

g + p∗

b

, which is equal

to R∗

F . Then the bank will only invest in the risky technology, since B2 > 0 by the

argument given in the proof of Proposition 4. Suppose D > 0. Without default, the

bank’s profit would become

(E + D)R − DR∗

F in the good state and

(E + D)R − DR∗

F in the bad state.

If R = 0, the bank defaults in the bad state.

Otherwise, there is no default as long as DR∗

F ≤ (E + D)R = y∗

MR or D ≤ R

R∗

F

y∗

M . In

this case, the return on equity is

[(E + D)R − DR∗

F ]/E = [y∗

M R − DR∗

F ]/E in the good state;

[(E + D)R − DR∗

F ]/E = [y∗

M R − DR∗

F ]/E in the bad state.

As before, q1 = 1 whereas the asset with unit returns

a3 = ([(E + D)R − DR∗

F ]/E, [(E + D)R − DR∗

F ]/E) has the arbitrage-free unit price

q3 =
1

E
[(y∗

M R − DR∗

F )p∗

g + (y∗

M R − DR∗

F )p∗

b ] =
1

E
[y∗

M − D] = 1.
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At these prices, the household invests y∗

F in FT, makes the amount D of deposits, and

purchases E = y∗

M − D units of bank equity. �

Proof of Proposition 6

If R = 0, let us take as a reference point the Arrow-Debreu equilibrium and the

corresponding unique equilibrium with financial intermediation and no default. In

that equilibrium, bank deposits have the value Do = 0 and equity assumes the value

Eo = W − y∗

F = y∗

M . If R > 0, let us take as a reference point the equilibrium with fi-

nancial intermediation and no default where the bank is on the brink of defaulting in the

bad state. In that equilibrium, as shown in the proof of Proposition 5, deposits assume

the value Do =
R

R∗

F

y∗

M and equity assumes the value Eo = (1 − R

R∗

F

)y∗

M . Moreover,

we found in the proof of Proposition 4 that the equilibrium bond return R∗

F satisfies

σR + (1 − σ)R > R∗

F .

Next let us fix a bond return (denoted by R̂F ) slightly above R∗

F such that σR+(1−σ)R >

R̂F . Then the analogue of B2 > 0 holds and the bank still chooses α = 1. Given the

higher bond return R̂F , entrepreneur eF will respond by choosing a profit maximizing

input denoted by K̂F , with K̂F < y∗

F . The resulting profit is denoted by Π̂F and satisfies

Π̂F < Π∗

F .

At the reference equilibrium, the demand for equity is Eo when T = 0, the return

on bonds is R∗

F and a unit of equity pays R(1 + Do

Eo ) − R∗

F
Do

Eo in the good state and

zero in the bad state. If one replaced R∗

F by R̂F > R∗

F , Π∗

F by Π̂F , and T = 0 by

T̂ = R̂F Do − R(Eo + Do) > 0, then the household would demand more of the risk-free

asset.25 Now assume E ∈ (0, Eo] and D = W − E − K̂F . Consider the household’s

portfolio choice when the profit distributed is Π̂F , T = R̂F D − R(E + D), the return

25Observe that cg > cb and homothetic preferences of the household (together with standard properties)

imply that |MRS| is smaller at the consumption bundle (ĉg, ĉb) = (cg −(ΠF −Π̂F ), cb−(ΠF −Π̂F )−T̂ )
than at (cg, cb). To see this, consider normalized gradients of the form (|MRS|, 1). Denote by ∇
the household’s normalized gradient at (cg, cb) and by ∇̂ its normalized gradient at (ĉg, ĉb). If in
the reference equilibrium situation, the household replaces one unit of the bond by one unit of
equity, then consumption is changed in the direction υ = (R(1 + D◦

E◦
) − RF

D◦

E◦
− RF , −RF ) and at

equilibrium, portfolio choice is optimal, that is ∇ · υ = 0. If in the new situation, the household
replaces one unit of the bond by one unit of equity, then consumption is changed in the direction
υ̂ = (R(1 + D◦

E◦
) − R̂F

D◦

E◦
− R̂F , −R̂F ). It follows that 0 = ∇ · υ > ∇ · υ̂ > ∇̂ · υ̂. But ∇̂ · υ̂ < 0 means

that the household benefits from reducing its equity holding and increasing its bond holding by the
same amount.
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on bonds is R̂F and a unit of equity pays R(1 + D
E ) − R̂F

D
E in the good state and zero

in the bad state. There is a unique optimal γ(E) ∈ [0, 1] so that the household invests

γ(E)W in bonds and [1 − γ(E)]W in equity. By Berge’s maximum theorem (or because

of (23)), γ(E) is a continuous function of E. Set η(E) = [1 − γ(E)]W . As reasoned

above, η(Eo) < Eo. If E → 0, then D → W − K̂F , T → (R̂F − R)(W − K̂F ), and

R(1 + D
E ) − R̂F

D
E → ∞. Hence there exists Eo ∈ (0, Eo) with η(Eo) > Eo.26 By the

intermediate value theorem, there exists E ∈ (Eo, Eo) with η(E) = E. At this E and

the corresponding value for T , the asset market is cleared — as well as the consumption

good market in both states — while the bond return is R̂F and FT production is less

than at the Arrow-Debreu equilibrium.

It remains to check whether the bank is actually going to default in the bad state. In

the reference equilibrium, R(Eo + Do) − RF Do = 0. Let ∆ = y∗

F − K̂F > 0. Then

R(Eo + Do + ∆) − R̂F (Do + ∆) < 0. Further Eo + Do = W − y∗

F , E + D = W − K̂F and

E < Eo. Hence Eo +Do+∆ = W −K̂F = E+D and Do+∆ = W −Eo−y∗

F +y∗

F −K̂F =

W − Eo − K̂F < W − E − K̂F = D. It follows that R(E + D) − R̂F D < 0 which means

that the bank is going to default in the bad state, indeed.

Since K̂F 6= y∗

F , the equilibrium allocation is inefficient, by Corollary 1. �

Proof of Proposition 7

First of all, all equilibria without default continue to be equilibria under the conditions of

the proposition. Second, there are equilibria with default that are equivalent to Radner

equilibria explored in Proposition 3.

Namely, the economy has an Arrow-Debreu equilibrium with quantities p∗

g, p∗

b , c∗

g, c∗

b ,

y∗

F , y∗

M such that 0 < y∗

F < W . Consider the following three securities: A bond with

price pf = 1 and return R∗

F = (p∗

g +p∗

b)−1, risky bank deposits that promise RD ∈ (R, R)

26Observe that RE + (A1 − 1)R̂F > 0. Hence, η(Eo) > Eo can be rewritten as

(A1 − 1)R̂F W − [Π̂F (1 − A1) + T A1] > Eo[RE + (A1 − 1)R̂F ].

Substituting T , D, RE and simplifying the expression, we obtain

(A1 − 1)[R̂F K̂F + Π̂F ] + [A1R − R](W − K̂F ) > 0.

If E → 0, then A1 → ∞, which establishes the existence of Eo ∈ (0, Eo) with η(Eo) > Eo.
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in both states, but actually pay RD in the good state and R in the bad state, and bank

equity that pays R − RD in the good state and nothing in the bad state. Bank deposits

have the price pd = p∗

gRD +p∗

bR and a bank share costs pe = p∗

g(R−RD). A unit of bank

deposit together with one bank share constitutes one unit of asset a2 at the price q2 = 1.

Hence the household obtains its first-best consumption bundle by purchasing y∗

F bonds

and providing y∗

M units of capital to the bank, by investing pdy∗

M in bank deposits and

pey∗

M in bank equity. Funds of size y∗

F are used by eF while the bank invests its capital

y∗

M in the MT sector and all markets are cleared. In the bad state, the bank has revenue

y∗

M R which falls short of its promised payment to depositors, y∗

M RD.

It remains to be shown that under the assumptions made, these are the only equilibria

with default.

Step 1:

Let us consider an arbitrary equilibrium with default in the bad state only.27 The price

of the asset af for investment in FT yielding return RF is denoted by pf . Suppose next

that the bank has obtained the amount D of deposits at price pd and E equity contracts

at price pe and thus pdD + peE units of the investment good. The promised return on

deposits is RD. Suppose that the bank invests a fraction α into MT and 1 − α into FT

with 0 ≤ α ≤ 1. The realized returns on bank debt and equity are thus as follows:

Equity Deposit

good state RE RD

bad state 0 RD

where RE :=
[αR + (1 − α)RF

pf
](pdD + peE) − DRD

E

and RD :=
[αR + (1 − α)RF

pf
](pdD + peE)

D
.

27There exist equilibria in which the bank defaults in both states. The reasoning of the proof can be
readily adapted to such cases as well.
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The condition that the bank defaults in the bad state and thus the matrix applies is

[αR + (1 − α)
RF

pf
](pdD + peE) − RDD < 0

and consequently,

D >
[αR + (1 − α)RF

pf
]peE

RD − [αR + (1 − α)RF

pf
]pd

. (44)

Step 2:

We next show that RF

pf
< R. Suppose RF

pf
≥ R. Then it would be profitable for the bank

to invest all resources in FT. Then either there is default in both states or no default at

all, contrary to the assumption made. Hence RF

pf
< R must hold.

Step 3:

Given that RF

pf
< R, the bank invests only in MT. That is, α = 1. For otherwise, by

putting more of its funds into MT, the bank could increase its return on equity in the

good state while the return in the bad state would remain zero or become positive.

Step 4:

Since α = 1, by buying µ1 units of deposit contracts and µ2 units of equity contracts

with

µ1 =
D

(pdD + peE)
and µ2 =

E

(pdD + peE)
,

the household can create a new asset ã2 with the following characteristics:

Asset Price in t = 1 Return in state g Return in state b

ã2 p̃2 R R

Note that

p̃2 =
pdD

(pdD + peE)
+

peE

(pdD + peE)
= 1.
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Asset ã2 is identical with asset a2. Therefore, the household faces the following portfolio

choice. It can invest a fraction of its wealth at price 1 into the asset with return R

and R and the remaining part into a safe asset at price pf with return RF . Except for

potential rescaling the units of the safe asset, this is essentially the same situation as

in Section 3.6 and we can use Proposition 3 which establishes the equivalence of the

ensuing equilibrium to the Arrow-Debreu equilibrium. �
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