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1 Introduction

Macroeconomic analyses and policy evaluations increasingly require taking the interdepen-

dences existing across sectors, markets and countries into account, and national economic

issues, while often idiosyncratic, need now to be tackled from a global perspective. Thus,

when formulating policies, a number of di¤erent channels of transmission need to be con-

sidered and spillovers are likely to be important, even for large and developed economies.

Domestic interdependencies are known to produce domestic business cycle �uctuations

from idiosyncratic sectoral shocks, at least, since Long and Plosser (1983), and spillovers

from the �nancial sector to the real economy are key to understand the recent global crisis

(e.g. Stock and Watson, 2012; Ciccarelli et al., 2012a). Many authors have also argued

that a rapidly rising degree of trade and �nancial market integration has induced closer

international interdependences within the developed world and between developing and

developed world (Kose et al., 2003, Canova et al., 2007, Pesaran et al., 2007, Kose and

Prasad, 2010, Canova and Ciccarelli, 2012). Thus, a multilateral perspective is crucial,

and failure to recognize this aspect of reality is likely to induce distortions in the evaluation

of economic outcomes and erroneous policy decisions.

There are two ways of examining economic issues in interdependent economies. One is

to build multi-sector, multi-market, multi-country dynamic stochastic general equilibrium

(DSGE) models, where agents are optimizers, and where preferences, technologies, and

constraints are fully speci�ed. Structures like these are now extensively used in the policy

arena (see e.g. the SIGMA model at the Federal Reserve Board; the global projection

model at the IMF; or the EAGLE model at the ECB). Tightly parameterized DSGE

model are useful because they o¤er sharp answers to important policy questions and

provide easy-to-understand welfare prescriptions. However, by construction, these models

impose a lot of restrictions, not always in line with the statistical properties of the data.

Thus, the policy prescriptions they provide are hardwired in the assumptions of the model,
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and must be considered more as a benchmark than a realistic assessment of the options

and constraints faced by policymakers in real world situations.

An alternative approach to dealing with interdependent economies is to build panel

VAR models. These models eschew most of the explicit micro structure present in DSGE

models and, as their VAR counterparts, attempt to capture the dynamic interdependencies

present in the data using a minimal set of restrictions. Shock identi�cation can then

transform these reduced form models into structural ones, allowing typical exercises, such

as impulse response analyses or policy counterfactuals, to be constructed in a relatively

straightforward way. Structural panel VAR models are liable to standard criticism of

structural VAR models (see e.g. Cooley and Le Roy, 1983, Faust and Leeper, 1997,

Cooley and Dweyer, 1998, Canova and Pina, 2005, Chari et al., 2008) and thus need

to be considered with care. Nevertheless, the information they produce can e¤ectively

complement analyses conducted with DSGE models, help to point out the dimensions

where these models fail, and provide stylized facts and predictions which can improve the

realism of DSGE models.

The goal of this article is to describe what panel VARs are and what their use is in ap-

plied work; how they can capture the heterogeneities present in interdependent economies

and how the restricted speci�cations typically employed in the literature are nested in the

general panel VAR framework we consider. We also examine how panel VAR models can

be estimated, how shock identi�cation is performed, and how one can conduct inference

with such models. We highlight how the evolving nature of the cross unit interdependen-

cies can be accounted for and how alternative frameworks such as factor models, global

VAR (GVAR), bilateral panel VARs, large scale Bayesian VARs, or spatial VARs com-

pare to them. Finally, the article discusses the open challenges that researchers face when

dealing with dynamic heterogeneous and interdependent panels (of countries, industries,

or markets) in applied work.
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The rest of the paper is organized as follows. The next section discusses what are the

distinctive features of panel VARs, what they are used for, and how they link to DSGE

models. Section 3 describes how reduced-form panel VARs are estimated. Section 4 adds

time variation in the coe¢ cients. Section 5 deals with shock identi�cation and describes

strategies to perform structural analyses. Section 6 compares panel VARs to other ap-

proaches that have been used in the literature to deal with dynamic models involving

interdependent heterogeneous units. The conclusions and some additional considerations

are in section 7.

2 What are panel VARs?

VAR models are now well established in applied macroeconomics. In VAR models all

variables are treated as endogenous and interdependent, both in a dynamic and in a static

sense, although in some relevant cases, exogenous variables could be included (see e.g.,

the dummy approach pioneered by Ramey and Shapiro, 1998). Let Yt be a G � 1 vector

of endogenous variables. The VAR for Yt is

Yt = A0(t) +A(`)Yt�1 + ut ut � iid(0;�u) (1)

where A(`) is a polynomial in the lag operator and iidmeans identically and independently

distributed. Restrictions are typically imposed on the coe¢ cient matrices Aj to make the

variance of Yt bounded and to make sure that A(`)�1 exists � for example, one can

imposes that no roots of A(e�!)�1 are on or inside the unit circle. Sometimes equation

(1) is decomposed into its short run and its long run components, following the work of

Beveridge and Nelson (1981) or Blanchard and Quah (1989), but for the purpose of this

article the distinction is not critical since the available time series dimension will be, at

best, of medium length, making the long run properties of the model very imprecisely

pinned down. For the sake of notation we have compacted into A0(t) all the deterministic
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components of the data. Thus, it should be understood that the representation (1) may

include constants, seasonal dummies and deterministic polynomial in time.

A typical variation of (1), used primarily in small open economy analyses, allows the G

variables in Yt to be linear function of Wt, a set of predetermined or exogenous variables,

in which case the VAR is

Yt = A0(t) +A(`)Y1t�1 + F (`)W2t + ut:

Such block recursive VARX structure has been used, for example, by Cushman and Zha

(1997) in their analysis of the e¤ect of monetary policy shocks in Canada, and in exercises

measuring how variables determined in world markets (such as commodity prices or world

productivity) a¤ect domestic economies (see e.g. Kilian and Vega 2011).

Finite order, �xed coe¢ cient VARs like (1) can be derived in many ways. The standard

one is to use the Wold theorem (see e.g. Canova, 2007) and assume linearity, stationarity

and invertibility of the resulting moving average representation. Under these assumptions,

there exists an (in�nite lag) VAR representation for any vector Yt. To truncate this in�nite

dimension VAR and use a VAR(p), p �nite, in empirical analyses we further need to assume

that the contribution of Yt�j to Yt; is small when j is large.

Panel VARs have the same structure as VAR models, in the sense that all variables are

assumed to be endogenous and interdependent, but a cross sectional dimension is added

to the representation. Thus, think of Yt as the stacked version of yit, the vector of G

variables for each unit i = 1; : : : ; N , i.e., Yt = (y01t; y
0
2t; : : : y

0
Nt)

0. The index i is generic and

could indicate countries, sectors, markets or combinations of them. Then a panel VAR is

yit = A0i(t) +Ai(`)Yt�1 + uit i = 1; : : : ; N t = 1; : : : ; T (2)

where uit is a G � 1 vector of random disturbances and, as the notation makes it clear,

A0i(t) and Ai may depend on the unit.
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When a panel VARX is considered, the representation is

yit = A0i(t) +Ai(`)Y1t�1 + Fi(`)Wt + uit (3)

where ut = [u1t; u2t; : : : ; uNt]0 � iid(0;�), Fi;j are G�M matrices for each lag j = 1; : : : ; q,

and Wt is a M � 1 vector of predetermined or exogenous variables, common to all units i.

Simple inspection of (2) or (3) suggests that a panel VAR has got three characteristic

features. First, lags of all endogenous variables of all units enter the model for unit i: we

call this feature �dynamic interdependencies�. Second, uit are generally correlated across

i: we call this feature �static interdependences�. In addition, since the same variables

are present in each unit, there are restrictions on the covariance matrix of the the shocks.

Third, the intercept, the slope and the variance of the shocks u1it may be unit speci�c:

we call this feature �cross sectional heterogeneity�. These features distinguish a panel

VAR typically used for macroeconomic and �nancial analyses from the panel VAR used

in, e.g. micro studies, such as the pioneer work by Holtz Eakin et al. (1988) or, more re-

cently, by Vidangos (2009), where interdependencies are typically disregarded and sectoral

homogeneity (allowing for certain time-invariant individual characteristics) is typically as-

sumed. It also distinguishes the setup from others used in the macroeconomic literature,

where either cross sectional homogeneity is assumed and/or dynamic interdependencies

are a-priori excluded (see e.g. Benetrix and Lane, 2010, Beetsma and Giuliadori, 2011).

In a way, a panel VAR is similar to large scale VARs where dynamic and static interdepen-

dencies are allowed for. It di¤ers because cross sectional heterogeneity imposes a structure

on the covariance matrix of the error terms. A detailed comparison with large scale VARs

and with other approaches designed to handle multi-unit dynamics is in section 6.

2.1 An example

To set ideas, it is useful to consider a simple example. Suppose that G = 3 variables,

N = 3 countries and that there are M = 2 weakly exogenous variables. Then, omitting

6



deterministic terms, the panel VARX model is

y1t = A11(`)y1t�1 +A12(`)y2t�1 +A13(`)y3t�1 + F1(`)Wt + u1t (4)

y2t = A21(`)y1t�1 +A22(`)y2t�1 +A23(`)y3t�1 + F2(`)Wt + u2t (5)

y3t = A31(`)y1t�1 +A32(`)y2t�1 +A33(`)y3t�1 + F3(`)Wt + u3t (6)

Wt = M(`)Wt�1 + wt (7)

where Aih;j ; i; h = 1; 2; 3 are 5�5 matrices for each j and Ai4;j ; i = 1; 2; 3 are 5�2 matrices

for each j. Furthermore, E(utu0t) � �u =

24 �11 �12 �13
�21 �22 �23
�31 �32 �33

35 is a full matrix and there is
additional structure on the 5 � 5 matrices �ij i; j = 1; 2; 3; since the G variables are the

same for each unit. In this setup, there are dynamic interdependences (Aik;j = 0; k 6= i for

some j), there are static interdependencies (�i;k 6= 0; k 6= i) and there are cross sectional

heterogeneities (Ai;k 6= Ai+1;k; k 6= i; i+ 1).

Clearly, not all three distinguishing features of panel VARs need to be used in all

applications. For example, when analyzing the transmission of shocks across the �nancial

markets of di¤erent countries, static interdependencies are probably su¢ cient if the time

period of the analysis is a month or a quarter. Similarly, when analyzing countries in a

monetary union, it may be more important to allow for slope heterogeneities (di¤erent

countries may respond di¤erently to, e.g., a �scal shock) than for variance heterogeneities

(the shocks hitting di¤erent countries have di¤erent magnitude). Finally, dynamic cross

sectional di¤erences are likely to be important when the panel includes, e.g., developed and

developing countries, or when it lumps together markets with di¤erent trading volumes,

di¤erent transaction costs, etc.

Several interesting submodels are nested in the speci�cation and thus certain restric-

tions can be tested. For example, one would like to know if a model without dynamic

interdependencies is su¢ cient to characterize the available data. This is the typical setup

employed when all units are small and do not exercise dynamic e¤ects on the other units,
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but shocks in di¤erent units have a common component. It is also the setup used in certain

macro studies which treat units as isolated islands (see e.g. Rebucci, 2010; De Graeve and

Karas, 2012; and Sa et al., 2012, for recent examples).

Another restricted speci�cation nested in the general framework and often used in the

literature is one where all interdependencies are eschewed and cross sectional slope homo-

geneity is assumed. This is the typical setup used in micro studies, but it is potentially

problematic in macroeconomic analyses dealing with countries or regions. Even within

this restricted setup, micro and macro panel approaches di¤er in an important respect:

the cross sectional dimension is typically large in micro studies and small or moderate for

macro panels. Vice versa, micro panels typically feature a very short time series dimen-

sion while macro panels have a moderate time series dimension. These di¤erences have

important implications for the identi�cation of the dynamics e¤ects of interest.

2.2 What have panel VARs been used for?

Panel VARs have been used to address a variety of issues of interest to applied macro-

economists and policymakers. Within the realm of the business cycle literature, Canova et

al. (2007) have employed a panel VAR to study the similarities and convergences among

G7 cycles, while Canova and Ciccarelli (2012) employ them to examine the cross-sectional

dynamics of Mediterranean business cycles. They can also be used to construct coincident

or leading indicators of economic activity (see Canova and Ciccarelli, 2009) or to forecast

out-of-sample, for example, output and in�ation, taking into account potential cross unit

spillovers e¤ects. As we will see, cyclical indicators of both coincident and leading nature

can be easily constructed from a panel VAR and (density) forecasts can be constructed

with straightforward Monte Carlo methods.

Panel VARs are particularly suited to analyzing the transmission of idiosyncratic

shocks across units and time. For example, Canova et al. (2012) have studied how shocks

to U.S. interest rates are propagated to ten European economies, seven in the Euro area
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and three outside of it, and how German shocks, de�ned as shocks which simultaneously

increase domestic output, employment, consumption and investment, are transmitted to

the remaining nine economies. Ciccarelli et al. (2012a) investigate the heterogeneity in

macro-�nancial linkages across developed economies and compare the transmission of real

and �nancial shocks with emphasis on the most recent recession. Caivano (2006) investi-

gates how disturbances generated in the Euro area are transmitted to U.S. and vice versa,

when these two units are included into a world economy. Beetsma and Giuliadori (2011)

and Lane and Benetrix (2011) look at the transmission of government spending shocks

and Boubtbane et al. (2010) examine how immigration shocks are transmitted in a variety

of countries. Finally, Love and Zicchino (2006) measure the e¤ect of shocks to ��nancial

factors�on a cross section of U.S. �rms.

Panel VARs have also been frequently used to construct average e¤ects � possibly

across heterogeneous groups of units �and to characterize unit speci�c di¤erences relative

to the average. For example, one may want to know if government expenditure is more

countercyclical, on average, in countries or states which have �scal restrictions included

in the constitution, or whether the instantaneous �scal rule depends on the type of �scal

restrictions that are in place (see Canova and Pappa, 2004). One may also be interested

in knowing whether in�ation dynamics in a monetary union may depend on geographi-

cal, political, institutional or cultural characteristics, or on whether �scal and monetary

interactions are relevant (see Canova and Pappa, 2007). Alternatively, one may want to

examine whether shocks generated outside of a country (or an area) dominate the vari-

ability of domestic variables (see Canova, 2005; Rebucci 2010). Finally, one may want

to examine what channels of transmission may make responses to international shocks

di¤erent across countries and from the average, or how �nancial fragility may induce a

di¤erent transmission mechanism of monetary policy across di¤erent groups countries in

the recent crisis (Ciccarelli et al., 2012b).
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Another potential use of panel VARs is in analyzing the importance of interdepen-

dencies, and in checking whether feedbacks are generalized or only involve certain pairs

of units. Thus, one may want to use a panel VARs to test the small open economy as-

sumption or to evaluate certain exogeneity assumptions, often made in the international

economics literature. Finally, panel VARs may be used to examine the extent of dynamic

heterogeneity and of convergence clubs (see Canova, 2004), to endogenously group units

or to characterize their di¤erences. For instance, De Grauwe and Karas (2012), within a

panel VAR framework, show that the dynamics of deposits and interest rates of �good�

and �bad�banks di¤ers in response to bank run shocks. They also show that di¤erences

in the health of their balance sheet are of second order importance and what truly matters

is whether banks are insured or not by regulators.

2.3 Are they consistent with economic theory?

As with standard VARs, one may wonder whether panel VAR can be used to �test�theories

or to inform researchers about the relative validity of di¤erent economic paradigms. Panel

VARs can be easily generated from standard intertemporal optimization problems under

constraints, as long as the decision rules are log-linearized around the steady state. For

example, Canova (2007, Chapter 8) shows that, if all variables are observed, a small open

economy version of the Solow growth model generates a heterogeneous panel VAR with

static but without dynamic interdependencies. More importantly, he shows that the panel

VAR that the theory generates either has both �xed e¤ects and dynamic heterogeneity or

none of them �i.e., either the steady states and the dynamics are heterogeneous or both

are homogeneous. Thus, it is di¢ cult to justify the common practice of specifying panel

VARs which allow only for intercept heterogeneity but impose dynamic homogeneity.

Panel VARs with dynamic interdependencies can be obtained if the small open econ-

omy assumption is dropped and at least one asset is traded in �nancial markets or if

intermediate factors of production are exchanged in open markets (see e.g. Canova and
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Marrinan, 1998). In this case, market clearing implies that the excess demands present

in a unit is compensated by excess supply in other units, and these spillovers, together

with adjustments in the relative prices of goods and/or assets, imply generalized feed-

backs from one unit to all the others. Also here, whenever there are heterogeneities in

the steady states, there will be heterogeneities in the dynamic responses to domestic and

international shocks.

It is well known that if the VAR omits relevant states of the optimization problem,

there is no insurance that innovations obtained in a Structural VAR (SVAR) will display

the same characteristics as the innovations in the shocks present in theoretical models

(see e.g. Fernandez Villaverde et al., 2005). Since the states of the problem are often

not observed, this mismatch has caused several researchers to question the use of SVARs.

However, it is also well know that this mismatch does not have an either/or consequence

and that there are situations where the structural innovations the VAR recovers may have

characteristics that are di¤erent from the innovations of the theoretical model but the

dynamics they induce are similar (see e.g. Sims, 2012). Panel VARs are not di¤erent

in this respect: if important states are omitted from the list of variables for each unit,

standard non-fundamentalness issues may arise. Thus, care must be exercised in choosing

the variables for each unit. The presence of a cross section does not help in general

to reduce the non-fundamentalness problem, unless it happens that cross sectional data

reveals information about the missing states that the data of single unit is not able to

provide �an event which is, probabilistically, quite remote.

3 Reduced-form estimation

Depending on the exact speci�cation, di¤erent approaches can be used to obtain estimates

of the unknown of the model. Because of the added complexity, we �rst discuss the case

of panel VARs without dynamic interdependencies and then analyze what happens when

11



these dynamic interdependencies are allowed for. For the sake of completeness, both

classical and Bayesian estimators are presented even though, for this particular problem,

a Bayesian perspective is preferable, as it gives important insights into the estimation

problem.

3.1 Panel VARs without dynamic interdependencies

Suppose there is a domestic VAR for each unit but the reduced form shocks may be

correlated across units. For later reference, we call this setup a collection of unit speci�c

VARs. Let the cross sectional size N be large. If we are willing to assume that the

data generating process features dynamic homogeneity, and conditioning on initial values

of the endogenous variables, pooled estimation with �xed e¤ect �potentially capturing

idiosyncratic but constant heterogeneities across variables and/or units �is the standard

classical approach to estimate the parameters of the model. However, when T is �xed, the

pooled estimator is biased and one may want to employ the GMM approach of Arellano

and Bonds (1991), which is consistent even when T is small. A GMM approach, however,

requires di¤erencing the speci�cation, throws away sample information and may make

inference less accurate when the information being ignored is important for the parameters

of interest. Rather than di¤erencing, one may want to impose a-priori restrictions which

insure consistency in such an environment. Sims (2000) emphasizes that, in a model of

this type, lagged dependent variables are not independent of the unit speci�c intercepts

and describes how this information can be used to recover parameter consistency, for both

stationary and non-stationary models. Generally speaking, the inconsistency problem

arises, when the conditional pdf is used as the likelihood, because the number of parameters

grows with the cross sectional size. If the unconditional pdf is instead employed, where

the density of the initial observations is a function of the unit speci�c intercept and of the
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common slope parameters, consistency may be obtained. To be speci�c, let the model be

yit = A0i +A(`)yit�1 + uit (8)

where uitjyit�1 � N(0;�i) and, for the sake of illustration, the roots of A(e�iw) are all

outside the unit circle. Then the unconditional distribution of the initial conditions is

N((I � A(`))A0i;
i); where 
i is implicitly de�ned by 
i = �i +
P
j Aj
iA

0
j : If this

density is used together with the standard conditional density to build the likelihood, the

maximum likelihood estimator of the parameters will be consistent, even with T short.

If T is large enough, one could also consider estimating the VAR for di¤erent units sep-

arately and averaging the results across units. Such a mean group estimator is ine¢ cient

relative to the pooled estimator under dynamic homogeneity, but gives consistent esti-

mates of the average dynamic e¤ect of shocks if dynamic heterogeneity is present, whereas

the pooled estimator does not (see e.g. Pesaran and Smith, 1995). The pooled estimator

is inconsistent under dynamic heterogeneity because the regressors are correlated with

the error term. If the data generating process features dynamic heterogeneity, both a

within and a between estimator will also give inconsistent estimates of the parameters,

even when N and T are large, since the error term is also likely to be correlated with the

regressors. With dynamic heterogeneity, a GMM strategy may be di¢ cult to employ since

it is hard to �nd instruments which are simultaneously correlated with the regressors and

uncorrelated with the error term.

When T and N are of moderate size and dynamic heterogeneity is suspected, some

form of �partial pooling�may help to improve the quality of the estimates of coe¢ cients

of the model. One standard format leading to partial pooling is a random coe¢ cient

model. The setup is the following. The model (without dynamic interdependencies) is

yit = A0i + Ai(`)yit�1 + uit where now the slope parameters are potentially unit speci�c.

If we are willing to impose that

�i = ��+ vi (9)
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where �i = [vec(Ai(`)); vec(A0i)]0 and vi � N(0;�v), an estimator which partially pools

the information present in di¤erent units can be constructed. Note that (9) implies that

the coe¢ cients of the VAR in di¤erent units are di¤erent, but are drawn from a distribution

whose mean and variance is constant across i.

Given this structure, several estimators are available in the literature (see e.g. Canova,

2007, chapter 8). The two most popular ones are a classical estimator and a Bayesian

one. In the classical estimator proposed by Swamy (1970) (9) is substituted into the

model and GLS applied. GLS is required because of the particular error structure that

the substitution of (9) in the model generates. Importantly, this setup does not allow

estimating the individual unit coe¢ cients: only the mean �� is estimated. An estimate of

the amount of cross sectional heterogeneity is also di¢ cult to obtain since �v enters in a

complicated way in the variance of the composite error term of the model.

The Bayesian alternative treats (9) as an exchangeable prior. This prior is then com-

bined with the likelihood of the data to obtain the posterior distribution of the individual

�i, and of the average value, �� , if that is of interest. Thus, a Bayesian perspective allows

us to quantify the heterogeneity present in the dynamics, while a classical approach does

not. If ei and ui are normally distributed, and �� and �v known, conditional on the initial

observations, the posterior of �i is normal with mean

~�i = (X
0
i�
�1
i;olsXi +�

�1
v )

�1(X 0
i�
�1
i;olsXi�i;ols +�

�1
v ��) (10)

where �i;ols is the OLS estimator of �i; �
�1
i;ols is the OLS estimate of �i and Xi is the

matrix containing the right hand side variables, and variance

(X 0
i�
�1
i;olsXi +�

�1
v )

�1 (11)

The moments of the posterior distribution of �i have the usual convenient format: the

posterior mean is a linear combination of sample and prior information with weights given

by the relative precision of the two types of information and the posterior variance is

14



a weighted average of the prior and of the sample variance. Note that, if one wants to

use the information present in the initial conditions for estimation (which could be very

important when both N and T are short), a speci�cation like the one suggested by Sims

(2000), where a joint distribution for (�i; yi0) is a-priori speci�ed, could be used.

The above posterior distribution does not take into account the fact that the shocks

in each unit VAR may be correlated. Thus, e¢ ciency can be improved if the posterior is

constructed stacking the sample information of all the units. Since the resulting model

has a SUR structure, the convenient weighted average property of the posterior moments

is maintained.

Three important points need to be made regarding the posterior moment in (10) and

(11). First, the formulas are valid under the assumption that �� and �v are known. If they

are not, one can specify a prior distribution for these unknown and use the Gibbs sampler

to construct draws for the marginal of �i:We will describe how the Gibbs sampler can be

applied to a more complicated version of this hierarchical model in section 4. Shortcuts

designed to decrease the complexity of the computations are available. For example, modal

estimates ��i can be easily computed plugging in

��� =
1

n

nX
i=1

��i (12)

(��i )
2 =

1

T + 2
[(yi �Xi��i )0(yi �Xi��i )] (13)

��v =
1

n� dim(�)� 1[
X
i

(��i � ���)(��i � ���) + 	 (14)

where �*� indicates modal estimates and 	 = diag[0:001] in the above formulas. In

equation (14) an arbitrary diagonal matrix is added since ��v may not be positive de�nite.

Alternatively, one could estimate �� and �v from a training sample, if this is available, or

from information contained in units left out from the cross-section. In this situations, the

formulas in (10)-(11) are still valid with plug-in estimates in place of true values of �� and

�v. Clearly, with plug-in estimates, the uncertainty present in the posterior of �i will be
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underestimated �the estimation error present in �� and �v is disregarded, and one may

want to use simple corrections to take these errors into account (see Canova, 2004).

Second, the mean of the posterior ~�i collapses to a standard OLS estimator constructed

using unit speci�c information if heterogeneity is large, i.e., �v ! 1; and to the prior

mean, if the sample is uninformative. Thus, if one of the two types of information is highly

imprecise, it is disregarded in the construction of the posterior. Third, the classical GLS

estimator satis�es �GLS = 1
n

Pn
i=1 ~�i. Thus, the classical estimator for the mean e¤ect is

the arithmetic average of the posterior means of the individual units.

Canova (2005), Canova and Pappa (2007) and more recently Calza et al. (2012), apply

such a Bayesian random coe¢ cient approach to estimate the dynamic responses to shocks

of a potentially heterogeneous collection of unit speci�c VARs. These papers, however,

rather than modeling cross sectional heterogeneities in VAR coe¢ cients, as implied in (9),

specify directly the nature of the heterogeneities present in the MA representation of the

data for each unit. Thus, the model is

~yit = Bi(`)uit i = 1; : : : ; N (15)

where ~yit represents the original vector of series in country i in deviation from the deter-

ministic components. Let �i = vec(Bi(`)). Then, one can assume that the vector of MA

coe¢ cients �i are random around a mean

�i =
�� + vi (16)

where vi � N(0;�v). A Bayesian estimator of �i still maintains the weighted average

structure described earlier with weights given by the relative precision of the two types

of information. The advantage of (16) is that an economically reasonable prior for the

dynamic responses to shocks may be much easier to formulate than a prior for the VAR

coe¢ cients.

In many applications, an estimator of the average e¤ect �� ( ��) is of interest. If a
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Bayesian approach is followed, one may obtain it by averaging the posterior mean over i.

Thus, the classical and the Bayesian estimator of the mean e¤ect coincide. An alternative

is available if, in addition to treating �i(�i) as random around a mean, �� (��) and �v are

also treated as random. In this case, the posterior distribution for, e.g., �� can be obtained

integrating out �i and �v from the joint posterior of (�i; ��;�v) using standard hierarchical

methods (see e.g. Canova, 2007; Jarocinski, 2010).

Improved estimates of individual responses �i can also be obtained in other ways. For

example, Zellner and Hong (1989) suggested a prior speci�cation for the �i that results

in a posterior distribution for the VAR coe¢ cients combining unit speci�c and average

sample information. In particular, when (9) holds and vi has a normal distribution with

mean zero and variance �v = ��1�2uIk (k being the dimension of �i), and �i = � = �2uIG,

the (conditional) posterior distribution for � = (�1; : : : ; �n)0 will be normal with mean ~�

given by

~� = (Z 0Z + �Ink)
�1(Z 0Z�ols + �J ��) (17)

where �ols = [�1;ols; : : : ; �n;ols] is the OLS estimator of �, unit by unit, Z is a block

diagonal matrix containing in each diagonal block the regressors of each unit, and J 0 =

(Ik; : : : ; Ik): The variance of the posterior is (Z 0Z + �Ink)
�1. Zellner and Hong (1989)

replace �� with the mean group estimator. Alternatively, an additional prior can be added

for �� and its posterior distribution derived in a fully-�edged hierarchical setup.

Improved classical estimators, which combine unit speci�c and average information,

also exist. For example, a James-Stein estimator for the above model is

�i = �p + (1�
�

F
)(�i;ols � �p) i = 1; : : : ; n (18)

�i;ols is the OLS estimator with unit i data, �p is the pooled estimator, F is the statistics for

the null hypothesis �i = �; 8i, and � = [(NG�1)dim(�)�2]=[NGT �dim(�)+2]. Thus,

the shrinkage factor � depends on the dimension of � relative to T . When dim(�) >> T ,
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(1� �
F ) is smaller, therefore pulling �i closer to �p: It is rare to see estimators of this type

in the macroeconomic literature primarily because the pre-testing required to construct

(18) is not typically performed.

3.2 Panel VARs with dynamic interdependencies

The estimation problem becomes more complicated if dynamic interdependencies are al-

lowed for. The problem is related to the curse of dimensionality: excluding deterministic

components, since there are k = NGp coe¢ cients in each equation, the total number of

parameters (NGk) to be estimated in the model easily exceeds the sample one has avail-

able. One way to solve this problem is to selectively model the dynamic links across units

while imposing zero-restrictions on others. Thus, for example, one can assume that only

the variables of unit j enter the equations of unit i, as in the spatial VAR model discussed

in section 6.2. However, it is unclear how to do this in a way that avoids data mining.

An alternative is to group cross sectional units into clubs and assume random coe¢ cients

within each group but no relationship across groups. Such an approach has been used, for

example, in Canova (2004) to examine regional convergence rates. However, such a setup

naturally applies to a situation where dynamic interdependences are excluded and requires

some ingenuity to be extended to a framework where interdependencies are allowed for.

Canova and Ciccarelli (2004 and 2009) have suggested di¤erent cross sectional shrink-

age approaches which can deal with the curse of dimensionality and thus allow the es-

timation of models with dynamic interdependencies. Del Negro and Schorfheide (2010)

provide an overview of the approach.

To see what the procedure involves, rewrite (2) in a simultaneous equations format:

Yt = Zt�+ Ut (19)

where Zt = ING 
 X 0
t; X 0

t = (I; Y 0t�1; Y
0
t�2; : : : ; Y

0
t�p), � = (�01; : : : ; �

0
N )

0 and �i are

Gk�1 vectors containing, stacked, the G rows of the matrices (Aoi(t),Ai(`)); while Yt and
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Ut are NG� 1 vectors. Since � varies with cross-sectional units, its sheer dimensionality

prevents any meaningful unconstrained estimation. Thus assume that � depends on a

much lower dimension vector � and posit the following linear structure:

� = �1�1 + �2�2 + �3�3 + �4�4 + :::+ et (20)

where �1; �2; �3;�4 are matrices of dimensions NGk� s, NGk�N , NGk�G, NGk�1

respectively and �i; i = 1; 2 : : : ; are factors, capturing the determinants of �. For example,

�1 could capture components in the coe¢ cient vector which are common across units and

variables (or groups of them) �its dimension is, say, s; �2 could capture components in

the coe¢ cient vector which are common within units, thus its dimension equals N ; �3

could capture components in the coe¢ cient vector which are variable speci�c, thus its

dimension is equal to G; �4 could capture components in the lagged coe¢ cients and its

dimension is equal to p1 < p, and so on. Finally, et captures all the unmodelled features

of the coe¢ cient vector, which may have to do with time speci�c or other idiosyncratic

e¤ects.

Factoring � as in (20) is advantageous in many respects. Computationally, it reduces

the problem of estimating NGk coe¢ cients into the one of estimating s+N+G+ p1 factors

characterizing them. Practically, the factorization (31) transforms an overparametrized

panel VAR into a parsimonious SUR model, where the regressors are averages of certain

right-hand side VAR variables. In fact, using (20) in (19) we have

Yt =

rX
j=1

Zjt�j + t (21)

where Zjt = Zt�j capture respectively, common, unit speci�c, variable speci�c, lag speci�c

information present in the lagged dependent variables, and t = Ut + Ztet. Notice that,

by construction, Zit have a slow moving average structure. Thus, the regressors in (21)

will capture low frequency movements present in the VAR and this feature is valuable

in medium term out-of-sample forecasting exercises. Economically, the decomposition in

19



(21) conveniently allows us to measure, for example, the relative importance of common

and unit speci�c in�uences for �uctuations in Yt. In fact, WLIt = Z1t�1 plays the role

of a (vector) of common indicators, while CLIt = Z2t�2 plays the role of a vector of unit

speci�c indicators. In general, WLIt and CLIt are correlated �a portion of the variables

in Z1t also enter in Z2t �but the correlation tends to zero as N increases.

To illustrate the structure of the Zjt�s, suppose there are G = 2 variables, N = 2

countries, s = 1 common component, p = 1 lags, and omit deterministic components, for

convenience. Then:2664
y1t
x1t
y2t
x2t

3775 =
26664
A1;y1;1 A1;y2;1 A1;y1;2 A1;y2;2
A1;x1;1 A1;x2;1 A1;x1;2 A1;x2;2
A2;y1;1 A2;y2;1 A2;y1;2 A2;y2;2
A2;x1;1 A2;x2;1 A2;x1;2 A2;x2;2

37775
2664
y1t�1
x1t�1
y2t�1
x2t�1

3775+ Ut (22)

� = [A1;y1;1; A
1;y
2;1; A

1;y
1;2; A

1;y
2;2; A

1;x
1;1 ; A

1;x
2;1 ; A

1;x
1;2 ; A

1;x
2;2 ; A

2;y
1;1; A

2;y
2;1; A

2;y
1;2; A

2;y
2;2; A

2;x
1;1 ; A

2;x
2;1 ; A

2;x
1;2 ; A

2;x
2;2 ]

0

is a 16� 1 vector and the typical element of �, �i;jl;s, is indexed by the unit i, the variable

j, the variable in an equation l (independent of the unit), and the unit in an equation

s (independent of variable). If we are not interested in modelling all these aspects, one

possible factorization of � is

� = �1�1 + �2�2 + �3�3 + et (23)

where et captures unaccounted features, and for each t, �1 is a scalar, �2 is a 2� 1 vector,

�3 is a 2� 1 vector, �1 is a 16� 1 vector of ones,

�2
(16�2)

=

2664
�1 0
�1 0
0 �2
0 �2

3775 �3
(16�2)

=

2664
�3 0
0 �4
�3 0
0 �4

3775
with �1 =

�
1 1 0 0

�0
, �2 =

�
0 0 1 1

�0
, �3 =

�
1 0 1 0

�0
and �4 =

�
0 1 0 1

�0
.

Substituting (23) into the model, the panel VAR can be rewritten as2664
y1t
x1t
y2t
x2t

3775 =
2664
Z1t
Z1t
Z1t
Z1t

3775 �1 +
2664
Z2;1;t 0
Z2;1;t 0
0 Z2;2;t
0 Z2;2;t

3775 �2 +
2664
Z3;1;t 0
0 Z3;2;t

Z3;1;t 0
0 Z3;2;t

3775 �3 + t (24)
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where Z1t = y1t�1 + x1t�1 + y2t�1 + x2t�1 + 1, Z2;1;t = y1t�1 + x1t�1, Z2;2;t = y2t�1 + x2t�1,

Z3;1;t = y1t�1 + y
2
t�1, Z3;2;t = x1t�1 + x

2
t�1.

The speci�cation in (21) is preferable to a collection of VARs or bilateral VARs for

two reasons. First, the parsimonious use of cross sectional information helps to get more

accurate estimates of the parameters and to reduce the standard errors. Second, if the

momentum that the shocks induce across countries is the result of a complicated structure

of lagged interdependencies, the speci�cation will be able to capture it. Such a structure

would instead emerge as �common shocks�in the two alternative frameworks.

It is easy to estimate a model like (21). Stuck the t observations in a vector so that

Y =

rX
j=1

Zj�j +  (25)

Thus, the reparametrized model is simply a multivariate regression model. If the factoriza-

tion in (20) is exact, the error term is uncorrelated with the regressors and classical OLS

can be used to estimate vector � and thus the vector �: Consistency is insured as T grows.

When the factorization in (20) allows for an error, t has a particular heteroschedastic

covariance matrix which needs to be taken into account. If a Bayesian framework is pre-

ferred, the posterior for the unknowns is easy to construct. Let et � N(0;�u 
 V ) and

further restrict V = �2I as in Kadiyala and Karlsson (1997). Then vt � N(0; �t�u)

where �t = (I + �2X 0
tXt). Thus, if the prior for (�;�u; �2) is, for example, of the

semi-conjugate type: � � N(�0;
0); �
�1
u � W (z0; Q0); �

�2 � G(0:5a0; 0:5a0s
2); where

(�0;
0; z0; Q0; a0; s
2) are known quantities, W stands for Wishart distribution, and G for

Gamma distribution, one can use the Gibbs sampler to construct sequences for (�;�u; �2)

from their joint posterior distribution �see next section for details.
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4 Adding time variation in the coe¢ cients

The modern macroeconomic literature is taking seriously the idea that the coe¢ cients

of a VAR and the variance of the shocks may be varying over time. For example, Cog-

ley and Sargent (2005) and Primiceri (2005) pioneered a speci�cation where the VAR

coe¢ cients evolve over time like random walks; Sims and Zha (2006) assume that VAR

coe¢ cients evolve over time according a Markov switching process, while Auerbach and

Gorodnichenko (2011) specify a smooth transition VAR model, where contemporaneous

and lagged coe¢ cients are a function of a pre-speci�ed variable indicator.

Speci�cations of this type can also be used in a panel VAR framework if time variation

in the parameters is suspected. In general, the presence of time variation in the coe¢ cients

adds to the curse of dimensionality and some ingenuity is required if one is to obtain

meaningful estimates of the parameters and of the responses to the shocks of interest.

The approach employed in Canova and Ciccarelli (2004 and 2009), and Canova et al.

(2007 and 2012), which extends the shrinkage structure previously described to the case

of time varying parameter models, can go a long way in that direction.

Let the time varying panel VAR model be given by

yit = A0i(t) +Ait(`)Yt�1 + Fit(`)Wt + uit (26)

where Ait(`) are the coe¢ cients on the lag endogenous variables Yt�1,Wt is aM�1 vector

of weakly exogenous variables common to all units and time-varying coe¢ cients are allowed

in both Ait(`) and Fit(`). Such a speci�cation could be employed, for example, to study

time varying business cycle features of a vector of countries, evolutionary patterns in the

transmission of structural shocks across variables or units, or the e¤ect of changes in the

variance of the shocks on relevant endogenous variables. Time variation in the coe¢ cients

add realism to the speci�cation but is costly, since there are k = (NGp+Mq) parameters

in each equation and there is only one time period per unit to estimate them.
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Two approaches have been proposed to estimate such model. To see what they involve,

rewrite (26) in a simultaneous equations format:

Yt = Zt�t + Ut (27)

where �t = (�01t; : : : ; �
0
Nt)

0 and �it are Gk � 1 vectors containing, stacked, the G rows of

the matrices A0i, Ait and Fit.

4.1 A panel-type hierarchical prior

Here �t is assumed to be the sum of two independent components: one which is unit

speci�c and constant over time; the other common across units but time-varying, i.e.:

�it = �i + �t

An exchangeable prior is assumed for �i

�i = �� + vi; vi � N (0;�v) (28)

and, a further layer of dimensionality reducing hierarchy can be speci�ed by setting �� �

N (�;	). On the other hand, �t is assumed to follow an autoregressive process:

�t = ��t�1 + (1� �)�0 + et (29)

Additional assumptions on �v; �, �0 and et complete the speci�cation of the prior.

This setup is convenient and found to be useful in forecasting and turning point analysis

(Canova and Ciccarelli, 2004). The fact that the time-varying parameter vector is common

across units does not prevent unit-speci�c structural movements, since �it can be re-

written as

�it = (1� �)(�i + �i0) + (1� �)�it�1 + et

where persistent movements in �it are driven by the common coe¢ cient �. Note also that

the setup provides a general mechanism to account for structural shifts without explicitly

modeling their sources.
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The assumptions made on �i and �� can be used to recover the posterior of �i and of the

mean ��. Thus, one can distinguish between individual �it and mean e¤ects ��t = �� + �t,

as in Lindley and Smith (1972). The di¤erence is relevant in a forecasting context, since

one may be concerned in predictions with the posterior of the average ��t or with the

posterior of the distribution of unit speci�c e¤ects. As in the case of a collection of VARs,

the exchangeability assumption on �i allows for some degree of pooling of cross sectional

information and, again, this may be useful when there are similarities in the characteristics

of the vector of variables across units.

The structure of the model can be summarized with the following hierarchical scheme:

Yt = Zt� + ZtSN�t + Ut Ut � N (0;�u)

� = SN�� + � � � N (0;�)

�� = �+ ! ! � N (0;	)

�t = ��t�1 + (1� �)�0 + et et � N (0;�e) (30)

where SN = en 
 I; en = vec (1; 1; :::; 1) ; and � = I 
 �v:Canova and Ciccarelli (2004)

describe how to construct the posterior distributions for (functions of) the parameters of

interest under several prior assumptions on the variance covariance matrices �u; �;	 and

�e; the mean vector � and on the initial �0; using the Gibbs sampler.

4.2 A factor structure for the coe¢ cient vector

Another possibility is to allow for time variation in the factorization present in (20). Thus,

let

�t =
X
j

�j�jt + et (31)

where �j are matrices with ones and zeros and �jt are factors. While in the setup of

eq. (20) ��s were �xed hyperparameters, now they are stochastic processes and thus a

speci�cation of their law of motion is needed to complete the model. Canova and Ciccarelli
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(2009) study di¤erent alternatives for this law of motion. A simple representation, nested

in their speci�cation, which illustrates the point is

�t = �t�1 + �t �t � N (0;
t) : (32)

where �t = [�1t; �2t : : :]0, 
t is block diagonal and Ut, et and �t be mutually independent.

In (32) the factors driving the coe¢ cients of the panel VAR evolve over time as random

walks. This speci�cation is similar to the one employed in the time varying coe¢ cient VAR

literature, but it is parsimonious since it concerns �t, which is of much smaller dimension

than the �t vector, and allows us to focus on coe¢ cient changes which are permanent.

The variance of �t is, in principle, allowed to be time-varying. Such a speci�cation implies

ARCH-M type e¤ects in the representation for Yt and it is a way to model time varying

conditional second moments, alternative to the stochastic volatility speci�cation used, e.g.,

in Cogley and Sargent (2005) and many others. The main di¤erence is that here volatility

changes will be related to coe¢ cient changes. Note that the computational costs involved

in using this speci�cation are limited since the dimension of �t is considerably smaller than

the dimensionality of Yt. The block diagonality of 
t; on the other hand, guarantees the

identi�ability of the factors.

To make the speci�cation composed of (27) (31) and (32) estimable, we need assump-

tions on the error terms of (27) and of (31). If we let Ut � N (0;�u) and et � N(0;�u
V );

where V = �2Ik is a k�k matrix, the reparametrized model has the state space structure:

Yt = (Zt�)�t + t t = Ut + Ztet � N(0; �t�u)

�t = �t�1 + �t �t � N (0;
t) (33)

where �t = (I + �2Z 0tZt). Bayesian estimation requires prior distributions for �u;
t; �
2

and �0. Canova and Ciccarelli (2009) show how these joint prior densities can be speci�ed

so that the posterior distribution for the quantities of interest can be computed numeri-

cally with MCMC methods. Once these distributions are found, location and dispersion
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measures for any interesting continuous functions of the parameters can be obtained. Sim-

ilarly, the marginal likelihood and the predictive distributions needed for model checking

and model comparisons are easy to construct.

If classical methods are preferred, notice that (33) is a linear state space system, where

�it represents unobservable states. Thus, variations of the Kalman �lter algorithm can be

used to construct the likelihood function which then can be maximized with respect to

the relevant parameters (see e.g. Ljung and Soderstrom, 1983).

4.3 Implementation in small samples

The approaches described in the previous two subsections conditions on the initial p ob-

servations. When T is large, the di¤erence conditional and unconditional likelihood is

likely to be small. When T is small, the information present in the initial conditions may

contain important information for the quantities of interest. Intuitively, with T = 20 ob-

servations throwing away, say p = 4; initial conditions e¤ectively reduces the information

by 20 percent, making the likelihood �atter and leaving to the prior the burden to produce

enough curvature in the posterior. This problem is relevant for many applications, since in

practice, comparable macro time series across a number of countries or sectors exist only

for the last 15-20 years, at best. Thus, one may want to take all the existing information

into account when constructing the posterior of the quantities of interest.

In the case of (33), conditional on the �rst p observations, the likelihood is

L(�jy;Z) / (
Y
t

�t)j�uj�0:5T exp[�0:5
X
t

(Yt �Zt�t)0(�t�u)�1(Yt �Zt�t)] (34)

Since Zt = Zt�j ; the likelihood of Zjt is proportional to the likelihood of Zt: The likelihood

of the initial conditions can be written as

L(Zj ) / exp[�0:5
X
i

(Zt � �Z)0(�Z)
�1(Zt � �Z)] (35)

where �Z is a vector of mean parameters. The full likelihood of the sample is then simply

the product of (34) and (35) and can be combined with the prior to yield a posterior
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kernel or a conditional posterior for the unknowns which can then be used into the Gibbs

sampler.

5 Impulse responses and shock identi�cation

Shock identi�cation can be performed with standard methods. To decrease the number

of identi�cation restrictions, it is typical to assume that �u is block diagonal, with blocks

corresponding to each unit, employ symmetric identi�cation restrictions across units (these

could be zero, long run or sign restrictions or a combination of the them) and require the

structural shocks to be orthogonal. Block diagonality implies di¤erences in the responses

within and across units: within a unit, variables are allowed to move instantaneously;

across units, variables may react but only with a lag. Symmetric identi�cation restrictions

imply that while the e¤ect of shocks may be di¤erent across countries, the nature of the

disturbances (i.e., being demand or supply shocks) is independent of the unit.

Restrictions of this type have been used to obtain the (cross sectional) average re-

sponses or the average responses of particular groups of units which are homogeneous in

their dynamics. Jarocinski (2010), for instance, compares responses to monetary policy

shocks in the Euro area countries before the EMU to those in the new member states

from Eastern Central Europe. A monetary policy shock is identi�ed with the same re-

strictions in each group of countries. A hierarchical Bayes estimator is used to derive

the posterior distribution of the reduced form VAR parameters and to construct impulse

responses for the average and for individual members of each group. Rebucci (2010) is

interested in assessing the role of external and policy shocks for growth variability. He

uses a classical mean group estimator to construct the average e¤ect of these shocks using

a collection of vector autoregressive models for eighteen developing economies. External

and policy shocks are identi�ed by imposing the same Choleski decomposition in all coun-

tries. Finally, Ciccarelli et al. (2012b) analyze whether �nancial fragility has altered the
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transmission mechanism of monetary policy in the Euro area. A panel VAR is estimated

for core countries and countries under �nancial stress, allowing the slopes and the contem-

poraneous impact matrix to be di¤erent across groups, but restricting them to be common

within groups. A monetary policy shock is identi�ed using the same restrictions in the

two groups and an average impulse response functions for each group is constructed.

Shock identi�cation is somewhat more complicated when static interdependencies

across units are allowed for and cross unit symmetry in shock identi�cation cannot be

assumed. A convenient tool to be used in this situation is described in Canova and

Ciccarelli (2009). Researchers using panel VARs with static and dynamic interdependen-

cies and, possibly, time variation in the coe¢ cients may be interested in computing the

responses of the endogenous variables to shocks in the variables or to shocks to the coef-

�cients (via shocks to the common �t or shocks to the factors �t) and in describing their

evolution over time. In this situation, responses can be obtained as the di¤erence between

two conditional forecasts: one where a particular variable (coe¢ cient) is shocked and one

where the disturbance is set to zero.

Formally, let yt be the history for yt, �t the trajectory for the coe¢ cients up to t, 
t

the trajectory for the variance of the coe¢ cients up to t; let yt+�t+1 = [y0t+1; :::y
0
t+� ]

0 be a

collection of future observations and �t+�t+1 = [�
0
t+1; :::�

0
t+� ]

0 a collection of future trajectories

for �t. Let W = (�u; �
2); set �0t = [u01t; u

0
2t; �

0
t], where u1t are shocks to the endogenous

variables and u2t shocks to the predetermined or exogenous variables (if there are any).

Let ��j;t be a realization of �j;t of size �; and F1t = fyt; �t;
t;W; Jt; �
�
j;t; ��j;t; �

t+�
t+1g and

F2t = fyt; �t;
t;W; Jt; �t; �
t+�
t+1g two conditioning sets, where ��j;t indicates all shocks,

excluding the one in the j-th component, and Jt satis�es JtJ 0t = �u. Then, responses at

horizon � to a � impulse in �j;t, j = 1; : : : are

IRjy(t; �) = E(yt+� jF1t )� E(yt+� jF2t ) � = 1; 2; : : : (36)

Notice that in (36), the history of the coe¢ cient and of their variance is taken as given at
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each point in time and that the impulse the size of the impulse, can be positive or negative,

but it is also taken as given. This is because one may be interested in comparing responses

over time for a given trajectory of the coe¢ cients and their variance (rather than their

average values) and because the relevant size of the impulse is generally determined by

policy or stability considerations. When the coe¢ cients are constant, �0t = [u
0
1t; u

0
2t] and

(36) produces the traditional impulse response function to structural shocks.

A proper shock identi�cation strategy, i.e., the selection of the (large scale) matrix Jt

and its time evolution, is an open area for research since its sheer dimensionality makes it

hard to �nd enough constraints to achieve identi�cation for all shocks. Shortcuts, such as

a block structure, may not be very appealing �one can envision situations where shocks

are transmitted across unit within a time period. Alternative shortcuts, such as the one

imposed in Canova et al. (2012), where shocks occurring in one unit (Germany) are allowed

to feed contemporaneously on all other units (European countries) but not viceversa, may

be acceptable if there are good economic reasons to justify them. In both cases, dynamics

interdependencies are left unrestricted.

Which kind of restrictions are used for identi�cation is a matter of taste. Zero re-

strictions and Choleski format for Jt = J for all t, are the most common ones and just

identi�cation is typically sought, even though overidenti�cation requires a simple exten-

sion of the tools described in Canova and Perez Forero (2012) for standard VARs. As in

single unit VARs, one could also employ external information to identify shocks in di¤er-

ent units. For example, one could measure, using information not present in the model,

the elasticity of tax revenues and government expenditure to output shocks in each cross

sectional unit and use these restrictions to identify government spending and tax revenue

shocks in all units, adding the restriction that domestic government expenditure and do-

mestic revenues do not instantaneously respond to shocks generated in other units. Long

run restrictions a-la Blanchard and Quah (1989) as well as heteroshedasticity restrictions
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a-la Lanne and Lutkepohl (2010) are also possible. In both cases, one has to clearly state

what happens to the variables of other units and often the restrictions needed to achieve

identi�cation are economically di¢ cult to justify. For example, when long run restrictions

are used, one has to impose that foreign supply shocks have no long run e¤ect on domestic

real variables or that they have the same e¤ect as domestic supply shocks, both of which

are not very palatable.

Sign restrictions can also be used (see e.g. Calza et al., 2013, and Sa et al., 2012). In

this case, it is typical to use the same type of restrictions on each cross sectional unit.

Recently, De Graeve and Karas (2011) have suggested using cross sectional heterogeneity

to identify certain structural shocks. Their approach involves imposing sign and inequality

restrictions on
@Y �m;t+s
@uk;t

, the response of variable Ym at horizon t + s; s = 0; 1; 2; : : : ; to

shock k at time t, uk;t, for a subset of the units � = f1; : : : ;Mg.

The approach is best understood with an example. Suppose the cross sectional dimen-

sion of the panel can be strati�ed according to an observable indicator, for example, in

a sample of banks, whether bank deposits are insured or not. Suppose the endogenous

variables are deposits Dt and the average interest rate they earn Rt. Then, a bank run

is identi�ed as the shock that makes the two variables move in opposite direction in a

situation where deposit insure matters. That is, a bank run is associated with a fall in

deposits and an increase in the interest rate o¤ered by uninsured banks. The insured

banks may also respond, because of contagion e¤ects, but the responses will be smaller

because deposit insurance makes them less liable to the run. Thus, together with the sign

restrictions, De Graeve and Karas impose that jDt;uj > jDt;I j and jRt;uj > jRt;I j, where

u stands for uninsured and I for insured banks. Hence, following a bank run, the deposit

out�ow in insured banks cannot be larger than in uninsured banks, and the corresponding

increase in deposit rates must be smaller for insured than for uninsured banks.

Cross sectional identi�cation restrictions of this type seem useful if one can sharply
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stratify the data with some exogenous indicator. For example, one could impose such re-

strictions to identify shocks originating in less developed countries (LDC), when the sample

includes LDC and developed countries, once it is recognized that shock originating in LDCs

are unlikely to generate the same amount of volatility in the two groups of countries. Al-

ternatively, one could identify shocks primarily a¤ecting small open economies integrated

in the world economy. If the impact of particular shocks is strong in open economies

but weak in relatively more closed economy or if more closed economies respond to the

shocks only via second round e¤ects, sign and di¤erential magnitude restrictions can help

to isolate them. Finally, an approach that combines sign and inequality restrictions can

be used also to distinguish shocks taking place in units with slow vs. fast adjustments or

in markets a¤ected in di¤erently by the presence of certain frictions.

The combination of sign and relative magnitude restrictions appears to be a very

powerful identi�cation device if the strati�cation employed is relevant. De Graeve and

Karas show that in their sample of banks these restrictions allow to identify a bank run

shock which has characteristics that are similar to those obtained with a more narrative

approach or ex-post insight. Note that the set of constraints one can impose is quite large,

making the combination of sign and relative magnitude restrictions potentially usable in

many situations. For example, one could impose relative magnitude restrictions on a

particular variables across subsets �1, �2 of the units
@Y

�1
m;t+s

@uk;t
� @Y

�2
m;t+s

@uk;t
, across variables

within a particular subset of units,
@Y �m1;t+s
@uk;t

� @Y �m2;t+s
@uk;t

, or across variables and across

subset of units
@Y

�1
m1;t+s

@uk;t
� @Y

�2
m1;t+s

@uk;t
. Clearly, which one is used depends on the question

and the available data. Theory driven restrictions are clearly preferable, but restrictions

obtained from reliable stylized facts characterizing di¤erent groups of units can also be

used.

While the identi�cation restrictions of De Graeve and Karas involve only the con-

temporaneous e¤ect of shocks, one could consider also dynamic restrictions characterizing
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relative shape and/or relative magnitudes to identify shocks in a panel VAR. Future inves-

tigations need to clarify what kind of dynamic restrictions are consistent with economic

theory and could be meaningfully employed to identify interesting shocks.

6 A comparison with alternative approaches

As we have emphasized, panel VARs are unique in their ability to model dynamic inter-

dependencies, cross sectional heterogeneities and, at the same time, account for evolving

pattern of transmission. However, to estimate them restrictions of various sorts need to

be imposed. Thus, it is natural to ask how panel VAR models compare to other models,

which still allow us to study interdependences and the transmission of shocks across units

but impose alternative restrictions on the nature of the interdependencies present in the

data.

This section sketches the main features of large scale Bayesian VARs (e.g. Banbura

et al, 2010), spatial econometric models (see Anselin, 2010), factor models (see e.g. Stock

and Watson, 1989, 2003), global VARs (see Dees et al., 2007 and Pesaran, et al., 2004) and

bilateral panel VARs (see e.g. Eldelstein and Kilian, 2009), and highlights the similarities

and di¤erences with panel VARs.

6.1 Large Scale VARs

A close cousin of panel Bayesian VARs is the large scale Bayesian VAR model suggested

by Mol et al. (2008) and recently employed by Banbura et al. (2010). As in panel VARs,

both static and dynamic interdependencies are allowed for, but the researcher gives no

consideration to the existence of a panel dimension in the data. Thus, all variables are

treated symmetrically, regardless of whether they belong to a unit or not, and of whether

they measure the same quantity in di¤erent units or not. Given the large scale of the

model, classical estimation methods are also unfeasible, especially if time varying features

are allowed for. The lack of a panel perspective is re�ected in the type of priors imposed
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in Bayesian estimation, which are typically of Litterman-Minnesota type (see Doan, et al.,

1984), and do not exploit any cross sectional information present in the data.

Failure to recognize that there is a cross sectional dimension to the available data set

may not be too damaging in terms of forecasting, since it is well known that dimension-

ality shrinkage is more important than the exact details on how it is implemented �the

Litterman-Minnesota prior is indeed a shrinkage prior. However, the choice of priors may

limit the type of analyses one can perform, since the covariance matrix of the error has a

particular structure which is generally disregarded in the policy exercises.

As in panel VARs, time variation in the coe¢ cients of a large scale VARs are relatively

easy to allow for (see e.g. Koop and Korobilis, 2011). However, ingenuity needs to be

used since unrestricted time variation on all coe¢ cients is impossible to estimate. Thus

a factor structure, like the one described in equation (31), may be necessary to make

the estimation problem manageable, and simple processes for time variation need to be

imposed for computational ease.

6.2 Spatial VARs

Large scale VARs are also popular in classical econometric frameworks. Here, dimension-

ality restrictions are directly imposed to make estimation feasible. One example of these

dimensionality reduction restrictions are those embedded in the VARs used in the spatial

econometric literature (see Anselin, 2010). Assuming, for simplicity only one lag of the

dependent variables and no deterministic components, a spatial VAR has the form

Yt = �S1Yt�1 + ut (37)

ut = S2et (38)

where S1 and S2 are �xed matrix of weights. For example, a typical structure for S1 is
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S1 =

26666664

s11 s12 0 0 : : : 0 0
s21 s22 s23 0 : : : 0 0
0 s32 �33 s34 : : : 0 0
: : : : : : : : : : : : : : : : : : : : :
0 0 0 0 : : : sN�1;N�2 sN�1;N�1 sN�1;N
0 0 0 0 : : : 0 sN;N�1 sN;N

37777775
Here only the neighbors will have dynamic repercussion on unit i within one period while

the rest is assumed to have a negligible e¤ects. This structure implies that a shock

originated in unit i can be transmitted after one period to unit j if j is a neighbor of i.

However, if j is not a neighbor of i, delayed e¤ects are longer and will depends on how

many neighbors are between unit j and unit i. The idea of restricting dynamic e¤ects to

neighbors has been implemented using, for example, regions which share a border or stores

which are located in the same city. Three are the main disadvantages of this procedure.

First, the weights have to be chosen prior to the estimation and di¤erent weights may

be used by di¤erent researchers on the same data set, depending on the focus of the

analysis. Second, the setup is di¢ cult to entertain in analyzing, for example, countries

in a monetary union since generalized feedbacks are possible or situations where borders

(national, regional, etc.) do not re�ect the economic separation present across units.

Third, while the approach is relatively easy to implement when yit is a scalar, it is much

more complicated when yit is vector since di¤erent elements of yit may have di¤erent

relationships across units. For example, if yit includes output and consumption and the

units are countries, the neighbor scheme may be appropriate for output, if the units are

grouped using their natural resources, but may be highly inappropriate for consumption

if migrations to all units are important.

Recently, Chudik and Pesaran (2011) have extended this framework to allow S and R

to be full matrices and derived classical estimators under the assumption that there is weak

or strong cross sectional dependence across units. The basic idea of their approach is still

to distinguish between neighbors and non-neighbors, where the former have non-negligible
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static and dynamic e¤ect on unit i and the latter have negligible e¤ects. However, even

if the non-neighbor e¤ects may be individually small, the sum of their absolute values

may not be small making aggregate feedback e¤ects potentially large. To account for this,

the authors assume that the dynamic feedback produced by neighbors is important and

independent on N , while the e¤ect of the non-neighbors depends on N . As N increases, if

there is weak cross correlation between a unit and the non-neighbors, the model approaches

a spatial VAR where the non-neighbor e¤ects are neither interesting nor estimable while

the neighboring e¤ects can be consistently estimated simply ignoring the non-neighbor

feedbacks. On the other hand, when there is strong cross correlation between a unit and

some non-neighbor, the structure will approach a factor model, where one unit drives

the �uctuations in all the others, controlling for neighboring e¤ects. Here ignoring the

feedbacks produced by the factor may lead to inconsistent estimates of the parameters.

The main value of the setup is to provide a link between classical parameter shrink-

age, as implied by spatial VAR models, and classical data shrinkage, as implied by factor

models, both of which attempt to mitigate the curse of dimensionality present in large

scale VARs. The approach also provides a justi�cation for using the Global VAR ap-

proach described later. The main disadvantages of the procedure are similar to those of

spatial VARs, namely that (i) neighbors and non-neighbors need to be chosen a priori;

(ii) the approach is di¢ cult to implement if yit is a vector; and (iii) it is hard a-priori

to know whether weak or strong cross sectional dependence characterizes the units under

consideration.

6.3 Dynamic Factor models

Unobservable factor models are popular in the applied macroeconometric literature be-

cause they capture the idea that the comovements present in a large set of series may

be driven by a small number of latent variables, and because they are relatively easy to

specify and estimate (Forni et al., 2000 and 2005; Stock and Watson, 2002).
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Factor models have another appealing feature: their format is consistent with economic

theory. To see why, consider a prototypical factor model:

Yt = �ft + ut

A(`)ft = et

U(`)ut = vt (39)

where Yt is a nG � 1 vector, ft is a m < nG � 1 vector of factors. The log-linearized

solution of a DSGE model is

Xt = ASt +Bvt

St = CSt�1 +Dut (40)

For example, in the case of an international RBC model, St = [kit; �it]; kit is the capital

stock, �it the technology shock in country i and Xt a vector including consumption,

investment, output, hours, etc. in each country. Here ut = [u1t; :::unt] is the vector of

innovations in the technology process, and U(`) = I. Simple inspection indicates that

the decision rules in (40) have a factor structure and this similarity allows statistical and

economic analyses to be better linked.

When nG is small, one can use a EM algorithm or the Gibbs sampler to estimate the

factors and free parameters of the model, if vt and et are normally distributed. If the

nG instead is large, averaging will insure that the idiosyncratic component ut will cancel

out. In this situation, one can use Yt = �ft + ut � � �Yt + ut; where �Yt is a m � 1 vector

estimated averaging the variables in Yt (see e.g. Forni and Reichlin, 1998).

Multi-unit (large scale) dynamic factor models and panel VARs di¤er in a number of

dimensions. In terms of speci�cation, the complex structure of dynamic interdependencies

is not modelled in the former and is instead captured with a set of unobservable factors.

Furthermore, the presence of cross sectional information is generally ignored.

36



The interpretation of impulse responses is usually much easier in a panel VAR than

in factor models. In fact, in factor models dynamic analyses are typically performed

by shocking the factors and seeing how impulses in these factors are transmitted to the

endogenous variables. Thus, the structure does not allow us to study, say, how a shock

generated in one unit is propagated to other units or identify the interdependences that

make an e¤ect large or small. On the other hand, by appropriately selecting a combination

of shocks, one can mimic with a panel VAR model the type of exercises that are typically

performed in factor models.

Finally note, that once the parameter dimensionality reduction described in sections 3

and 4 is performed, a panel VAR with interdependencies can be written in a factor format.

Two important di¤erences, however, arise. First, the regressors in (21) are combinations

of the lags of the right hand side variables of the panel VAR and thus are observable. In

factor models, factors are unobservable and typically estimated using averages of (subsets)

of the current values of endogenous variables. Hence, they are likely to have di¤erent

characteristics and span a di¤erent informational space. Whether lags or current values of

the endogenous variables provide superior information for the states of a theoretical model

is an open question which deserves further investigation. Second, the regressors of (21)

equally weigh the information present in the subset of the variables used to construct them.

The equal weighting scheme comes directly from (20) and the fact that all variables are

measured in the same units (all variables will be demeaned and standardized). In factor

models, instead, estimates of the factors re�ect the relative variability of the variables

used to construct them.

6.4 Global VARs

Global VARs (GVARs) are similar in spirit to factor models and Dees et al. (2007)

showed how they can obtained when the DGP is a factor model with observable and

unobservable factors. They are appealing to the users because they intuitively capture
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important features of a panel while trying to maintain a simple structure which allows

them to be easily estimated.

For our purposes, a GVAR can be thought as a collection of unit speci�c VARs to

which one tags on an unobservable common factor. Consider the structure in (26) where

now the coe¢ cients are time invariant, only lags of the variables for that particular unit

appear and add a new vector of unobservable variable xt, i.e.,

yit = Ai(`)yit�1 + Fi(`)Wt +Hi(`)xt + eit (41)

xt is, potentially, a vector of autoregressive processes with �nite variance and Hi(`) is a

polynomial in the lag operator. Set for simplicity Wt = 0;8t. Then (41) is a collection of

unit speci�c VARs linked together by the presence of the unobservable vector of factors.

Unobservable factors complicate estimation since Kalman �lter techniques need to be used,

and unless the cross sectional dimension is small, computations may be demanding.

As in large scale factor models, the basic idea of GVARs is that, if N is su¢ ciently

large, one can proxy St with cross unit averages of yit (and Wt; when they are present).

Thus, rather estimating (41) one estimates

yit = Ai(`)yit�1 +Hi(`)y
�
it + eit (42)

where y�it =
PN
j=1 sijyjt with sii = 0 and sij is a set of country speci�c weights which

re�ect the relative importance of the unit in the aggregate. For example, if the units are

countries, one does not expect them to be equally important in the world economy and

may want to weight country speci�c variables by their share in world trade. Alternatively,

they could capture relative variability if, for example, the cross section contains units

featuring cyclical �uctuations with di¤erent amplitudes.

A model like (42) can be estimated in two steps. First, country speci�c VARs are

estimated and all endogenous variables of the model collected. Second, the vector Yt =

[Y1t; : : : ; YNT ], where each Yit = [yit; y�1t] is simultaneously solved from the model. Pesaran
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et al (2007) show that this is equivalent to specifying a large scale VAR of the form

Yt = D(`)Yt�1 + ut (43)

where I �D(`) is NG� 1 matrix whose typical i element is 1�Di(`)si.

Hence, a Global VAR is a restricted large scale VAR, where variables of di¤erent units

in an equation are weighted according to !i. Since the weights are country speci�c and

typically a-priori determined by the investigator, a GVAR imposes a particular structure

on the interdependencies present in the data. In particular, it selectively chooses what

interdependencies may be a-priori important based, for example, on trade or �nancial

considerations, and forces the same dynamics on the variables belonging to all units,

apart from a scale factor. In this sense, it resembles an extreme version of a Minnesota

prior in that variables of the units di¤erent from the one appearing on the left hand side

of the relationship have weights which are smaller than their own.

To state the concept di¤erently, a GVAR becomes estimable imposing the restriction

that the dynamics produced by variables of di¤erent units on the variables of unit i are

proportional to the weights. This e¤ectively collapses the number of estimated coe¢ cients

to a more manageable number, comparable to those one would estimate using a collection

of single unit VARs.

6.5 Bilateral panel VARs

It is common to run bilateral or trilateral panel VARs with units representing countries,

sectors or disaggregated components of important macro variables, even if the DGP is

suspected to be much more complicated (see e.g. Eldelstein and Kilian, 2009). One

reason for doing so is ease of interpretation. Another is to reduce the parameter vector to

be estimated and thus to reduce the curse of dimensionality problem. However, it is easy

to show that such an approach is likely to distort both the properties of the estimated

structural shocks and the dynamics of their transmission.
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To see how this can happen, consider the following three unit structural panel VAR(1)

y1t = A11y1t�1 +A12y2t�1 +A13y3t�1 + J11u1t (44)

y2t = A21y1t�1 +A22y2t�1 +A23y3t�1 + J21u1t + J22u2t + J23u3t (45)

y3t = A31y1t�1 +A32y2t�1 +A33y3t�1 + J31u1t + J32u2t + J33u3t (46)

where yit is of dimension G�1 and all the roots of the A matrix are outside the unit circle.

In this system the reduced form news to y1t are proportional to u1t while the reduced form

news to y2t and y3t are linear combinations of the three structural innovations (u1t; u2t; u3t).

Suppose that a researcher decides to use data from units 1 and 2 only to form a bilateral

panel VAR. Then the estimated model would be

y1t = (A11 +A13(I �A33`)�1A31)y1t�1 + (A12 +A13(I �A33`)�1A32)y2t�1 + e1t(47)

y2t = (A21 +A23(I �A33`)�1A31)y1t�1 + (A22 +A23(I �A33`)�1A32)y2t�1 + e2t(48)

where

e1t = J11u1t + (I �A33`)�1(J31u1t + J32u2t + J33u3t) (49)

e2t = J21u1t + J22u2t + J23u3t + (I �A33`)�1(J31u1t + J32u2t + J33u3t) (50)

Note that the dynamic responses induced by reduced form shocks will be di¤erent in the

two systems. In particular, in the estimated system, the true dynamics will be conta-

minated by the dynamic responses of the variables of unit 3 to structural shocks. For

example, the reduced form dynamics of unit 1 will be correctly captured only when A13

is zero �which requires unit 1 to be exogenous with respect to the system. However,

even in this special case, structural dynamics will be incorrectly captured in the estimated

system for three reasons. First, while in the true model the reduced form news to unit

1 are a scaled version of the true innovations hitting that unit, in the estimated system

e1t mixes structural shocks from di¤erent units and this is true even when the original
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system has only lagged interdependencies but no static interdependencies, i.e. J = I. In

addition, while in the original system unit 1 was predetermined, in the estimated one it is

not. In other words, while a particular Choleski block ordering would be able to recover

the innovations to the �rst unit in the original system, the imposition of such a structure

would induce important identi�cation errors in the estimated system.

Second, even if the reduced form innovations in the original system were serially un-

correlated, serial correlation would appear in the estimated one, since the marginalization

implicit in the elimination of the data from unit 3 creates moving average components

in the reduced form errors of the estimated system. Thus, either the lag length of the

estimated panel VAR is appropriately increased or the reduced form errors will be seri-

ally correlated. In other words, to approximate the original panel VAR(1) with a smaller

number of units, we need either a panel VARMA or a VAR(p) with p generally large.

Third, idiosyncratic shocks in the original system may show up as common shocks in

the estimated system. For example, when J = I structural shocks to the variables of the

third unit will show up in the estimated system as common shocks to units 1 and 2. Hence,

one should be cautious in interpreting empirical evidence in favour of common shocks in

such systems

It general, it seems a bad practice to circumvent the curse of dimensionality problem

using bilateral and trilateral systems when the data generating process may be more

complicated. Omitted variables create important distortions to the estimated structural

shocks and hamper the ability of researchers to interpret the estimated dynamic responses.

6.6 Summary

All available approaches impose restrictions. The large scale Bayesian VARs and the

Bayesian panel VARs leave the model unrestricted but employ a shrinkage prior to e¤ec-

tively reduce the dimensionality of the coe¢ cient vector. The spatial econometric model,

the factor model, the global VARs, and the bilateral VARs on the other hand, impose

41



that all interdependencies can be captured with a set of factors, or that there is only a

very limited number of neighbor e¤ects, or that the o¤-diagonal elements of the matrix

D(`) are proportional to the diagonal elements, or that the estimated system is of lower

dimension than the DGP. All restrictions may be violated in practice and it is unclear

which ones are preferable. In theory, prior restrictions are superior to dogmatic restric-

tions. An interesting question for future research is whether and in what way di¤erent

sets of restrictions a¤ect our ability to capture and interpret interdependences economies

with heterogenous features.

7 Conclusions

Over the last �fteen years, there has been considerable improvement and uni�cation in the

standards of data collection and substantial e¤orts to create detailed and comparable data

(on banks, �rms, industries) in various countries and regions of the world. This means

that while empirical analyses were previously limited to a bunch of developed countries,

interdependencies were hardly explored, and cross-country comparisons very scant, now

an important panel dimension is added to the exercises and studies analyzing di¤erences

between, say, emerging markets and developed economies, or open and relatively closed

economies are now more frequent.

Together with improvements in the data collection, there has been a gradual but

steady increase in the interdependencies among regions, countries and sectors. The phe-

nomenon is not only object of academic studies. Terms like �global economies�, �global

interdependencies�, �global transmission�have become part of everyday discussions in the

popular press. This means that economies, regions or sectors can no longer be treated

in isolation and spillovers are now prevalent. In this new global order, where shocks are

quickly propagated and contagion e¤ects are important, substantial heterogeneities re-

main. Asymmetries both in the pace and in the magnitude of the recovery from the 2008
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recession and the stronger North-South divide that is increasingly characterizing the po-

litical discussion about the prolonged European debt crisis are simple examples of these

heterogeneities. Heterogeneities have di¤erent origin, but income, initial conditions, geo-

graphical, trade and �nancial developments, institutions and culture are often indicated

as the factors driving them.

Since the growth path, the dynamic responses to shocks and the transmission across

sectors, markets or countries may substantially di¤er, it is unpalatable, both from an

economic and from an econometric point of view, to treat all units symmetrically or just

considering aggregates such as the EU or the Euro area, disregarding country speci�c

peculiarities. The presence of dynamic heterogeneities suggest that there is ample room

to study how shocks are transmitted across units; to characterize not only average e¤ects

but also cross sectional di¤erences that help understand the potential sources of hetero-

geneities; to analyze how past tendencies have created the current status quo and how one

should expect the current situation to evolve in the future; and to provide policymakers

with facts that can help to build alternative scenarios and formulate policy decisions.

Panel VARs seem particularly suited to addressing issues that are currently at the

center stage of discussions in academics and in the policy arena as they are able to (i)

capture both static and dynamic interdependencies, (ii) treat the links across units in an

unrestricted fashion, (iii) easily incorporate time variation in the coe¢ cients and in the

variance of the shocks, and (iv) account for cross sectional dynamic heterogeneities. The

recent boom in empirical analyses using panel VARs in macroeconomics, banking and

�nance, and international economics attests this simple fact.

Panel VARs are built on the same logic as standard VARs but, by adding, a cross

sectional dimension, they are a much more powerful tool to address interesting policy

questions. The purpose of this article was to point out their distinctive features and

their potential applications, describe how they are estimated and how shocks are typically
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identi�ed, how one deals with structural time variation; what are the di¤erences between

the panel VAR models used in microeconomic and macroeconomic studies; how panel

VARs and a collection of VARs compare and how panel VARs relate to other popular

alternatives such as large scale VARs, Factor models or GVARs.

The large dimension of panel VARs typically makes the curse of dimensionality an issue

especially when researchers are interested in examining the input-output links of a region,

such as Latin America, or an area, such as the Euro area, where the time series dimension

of the panel is short. The article presents a shrinkage approach which goes a long way to

deal with dimensionality issues without compromising too much on the structure and on

the ability to address interesting economic questions.

Many challenges remain and future work should try to improve on existing approaches,

both in terms of estimation and inference. For example, Koop and Korobilis (2012)

have suggested fast algorithms to estimate large scale time varying coe¢ cients VARs

but it is unclear whether these will work also in time varying coe¢ cients panel VAR,

where cross sectional shrinkage becomes important. Similarly, it is unclear yet how to

expand the Markov switching methods of Sims and Zha (2006) to a panel framework and

whether transition probabilities should features important cross unit heterogeneities. The

properties of estimators used have not been evaluated in relevant economic situations and

it is unclear whether tests for model selection or for validation exercises are powerful or not.

When it comes to identi�cation, except for De Graeve and Karas (2012), the techniques

are the traditional ones used in VARs and no e¤ort has been made to exploit the richness

of the cross sectional information. Nor have there been e¤orts to directly link panel VARs

to interesting DSGE models developed in the international economic literature and to

study whether they can be used as testing ground for di¤erent theories of transmission.

All in all, panel VARs have the potential to become as important as VARs to answer

relevant economic questions that do not require the detailed speci�cation of the structure
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of the economy.
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