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1 INTRODUCTION 1

1 Introduction15

There have been considerable developments in the specification of DSGE models in the last16

few years. Steps forward have also been made in the estimation of these models. Despite17

recent efforts, structural estimation of DSGE models is conceptually and practically diffi-18

cult. For example, classical estimation is asymptotically justified only when the model is the19

generating process (DGP) of the actual data, up to a set of serially uncorrelated measure-20

ment errors, and standard validation exercises are meaningless without such an assumption.21

Identification problems (see e.g. Canova and Sala, 2009) and numerical difficulties are wide-22

spread. Finally, while the majority of the models investigators use is intended to explain only23

the cyclical portion of observable fluctuations, both permanent and transitory shocks may24

produce cyclical fluctuations, and macroeconomic data contains many types of fluctuations,25

and some are hardly cyclical.26

The generic mismatch between what models want to explain and what the data contains27

creates headaches for applied investigators. Over the last 10 years a number of approaches,28

reflecting different identification assumptions, have been used:29

• Fit a model driven by transitory shocks to the observables filtered with an arbitrary30

statistical device (see Smets and Wouters, 2003, Ireland, 2004a, Rubio and Rabanal, 2005,31

among others). Such an approach is problematic for at least three reasons. First, since the32

majority of statistical filters can be represented as a symmetric, two-sided moving average33

of the raw data, the timing of the information is altered and dynamic responses hard to34

interpret. Second, while it is typical to filter each real variable separately and to demean35

nominal variables, there are consistency conditions that must hold - a resource constraint36

need not be satisfied if each variable is separately filtered - and situations when not all37

nominal fluctuations are relevant from the point of view of a model. Thus, specification38

errors can be important. Finally, contamination errors could be present. For example, a39

Band Pass (BP) filter only roughly captures the power of the spectrum at the frequencies40
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corresponding to cycles with 8-32 quarters average periodicity in small samples and taking41

growth rates greatly amplifies the high frequency content of the data. In sum, rather than42

solving the problem, the approach adds to the difficulties applied researchers face.43

• Fit a model driven by transitory shocks to transformations of the observables which, in44

theory, are likely to be void of non-cyclical fluctuations, e.g. consider real ”great ratios” (as45

suggested in Cogley, 2001, and McGrattan, 2010) or nominal ” great ratios”(as suggested46

in Whelan, 2005). As Figure 1 shows, such transformations need not resolve the problem47

because many ratios still display low frequency movements. In addition, since the number48

and the nature of the shocks driving non-cyclical fluctuations needs to be a-priori known,49

specification errors may be produced.50

• Construct a model driven by transitory and permanent shocks; scale the model by the51

assumed permanent shocks; fit the transformed model to the observables transformed in the52

same way (see e.g. Del Negro et al., 2006, Fernandez and Rubio, 2007, Justiniano, et al.,53

2010, among others). Such an approach puts stronger faith in the model than previous ones,54

explicitly imposes consistency between the theory and the observables, but it is not free of55

problems. For example, since the choice of which shock is permanent is often driven by56

computational rather than economic considerations, specification errors could be present. In57

addition, structural parameter estimates may depend on nuisance features, such as the shock58

which is assumed to be permanent and its time series characteristics. As Cogley (2001) and59

Gorodnichenko and Ng (2010), have shown, misspecification of these nuisance features may60

lead to biased estimates of the structural parameters.61

• Construct a model driven by transitory and permanent shocks; fit the transformed62

model to the transformed data in the frequency domain (see e.g. Diebold et. al, 1998, Chris-63

tiano and Vigfusson, 2003) and select a particular frequency band over which to estimate64

the structural parameters. This approach is also problematic since it inherits the misspeci-65

fication problems of the previous approach and the filtering problems of statistically based66

filtering approaches.67
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This paper provides an alternative method to estimate DSGE models. I show first that68

the approach one takes to match the model to the data matters for structural parameter69

estimation and for economic inference. Unless one has a strong view about what the model70

is supposed to capture and with what type of shocks, it is difficult to credibly select among71

various structural estimates (see Canova, 1998). In general, any preliminary data transfor-72

mations (should these be statistical or model-based) should be avoided if the observed data73

is assumed to be generated by rational agents maximizing under constraints in a stochastic74

environment. Statistical filtering does not take into account that the data generated by a75

DSGE model has power at all frequencies and that, if permanent and transitory shocks are76

present, the permanent and the transitory component of the data will both appear at busi-77

ness cycle frequencies. Model based transformations impose tight restrictions on the long78

run properties of the data. Thus, any deviations from the imposed structure, being these79

residual low frequency variations, unaccounted or idiosyncratic long run dynamics must be80

captured by the shocks driving the transformed model. Hence, parameter estimates could81

be distorted because estimates of income and substitution effects could be biased.82

The paper proposes to estimate structural parameters by creating a flexible link between83

the DSGE model and the raw data that allows model based and non-model based compo-84

nents to have power at all frequencies. The methodology can be applied to models featuring85

transitory or transitory and permanent shocks and only requires that interesting features of86

the data are left out from the model - these could be low frequency movements of individual87

series, different long run dynamics of groups of series, etc.. Since the non-model based com-88

ponent can endogenously capture aspects of the data the model is not designed to explain,89

researchers need not to take a stand on what is left out from the model, or on its time series90

representation, and therefore shields the analysis from important specification errors. More-91

over, because the information present at all frequencies is used in the estimation, filtering92

distortions are eliminated and inefficiencies minimized. The setup has two other advantages93

over competitors: structural estimates reflect the uncertainty present in the specification94
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of non-model based features; what the model leaves out at interesting frequencies is easily95

quantifiable. Thus, R-squared type measures can be built to "test" the structure and to96

evaluate the explanatory power of additional shocks.97

The approach is related to work by Del Negro et al. (2006), in that certain cross equation98

restrictions that the DGP may impose on the data are not used in estimation, and to the99

work of Ireland (2004b), in that a non-structural part is added to a structural model prior to100

estimation and, crucially, it does not substitute for theoretical efforts designed to strengthen101

the ability of DSGE models to account for all observable fluctuations. But it can fill the gap102

between what is nowadays available and such a worthy long run aspiration, giving researchers103

a rigorous tool to address policy questions.104

Using a simple experimental design and two practically relevant cases, the paper doc-105

uments the biases that standard transformations produce, interprets them using the tools106

developed in Hansen and Sargent (1993), and shows that crucial parameters are better esti-107

mated with the proposed procedure. To highlight how the approach can be used in practice,108

the paper finally examines two questions greatly discussed in macroeconomics: the time vari-109

ations in the policy activism parameter and the sources of output and inflation fluctuations.110

To focus attention on the issues of interest, two simplifying assumptions are made: (i) the111

estimated DSGE model features no missing variables or omitted shocks and (ii) the number112

of structural shocks equals the number of endogenous variables. While omitted variables113

and singularity issues are important in practice, and the semi-structural methods suggested114

in Canova and Paustian (2011) produce more robust inference when they are present, it115

is useful to sidestep them because the problems discussed here occur regardless of whether116

(i)-(ii) are present or not 1.117

The rest of the paper is organized as follows. The next section presents estimates of118

the structural parameters of a simple model when number of statistical and model based119

1As a referee has pointed out the approach can be used to estimate singular structural models as long as

the non-model based component has the same rank as the dimension of the observable variables. Such an

extension is not pursued here.
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transformations are employed. Section 3 discusses the alternative methodology. Section 4120

compares approaches using a simple experimental design. Section 5 examines two economic121

questions. Section 6 concludes.122

2 Estimation with transformed data123

To show how estimates of the structural parameters of a DSGE model depend on the prelim-124

inary transformation employed, this section considers a textbook small scale New-Keynesian125

model, where agents face a labor-leisure choice, production is stochastic and requires labour,126

there is external habit in consumption, an exogenous probability of price adjustments, and127

monetary policy is conducted with a conventional Taylor rule. Details on the structure are128

in the on-line appendix.129

The model features a technology disturbance , a preference disturbance , a monetary130

policy disturbances  and a markup disturbance . The latter two shocks are assumed to131

be iid. Depending on the specification   are either both transitory, with persistence 132

and  respectively, or one of them is permanent. The structural parameters to be estimated133

are: , the risk aversion coefficient, , the inverse of the Frisch elasticity,  the coefficient134

of consumption habit, 1−, the share of labor in production, , the degree of interest rate135

smoothing,  and , the parameters of the monetary policy rule, 1-, the probability of136

changing prices. The auxiliary parameters to be estimated are:  , the autoregressive137

parameters of transitory preference and technology shocks, and     the standard138

deviations of the four structural shocks. The discount factor  and the elasticity among139

varieties  are not estimated since they are very weakly identified from the data.140

Depending on the properties of the technology and of the preference shocks, the optimality141

conditions will have a log-linear representation around the steady state or a growth path,142

driven either by the technology or by the preference shock, see table 1. Four observable143

variables are used in the estimation. When the model features transitory shocks, parameter144

estimates are obtained applying four statistical filters (linear detrending (LT), Hodrick and145
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Prescott filtering (HP), growth rate filtering (FOD) and band pass filtering (BP)) to output,146

the real wage, the nominal interest rate and inflation. Moreover, three data transformations147

are employed. In the first, the log of labour productivity, the log of real wages, the nominal148

rate and the inflation rate, all demeaned, are used as observables (Ratio 1). In the second149

the log ratio of output to the real wage, the log of hours worked, the nominal rate and the150

inflation rate, all demeaned, are used as observables (Ratio 2). In the third, the log of the151

labor share, the log ratio of real wages to output, the nominal interest rate and the inflation152

rate all demeaned, are used as observables (Ratio 3). When the model features a trending153

TFP (TFP trend), the linear stochastic specification  = +   is used and the observables154

for the transformed model are linearly detrended output, linearly detrended wages, demeaned155

inflation and demeaned interest rates. When the model features trending preferences shocks156

(Preference trend), the unit root specification,  = −1+

 is employed and the observables157

for the transformed model are the demeaned growth rate of output, demeaned log of real158

wages, demeaned inflation and demeaned interest rates. Finally, when the model feature159

a trending TFP, the likelihood function of the transformed model is approximated as in160

Hansen and Sargent (1993) and only the information at business cycle frequencies ( 
32
 
8
) is161

used in the estimation (TFP trend, frequency domain).162

The data comes from the FRED database at the Federal Reserve Bank of St. Louis163

and Bayesian estimation is employed. Since some of the statistical filters are two-sided, a164

recursive LT filter and a one-sided version of the HP filter have also been considered. The165

qualitative features of the results are unchanged by this refinement.166

Table 2 shows that the posterior distribution of several parameters depend on the prelim-167

inary transformation used (see e.g. the risk aversion coefficient , the Frisch elasticity 
−1
 ,168

the interest smoothing coefficient  and persistence and the volatility of the shocks). Since169

posterior standard deviations are tight, except when estimation is conducted in frequency170

domain, differences across columns are a-posteriori significant. Posterior differences are also171

economically relevant. For example, the volatility of markup shocks in the LT, the Ratio172
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1 and the Preference trend economies is considerably larger and, perhaps unsurprisingly,173

risk aversion stronger. In addition, when a frequency domain approach is used, the Frisch174

elasticity is estimated to be very small.175

Differences in the location of the posterior of the parameters translate into important176

differences in the transmission of shocks. As shown in Figure 2, the magnitude of the impact177

coefficient and of the persistence of the responses vary with the preliminary transformation178

employed and, for the first few horizons, differences are statistically significant. Furthermore,179

in the case of technology shocks, the sign of some of the responses is affected.180

Why are parameter estimates so different? The first four transformations only approx-181

imately isolate business cycle frequencies, leaving measurement errors in the transformed182

data. In addition, different approaches spread the measurement error across different fre-183

quencies: the LT transformation leaves both long and short cycles in the filtered data; the184

HP transformation leaves high frequencies variability unchanged; the FOD transformation185

emphasizes high frequency fluctuations and reduces the importance of cycles with business186

cycle periodicity; and even a BP transformation induces significant small sample approxima-187

tion errors (see e.g. Canova, 2007). Since the magnitude of the measurement error and its188

frequency location is transformation dependent, differences in parameter estimates are likely189

to be important. An approach which can reduce the problematic part of the measurement190

error is in Canova and Ferroni (2011). More importantly, filtering approaches neglect the191

fact that the spectral properties of a DSGE model are different from the output of a sta-192

tistical filter. Data generated by a DSGE model driven by transitory shocks has power at193

all frequencies of the spectrum and if shocks are persistent most of the power will be in the194

low frequencies. Thus, concentrating on business cycles frequencies may lead to inefficien-195

cies. Furthermore, when transitory and permanent shocks are present, the transitory and196

the permanent components of the model will jointly appear in any frequency band and it197

is not difficult to build examples where, e.g. permanent shocks dominate the variability at198

business cycle frequencies (see Aguiar and Gopinath, 2007). Hence, the association between199
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the solution of the model and the filtered observables is generally incorrect and biases likely200

to be generalized.201

Implicit or explicit model-based transformations avoid these problems by specifying a202

permanent and a transitory component of the data with power at all frequencies of the spec-203

trum. However, since specification problems are present (should we use a unit root process204

or a trend stationary process? Should we allow trending preferences or trending technol-205

ogy?), particular choices lead to nuisance parameters problems (the model estimated with a206

trending TFP has MA components which do not appear when the preferences are trending,207

see table 1), and to particular cointegration relationships in the observables, inference de-208

pends on the assumptions made and any deviation of the observed data from the assumed209

structure leads to biases. Finally, frequency domain estimation is inefficient, since most of210

the variability the model produces is in the low frequencies. Furthermore, while frequency211

estimation can help to tone down the importance of aspects of the model researchers do not212

trust, as suggested in Hansen and Sargent (1993), it can not de-emphasize the importance213

of what the model leaves out at the frequencies of interest.214

3 The alternative methodology215

Start from the assumption that the observable data has been generated by rational expec-216

tation agents, optimizing their objective functions under constraints in a stochastic environ-217

ment. Assume that the econometrician knows the data generating process for a portion of218

the data but she is unsure about the transmission produced by certain shocks (e.g. those in-219

ducing permanent effects) or how to capture aspects of the data (e.g. those with medium-long220

period of oscillation). Thus, she is aware that the model used for inference is misspecified.221

Rather than trying to filter out from the data what the model is unsuited to explain or add222

ad-hoc features to the model to reduce the misspecification, I will assume that the investi-223

gator takes the misspecified structure as given, because it is unclear how to model all the224

fluctuations present in the data or because the available short cuts are unlikely to satisfac-225



3 THE ALTERNATIVE METHODOLOGY 9

torily account for its complexity. To estimate the parameters of the model she uses the raw226

data and disregards certain cross equations restrictions present in the DGP but builds a227

link between the misspecified structural model and the raw data which is sufficiently flexible228

to capture what the model is unsuited to explain and allows model and non-model based229

components to jointly appear at all frequencies of the spectrum.230

Let the (log)-linearized stationary solution of a DSGE model be of the form:231

2 = ()1−1 +() (1)

1 = ()1−1 +() (2)

where () () ()() depend on the structural parameters , 1 ≡ (log ̃1− log ̄1)232

includes exogenous and endogenous states, 2 = (log ̃2 − log ̄2) all other endogenous233

variables,  the shocks and ̄2 ̄1 are the long run paths of ̃2 and ̃1.234

Let  () = [1 2]
0 be an  × 1 vector, where  is a selection matrix picking out235

of 1 and 2 variables which are observable and/or interesting from the point of view of236

the researcher and let ̄ () = [̄1 ̄2]
0. Let  = log ̃


 −(log ̃ ) be the log demeaned237

 × 1 vector of observable data. The specification for the raw data is then:238

 = () +  +  () +  (3)

where () = log ̄ () − (log ̃ ),  is a iid (0Σ) (proxy) noise, 

   and  are239

mutually orthogonal and  is given by:240

 = 1

−1 + −1 +   ∼  (0Σ)

 = 2−1 +   ∼  (0Σ) (4)

where1 = (11 1) 2 = (21 2) 0  1 2 ≤ 1  = 1  . To under-241

stand what the specification for  implies, notice that when 1 = 2 = , and   are242

uncorrelated (4) is the locally linear trend specification used in state space models, see e.g.243

Gomez (1999). In addition, if 1 = 2 = Σ and Σ are diagonal, Σ = 0, and Σ  0 ∀,244
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 is a vector of I(1) processes while if Σ = Σ = 0 ∀, 
 is deterministic. When245

instead 1 = 2 = , and Σ and Σ are functions of Σ, (4) approximates the double ex-246

ponential smoothing setup used in discounted least square estimation of state space models,247

see e.g. Delle Monache and Harvey (2010). Thus, if ̄ () = ̄()∀, the observable  can248

display any of the typical structures that motivates the use of the statistical filters. Further-249

more, as Delle Monache and Harvey (2010) have emphasized, (4) is robust against several250

types of misspecification of the time series properties of what the model does not explain.251

Note also, whenever Σ is not constrained to be zero, the growth rates of the endogenous252

variables may display persistent deviations from their mean, a feature that characterizes253

many real macroeconomic variables, see e.g. Ireland (2010). Finally, when ̄ () is not254

constant, and 1 and 2 are complex conjugates for some i, the specification can capture255

residual low frequency variations with power at frequency . To see this notice that when256

N=1, (4) implies that (1− 2)(1− 1)

 = (1− 2)+ −1 ≡ (1−). If the roots257

−11  −12 of the polynomial 1− (1 + 2) + 12
2 = 0 are complex, they can be written as258

−11 = (cos+  sin) −12 = (cos−  sin), where  =
√
12 and  = cos

−1[ 1+2
2
√
12

] and259

(4) is  =
P

 
(+1)


(1 − ), whose period of oscillation is  =

2

= 2

cos−1[ 1+2
2
√
12

]
.260

Thus, given  and , there exists 1 2 that produce 

 with the required properties.261

Given (1)-(4), the data will endogenously select the specification for the non-model based262

component which is more appropriate for each series and this will be done jointly with the263

estimation of the structural parameters . Identification of the structural parameters is264

achieved via the cross equation restrictions that the model imposes on the data. Estimates265

of the non-structural parameters are implicitly obtained from the portion of the data the266

model can not explain.267

The specification has a number of advantages over existing approaches. One does not268

need to take a stand on the time series properties of the non-model based component and on269

the choice of filter to tone down its importance and this shields researchers from important270

specification and filtering errors. As shown in Ferroni (2011), the setup can be used to find271
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the most appropriate specification of the non-model based component and, if a researcher272

is interested in doing so, to perform Bayesian averaging over different types of non-model273

based specifications, which is not possible in standard setups. Furthermore, as shown below,274

all components in (3) may have power at all frequency. Finally, since joint estimation is275

performed, structural parameter estimates reflect the uncertainty present in the specification276

of the non-model based component.277

3.1 Two special cases278

It is useful to consider two special cases of the setup to give a sense of what the approach279

does. Suppose first that the model features only transitory shocks while the data may280

display common or idiosyncratic long run drifts, low frequency movements and business281

cycle fluctuations. Here ̄ () = ̄()∀, are the steady states of the model and, if the282

model is correctly specified on average, () = 0. Assume that no proxy errors are present.283

Then (3) is284

 =  +  () (5)

and  captures the features of  that the stationary model does not explain. Depending285

on the specification of 1 and 2, these include long run drifts, both of common and idio-286

syncratic types, and those idiosyncratic low and business cycle movements the model leaves287

unexplained. In this setup,  has two interpretations As in Altug (1989), McGrattan288

(1994) and Ireland (2004b), it can be thought of as a measurement error added to the struc-289

tural model. However, rather than being iid or AR(1), it has the richer representation (4).290

Alternatively, it can be thought as a reduced form representation for the components of the291

data the investigator is unsure how to model. Thus, as in Del Negro et al. (2006), 292

relaxes the cross equations restrictions that the DGP implies and captures what the model293

can not explain via the flexible parameterization (4).294

Suppose, alternatively, that the model features transitory shocks and one or more per-295

manent shocks. In this case  () represents the (stationary) solution in deviation from296
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the permanent shocks and ̄ () the model based component generated by the permanent297

shocks. Suppose again that there are no proxy errors. In that case (3) reduces to298

 = () + 
∗
 +  () (6)

where 
∗
 captures the features of  which neither the transitory portion  () nor the299

permanent portion () of the model explains. These may include, idiosyncratic long run300

patterns (such as diverging trends), idiosyncratic low frequency movements, or unaccounted301

cyclical fluctuations. Comparing (5) and (6), one can see that  = () + 
∗
 . Thus,302

the setup can be used to measure how much of the data the model leaves unexplained and303

to evaluate whether certain shocks may reduce the discrepancy. For example, one could304

start from a model featuring a few transitory shocks and measure the relative importance305

of  at a particular set of frequencies. If it is large, one could add additional transitory306

shocks and see how much the relative importance of  has fallen at those frequencies.307

Alternatively, one could add a permanent shock and compare the magnitude of 
∗
 and308

 at a particular set of frequencies. By comparing the outcomes of the two exercises, one309

can also assess whether the addition of a permanent or a transitory shock is more beneficial.310

The same logic can be used to evaluate the model when, e.g. the permanent shock takes311

the form of a stochastic deterministic trend (as in the case of labor augmenting technological312

progress), when it is represented with a unit root, or when all long run paths are left unmod-313

elled. Hence, the approach naturally provides a setup to judge the goodness of fit of a model314

and to evaluate the contribution of certain features to the understanding of economic phe-315

nomena. It does so by giving researchers a constructive criteria to increase the complexity316

of models; and an integrated framework to examine the sensitivity of the estimation results317

to the specification of nuisance features, both of which are absent from existing methods.318
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3.2 Estimation319

Estimation of the structural parameters can be carried out with both classical and Bayesian320

methods. (1)-(4) can be cast into the linear state space system:321

+1 =  ++1  ∼ (0Σ) (7)

 = () + (8)

where  =
¡
   () 

¢0
 +1 = (+1 +1 +1 +1)

0,  =
¡
 0  

¢
322

 =

⎛⎜⎜⎝
1  0 0

0 2 0 0

0 0 [ ]0 0
0 0 0 0

⎞⎟⎟⎠   =

⎛⎜⎜⎝
 0 0 0

0  0 0

0 0 0 [ ]0

0 0  0

⎞⎟⎟⎠  Hence, the likelihood can323

be computed with a modified Kalman filter (accounting for the possibility of diffuse initial324

observations) for a given  = ( 1 2ΣΣΣ) and maximized using standard tools.325

When a Bayesian approach is preferred, one can obtain the non-normalized posterior of326

, using standard MCMC tools. For example, the estimates presented in this paper are327

obtained with a Metropolis algorithm where, given initial −1 and a prior (), candidate328

draws are obtained from ∗ = −1+  where  is distributed (0  ∗Ω 5) and  is a tuning329

parameter, and the draw accepted if the ratio
̆(∗|)
̆(−1|)exceeds a uniform random variable,330

where ̆(|) = ()L(|),  = ∗−1, and L(|) is the likelihood of , . Iterated a331

large number of times, for  appropriately chosen, the algorithm ensures that the limiting332

distribution of  is the target distribution (see e.g. Canova, 2007).333

3.3 The relationship with the existing literature334

Apart from the work of Del Negro et al. (2006) and of Altug (1989), McGrattan (1994) and335

Ireland (2004b) already mentioned, the procedure is related to a number of existing works.336

First, the state space setup (7)-(8) is similar in spirit to the one suggested by Harvey337

and Jeager (1993), even thought these authors consider only univariate processes and do not338

use a structural model to explain the observables. It also shares important similarities with339

the one employed by Cayen et al. (2009), who are interested in forecasting trends. Two340
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are the most noticeable differences. First, these authors use a two-step estimation approach,341

conditioning on filtered estimates of the parameters of the DSGE model, while here a one342

step approach is employed. Second, all the deviations from the model are bundled up in the343

non-model specification while here it is possible to split them into model interpretable and344

model non-interpretable parts.345

The contribution of the paper is also related to two distinct branches of the macroeco-346

nomic and macroeconometric literature. The first attempts to robustify inference when the347

trend properties of data are misspecified (see Cogley, 2001, and Gorodnichenko and Ng,348

2010). I share with the first author the idea that economic theory may not have much to say349

about certain types of fluctuations but rather than distinguishing between trend stationary350

and difference stationary cycles, the paper wants to design an estimation procedure which351

deals with the mismatch between theoretical and empirical concepts of fluctuations without352

taking a stand on the time series properties of what the model leaves unexplained. The idea353

of jointly estimating structural and auxiliary parameters without fully specifying the DGP354

is also present in Gorodnichenko and Ng. However, a likelihood based estimator, as opposed355

to a minimum distance estimator, is used here because it works regardless of the time series356

properties of the raw data. In addition, rather than assuming that the model is the DGP, the357

procedure assumes that the DSGE model is misspecified - a much more useful assumption358

in practice.359

The second branch points out that variations in trend growth are as important as cyclical360

fluctuations in explaining the dynamics of macroeconomic variables in emerging markets361

(see e.g. Aguiar and Gopinath, 2007, and Andrle, 2008). While the first paper characterizes362

differences between emerging and developing economies, the latter is concerned with the363

misuse of models driven by transitory shocks in policy analyses for developing countries.364

This paper shows that the problems they highlight are generic and that policy analyses with365

misspecified models are possible without imposing controversial assumptions about what the366

model is not designed to explain.367
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3.4 Setting the priors for Σ and Σ368

If the number of observable variables is small and the number of data points large, one can369

easily obtain estimates of  from(7)-(8). If the number of observables is large or the sample370

size limited, weak identification problems and small sample biases may become relevant.371

Note, in fact, that in (4) there are 2 +22 non-structural parameters to be estimated and372

that it may be difficult to distinguish variations in the level from variations in the growth373

rates of the variables. Thus, it may be worth to impose some structure on Σ and Σ374

if information about what the model leaves out is available, and shrewdly cut down on the375

dimensionality of the non-structural parameter space. For example, one may want to assume376

that Σ and Σ are diagonal (so that the non-model based component is series specific), and377

of reduced rank (the non-model based component is common across (groups of) series); that378

they have only sparse non-zero elements on the diagonal (the non-model based component379

exists only in a number of observables) or that they are proportional to each other (shocks to380

the level and the growth rate are related). Some a-priori restrictions appear to be necessary381

also because given a DSGE structure, the decomposition of the data in model based and non-382

model based components depends on the strength of the shock signals. Thus, the procedure383

defines a family of decompositions, indexed by the relative intensity of the shocks driving the384

model and the non-model based components. Given that it is typically difficult to estimate385

this intensity parameter unrestrictedly in small samples, and that unrestricted estimates may386

imply non-model based components with undesirable high frequency variability, a sensible387

smoothness prior for Σ and Σ is needed.388

The restrictions which we recommend to be used, and are employed in the two appli-389

cations described below, involves making Σ and Σ diagonal, of reduced rank, sparse, and390

function of the structural shocks. As mentioned, it is possible to approximate the double391

exponential smoothing restrictions used in discounted least square estimation of state space392

models by selecting e.g. Σ =

q
2

and Σ =

q
2
(4)2

 where  indicates the non-zero ele-393

ments of the matrices,  is one of structural shocks and  a smoothing parameter. Thus,394
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given a prior for  and , a prior for all non-zero elements of Σ and Σ is automatically gen-395

erated. The specification is attractive because it is parsimonious and considerably reduces396

the number of non-structural parameters to be estimated. Since  has the same interpreta-397

tion as in the HP filter, an agnostic prior for  could be centered at 400 with uniform range398

over [4,6400], which allows for very smooth as well as relatively jagged non-model based com-399

ponents 2. When the likelihood for this parameter is flat, one could alternatively calibrate 400

to different values and, in models driven by transitory shocks, eliminate candidates produc-401

ing non-model based estimates which are not sufficiently smooth. Since one of the structural402

shocks needs be selected to form the prior for Σ and Σ, one could also experiment choosing403

the disturbance with, potentially, the largest or the smallest variance to calibrate the prior.404

For the applications in section 5, which structural disturbance is employed to calibrate the405

prior is irrelevant.406

In sum, the approach is easy to implement - it requires only a few additional lines in407

an existing computer code, requires some ingenuity to decrease the dimensionality of the408

parameter space when the sample is small, but it is otherwise fully operational in practice409

and, as shown below, it has nice properties in a simple experimental design.410

4 The procedure in a controlled experiment411

To examine the properties of the procedure and to compare them to those of standard412

transformations, I use the same setup employed in section 2 and simulate 150 data points413

assuming that the preference shock has a transitory and a permanent component. Thus,414

 = 1 + 2 1 = 1−1 + 

 and 2 = 2−1 + 


 . This specification is chosen since415

Chang et al. (2007) have indicated that a model with permanent preference shocks can416

capture well low frequency variations in hours worked. In this setup, the data will display417

stationary fluctuations driven by four transitory shocks (which we correctly capture with418

2It is worth noting that selecting the signal to noise ratio  is much less demanding than assuming a

particular format for the drifts the data displays or selecting a shock which drives them.
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a model) and important non-stationary fluctuations driven the permanent preference shock419

(which we will either try to filter out, eliminate with certain data transformations, or account420

with a non-model based component) making the design relevant for practical purposes. The421

estimated model is misspecified relative to the DGP in that the permanent component due422

to the preference shock is left out, but all the other features are correctly represented.423

Furthermore, since the permanent component of the preference shock is orthogonal to all424

transitory shocks, the design fits the setup of section 3.425

The structural parameters will be estimated using the proposed approach and the same426

transformations used of section 2 in the most ideal situations one could consider - these427

include priors centered at the true parameter vector and initial conditions equal to the true428

parameter vector. When the approach of section 3 is used, the non-model based component429

is restricted to have a double exponential smoothing format and, consistently with the DGP430

(see appendix) is allowed to enter only in output and the real wage. The true values of431

the structural parameters are in table 3. In the estimation the same prior distributions432

for the structural parameters displayed in table 2 are used. Two cases are examined: one433

where the permanent disturbance has relative high variability  = 150 and one where it434

has relative low variability  = 015. In the first case, the contribution of the permanent435

component to the spectrum of the series is of the same order of magnitude as the contribution436

of the transitory component at almost all frequencies. Thus, both filtering and specification437

errors are present with standard transformations. In the second case, the contribution of438

the permanent component to the spectrum of the series is everywhere small. Here, standard439

transformations will only produce filtering errors and, in a large sample, the BP filter provides440

a consistent although inefficient estimator of model based fluctuations.441

As table 3 shows, the distortions produced by standard approaches are important. Apart442

from producing estimates of utility and technology parameters which are biased and very443

much filter dependent, the persistence of the preference and of the technology shocks  444

and the standard deviations of the preference and the markup shocks  and  are gen-445
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erally distorted. In comparison, estimates of utility and technology parameters reported in446

the column labelled ”Flexible” are closer (in a MSE sense) to the true values and both the447

persistence and the standard deviations of the shocks are better captured. Matching the448

persistence and the volatility of the shocks is important since conditional and unconditional449

moments crucially depend on these parameters. Note also that while with standard transfor-450

mations, estimates depend on the relative intensity of the permanent and transitory signals,451

this is much less the case for the procedure this paper suggests.452

To understand the nature of the distortions produced by standard transformations,453

note that the log-likelihood of the data can be represented as (|) = [1() + 2() +454

3()|], see Hansen and Sargent (1993), where 1() =
1


P

log det(), 2() =455

1


P

trace [()

−1 ()], 3() = (() − ())(0)
−1(() − ()),  =




  =456

0 1     −1. () is the model based spectral density matrix of , () the model based457

mean of ,  () is the data based spectral density and () the unconditional mean of .458

2() and 3() are penalty functions: 2() sums deviations of the model-based from the459

data-based spectral density over frequencies; 3() weights deviations of model-based from460

data-based means with the spectral density matrix of the model at frequency zero.461

Suppose the data is transformed so that the zero frequency is eliminated and the low462

frequencies de-emphasized. Then, the log-likelihood consists of 1() and of 2()
∗ =463

1


P

trace [()]

−1 ()
∗, where  ()

∗ =  () and  is a function describing464

the effect of the filter at frequency . Suppose that  = [12], i.e. an indicator function465

for the business cycle frequencies, as in an ideal BP filter. Then 2()
∗ matters only at466

business cycle frequencies. Since at these frequencies [()]   ()
∗, 2()∗ and 1()467

enter additively (|), two types of biases will be present. Since estimates ̂ ()
∗ only468

approximately capture the features of  ()
∗, ̂2()∗ has smaller values at business cycle469

frequencies and a nonzero value at non-business cycle ones. Moreover, in order to reduce the470

contribution of the penalty function to the log-likelihood, parameters are adjusted so that471

[()] is close to ̂ ()
∗ at those frequencies where ̂ ()

∗ is not zero. This is done by472
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allowing fitting errors, (a larger 1()), at frequencies where ̂ ()
∗ is zero - in particular,473

the low frequencies. Hence, the volatility of the structural shocks will be overestimated (this474

makes () close to ̂ ()
∗ at the relevant frequencies), in exchange for misspecifying475

their persistence. These distortions affect agents’ decision rules. Higher perceived volatility,476

for example, implies distortions in the risk aversion coefficient. Inappropriate persistence477

estimates, on the other hand, imply that perceived substitution and income effects are dis-478

torted with the latter typically underestimated. When  is not the indicator function, the479

derivation of the size and the direction of the distortions is more complicated but the same480

logic applies. Clearly, different  produce different ̂ () and thus different distortions.481

Since estimates of  ()
∗ are imprecise, even for large  , there are only two situations482

when estimation biases are small. First, the permanent component has low power at business483

cycle frequencies - in this case, the distortions induced by the penalty function are limited.484

This occurs when transitory volatility dominates (as in the second panel of table 3). Second,485

when Bayesian estimation is performed, the prior is selected to limit the distortions induced486

by the penalty function. This is very unlikely, however, since priors are not elicited with487

such a scope in mind.488

If instead one fits a transformed version of the model to transformed data, as it is done489

in model based approaches, the log-likelihood is composed of 1()
∗ = 1



P

log |() |490

and 2() - since the actual and model data are filtered in the same way, the filter does not491

affect the penalty function. Suppose that  = [12]. Then 1()
∗ matters only at business492

cycle frequencies while the penalty function is present at all frequencies. Therefore, parame-493

ter estimates are adjusted so as to reduce the misspecification at all frequencies. Since the494

penalty function is generally more important at the low frequencies, parameters are selected495

to make [()] close to ̂ () at those frequencies and large fitting errors are permitted496

at medium and high frequencies. Consequently, the volatility of the shocks will be generally497

underestimated in exchange for overestimating their persistence - somewhat paradoxically,498

this procedure implies that the low frequency components of the data are those that matter499
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most for estimation. Cross frequency distortions imply that the econometrician recovers500

an economy which differs substantially from the true one. For example, since less noise is501

perceived, agents decision rules imply a higher degree of data predictability, and higher per-502

ceived persistence implies that perceived substitution and income effects are distorted with503

the latter overestimated.504

To further highlight the properties of the proposed approach, the top row of figure 3505

reports estimates of the permanent and transitory components of output obtained with the506

Kalman filter and either the true parameters or the median estimates presented in the top507

panel of table 3. The bottom two rows of figure 3 compare the autocorrelation function and508

the spectral density of the true and estimated components of output.509

The true and the estimated components of output display similar volatility properties.510

In addition, the rate of decay of the autocorrelation functions of the true and the estimated511

components is practically identical. Finally, as anticipated, the two estimated components512

have power at all frequencies of the spectrum, and at business cycle frequencies (indicated513

by the vertical bars in the last row of graphs) the permanent component is more important514

than the transitory component.515

The conditional dynamics in response to transitory shocks are also well captured. Figure516

4, which presents impulse responses obtained with true and estimated parameters, indicates517

that the sign and the persistence of the responses are well matched. Magnitudes are occa-518

sionally imprecisely estimated - this problem would remain even if we double the sample size519

but overall, the approach does a good job in reproducing the main qualitative features of520

the DGP. Thus, economic inference is less prone to ”mismatch” distortions.521

5 Two applications522

This section shows how the proposed approach can be used to inform researchers about two523

questions which have received a lot of attention in the literature: the time variations in the524

policy activism parameter and the sources of output and inflation fluctuations. The first525
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question is analyzed with the model presented in section 2. The second, with a medium526

scale model widely used in academic and policy circles.527

5.1 The policy activism parameter528

What are the features of the monetary policy rule in place during the ”Great Inflation” of529

the 1970s and the return to norm of the 1980s and 1990s? This question has been extensively530

studied in the literature following Clarida et al. (2000). One synthetic way to summarize531

the information contained in the data is to compute the policy activism parameter


−1 ,532

which gives a sense of the relative importance of the output and the inflation stabilization533

objectives of the Central Bank. The conventional wisdom suggests that the absolute value of534

this parameter has declined over time, reflecting changes in the preferences of the monetary535

authorities, but most of the available evidence is obtained either with reduced form methods536

or, when structural method are used, with filtered data. Are the results to be trusted? Is the537

characterization offered by the approach of this paper different? Figure 5 plots the posterior538

density of the policy activism parameter obtained when the data is linearly detrended (top539

left box) or HP filtered (top right box) before estimation and when the approach of this540

paper is employed (lower left box) for the samples 1964:1-1979:4 and 1984:1-2007:4. The541

prior for the structural and auxiliary parameters is the same as in table 1. In the flexible542

approach, and given the short subsamples, Σ and Σ are assumed to be diagonal, a common543

non-model based component is assumed for all the variables, the signal-to-noise ratio in the544

four series is captured by a single parameter , a-priori uniformly distributed over [100,545

6400], 1= 2 =  and the proxy error is set to zero.546

The posterior density of the policy activism parameter shifts to the left in the second547

sample when HP filtered data is used and, for example, the posterior median moves from548

-0.23 in the first sample to -0.33 in the second. This left shift of the posterior density is549

absent when LT data is used and the median of the posterior in the second sample moves550

closer to zero (from -0.38 to 0.12) - care should be exercised here since the median is not a551
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good estimator of the central tendency of the posterior for the 1984-2007 sample. In both552

cases, the Kolmogorov-Smirnov statistic rejects the null that the posterior distributions are553

the same in the two samples. Thus, standard approaches confirm the existence of a break554

in the conduct of monetary policy, although it is not clear in which direction the movement555

is: with HP filtered data, output gap considerations have become relatively more important;556

with LT filtered data, the opposite appears to be true.557

When the approach of section 3 is used, the posterior density of


−1 in the two samples558

overlaps considerably. Interestingly, both the location and the shape of the density in the559

two samples are very similar and the Kolmogorov-Smirnov statistic does not reject the null560

that the posterior distributions in the two samples are the same. Thus, evidence in favor of561

a structural break in the conduct of monetary policy is much weaker in this case.562

Why are the results different? As mentioned, the non-model based component soaks563

up all the features that the model is not designed to explain. Thus, in principle, it could564

absorb the changes present in the endogenous variables. This, however, does not seem to565

be the case: the median estimate of  is around 3200 in both samples, making the non-566

model based component quite smooth relative to the model based component (see on-line567

appendix for plots of the two components of the four variables) and essentially time invariant.568

Thus, variations in the time series properties of the endogenous variables are not captured569

by the non-model based component. What instead happens, is that structural non-policy570

parameters change to accommodate for the changes in the time series properties of inflation571

and interest rate over time. Interestingly, the explanatory power of the model increases in572

the second sub-sample: on average, at business cycle frequencies, the model explains 40 per573

cent of output variations in the first sample and 55 per cent in the second sample. For574

inflation and interest rates, the increase is smaller (from 40 to 50 percent).575

Since about 50 percent of the variability observables at business cycle frequencies is not576

captured by the model in both samples, it is worth investigating how the fit can be improved577

by altering its structure, keeping the number of observables and the estimation approach578
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unchanged. One device that the literature has employed to improve the fit of this kind of579

models is to allow for a time varying inflation target in the policy rule, see e.g. Ireland580

(2007). The target is assumed to be driven by a permanent shock and enters only in the581

interest rate equation. Thus, the estimated specification moves from (5) to (6), where now582

() appears only in the interest rate equation. What would this modification do to the583

posterior distribution of the policy activism parameter?584

The last box of figure 5 indicates that adding a time varying inflation target reduces the585

spread of the posterior distributions. Hence, the shift to the right in the posterior in the586

second sub-sample becomes statistically significant even though ,e.g., the median value of587

the two distributions is close in absolute value. Adding an inflation target improves the fit588

for the interest rate at business cycle frequencies (the proportion of the variance explained589

increase to 57 percent in the first sample and to 68 percent in the second); for inflation,590

instead, the explanatory power of the model is unchanged in the first sub-sample and worsen591

considerably in the second (the variance share explained at business cycle frequencies is now592

only 28 percent). Hence, adding a time varying inflation target does not seem to be a very593

promising way to improve our understanding of how inflation fluctuations are generated.594

5.2 Sources of output and inflation fluctuations595

The question of what drives output and inflation fluctuations has a long history in macro-596

economics. In standard medium scale DSGE models, like the one employed by Smets and597

Wouters (2003) and (2007), output and inflation fluctuations tend to be primarily explained598

by markup shocks. Since these shocks are an unlikely source of cyclical fluctuations, Chari at599

al (2009) have argued that misspecification is likely to be present (see Justiniano et al., 2010,600

for an alternative interpretation). Researchers working in the area use filtering devices to fit601

the model to the data (as in Smets and Wouters (2003)), arbitrarily data transformations (as602

in Smets and Wouters, 2007) or build a permanent component in the model (as in Justiniano603

et al., 2010) and use model-consistent data transformations to estimate the structural para-604
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meters. What would the approach of this paper tell us about sources of cyclical fluctuations605

in output and inflation? How much of the variability of the observables at business cycle606

frequencies is explained by the model? To answer this question, the same model and the607

same data set used in Smets and Wouters (2007) are employed but a more standard setup608

is employed. In particular, no MA terms for the price and wage markup disturbances are609

assumed - all shocks have a standard AR(1) structure; the model is solved in deviations from610

the steady state, rather than in deviation from the flexible price equilibrium; and the policy611

rule does not include a term concerning output growth.612

Table 4 reports results obtained eliminating a linear trend from the variables; taking613

growth rates of the real variables and demeaning nominal ones; and using the approach614

suggested in this paper. When a linear trend is removed, the forecast error variance decom-615

position of output at the five years horizon is indeed primarily driven by price markup shocks,616

with a considerably smaller contribution of investment specific and preference shocks. For617

inflation, price markup shocks account for almost 90 percent of the forecast error variability618

at the five years horizon. When the model is instead fitted to growth rates, price markup619

shocks account for over 90 percent of the variability of both output and inflation at the five620

years horizon. Thus, even without some of the standard bells and whistles, the conclusion621

that markup shocks dominate remains. Why are price markup shocks important? Since,622

compared to other shocks, they are relatively unrestricted in the model, they tend to absorb623

any misspecification the model has and any measurement error that the filters leave in the624

transformed data. Furthermore, since the combined specification and measurement errors625

are unlikely to be iid, the role of markup shocks is overestimated. When the bridge suggested626

in this paper is used, the non-model based component of real variables is restricted to have a627

common structure (there are only two parameters simultaneously controlling the non-model628

based component of output, consumption, investment), 1= 2 =  , and a proxy error is629

allowed in each equation, the picture is quite different. Output fluctuations at the five year630

horizon are driven almost entirely by preference disturbances, while inflation fluctuations are631
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jointly accounted for by wage markup, TFP and price markup disturbances. More interest-632

ingly, the model explains only 20 percent of the output and inflation fluctuations at business633

cycle frequencies. Thus, it is seems premature to use it to evaluate policy alternatives.634

It is useful to characterize the properties of the non-model based component to evaluate635

the theoretical modifications that are needed to capture what the current model leaves out.636

The non-model component is well represented by the specification employed and restrictions637

on the representation used assuming, for example, no or only one unit root are all rejected638

in formal testing (log Bayes factor exceeding 10 in both cases). Thus, if shocks are to be639

added to the model, it is important that they have permanent features and display persistent640

deviations from a balanced growth path. Ireland (2010) has suggested one such specification.641

Others, which allow both TFP and investment shocks to have these features, are also possible.642

6 Conclusions643

Estimating DSGE models with data that is model-based transformed or statistically filtered644

may lead researchers astray because the association between the output of the filter and the645

stationary solution of the model is generally incorrect and because model-based transforma-646

tions impose tight restrictions which are, more likely than not, violated in the data. The647

consequences of filtering and specification errors could be economically important because648

income and substitution effects could be distorted, the volatilities and persistence of the649

shocks over or underestimated and, thus, the decision rules of the agents, as perceived by650

the econometrician, altered.651

The alternative methodology this paper proposes avoids these errors by building a flexible652

bridge between the DSGE models and the raw data. The procedure is applicable to a large653

class of models and i) it takes into account the uncertainty in the specification of the non-654

model component when deriving estimates of the structural parameters; ii) it provides a655

natural environment to judge the goodness of fit of a model and to evaluate the contribution656

of certain shocks to the understanding of economic phenomena; iii) it gives researchers an657
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integrated framework to examine the sensitivity of the estimation results to the specification658

of nuisance features, and iv) it is easy to implement and requires minor modifications of659

existing routines.660

Unaccounted low frequency movements, such as those appearing in hours or labor pro-661

ductivity, or idiosyncratic trends, such as those present in certain relative prices, are typically662

hard to handle in standard DSGE models. Hence, certain shocks which are left somewhat663

unrestricted in the model end up capturing these features in standard frameworks. The664

approach this paper suggests is likely to be very useful in these difficult situations because665

it helps researchers to distinguish what the model can explain and what it can not, thus666

avoiding important policy distortions. In general, applications of the methodology appear667

to be numerous.668

Extensions of the setup used in the paper are easy to conceive. For example, structural669

breaks in the time series features of the observables could be handled either within the670

model-based (as in Eklund et al., 2008) or the non model-based components and the impli-671

cations for structural parameters could be compared. Similarly, stochastic volatility could672

be captured in the model-based or non model-based components and differences evaluated.673

The unified framework that the approach provides requires very little changes to allow for674

these situations.675
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7 Tables and Figures676

Model with transitory shocks

 = ( 
1− +


1−) − 

1−−1 − 
1− − 

 = [
1
1+

+1 +

1+

−1 − 1−
(1+)

(+1 −  +  − +1)]

 = +1 +
1−

1−+
(1−)(1−)


(


 +  +


1− − 1

1−)

 = −1 + (1− )( + ) + 

 = 1
1−( − )

Model with stochastically trending TFP

 = ( 
1− +

1
1−̄) − ̄

1−̄−1 −  − ̄
1−̄(


−1 −  )

 = 1
1+̄

(+1 + −1 − (1− ̄)(+1 −  +  − +1) + ̄−1 + +1 − (1− ̄) )

 = +1 +
1−

1−+
(1−)(1−)


(


 +  +


1−)

 = −1 + (1− )( + ) + 

 = 1
1−

Model with unit roots in preferences

 = ( +
1
1−) − 

1−−1 −  +

1−


 )

 = 1
1+

(+1 + −1 − (1− )( − +1)− ( + ((1− ) − )

+1))

 = +1 +
(1−)(1−)


(


 +  − )

 = −1 + (1− )( + ) + 

 =  − 

677

Table 1: Optimality conditions of the log-linear stationary model. All variables are expressed678

in percentage deviation from the steady state (balanced growth path). ̄ =  and  is the slope679

of the stochastic trend. With trends  = 1 and with unit roots in preferences also  = 0.  is a680

technology shock,  a preference shock, 

 a monetary policy shock and 


 a markup shock. If 681

and  are transitory,  = −1+   = −1+

 . When TFP is trending,  = + , when682

preferences are trending  = −1 + 

 . In each block the first equation defines the equilibrium683

real wage, the second is an Euler equation, the third a Phillips curve, the fourth a Taylor rule and684

the fifth a labor demand function.685
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Prior LT HP FOD BP Ratio 1 Ratio2

Median (s.e.)Median (s.e.)Median (s.e.)Median (s.e.)Median(s.e.)Median (s.e.)

 Γ(20 01) 1.90 (0.25) 1.41 (0.21) 0.04 (0.01) 0.96 (0.11) 2.33 (0.27) 0.81 (0.15)

 Γ(20 01) 1.75 (0.16) 1.37 (0.13) 5.23 (0.08) 1.19 (0.09) 3.02 (0.24) 2.68 (0.19)

 (6 8) 0.83 (0.02) 0.88 (0.02) 0.45 (0.01) 0.96 (0.01) 0.72 (0.05) 0.88 (0.02)

 (3 8) 0.07 (0.04) 0.09 (0.05) 0.42 (0.01) 0.07 (0.03) 0.05 (0.04) 0.03 (0.01)

 (6 6) 0.19 (0.05) 0.11 (0.04) 0.62 (0.01) 0.09 (0.02) 0.38 (0.06) 0.28 (0.04)

 (15 01) 1.33 (0.08) 1.37 (0.05) 1.53 (0.02) 1.51(0.06) 1.92 (0.06) 1.80 (0.05)

 (04 01) -0.16 (0.03) -0.18 (0.03) 0.06 (0.00) -0.22 (0.03) 0.16 (0.02) -0.03 (0.02)

 (6 6) 0.82 (0.02) 0.80 (0.03) 0.63 (0.01) 0.86 (0.01) 0.82 (0.02) 0.80 (0.02)

 (18 8) 0.69 (0.04) 0.40 (0.05) 0.52 (0.01) 0.70(0.02) 0.67 (0.03) 0.66 (0.02)

 (18 8) 0.96 (0.02) 0.95 (0.02) 0.99 (0.01) 0.97(0.01) 0.97 (0.01) 0.96 (0.01)

 Γ
−1(10 20) 0.53 (0.19) 0.47 (0.11) 4.96(0.13) 0.23 (0.05) 3.41 (0.74) 0.97 (0.13)

 Γ
−1(10 20) 0.20 (0.04) 0.23 (0.04) 2.00 (0.22) 0.19 (0.03) 0.06 (0.01) 0.06 (0.01)

 Γ
−1(10 20) 0.11 (0.01) 0.08 (0.01) 2.30(0.23) 0.07 (0.01) 0.10 (0.01) 0.11 (0.18)

 Γ
−1(10 20) 25.06 (0.97) 14.25 (0.93) 7.17 (0.13) 18.19 (0.66) 22.89 (1.91) 15.94 (0.49)

Prior Ratio 3 TFP Preferences TFP FD

Median (s.e.)Median (s.e.)Median (s.e.)Median (s.e.)

 Γ(20 01) 0.12 (0.03) 1.0 1.0 1.0

 Γ(20 01) 2.09 (0.14) 2.24 (0.26) 2.43 (0.20) 43.17 (23.32)

 (6 8) 0.10 (0.03) 0.08 (0.04) 0.78 (0.03) 0.49 (0.28)

 (3 8) 0.03 (0.02) 0.17 (0.03) 1.0 0.51 (0.28)

 (6 6) 0.20 (0.06) 0.30 (0.04) 0.61 (0.02) 0.49 (0.28)

 (15 01) 1.51 (0.07) 1.74 (0.06) 1.69 (0.05) 1.82 (2.09)

 (04 01) 0.77 (0.04) 0.49 (0.03) 0.38 (0.07) 0.09 (2.16)

 (6 6) 0.81 (0.01) 0.41 (0.03) 0.84 (0.01) 0.48 (0.29)

 (18 8) 0.75 (0.03) 0.63 (0.03) 0.48 (0.28)

 (18 8) 0.62 (0.03) 0.59 (0.02)

 Γ
−1(10 20) 0.26 (0.04) 0.21 (0.03) 0.06 (0.008) 828.3(81.1)

 Γ
−1(10 20) 0.08 (0.01) 0.05 (0.006) 0.15 (0.02) 284.2 (144.8)

 Γ
−1(10 20) 2.68 (0.27) 0.10 (0.01) 0.07 (0.007) 679.7(232.2)

 Γ
−1(10 20) 15.98 (1.09) 0.25 (0.04) 36.68 (1.42) 666.9(139.2)

686

Table 2: Posterior estimates. LT refers to linearly detrended data, HP to Hodrick and Prescott687

filtered data, FOD to demeaned growth rates, BP to band pass filtered data. For Ratio 1 the ob-688

servables are log() log()  , all demeaned, for Ratio 2 they are log() log()  ,689

all demeaned, For Ratio 3, the observables are log(()) log()  , all demeaned. For690

TFP trending, the observable are linearly detrending output and real wages and demeaned inflation691

and interest rates. For Preference trending, the observable are demeaned growth rate of output,692

demeaned log real wages, demeaned inflation and demeaned interest rates. When frequency domain693

estimation is used, only information in the band ( 
32
 
8
) is employed. The sample is 1980:1-2007:4.694
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695



 = 1.50

True LT HP FOD BP Ratio1 Flexible

Median (s.e.) Median (s.e.) Median (s.e.) Median(s.e.) Median(s.e.) Median(s.e.)

 0.50 0.12( 0.02) 0.21( 0.02) 1.30( 0.05) 0.08( 0.01) 1.00( 0.04) 0.24( 0.03)

 0.70 0.91( 0.03) 0.74( 0.03) 0.71( 0.03) 0.88( 0.03) 0.11( 0.04) 0.76( 0.05)

 0.30 0.07( 0.02) 0.06( 0.02) 0.04( 0.02) 0.16( 0.02) 0.04( 0.02) 0.20( 0.05)

 0.70 0.39( 0.04) 0.46( 0.04) 0.74( 0.03) 0.36( 0.02) 0.47( 0.05) 0.34( 0.03)

 1.50 1.41( 0.06) 1.60( 0.06) 1.63( 0.06) 1.36( 0.05) 1.50( 0.08) 1.59( 0.08)

 0.40 0.01( 0.00) 0.01( 0.01) -0.01( 0.00) -0.01( 0.00) 0.55( 0.07) -0.01( 0.01)

 0.75 0.88( 0.03) 0.85( 0.03) 0.88( 0.03) 0.90( 0.03) 0.89( 0.03) 0.83( 0.03)

 0.50 0.40( 0.03) 0.36( 0.03) 0.69( 0.03) 0.73( 0.03) 0.37( 0.03) 0.51( 0.04)

 0.80 0.68( 0.04) 0.69( 0.04) 0.99( 0.03) 0.80( 0.03) 0.64( 0.03) 0.79( 0.04)

 1.20 3.38( 0.41) 0.35( 0.06) 0.26( 0.05) 0.33( 0.12) 0.24( 0.04) 0.27( 0.07)

 0.50 0.50( 0.11) 0.21( 0.04) 0.62( 0.11) 0.32( 0.06) 0.09( 0.01) 0.22( 0.04)

 0.10 0.06( 0.01) 0.06( 0.01) 0.07( 0.01) 0.06( 0.01) 0.07( 0.01) 0.05( 0.00)

 1.60 5.97( 0.42) 0.80( 0.28) 5.60( 0.34) 6.62( 0.25) 12.33( 0.73) 1.56( 0.53)

 1.20 3.38( 0.41) 0.35( 0.06) 0.26( 0.05) 0.33( 0.12) 0.24( 0.04) 0.27( 0.07)



 = 0.15

True LT HP FOD BP Ratio1 Flexible

Median (s.e.) Median (s.e.) Median (s.e.) Median(s.e.) Median(s.e.) Median(s.e.)

 0.50 0.18( 0.03) 0.35( 0.06) 0.89( 0.03) 0.31( 0.04) 0.95( 0.04) 0.14( 0.01)

 0.70 0.92( 0.03) 0.91( 0.03) 0.90( 0.03) 0.97( 0.03) 0.13( 0.04) 0.79( 0.03)

 0.30 0.05( 0.02) 0.07( 0.04) 0.23( 0.01) 0.14( 0.02) 0.03( 0.02) 0.15( 0.01)

 0.70 0.53( 0.03) 0.51( 0.02) 0.58( 0.02) 0.50( 0.02) 0.36( 0.04) 0.50( 0.02)

 1.50 1.75( 0.07) 1.67( 0.06) 1.59( 0.05) 1.77( 0.06) 1.53( 0.07) 1.57( 0.05)

 0.40 -0.01( 0.01) -0.03( 0.01) -0.03( 0.00) -0.03( 0.00) 0.67( 0.09) 0.34( 0.02)

 0.75 0.86( 0.03) 0.89( 0.03) 0.86( 0.03) 0.93( 0.03) 0.87( 0.03) 0.83( 0.03)

 0.50 0.27( 0.04) 0.22( 0.04) 0.66( 0.02) 0.60( 0.03) 0.27( 0.05) 0.60( 0.03)

 0.80 0.68( 0.04) 0.87( 0.03) 0.98( 0.03) 0.92( 0.03) 0.59( 0.05) 0.67( 0.03)

 1.20 0.39( 0.11) 0.31( 0.08) 4.23( 0.18) 0.30( 0.06) 0.18( 0.03) 0.85( 0.16)

 0.50 0.23( 0.05) 0.22( 0.04) 3.37( 0.22) 0.17( 0.02) 0.06( 0.01) 0.22( 0.04)

 0.10 0.06( 0.01) 0.06( 0.01) 2.61( 0.17) 0.06( 0.01) 0.07( 0.01) 0.07( 0.01)

 1.60 0.93( 0.29) 1.97( 0.50) 5.13( 0.18) 6.11( 0.28) 3.60( 0.37) 0.93( 0.11)

696

697

Table 3: Parameters estimates, simulated data, T=150. LT refers to linearly detrended data,698

HP to Hodrick and Prescott filtered data, FOD to demeaned growth rates, BP to band pass filtered699

data, Ratio1 to output scaled by hours, and Flexible to the approach suggested in the paper.700
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LT FOD Flexible

Output Inflation Output Inflation Output Inflation

TFP shocks 0.01 0.04 0.00 0.01 0.01 0.21

Gov. expenditure shocks 0.00 0.00 0.00 0.00 0.00 0.02

Investment shocks 0.08 0.00 0.00 0.00 0.00 0.05

Monetary policy shocks 0.01 0.00 0.00 0.00 0.00 0.01

Price markup shocks 0.75(*) 0.88(*) 0.91(*) 0.90(*) 0.00 0.19

Wage markup shocks 0.00 0.01 0.08 0.08 0.03 0.49(*)

Preference shocks 0.11 0.04 0.00 0.00 0.94(*) 0.00

701

Table 4: Variance decomposition at the 5 years horizon. Estimates are obtained using the median702

of the posterior of the parameters. A (*) indicates that the 68 percent highest credible set is703

entirely above 0.10. The model and the data set are the same as in Smets and Wouters, 2007. LT704

refers to linearly detrended data, FOD to growth rates and Flexible to the approach this paper705

suggests.706
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Figure 1: US real and nominal great ratios
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On-line Appendix (not intended for publication)785

A. The basic DSGE model of section 2786

The bundle of goods consumed by the representative household is787

 =

µZ 1

0

()
−1
 

¶ 
−1

(9)

where () is the consumption of the good produced by firm  and  the elasticity of substi-788

tution between varieties. Maximization of the consumption bundle, given total expenditure,789

leads to790

() =

µ
()



¶−
 (10)

where () is the price of the good produced by firm . Consequently, the price deflator is791

 =
³R 1

0
()

1−
´ 1
1−

and  = [
R 1
0
()()].792

The representative household chooses sequences for consumption and leisure to maximize793

0

∞X
=0


∙


1

1− 
( − −1)

1− − 1

1 + 
1+



¸
(11)

where  is an exogenous utility shifter following an AR(1) in logs:794

 = −1 + 

 (12)

where  = ln and 

 ∼ (0 2). The household budget constraint is795

 +  = −1 + (13)

where  are one-period bonds with price ,  is nominal wage and  is hours worked.796

There is a continuum of firms, indexed by  ∈ [0 1], each of which produces a differenti-797

ated good. The common technology is:798

() = ()
1− (14)

where  is an exogenous productivity disturbance following an AR(1) in log,799

 = −1 +  (15)
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where  = ln and  ∼ (0 2). Each firm resets its price with probability 1 −  in800

any , independently of time elapsed since the last adjustment. Therefore, aggregate price801

dynamics are802

Π1− =  + (1− )(
∗
 −1)

1− (16)

A reoptimizing firm chooses the  ∗ that maximizes the current value of discounted profits803

max
∗

∞X
=0

+

£
 ∗ +| − +(+|)

¤
(17)

subject to the sequence of demand constraints804

+| =

µ
 ∗
+

¶−+
+ (18)

 = 0 1 2  where + ≡ (+)(+), () is the total cost function, and805

+| denotes output in period +  for a firm that reset its price at .806

Finally, the monetary authority sets the nominal interest rate according to807

 = −1 + (1− )( + ) +  (19)

where  ∼ (0 2).808

The first order conditions of the optimization problems are:809

0 = ( − −1)
− −  (20)

0 = −−
 − 





(21)

1 = 

∙

+1



+1





¸
(22)

0 =

∞X
=0

++|
£
 ∗ −M+

+|)
¤

(23)

where  is the Lagrangian multiplier associated with the consumer budget constraint,  ≡810

1+  = 1 is the gross nominal rate of return on bonds,() are nominal marginal cost811

and812

M = 

 (24)



REFERENCES 42

where 

 ∼ (0 2) and  is the steady state markup.813

Market clearing requires814

() = () (25)

 =

Z 1

0

() (26)

and letting the aggregate output be  ≡
³R 1

0
()

−1
 

´ 
−1

we have  = .815

The shocks driving the dynamics of the model are: a preference disturbance , a tech-816

nology disturbance , a markup shock 

 and a monetary shock 


 .817

B. The solution with transitory shocks818

When all the shocks are transitory, the log-linearized equilibrium conditions are:819

 = (


1− 
+



1− 
) − 

1− 
−1 − 

1− 
 −  (27)

 = [
1

1 + 
+1 − 

1 + 
−1 +

1− 

(1 + )
(+1 −  +  − +1)] (28)

 = +1 + (

 +  +



1− 
 − 1

1− 
) (29)

 = −1 + (1− )( + ) +  (30)

 =
1

1− 
( − ) (31)

where all variables are expressed in deviation from the (constant) steady state,  =
(1−)(1−)



1−
1−+ ,820

 = −1 +  ,  = −1 + 

 , 


 and 


 are iid. Equation (27) defines the equilibrium821

real wage, (28) is an Euler equation, (29) a Phillips curve, (30) a Taylor rule and (31) a labor822

demand function.823

This is the model fitted to filtered data (first four columns on the top part of table 2)824

and to transformed data (the next three columns of table 2).825

C. The solution with a stochastic trend in the technology826

Assume that the technology has a stochastic linear trend, i.e.  =  +  , while the other827

three shocks are assume to be transitory. A log-linearized solution can be found only setting828
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 = 1. Defining ̄ = exp(), the equations in this case are829

 = (


1− 
+

1

1− ̄
) − ̄

1− ̄
−1 −  +

̄

1− ̄
(


−1 − 


 ) (32)

 =
1

1 + ̄
( + −1 − (1− ̄)(+1 −  +  − +1) + ̄


−1 + 


+1 − (1− ̄)


 )(33)

 = +1 +
1− 

1− − 

(1− )(1− )


(


 +  +



1− 
) (34)

 = −1 + (1− )( + ) +  (35)

 =
1

1− 
( − ) (36)

where all variables are expressed in deviation from the (constant) steady state,  =
(1−)(1−)



1−
1−+ ,830

 = −1 + 

 , 


 and 


 are iid. Then831

ln −  −  =  +  (37)

ln −  −  =  +  (38)

Π −  =  (39)

 −  =  (40)

where capital letters indicate the observable variables, lower case letters the model variables832

and  are constants (the mean of each process). This is the model fitted to the data in833

column 8 and column 10 of the bottom part of table 2.834

D. The solution with non-stationary preference shocks835

Assume that  = −1 + 

 . A log linearized solution can be found only setting  = 10836

and  = 0. The log-linearized equilibrium conditions are837
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 = ( +
1

1− 
) − 

1− 
−1 −  +



1− 


 ) (41)

 =
1

1 + 
(+1 + −1 − (1− )( − +1)− ( + ((1− ) − )


+1)) (42)

 = +1 +
(1− )(1− )


(

 +  − ) (43)

 = −1 + (1− )( + ) +  (44)

 =  −  (45)

where all variables are expressed in deviation from the (constant) steady state,  =
(1−)(1−)


,838

 = −1 +  , 

 and 


 are iid. Then839

ln∆ −  =  + 

 (46)

ln −  =  (47)

Π −  =  (48)

 −  =  (49)

where capital letters indicate the observable variables, lower case letters the model variables840

and  are constants (the mean of the process). This is the model fitted to the data in column841

9 of table 2.842

E. Simulating data from a model with non-stationary preference843

shocks844

Let  
 be a  × 1 vector of observables and let:845

 
 = (∗ ∗) + + (50)

where  is  × 1 vector containing the variables rescaled by the non-stationary preference846

shock in log deviations from the steady state, (∗ ∗) is a  × 1 vector of the logarithm of847

the (rescaled) variables at the steady state, and  is ×1 vector containing the logarithm848
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of the non-stationary preference shock.  is a  ×  a selection matrix and  is a849

× selection matrix. Finally,  ∈ Θ is the vector of structural parameters describing the850

stationary dynamics of the DSGE model and  ∈ Θ is the vector of parameters that define851

the non-stationary dynamics. Moreover, ∗ ∈ Θ∗ ⊂ Θ and ∗ ∈ Θ∗ ⊂ Θ are the vectors852

of parameters that affect the steady state values. Rescaled variables,  , evolve according to853

+1 = Φ( ) +Ψ( )+1  ∼ (0Σ( )) (51)

where  is the vector of the structural innovations of the shock processes,  = [

   ]

0. It854

turns out that, for the particular model we have chosen, these equations are given (41)-(45)855

The vector of non-stationary shock processes log
 is assumed to follows856

ln
 = ln


−1 + 


 (52)

while the vector of transitory shock processes is857

log  =  log −1 +  (53)

log = −1 + 

 (54)

 =  (55)

 = 

 (56)
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Thus:858

 = [     ]
0 (57)

 = ln
 (58)

 = [  

   ]

0 (59)

 = 

 (60)

(∗ ∗) = [ln  ln lnΠ ln]
0 (61)

 = [1 1 0 0]0 (62)

 =

µ
4×4 04×2

¶
(63)

 = [           ] (64)

 =  (65)

F. The medium scale DSGE model used in section 5859

(a): The variables of the model860

Label Definition

 : output

 : consumption

 : investment

 : Tobin’s 

 : capital services

 : capital

 : capacity utilization

 : real rate



 : price markup

 : inflation rate

 : wage markup

 : total hours

 : real wage rate

 : nominal rate

861
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(b): The parameters of the model862

Label Definition

 elasticity of intertemporal substitution

 elasticity of labor supply with respect to real wages

 habit persistence parameter

 depreciation rate

 − 1 share of fixed costs in production

 steady state elasticity of capital adjustment cost function

 positive function of the elasticity of capital utilization adjustment costs function.

 share of capital services in production

 price indexation parameter

 price stickiness parameter

 curvature of good market aggregator

 wage indexation parameter

 wage stickiness parameter

 curvature of labor market aggregator

Label Definition

 interest smoothing parameter

 inflation parameter

 output parameter

 government expenditure to output ratio

 steady state capital output ratio

∗ = −1 steady state rental rate
∗ steady state real wage rate

∗∗ steady state hours to consumption ratio

863
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(c): The equations of the model (in deviation from steady states)864

 = (1−  −  ) +    + ∗   +  (C.1)

 =

1+

+1 +

1+

−1 − (−1)∗∗∗
(1+)

( −+1)− 1−
(1+)

( −+1 + ) (C.2)

 =


1+
+1 +

1
1+

−1 +
−1
1+

 +  (C.3)

 = (1− )+1 + (1− (1− ))+1 − ( −+1 + ) (C.4)

 = (

 + (1− ) +  ) (C.5)

 = −1 +  (C.6)

 =
1−

 (C.7)

+1 = (1− )  +   +  (1 + )   (C.8)



 = ( −) +  −  (C.9)

 =


1+
+1 +


1+

−1 − 

 + 


 (C.10)

 = −( −) +  (E.11)

 =  − ( + (1− )−1( − −1) (C.12)

 =
1
1+

−1 +


1+
(+1 ++1)− 1+

1+
 +


1+

−1 − 

 +  (C.13)

 = −1 + (1− )( + ) +  (C.14)

865

The seven disturbances are: TFP shock ( ); monetary policy shock (

 ); investment866

shock (); price markup shock (

 ); wage markup shock (


 ); risk premium shock ();867

government expenditure shock (

 ). The compound parameters in equation (C.11) and868

(C.13) are defined as:  ≡ 1
1+

(1−)(1−)
((−1)) and  ≡ 1

1+

(1−)(1−)
((−1)) .869

(d): The process for the shocks870

 = (

  


  


 


  


  


  


 )

 = −1 + 
871

where both  and Σ = 
0
 are diagonal.872
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G. Additional Tables and Graphs873

LT HP FOD BP

Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)

 1.68 (0.30) 1.53 (0.26) 0.04 (0.01) 2.98 (0.49)

 1.73 (0.15) 1.62 (0.12) 5.28 (0.07) 0.55 (0.06)

h 0.85 (0.03) 0.87 (0.03) 0.40 (0.01) 0.89 (0.02)

 0.05 (0.02) 0.08 (0.03) 0.41 (0.01) 0.04 (0.02)

 0.18 (0.06) 0.16 (0.05) 0.64 (0.01) 0.13 (0.03)

 1.36 (0.07) 1.36 (0.08) 1.48 (0.02) 1.42 (0.06)

 -0.17 (0.03) -0.17 (0.04) 0.05 (0.00) -0.11 (0.03)

 0.82 (0.01) 0.82 (0.02) 0.64 (0.01) 0.83 (0.01)

 0.66 (0.04) 0.67 (0.04) 0.54 (0.01) 0.81 (0.03)

 0.97 (0.02) 0.97 (0.01) 0.99 (0.01) 0.76 (0.02)

 0.63 (0.18) 0.65 (0.21) 4.63 (0.07) 0.45 (0.12)

 0.19 (0.04) 0.23 (0.05) 2.89 (0.19) 0.14 (0.02)

 0.11 (0.01) 0.11 (0.01) 2.69 (0.14) 0.12 (0.01)

 23.13 (1.99) 29.07 (0.94) 7.63 (0.10) 30.22 (1.12)

874

Table G.1 Parameters estimates obtained with standard transformations; real variables filtered,875

nominal variables demeaned.876
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Figure G.2: Data and estimated non-model based components, samples 1964:1-1979:4 and

1984:1-2007:4, flexible approach878
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