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ABSTRACT 

Peer Effects: Social Multiplier or Social Norms?* 

We develop an unified model embedding different behavioral mechanisms of 
social interactions and design a statistical model selection test to discriminate 
between them in empirical applications. This framework is applied to study 
peer effects in education and delinquent behavior for adolescents in the 
United States. We find that there are strong social multiplier effects in crime 
while, for education, social norms matter the most. This suggests that, for 
crime, individual-based policies are more appropriate while, for education, 
group-based policies are more effective. 
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1 Introduction

In many circumstances, the decision of agents to exert effort in education, or some other activity,

cannot adequately be explained by their characteristics and by the intrinsic utility derived from it.

Rather, its rationale may be found in how peers and others value this activity. There is indeed

strong evidence that the behavior of individual agents is affected by that of their peers. This is

particularly true in education, crime, labor markets, fertility, participation in welfare programs, etc.

(for surveys, see, Glaeser and Scheinkman, 2001; Moffitt, 2001; Durlauf, 2004; Ioannides and Loury,

2004; Ioannides, 2012). The way peer effects operate is, however, unclear. Are students working

hard at school because some of their friends work hard or because they do not want to be different

from the majority of their peers who work hard?

The aim of this paper is to help our understanding of social interaction mechanisms of peer

effects. For that, we consider two social network models aiming to capture the different ways peer

effects operate.1 In the local-aggregate model, peer effects are captured by the sum of friends’ efforts

in some activity so that the more active friends an individual has, the higher is her marginal utility

of exerting effort. Social multiplier effects are clearly important in this model. In the local-average

model, peers’ choices are viewed as a social norm and individuals pay a cost for deviating from this

norm. In this model, each individual wants to conform as much as possible to the social norm of

her reference group, which is defined as the average effort of her friends.2 We then develop a unified

framework, the hybrid network model, which encompasses both local-aggregate and local-average

effects.

We characterize the Nash equilibrium of each model and show under which condition an interior

Nash equilibrium exists and is unique. Even though the two first models are fundamentally different

in terms of behavioral foundation, it turns out that their implications in terms of Nash equilibrium

are relatively close since only the adjacency matrix (which keeps track to whom each individual is

connected) differs in equilibrium, one being the row-normalized version of the other. For the third

model (hybrid network model), we are also able to characterize the equilibrium and show under

1There is a growing literature on networks in economics. See the recent literature surveys by Goyal (2007), Jackson

(2008) and Jackson and Zenou (2013).
2 In economics, different aspects of conformism and social norms have been explored from a theoretical point of

view. To name a few, (i) peer pressures and partnerships (Kandel and Lazear, 1992) where peer pressure arises

when individuals deviate from a well-established group norm, e.g. individuals are penalized for working less than the

group norm, (ii) religion (Iannaccone 1992, Berman 2000), since praying is much more satisfying the more average

participants there are, (iii) social status and social distance (Akerlof 1980, 1997; Bernheim 1994; Battu et al., 2007,

among others) where deviations from the social norm (average action) imply a loss of reputation and status.
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which condition there exists a unique Nash equilibrium. To the best of our knowledge, this is the

first time such a model has been analyzed in the literature.

We then propose econometric counterparts of the theoretical models. In the spatial econometric

literature, the local-average and the local-aggregate model are well-known and their main difference

(from an econometric viewpoint) is due to the fact that the adjacency matrix is row-normalized

in the former and not in the latter. Our theoretical analysis provides a microfoundation for these

two models by showing under which condition and what kind of utility function is needed to obtain

each of this model. In fact, we show that the equation studied by spatial econometricians for each

model exactly corresponds to the best-reply function of each individual when they choose the effort

in some activity (study for education, crime intensity for crime, etc.) that maximizes their utility

function by taking the network as given. Depending on which type of utility considered, we obtain

different results. In particular, if social norms matter when deciding how much effort to exert in

some activity, then the best-reply function corresponds exactly to the local-average model while, if

social multiplier effects are important, then it corresponds to the local-aggregate model.

In the second part of the paper, we give the conditions under which each model is identified.

Most research in spatial econometrics and network econometrics has been performed for the local-

average model, i.e. when the adjacency matrix is row-normalized. In the present paper, we study

the case of a non-row-normalized adjacency matrix, which corresponds to our local-aggregate model.

It turns out that the condition under which the local-aggregate model is identified is weaker than

the local-average model. We also provide examples of networks where the local-aggregate model is

identified while the local-average model is not. We also give the condition under which the hybrid

network model can be identified.

In the third part, we extend Kelejian’s (2008) J test for spatial econometric models to differentiate

between the local-aggregate and the local-average effects in a social-interaction model with network

fixed-effects. We also propose a hybrid model encompassing both local-aggregate and local-average

effects and develop appropriate IV-based estimators. The traditional 2SLS estimator does not work

well in our empirical analysis as the first-stage F test suggests the available IVs are weak. To fix the

weak IV problem, we follow Lee (2007a) by generalizing the 2SLS estimator to a GMM estimator

with additional quadratic moment conditions based on the correlation structure of the error term in

the reduced-form equation. The GMM approach is easy to implement, asymptotically efficient, and

allows us to test the hypothesis that the network formation (i.e. the adjacency matrix) is exogenous
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(conditional on covariates and network fixed effects) using an over-identifying restriction test.

Finally, in the last part of the paper, we test our framework using the U.S. National Longitudinal

Survey of Adolescent Health (AddHealth), which contains unique detailed information on friendship

relationships among teenagers. Empirical tests of models of social interactions are quite problematic

because of the well-know issues that render the identification and measurement of peer effects quite

difficult: (i) reflection, which is a particular case of simultaneity (Manski, 1993) and (ii) endogeneity,

which may arise for both peer self-selection and unobserved network-specific effects. Our econometric

strategy utilizes the structure of the network as well as network fixed effects and high quality

individual information to clearly identify the peer effects from the contextual and correlated effects.

This approach for the identification of peer effects, i.e. the use of network fixed effects in combination

with high quality data on social contacts, has been used in a number of recent studies based on the

AddHealth data (e.g. Calvó-Armengol et al., 2009, Lin 2010; Patacchini and Zenou, 2012; Liu

et al. 2012). The underlying assumption is that any troubling source of heterogeneity, which

is left unexplained by the set of observed (individual and peers) characteristics can be captured

at the network level, and thus taken into account by the inclusion of network fixed effects. This is

extremely reasonable in our case study where the networks are extremely small (on average composed

by roughly 6 people).

We find that, for juvenile delinquency, students are mostly influenced by the aggregate activity

of their friends (local-aggregate model) while, for education, we show that both the social multiplier

effect and social norm effect matter, even though the magnitude is higher for the latter effect.

This indicates that students tend to conform to the social norm of their friends in terms of effort in

education (local-average model). Our results also show that the local-average peer effect is overstated

if the local-aggregate effect is ignored and vice versa. In this respect, our analysis reveals that caution

is warranted in the assessment of peer effects when social interactions can take different forms.

There are several papers that have formalized the local-aggregate model using a network approach

(see, in particular, Ballester et al., 2006, 2010; Bramoullé and Kranton, 2007; Galeotti et al., 2009)

and have tested this model for education (Calvó-Armengol et al., 2009) and crime (Calvó-Armengol

et al., 2005; Patacchini and Zenou, 2008; Liu et al., 2012). There are fewer papers that have explicitly

modeled the local-average model (Glaeser and Scheinkman, 2003) and have tested it for education

(Lin, 2010; Boucher et al., 2012) or crime (Patacchini and Zenou, 2012). Ghiglino and Goyal (2010)

develop a theoretical model where they compare the local aggregate and the local average model in
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the context of a pure exchange economy where individuals trade in markets and are influenced by

their neighbors. They found that with aggregate comparisons, networks matter even if all people are

equally wealthy. With average comparisons, networks are irrelevant when individuals are equally

wealthy. The two models are, however, similar if there is heterogeneity in wealth.3 We are not aware

of a paper where both local-aggregate and local-average effects (hybrid model) are incorporated in

a network model.

We believe that it is important to be able to (consider and) disentangle between different behav-

ioral peer-effect mechanisms because they imply different policy implications. In the local-average

model, the only way to affect individuals’ behavior and thus their outcomes is to change the social

norm of the group. In other words, one needs to affect most people in the group for the policy to be

effective. As a result, group-based policies should be implemented in the context of this model like,

for example, a school-based or a place-based policy. On the other hand, in the local-aggregate model,

because of social multiplier effects, one can target only one individual and still have positive effects

because she, in turn, will affect her peers. In other words, in the local-aggregate model there is a

learning process from peers that is not true in the local-average model. In that case, individual-based

policy should be implemented.4

To sum-up, the contributions of this paper to the literature are as follows:

(i) We compare the equilibrium implications of the local-average and the local-aggregate model;

(ii) We propose a new theoretical model (the hybrid network model) where both social norms

and social multiplier effects are taken into account and show under which condition there exists a

unique Nash equilibrium;

(iii) We provide the identification condition for the hybrid network model;

(iv) We generalize the J test of Kelejian and Piras (2011) to a network model with network

fixed effects, which allows us to design a statistical model selection test to detect which behavioral

mechanism better represents the data;

(v) We empirically test the three models (local-aggregate, local-average and hybrid network

model) using the U.S. National Longitudinal Survey of Adolescent Health (AddHealth) to study

peer effects in school performance and juvenile delinquency.

The rest of paper is organized as follows. Section 2 introduces the theoretical framework for the

3Another interesting paper is that of Clark and Oswald (1998) who propose a choice-theoretical justification for

the local-average (i.e. conformist) model.
4 See our discussion in Sections 2.6 and 6.
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network models. Section 3 discusses the identification conditions of the corresponding econometric

models. We extend the J test of Kelejian and Piras (2011) to network models with network fixed

effects in Section 4 and empirically test the network models using the AddHealth data in Section 5.

Finally, Section 6 concludes and discusses the different policy implications of each model.

2 Theoretical Framework

2.1 The network

Suppose that a finite set of agents  = {1     } is partitioned into  networks, where  =

{1     } denotes the set of agents in the th network ( = 1  ). We keep track of social

connections in network  by its adjacency matrix  = [], where  = 1 if  and  are friends,

and  = 0, otherwise.
5 We also set  = 0.

The reference group of individual  in network  is the set of ’s friends given by  =

{ 6=  |  = 1}. The size of  is  =
P

=1 , which is known as the degree of  in graph

theory.6 We denote by max , the highest degree in network , i.e. max = max . If  and  are

friends, then in general  6=  unless the network is complete.  ∩ 6= ∅ if  and  have

common friends.

Let ∗ = [
∗
], where 

∗
 = , denote the row-normalized adjacency matrix of network

. By construction, we have 0 ≤ ∗ ≤ 1. Figure 1 gives an example of a network  and the

corresponding adjacency matrices with and without row-normalization.

1 2 3  =

⎡⎢⎢⎢⎢⎣
0 1 0

1 0 1

0 1 0

⎤⎥⎥⎥⎥⎦ and ∗ =

⎡⎢⎢⎢⎢⎣
0 1 0

12 0 12

0 1 0

⎤⎥⎥⎥⎥⎦ 
Figure 1: an example network with corresponding adjacency matrices

2.2 The local-aggregate network model

In a network model, individuals simultaneously decide how much effort to exert in some activity to

maximize their utility, given the effort levels chosen by their friends. First, we consider the case

where an individual’s utility depends on the aggregate effort level of her friends.

5We assume friendships are reciprocal so that  = . All our results hold for asymmetric (directed ) and

weighted networks but, for the ease of the presentation, we focus on symmetric (undirected ) and unweighted networks

in this paper.
6For simplicity, we assume that no one is excluded so that   0.
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We denote by  the effort level of individual  in network  and by  = (1  )
0 the

population effort profile in network . Given  and the underlying network represented by ,

individual  chooses an effort  ≥ 0 to maximize her utility given by

() ≡ (; ) = ( +  + )  − 1
2
2 + 1

P
=1

 (1)

where 1 ≥ 0.
In the utility function (1), ( +  + )  represents the benefit individual  received from

effort , where + represents individual heterogeneity and  represents network heterogene-

ity of benefiting from a certain effort level. While  is perfectly observable by all individuals in the

network and the econometrician,  and  are only observable by all individuals in the network

but not by the econometrician. In (1), 1
2
2 captures the cost of effort. Note that the utility is

concave in own decisions, and displays decreasing marginal returns in own effort levels.

The last term in (1) reflects the impact of friends’ aggregate effort levels on ’s utility. As

individuals may have different locations in a network and their friends may choose different effort

levels, the term
P

=1  is heterogeneous in . The coefficient 1 captures the local-aggregate

endogenous peer effect. More precisely, bilateral influences for individual   ( 6= ) are captured

by the following cross derivatives,

2()


= 1 (2)

As we assume 1  0, if  and  are friends, the cross derivative is positive and reflects strategic

complementarity in efforts. That is, if  increases his effort, then the utility of  will be higher if 

also increases her effort. Furthermore, the utility of  increases with the number of friends, given

the effort profile .

In equilibrium, each agent maximizes her utility (1). From the first-order condition, we obtain

the following best-reply function for individual ,

 = 1

P
=1

 +  +  +  (3)

From (3), the equilibrium effort level of individual  depends on the aggregate effort of her friends.

Hence, we call this model the local-aggregate network model. Denote by  =  +  + ,

Π = (1 · · ·  )0, and max = max  the highest degree of network . The following
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proposition characterizes the Nash equilibrium of the local-aggregate network model.7

Proposition 1 If 0 ≤ 1
max
  1, then the network game with payoffs (1) has a unique interior

Nash equilibrium in pure strategies given by (3). In matrix form, this can be written as:

 = ( − 1)
−1
Π (4)

2.3 The local-average network model

Let us now develop the local-average model where the average effort level of friends affects an

individual’s utility. Denote by  =
P

∈
∗ the average effort of individual ’s friends.

Given the population effort profile  and the network structure , individual  in network 

selects an effort  ≥ 0 and obtains a payoff given by

() ≡ (;) =
¡
∗ + ∗ + ∗

¢
 − 1

2
2 −



2
( − )

2 (5)

with  ≥ 0.
The first two terms of the utility function (5) have the same interpretation as in (1). Let us

focus on the last term of this utility function since it is the only component that differs from (1).

Indeed, the term ( − )
2 reflects the influence of friends’ behavior on one’s own action. It is

such that each individual wants to minimize the social distance between herself and her reference

group. Its coefficient  describes the taste for conformity. Here, the individual loses utility 
2
( −

)
2 from failing to conform to others. This is the standard way economists have been modeling

conformity (see, among others, Akerlof, 1980, Bernheim, 1994, Kandel and Lazear, 1992, Akerlof,

1997, Fershtman and Weiss, 1998; Patacchini and Zenou, 2012).

Observe that beyond the individual heterogeneity  + , the term  represents a second

type of heterogeneity, referred to as the peer heterogeneity, which captures the differences between

individuals due to network effects. Here it means that individuals have different types of friends and

thus different reference groups . As a result, the social norm each individual  faces is different.

In equilibrium, agents choose their effort level  ≥ 0 simultaneously to maximize their utility.
As  =

P
∈

∗ (remember that 
∗
 = ), it follows from the first-order condition

7All proofs can be found in Appendix A.
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that the best-reply function of individual  is given by

 = 2

P
=1

∗ +  +  +  (6)

where 2 = (1+),  = (1−2)∗,  = (1−2)∗ , and  = (1−2)∗. As the equilibrium
effort level of individual  depends on the average effort of her friends, this model is referred to as

the local-aggregate network model. The following proposition gives the Nash equilibrium of model.

Proposition 2 If 0 ≤ 2  1, then the network game with payoffs (5) has a unique interior Nash

equilibrium in pure strategies given by (6). In matrix form, this can be written as:

 = ( − 2
∗
)
−1Π (7)

2.4 The hybrid network model

Finally, we generalize the network model by integrating local-aggregate and local-average effects into

the same model. Consider the following utility function

() ≡ (;) =
¡
∗ + ∗ + ∗

¢
− 1

2
2+1

P
=1

− 2

2
(−)2 (8)

where 1 ≥ 0 and 2 ≥ 0. Thus, individual ’ utility is positively affected by the sum of total efforts

of her friends and negatively affected by the distance from the social norm of her reference group

(i.e. the average effort of her friends). From the first-order condition of utility maximization, the

best-reply function of individual  is then given by:

 = 1

P
=1

 + 2

P
=1

∗ +  +  +  (9)

where 1 = 1(1+2), 2 = 2(1+2),  = (1−2)∗,  = (1−2)∗ , and  = (1−2)∗.
As 1  0 and 2  0, we have 1  0 and 0  2  1. This model is referred to as the hybrid

network model and it includes the local-aggregate and local-average models as special cases. The

Nash equilibrium of the hybrid network model is characterized by the following proposition.

9



Proposition 3 If 1 ≥ 0, 2 ≥ 0 and 1
max
 + 2  1, then the network game with payoffs (8)

has a unique interior Nash equilibrium in pure strategies given by (9). In matrix form, this can be

written as:

 = ( − 1 − 2
∗
)
−1Π (10)

2.5 Local aggregate versus local average: equilibrium comparison

In the local-aggregate model, it is the aggregate effort of the reference group that affects an individ-

ual’s utility. So the more active friends an individual has, the higher is her utility. On the contrary,

in the local-average model, it is the deviation from the average effort of the reference group that

affects an individual’s utility. So the closer an individual’s effort is from the average effort of her

friends, the higher is her utility. In the local-aggregate model, even if individuals are ex ante identical,

different positions in the network would imply different equilibrium effort levels. However, in the

local-average model, positions in the network would not matter and equilibrium effort levels would

be the same if all individuals are ex ante identical.

To illustrate this point, consider the case where all individuals are ex ante identical apart from

their positions in the network such that  =  for  = 1 · · ·  . For the local-aggregate model,
if 0 ≤ 1

max
  1, the unique Nash equilibrium given by (4) now becomes

 =  ( − 1)
−1

 

where  is an -dimensional vector of ones. Note that ( − 1)
−1

 represents the Bonacich

centrality (Bonacich, 1987) of a network. Therefore, the equilibrium effort  of individual  is

proportional to her centrality in the network. The more central an individual’s position is, the

higher is her equilibrium effort and equilibrium utility.8 On the other hand, for the local-average

model, if 0 ≤ 2  1, the unique interior Nash equilibrium given by (7) now becomes9

 = (1− 2)
−1 

As a result, in the local-average model, the position in the network plays no role and all individuals

provide the same equilibrium effort level (1− 2) in network . This is one of the fundamental

8For the local-aggregate model, the equilibrium utility of an individual is (
∗
) =

1
2
∗2 , where 

∗
 denote the

equilibrium effort level.
9Note that ( − 2

∗
)
−11 = (1− 2)

−11 .
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differences with the local-aggregate model where, even if agents are ex ante identical, because of

social multiplier effects, the position in the network determines their effort activity so that more

central persons exert more effort than less central individuals

As a numerical example, consider the star-shaped network in Figure 1 with three ex ante identical

individuals. Suppose 1 = 2 = 3 = 1. Then, for the local-aggregate model, if 0 ≤ 1  12,

individual 2, who is in the center of the network, will exert the equilibrium effort ∗2 =
1+21
1−221

and

individuals 1 and 3 will exert the equilibrium effort ∗1 = ∗3 =
1+1
1−221

. Obviously, ∗2  ∗1 = ∗3.

Consequently, individual 2 receives the highest equilibrium utility given by 2(
∗
2) ≡ 1

2
(
1+21
1−221

)2,

while individuals 1 and 3 receive the equilibrium utility 1(
∗
1) ≡ 3(

∗
3) =

1
2
(
1+1
1−221

)2. On the

other hand, for the local-average model, if 0 ≤ 2  1, the equilibrium efforts are the same for all

individuals such that ∗1 = ∗2 = ∗3 = (1 − 2)
−1. Therefore, all three individuals receive the

same equilibrium payoff.

Thus, these two models have fundamentally different equilibrium implications as illustrated in

the above ex ante homogeneous example. When it is the aggregate effort of friends that affects one’s

utility, the position in the network affects one’s equilibrium effort. When the deviation from the

social norm is costly, all individuals want to conform to the effort of their reference group, which is

the same for all of them because they are ex ante identical.

2.6 Discussion

Let us discuss the differences between the local-aggregate and local-average model and what kinds

of mechanisms they imply in more detail. For that, we will start with Whyte’s (1955) study of

the Italian North End of Boston in the late 1930’s. Whyte studied the behavior of a street-corner

gang, especially that of their leader Doc. Whyte wondered why Doc, a highly intelligent and curious

individual, was not upwardly mobile and, instead, dropped out of school. Whyte was puzzled

by Doc’s behavior because school would have been easy for Doc given his exceptional ability and

intelligence. Whyte concluded that Doc did not seek extra education out of loyalty to his group,

whom he would be abandoning were he to advance beyond them educationally. The behavior of Doc

is in accordance with the local-average model where it is costly to deviate from the group’s social

norm. Even if Doc is much more intelligent than the members of his gang, it would be too costly

for him to acquire a higher level of education since this would mean interacting less with his friends

or even abandoning them. Contrary to a model with no social interactions, where educational costs
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are mainly tuition fees, lost wages, etc., here it is the cost of lost contacts with one’s friends that is

crucial. Now, if Doc had preferences according to the local-aggregate model, he would have acted

differently. His decision to seek extra education would have been driven by his formidable ability

and the sum of his friends’ educational level, which is going to be quite high as Doc, a leader, has

many friends. What is crucial, however, is that there would not be a cost from deviating from

his friends’ decisions and he would certainly have decided to pursue education, despite the lower

average education level of his peers. Observe that, in the local-average model, the cost of deviating

from the social norm depends on the size of the group the individual belongs to. This is important

from a policy viewpoint. Indeed, if only one person deviates from a large group of friends, then

the cost could be very high. Anson (1985) told the story of an African-American youth, Eddie

Perry, who left his black poor neighborhood to enter into a very prestigious prep school but at the

cost of considerable psychological pain, because he did not fit naturally into either his old world

of the inner city or his new world of the prep school. In particular, when Eddie went back to his

old neighborhood, his friends ridiculed him because he couldn’t play basketball properly. As one of

Eddie’s mentors put it: “They ridiculed him for going away to school, they ridiculed him for turning

white”.

This means that the policy implications of the two models are quite different. In the local-average

model, the only way to affect individuals’ behavior and thus their outcomes is to change the social

norm of the group. In other words, one needs to affect most people in the group for the policy to be

effective. As a result, group-based policies should be implemented in the context of this model like,

for example, a school-based or a place-based policy. On the other hand, in the local-aggregate model,

because of social multiplier effects, one can target only one individual and still have positive effects

because she, in turn, will affect her peers. In other words, in the local-aggregate model there is a

learning process from peers that is not true in the local-average model. In that case, individual-based

policy should be implemented. We discuss the policy implications of these models in more details

at the end of the paper in Section 6.

Akerlof (1997) discussed Eugene Lang’s famous offer to give a college scholarship to every student

at the sixth grade class in Harlem. Of the 51 students who remained in the New York area, 40 were

considered likely to go to college six years later. Akerlof (1997) explained the success of this policy

by the fact that it affected all students not some of them. As Akerlof put it: “The experiment was

successful because the students formed a cohesive group in which each member received reinforcement
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from others who, like themselves, were on the academic track toward graduation from high school”.

In the language of the local-average model, this policy worked well because it changes the norm’s

group by affecting all its members. After the policy experiment, graduating and going to college was

not anymore considered as “bad” or “acting white” but as the social norm of the group, i.e. what

should be done. In the context of the local-aggregate model, one does not need to undertake such

a costly policy. It suffices to give a college scholarship to some students who, by increasing their

performance, will increase the total effort of peer reference group of their friends, who will, in turn,

affect the total effort of their own friends, etc. This implies that, in a conformist group, changing

people’s behavior is much more difficult than in a “local-aggregate” group.

3 Identification of the Network Model

3.1 Econometric network models

The specification of the econometric models follows the equilibrium best-reply functions of the

theoretical models exactly. This is important because it gives a clear microfoundation for each

model. Let the ex ante heterogeneity  of individual  in network  be

 = 0 +
P
=1

∗
0


where  is an -dimensional vector of exogenous variables and   are corresponding vectors of

parameters. The econometric local-aggregate model corresponding to (3) is

 = 1

P
=1

 + 0 +
P
=1

∗
0
 +  +  (11)

the econometric local-average model corresponding to (6) is

 = 2

P
=1

∗ + 0 +
P
=1

∗
0
 +  +  (12)

and the econometric hybrid model corresponding to (9) is:

 = 1

P
=1

 + 2

P
=1

∗ + 0 +
P
=1

∗
0
 +  +  (13)
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for  = 1 · · ·   and  = 1 · · ·  ̄. In the econometric models, ’s are i.i.d. innovations with zero
mean and variance 2 for all  and .

Let  = (1 · · ·  )0,  = (1 · · ·  )0, and  = (1 · · ·  )0. Then, the econo-
metric models can be written in matrix form as:

 = 1 + +∗ +  + 

 = 2
∗
 + +∗ +  + 

 = 1 + 2
∗
 + +∗ +  + 

For a data set with ̄ groups, let  = ( 0
1  · · ·   0

̄ )
0, ∗ = (∗01  · · · ∗0̄ )0,  = (1 · · ·  ̄)0,

 = (01 · · ·  0̄)0,  = diag{}̄=1, ∗ = diag{∗}̄=1 and  = diag{}̄=1, where diag{} is a
‘generalized’ block diagonal matrix in which the diagonal blocks are  × matrices ’s. For the

entire sample, the econometric models are, respectively,

 = 1 + +∗ +  +  (14)

 = 2
∗ + +∗ +  +  (15)

 = 1 + 2
∗ + +∗ +  +  (16)

The econometric network models considered in this paper are quite general as they include the

endogenous effect, where an individual’s choice/outcome may depend on those of his/her friends, the

contextual effect, where an individual’s choice/outcome may depend on the exogenous characteristics

of his/her friends, and the network correlated effect where individuals in the same network may

behave similarly as they have similar unobserved individual characteristics or they face a similar

institutional environment. Furthermore, we distinguish between the aggregate endogenous effect,

captured by the coefficient 1, and the average endogenous effect, captured by the coefficient 2, as

they originate from different economic models with totally different equilibrium implications.

It is well known that endogenous and contextual effects cannot be separately identified in a

linear-in-means model due to the reflection problem, first formulated by Manski (1993). The reflec-

tion problem arises because, in a linear-in-means model, individuals are affected by all individuals

belonging to their group and by nobody outside the group, and thus simultaneity in behavior of

individuals in the same group introduces a perfect collinearity between the endogenous effect and
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the contextual effect.

For the network model, the reference group usually varies across individuals. If individuals

  are friends and   are friends, it does not necessarily imply that   are also friends. Thus,

the intransitivity in social connections provides an exclusion restriction to identify endogenous and

contextual effects. Based on this important observation, Bramoullé et al. (2009) have derived

identification conditions for the local-average model (only). In this section, we extend their results

by giving the identification conditions of the local-aggregate model and the hybrid model and show

that the aggregate endogenous effect is relatively easier to identify than the average endogenous

effect.

The network correlated effect is captured by the vector of network fixed effects . Network fixed

effects can be interpreted as originating from a two-step model of link formation where agents self-

select into different networks in a first step and, then, in a second step, link formation takes place

within networks based on observable individual characteristics only. Therefore, the network fixed

effect serves as a (partial) remedy for the selection bias that originates from the possible sorting of

individuals with similar unobserved characteristics into a network.

In the econometric models, we allow network fixed effects  to depend on ∗ and by treating

 as a vector of unknown parameters (as in a fixed effect panel data model). When the number of

groups ̄ is large, we may have the incidental parameter problem. To avoid the incidental parameter

problem, we transform (14)-(16) using the deviation from group mean projector  = diag{}̄=1,
where  =  − 1


 

0

. This transformation is analogous to the within transformation for fixed

effect panel data model. As  = 0, the transformed equations are

 = 1 +  + ∗ +  (17)

 = 2
∗ +  + ∗ +  (18)

 = 1 + 2
∗ +  + ∗ +  (19)

The proposed estimators and identification conditions are based on the transformed models.

The transformed models can be estimated by generalizing the 2SLS and GMM methods in Liu

and Lee (2010).10 Let 1 = [∗], 2 = [∗∗], and 3 = [∗∗]

denote the matrices of regressors in the local-aggregate, local-average, and hybrid network models,

10 See Section 4.2 and Appendix B at the end of the paper for more details.
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respectively. Let  denote the IV matrix described below in Section 4.2. Then, the models are

identified if the following condition is satisfied.

Identification Assumption lim→∞ 1

0E() is a finite matrix with full column rank for

 = 1 2 3.

This identification assumption implies the rank condition that E() (for  = 1 2 3) has full

column rank and that the column rank of  at least as high as that of E(), for large enough .

In the rest of this section, we provide sufficient conditions of the identification assumption for the

models (17)-(19).

3.2 Identification of the local-average model

If 0  2  1, the reduced form equation of the local-average model (15) is

 = ( − 2
∗)−1( +∗ +  + ) (20)

As ( − 2
∗)−1 = 0 and ( − 2

∗)−1 =  + 2
∗( − 2

∗)−1, it follows from (20) that

E(∗ ) = ∗ + ∗( − 2
∗)−1∗(2 + ) (21)

To illustrate the challenges for the identification of the local-average model, we consider the two

following cases:

(i) 2 +  = 0. In this case, E(∗ ) = ∗. The model cannot be identified because

the matrix E(2) = [E(
∗ )  ∗] does not have full column rank. This corresponds to

the case where the endogenous effect and exogenous effect exactly cancel out. Lee et al. (2010)

have shown, in this case, the reduced form equation of the local-average model becomes a simple

regression model with (spatially) correlated disturbances. In the reduced form, there are neither

endogenous nor contextual effects. Interactions go through unobservables (disturbances) instead of

observables. A special case of 2 +  = 0 is  =  = 0. In this case, E(∗ ) = 0. The model

cannot be identified as there is no relevant exogenous covariate in the model.

(ii) 2 +  6= 0. In this case, the identification may still be hard to achieve when the network
is dense. Lee (2007b) considered the case where individuals are equally influenced by all the others

in the same network with the adjacency matrix ∗ =
1

−1( 
0

− ). As 

∗
 =

1
1−  and
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
∗
( − 2

∗
)
−1∗ = [

P∞
=0 


2(

1
1− )

2+ ], it follows from (21) that, for network ,

E(
∗
) = 

∗
 + 

∗
( − 2

∗
)
−1∗(2 + )

=
1

1− 
 + [

∞P
=0



2(

1

1− 
)2+ ](2 + )

and 
∗
 =

1
1− . Therefore, E(2) does not have full column rank if all networks in

the sample are of the same size such that  = ̄. Lee (2007a) has shown that the model can

be identified if there are variations in network sizes. However, the identification can be weak when

all the networks are large. For a general local-average model, Bramoullé et al. (2009) and Lee et

al. (2010) have derived some sufficient conditions for model identification. Suppose  has full

column rank. Bramoullé et al. (2009) have shown that if the matrices ∗ ∗2 ∗3 are linearly

independent, social effects are identified. For the perspective of a spatial autoregressive (SAR)

model, Lee et al. (2010) have shown that the model can be identified if  [∗∗2] has full

column rank.

As stated above, most research in spatial econometrics and network econometrics has been done

for the local-average model, i.e., when the adjacency matrix is row-normalized and equal to ∗ . In

the next sections, we study the case of non row-normalized adjacency matrix , which corresponds

to our local-aggregate model and hybrid model.

3.3 Identification of the local-aggregate model

For network , if 0  1
max
  1, the reduced form equation of the local-aggregate model is

 = ( − 1)
−1( +∗ +  + ) (22)

which implies

E() = ( − 1)
−1( +∗) + ( − 1)

−1  (23)

For network , the term  ( − 1)
−1

 is the Bonacich measure of centrality (Ballester et al.

2006; Bonacich, 1987). When row sums of are not constant, the term  ( − 1)
−1

 6= 0
and therefore provides useful information for model identification. Even for the case that  =  = 0,

E(1) = [E()  
∗
] = [( −1)

−1   
∗
] may still have
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full column rank. As identification of the local-aggregate model requires E(1) to have full column

rank, the following proposition gives a sufficient condition for the rank condition. Henceforth, let 

(possibly with subscripts) denote a constant scalar that may take different values for different uses.

Proposition 4

• When  has non-constant row sums for some network , E(1) of the local-aggregate network

model (14) has full column rank if: (i)    
∗
  

∗
 are linearly independent and || +

||+ || 6= 0; or (ii) 
∗
 = 1 + 2 + 3

∗
 and Λ1 given by (36) has full rank.

• When  has constant row sums such that  =  for all , E(1) has full column rank if:

(iii) ∗ ∗∗2 ∗2 are linearly independent and ||+|| 6= 0; (iv) ∗ ∗ ∗2

are linearly independent, ∗2 = 1+2+3
∗+4

∗+5
∗2, and Λ2 given by (37) has

full rank; or (v)  =  for all , ∗ ∗2 ∗3 are linearly independent, and 1 +  6= 0.

The identification conditions for the local-aggregate model given in Proposition 4 are weaker than

the conditions for the local-average model in Bramoullé et al. (2009).

Interestingly, Figure 2 gives an example where identification is possible for the local-aggregate

model but fails for the local-average model. Indeed, consider a dataset where each network is

represented by the graph in Figure 2 (star-shaped network). The adjacency matrix  is a block-

diagonal matrix with diagonal blocks being  in Figure 2. For the row-normalized adjacency matrix

∗, it is easy to see that ∗3 = ∗. Therefore, it follows from Proposition 5 of Bramoullé et al.

(2009) that the local-average model (15) is not identified. On the other hand, as  in Figure

2 has non-constant row sums and    
∗
  

∗
 are linearly independent, it follows from our

Proposition 4(i) that the local-aggregate model (14) can be identified with this network.

3 4
1

2

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 13 13 13

1 0 0 0

1 0 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦


Figure 2: An example where the local-aggregate model can be identified by Proposition 4(i).
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Figure 3 provides another example where the local-average model cannot be identified while the

local-aggregate model can. Indeed, consider a dataset with two types of networks. The first type

of network is represented by the graph on the top of Figure 3 (regular network or circle). The

second type of network is represented by the graph on the bottom of Figure 3 (bi-partite network).

For these two networks, the adjacency matrix  is a block-diagonal matrix with diagonal blocks

being either 1 or 2 given in Figure 3. For the row normalized adjacency matrix ∗, it is easy

to see that ∗3 = ∗. Therefore, it follows from Proposition 5 of Bramoullé et al. (2009) that the

local-average model (15) is not identified. On the other hand, as the two different types of networks

have different row sums, ∗∗ ∗2 are linearly independent and ∗2 = . Therefore, the

local-aggregate model (14) can be identified by our Proposition 4(iv).

1 4

2 3
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∗1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 12 0 12

12 0 12 0

0 12 0 12

12 0 12 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦


1

2

3

4

5

6

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 13 13 13

0 0 0 13 13 13

0 0 0 13 13 13

13 13 13 0 0 0

13 13 13 0 0 0

13 13 13 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


Figure 3: An example where the local-aggregate model can be identified by Proposition 4(iv).

3.4 Identification of the hybrid model

Let us now consider the hybrid model and study identification. If 1  0, 2  0 and 1
max
 +2  1

for all , the reduced form equation of the hybrid model (16) is

 = ( − 1− 2
∗)−1( +∗ +  + ) (24)
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which implies

E( ) = ( − 1− 2
∗)−1( +∗) + ( − 1− 2

∗)−1 (25)

E(∗ ) = ∗( − 1− 2
∗)−1( +∗) + ∗( − 1− 2

∗)−1 (26)

First, we consider the case that all networks have constant row sums such that  =  for

all . If, furthermore,  =  for all , i.e., all network have the same degrees (row sums), then

 = ∗ and the hybrid model cannot be identified as E(3) = [E( )E(∗ )  ∗] =

[E(∗ )E(∗ )  ∗] does not have full column rank. If there are at least two networks

in the data that have different degrees so that  and ∗ are linearly independent, then the hybrid

model can be identified through the following proposition.

Proposition 5 Suppose  has constant row sums such that  =  for all . E(3) of the hybrid

network model (16) has full column rank if ∗ ∗∗2 ∗2 ∗3 are linearly independent

and 1 6= 0 or  + 2 6= 0.

This is a new result that allows for the identification of the hybrid model. Observe that if the

row sums of  are not constant for some network  and  6= 0, then ( − 1− 2
∗)−1 can

be used as an IV for the local-aggregate endogenous variable  . Furthermore, if 1 6= 0, then

∗( − 1 − 2
∗)−1 can be used as an IV for the local-average endogenous variable ∗ .

Therefore, E(3) may have full column rank even if there is no relevant exogenous covariate in the

model such that  =  = 0.

4 Local Aggregate or Local Average? A Specification Test

From the above discussion, we can see that the local-aggregate model and the local-average model

have different equilibrium implications (economic theory) and identification conditions (econometrics

theory). However, their empirical specification (14) and (15) have similar functional forms, which

allows us to design a statistical model selection test to detect which behavioral mechanism better

represents the data.

In standard linear regression models, the J test is used to compare non-nested model specifications

(Davidson and MacKinnon, 1981). The idea of the J test is as follows. If a given model contains

the correct set of regressors, then including the fitted values of an alternative model (or of a fixed

number of competing models) into the null model should provide no significant improvement.
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Kelejian (2008) extends the J test to a spatial framework. He shows that the test could, but

need not, relate solely to the specification of the spatial weighting matrix. Importantly, since the

J test relies on whether the prediction based on an alternative model significantly increases the

explanatory power of the null model, it is important to use all the available information in the

alternative model. However, Kelejian (2008) does not use the information in an efficient way to

determine the predictions (Kelejian and Piras, 2011). The J test of Kelejian (2008) and Kelejian and

Piras (2011) is implemented using the spatial 2SLS estimation procedure. This paper’s contributions

in this regard can be summarized as follows.

(1) We generalize the J test in Kelejian and Piras (2011) to a network model with network fixed

effects. Our source of identification of the augmented model is the variation in the row sums of the

adjacency matrix .

(2) We first consider the 2SLS estimation of the augmented model to implement the J test.

Besides the IVs proposed by Kelejian and Prucha (1998), we consider additional IVs based on the

vector of degrees  (the number of friends) to improve identification and estimation efficiency.

The number of such IVs is the same as the number of networks in the data. If the number of IVs is

large relative to our sample size, the 2SLS estimator could be asymptotically biased (Liu and Lee,

2010). Hence, we propose a bias-correction procedure to eliminate the leading order many-IV bias.

(3) The first-stage F test suggests that the IVs are weak in our data and thus the J test based

on the 2SLS estimator would not be reliable. We propose a GMM estimator to implement the J

test. The GMM estimator uses additional quadratic moment conditions, which are especially helpful

when the IVs are weak.

4.1 J test for model selection

The local-aggregate and local-average models (14) and (15) can be written more compactly as:

1 :  = 1 +∗1 + 1 + 1 (27)

2 :  = 2
∗ +∗2 + 2 + 2 (28)

where ∗ = (∗), and 1 2 are corresponding vector of coefficients.
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4.1.1 The test of model 1 against model 2

To test against the model specification 2, one can estimate the following augmented model of 1,

 = 12
+ 1 +∗1 + 1 + 1 (29)

where 2
is a predictor of  under 2 such that 2

= 2
∗ +∗2 + 2 (see Kelejian and

Prucha, 2007; Kelejian and Piras, 2011). Thus, a test of the null model (27) against the alternative

one (28) would be in terms of the hypotheses: 0 : 1 = 0 against  : 1 6= 0.
Substitution of the predictor 2

into (29) gives

 = 1(2
∗ +∗2) + 1 +∗1 + (1 + 12) + 1

= ∗11 + (1 + 12) + 1 (30)

where ∗1 = [2
∗ +∗2∗] and 1 = (1 1 

0
1)
0. The within transformation of (30) with

the deviation from group mean projector  gives

 = ∗11 + 1 (31)

The proposed J test can be implemented by the following two steps:

(1) Estimate model 2 by the quasi-maximum-likelihood (QML) method of Lee et al. (2010).

Let the preliminary QML estimators of 2 and 2 be denoted by ̃2 and ̃2.

(2) Estimate the feasible counterpart of model (31)

 = ̃∗11 + 1 (32)

where ̃∗1 = [̃2
∗ +∗̃2 ∗], by the 2SLS or GMM method described in Section 4.2. If the

estimated 1 is insignificant, then this is evidence against model 2.
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4.1.2 The test of model 2 against model 1

The test of model 2 against model 1 can be carried out in a similar manner. Consider the

following augmented model of 2,

2 :  = 21
+ 2

∗ +∗2 + 2 + 2 (33)

where 1
is a predictor of  under 1 such that 1

= 1 + ∗1 + 1. Thus, the test of

the null model (28) against the alternative (27) would be in terms of the hypotheses 0 : 2 = 0

against  : 2 6= 0. The within transformation of (33) with the projector  gives

 = ∗22 + 2 (34)

where ∗2 = [1 +∗1 ∗∗] and 2 = (2 2 2)
0.

The proposed J test can be implemented by the following two steps:

(1) Estimate model 1 by the 2SLS with IVs  [∗]. Let the preliminary 2SLS estima-

tors of 1 and 1 be denoted by ̃1 and ̃1.

(2) Estimate the feasible counterpart of model (34)

 = ̃∗22 + 2 (35)

where ̃∗2 = [(̃1 +∗̃1) ∗∗], by the 2SLS or GMM method described in Section 4.2. If

the estimated 2 is significant, then that is evidence against model 2.

4.2 The 2SLS and GMM estimators

For the estimation of the hybrid network model (19) and the augmented models (32) or (35) in the

second step of the J test, we consider the following estimators by generalizing the 2SLS and GMM

methods in Liu and Lee (2010):

(a) “2SLS”: a 2SLS estimator with IVs 1 =  [∗∗2].

(b) “BC2SLS”: a bias-corrected 2SLS estimator with IVs 2 =  [∗∗2]. The

additional IVs  corresponds to the information on different positions of group members measured

by Bonacich (1987) centrality. The additional IVs improves asymptotic efficiency of the estimator

and helps achieve identification when the “conventional” IVs 1 are weak. Note that, the additional
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IVs in 2, , has ̄ columns, where ̄ is the number of networks in the data. Therefore, if there are

many networks (e.g. in the empirical study, there are 490 networks in our data), the 2SLS estimator

with IVs 2 may have an asymptotic bias, which is known as the many-instrument bias.
11 The

“BC2SLS” estimator corrects the many-instrument bias by an estimated leading-order bias term.

The 2SLS estimators are based on moment conditions that are linear in the model coefficients.

However, when the IVs are weak, the inference based on the 2SLS estimation may be unreliable.

Lee (2007a) has suggested to generalize the 2SLS method to a comprehensive GMM framework with

additional quadratic moment conditions based on the covariance structure of the reduced form equa-

tion to improve identification and estimation efficiency. The added quadratic moment conditions are

especially helpful when the IVs are weak. In this paper, we consider the following GMM estimators

for the estimation of the empirical model:

(c) “GMM”: an optimal GMM estimator using linear moment conditions with 1 and quadratic

moment conditions.

(d) “BCGMM”: a bias-corrected optimal GMM estimator using linear moment conditions with

2 and the same quadratic moment conditions as in “GMM”. Similar to the corresponding 2SLS

estimator, the additional IVs in 2 may introduce many-instrument bias into the GMM estimator.

The “BCGMM” estimator corrects the many-instrument bias by an estimated leading-order bias

term.

The details of the 2SLS and GMM methods, including the explicit form of the quadratic moment

condition, are given in Appendix B.

5 Empirical Application

5.1 Data description

Our analysis is made possible by the use of a unique database on friendship networks from the

National Longitudinal Survey of Adolescent Health (AddHealth). The AddHealth database has

been designed to study the impact of the social environment (i.e. friends, family, neighborhood and

school) on adolescents’ behavior in the United States by collecting data on students in grades 7-12

from a nationally representative sample of roughly 130 private and public schools in years 1994-95.

Every pupil attending the sampled schools on the interview day is asked to compile a questionnaire

(in-school data) containing questions on respondents’ demographic and behavioral characteristics,

11This is less of a concern in the data used in this paper, as the number of groups are small relative to the sample

size.
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education, family background and friendship. This sample contains information on roughly 90,000

students.12

From a network perspective, the most interesting aspect of the AddHealth data is the information

on friendships. Indeed, the friendship information is based upon actual friend nominations. Pupils

were asked to identify their best friends from a school roster (up to five males and five females).13

Knowing exactly who nominates whom in a network, we exploit the directed nature of the nomi-

nations data.14 We focus on choices made and we denote a link from  to  as  = 1 if  has

nominated  as her friend in network , and  = 0, otherwise.
15 By matching the identification

numbers of the friendship nominations to respondents’ identification numbers, one can obtain infor-

mation on the characteristics of nominated friends. More importantly, one can reconstruct the whole

geometric structure of the friendship networks. For each school, we thus obtain all the networks of

(best) friends.16

We construct networks as network components. Network components are maximally connected

networks, which satisfy the two following conditions. First, two agents in a network component are

either directly linked or are indirectly linked through a sequence of agents (this is the requirement of

connectedness). Second, two agents in different network components cannot be connected through

any such sequence (this is maximality). A school usually contains more than one network.

We exploit this unique data set to understand the impact of peer pressure on individual behavior

for two different outcomes: (i) school performance and (ii) juvenile delinquency. We choose these

two activities because they are very different from a behavioral perspective.

For each individual, we calculate an index of performance (or involvement) in each activity using

answers to various related questions. More specifically, the school performance is measured using the

respondent’s scores received in the more recent grading period in several subjects, namely English

or language arts, history or social science, mathematics and science. The scores are coded as 1=D

or lower, 2=C, 3=B, 4=A. The final average score (GPA index or grade point average index) has

12A subset of adolescents selected from the rosters of the sampled schools, about 20,000 individuals, is then asked to

compile a longer questionnaire containing more sensitive individual and household information (in-home and parental

data). Those subjects of the subset are interviewed again in 1995—96 (wave II), in 2001—2 (wave III), and again in

2007-2008 (wave IV). For the purpose of our analysis, we focus on wave I in-school data.
13The limit in the number of nominations is not binding (even by gender). Less than 1% of the students in our

sample show a list of ten best friends.
14We also consider the undirected nature of the friendship relationships in Section 5.4.
15As highlighted by Wasserman and Faust (1994), centrality indices for directional relationships generally focus on

choices made.
16Note that, when an individual  identifies a best friend  who does not belong to the same school, the database

does not include  in the network of ; it provides no information about . Fortunately, in the large majority of cases

(more than 93%), best friends tend to be in the same school and thus are systematically included in the network.
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mean equal to 2.91 and standard deviation equal to 0.78.

The delinquency involvement is derived using questions describing participation in a series of

activities that signal the propensity towards a delinquent behavior.17 Each response is coded using

an ordinal scale ranging from 0 (i.e. never participate) to 6 (i.e. nearly everyday). On the basis

on these variables, a composite score is calculated for each respondent.18 The final composite score

(delinquency index) is normalized to be non-negative and has mean equal to 0.64 and standard

deviation equal to 0.96. Precise definitions of the remaining variables (control variables) used in our

empirical analysis can be found in Table C.1 in Appendix C. Excluding the individuals with missing

or inadequate information, we obtain a final sample of 2,999 students distributed over 490 networks.

The large reduction in sample size with respect to the original AddHealth sample is mainly due to

missing values in variables and the network construction procedure. Indeed, roughly 20% of the

students do not nominate any friends and another 20% cannot be correctly linked (for example

because the identification code is missing or misreported). Also, we do not consider networks in the

right tail of the network size distribution to avoid the possibility that in extremely large networks the

strength of peer effects can be too different. Indeed, our theoretical model and hence our empirical

strategy consider homogenous peer effects across networks. The use of network fixed effects, which

is an important feature of our identification strategy prevents us from dealing with this issue. We

focus our analysis on networks with a size of between 2 and 100 students for both outcomes.19

5.2 OIR test for the exogeneity of network structure

Our identification strategy is based on the assumption that any troubling source of heterogeneity,

which is left unexplained by our set of observed (individual and peers) characteristics can be captured

at the network level, and thus taken into account by the inclusion of network fixed effects. This is

extremely reasonable in our case study where the networks are extremely small (the average network

size is roughly 6 people, see Table C.1).

We will test the hypothesis that  is exogenous (conditional on covariates and network fixed

effects) using an over-identifying restrictions (OIR) test, as described in Lee (2007a). The moment

conditions used in the GMM estimation of a spatial autoregressive model (such as the ones used

17The in-school survey asks how often students have engaged in risky behavior during the past twelve months.

Specifically, it contains information on how often students: smoked cigarettes, drank beer wine or liquor, got drunk,

raced in bike or car, were in danger due to dare, lied to the parents, skipped school.
18We use a standard factor analysis, where the factor loadings of the different variables are used to derive the total

score.
19Our results, however, do not depend crucially on these network size thresholds. They remain qualitatively

unchanged when slightly moving the network size window.
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in our empirical investigation) are based on the assumption that  is exogenous. If the OIR test

cannot reject the null hypothesis that the moment conditions (or restrictions) are correctly specified,

then it provides evidence that  can be considered as exogenous. If the number of restrictions is

small relative to the sample size, the OIR test statistic given by the GMM objective function (44)

evaluated at the GMM estimator follows a chi-squared distribution with degrees of freedom equal

to the number of over-identifying restrictions (Lee, 2007a, Proposition 2).

5.3 Estimation results

5.3.1 Statistical analysis

Let us now test our theoretical framework for different outcomes using the J test described above.

Tables 1 and 2 report the estimation results for the hybrid network model using alternative es-

timators for education and crime, respectively. We consider the 2SLS and GMM estimators that

are based on traditional moment conditions (i.e. 2SLS and GMM described in Section 4.2) and the

bias-corrected version of the estimators that use additional IVs based on Bonacich centrality (i.e.

BC2SLS and BCGMM described in Section 4.2). Tables 1 and 2 also show the first stage F tests for

weak IVs and the OIR tests in the lasts rows. In both tables, the values of the F-statistics reveal that

our instruments in the linear moment conditions are quite weak.20 As a result, we prefer the GMM

with additional quadratic moment conditions (see Section 4.2 and Appendix B) to the 2SLS esti-

mates. The other consequence of the weak IV problem is that we cannot trust the OIR test results

based on the 2SLS. We thus consider the OIR test statistic (Lee, 2007a) for the GMM estimator.21

We find that the p-values of the over-identifying restrictions test are large for all outcomes, which

means that  is exogenous (i.e. we cannot reject the null hypothesis that the moment conditions

based on an exogenous  are valid). This evidence provides confidence in the exogeneity of network

structure (conditional on controls and network fixed effects).

[Insert Tables 1 and 2 here]

20The construction and statistical properties of the first stage F-test for weak instruments can be found in Stock et

al. (2002). The partial F-test used in this analysis is further detailed in Stock and Yogo (2005). Stock et al. (2002)

have suggested that “evidently the first-stage F statistic must be large, typically exceeding 10, for 2SLS inference to

be reliable.”

The matlab codes that implement the 2SLS and GMM estimators, J test, F test and OIR test remain available

upon request.
21This test statistic uses the GMM estimator (GMM) based on a relatively small set of instruments (Q1). In fact,

such a test could be biased if there are a large number of IVs, as in the IV matrix Q2. For the case with independent

observations, Chao et al. (2010) have proposed an OIR test that is robust to many IVs. However, no robust OIR test

with many IVs is available when observations are spatially correlated.
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5.3.2 Interpretation of results in economics terms

Do peer effects matter? Which model is more adequate for each activity? These questions can be

answered if we look at the first two rows of Tables 1 and 2 (tests of 1 and 2 of the hybrid network

model) and at the last rows of these tables (tests of the augmented models where the null hypothesis

is 1 = 0, i.e., the local average model does not matter for model (29), and 2 = 0, i.e., the local

aggregate model does not matter for model (33).

Table 1 reveals that, for education (i.e. GPA index), both social norms (local average) and social

multiplier (local aggregate) matter. However, even if both matter, the magnitude of the effects is

higher for the local-average model compared to the local-aggregate one. Indeed, a one standard

deviation increase in the average activity of individual ’s reference group translates roughly into a

032 increase of a standard deviation of individual ’s GPA score while it is only 013 for the sum

of activity of friends. In a group of 4 friends, this means that if all my friends’ GPA increase by 1

point, then my GPA would increase by 0.18 points because of my desire to conform to the social

norm of the group and by about 0.06 because of the social multiplier effect. Social norms seem to

be an important factor in peer effects in education.

On the contrary, in Table 2, we see clearly that, for juvenile delinquency, it is the sum of the effort

of the friends (i.e. the local aggregate model) and not their average effort that matters for explaining

own delinquent activity. In other words, there are only multiplier peer effects in crime activities.

In terms of magnitude, a one standard deviation increase in the aggregate delinquent activity of

individual ’s reference group translates roughly into a 007 increase of a standard deviation of

individual ’s delinquency index.

Our results are interesting and new. First, they show that different forms of social interactions

may drive peer effects in different outcomes. Second, they show that even for the same outcome

there might be different mechanisms of peer effects at work. In this respect, our findings suggest

notes of caveat in the empirical analysis of peer effects. Peer effects are a complex phenomenon

and their assessment should be considered with caution. If more than one mechanism is driving

social interactions, then neglecting one of them can produce biased inferential results. We report in

Table 3 the results that are obtained when estimating separately the local-aggregate and the local-

average model. Comparing Table 1 and 3, it appears clearly that for education (i.e. when more that

a mechanism is at work) the local-average peer effect is overstated if the local-aggregate effect is
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ignored (and vice versa). In other words, if we estimate peer effects in education using a local-average

model we would obtain a biased (and larger) estimate of the magnitude of those effects. Although

there might be a variety of mechanisms at work, our framework is able to distinguish between the

most important ones.

[Insert Table 3 here]

5.4 Robustness check

Our identification and estimation strategies depend on the correct specification of network links. In

particular, our identification strategy hinges upon nonlinearities in group membership, i.e. on the

presence of intransitive triads. In this section, we test the robustness of our results with respect to

misspecification of network topology. So far, we have measured peer groups as precisely as possible

by exploiting the direction of the nomination data. However, friendship relationships are reciprocal

in nature, and even if a best friend of a given student does not nominate this student as his/her best

friend, one may think that social interactions take place. Under this circumstance, there can be some

“unobserved” network link that, if considered, would change the network topology and break some

intransitivities in network links. Therefore, in this section, we repeat our analysis by considering

undirected networks, i.e. we assume that a link exists between two friends if both students have

named each other, that is  =  = 1.

Tables 4 report the main results for undirected networks. The qualitative results remain un-

changed.

[Insert Table 4 here]

6 Summary and policy implications

6.1 Summary

In this paper, we have studied three different social network models with different economic founda-

tions. In the first one, the local-aggregate model, each individual is positively affected by the sum

of effort of her friends (social multiplier) while, in the local-average model, it is the deviation from

the average effort of her friends that has a negative impact on her utility (social norm). In the third

model (the hybrid network model), local-aggregate as well as local-average effects are incorporated.

We show that there exists a unique interior Nash equilibrium in each model.
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We then propose different identification strategies for each model that we estimate using each

individual’s best-reply function. While the conditions under which models with row-normalized adja-

cency matrices are identified have been provided in the past, in this paper, we tackle the identification

issue of non-row-normalized adjacency matrices. We give the exact conditions for identification and

provide examples of networks that are identified under the local-aggregate model but not under the

local-average one. We also propose an identification strategy for the hybrid network model. We then

design a statistical model selection test to detect which behavioral mechanism better represents the

data by generalizing the J test of Kelejian and Piras (2011) to a network model with network fixed

effects.

In the last part of the paper, we test our framework using the AddHealth data, which provides

detailed information on adolescent friendships in the United States. For juvenile delinquency, we

find that students are mostly influenced by the sum of activities of their friends (local-aggregate

model) while, for education, we show that both the aggregate school performance of friends and

social norms matter, even though the magnitude of the effect is higher for the latter.

6.2 Policy implications

In this section, we would like to discuss the different policy implications of the local-aggregate,

local-average and hybrid models. Indeed, we believe that it is important to be able to disentangle

between different behavioral peer-effect models because they imply different policy implications. We

base our discussion on the activities considered in our empirical application: crime and education.

These are contexts where peer effects matter and where policy interventions are crucial.

6.2.1 Crime

It is well-documented that crime is, to some extent, a group phenomenon, and the source of crime is

located in the intimate social networks of individuals (see e.g. Sutherland, 1947; Warr, 2002; Bayer

et al., 2009). In the local-aggregate model, a key-player policy (Ballester et al., 2006; Liu et al.,

2012), whose aim is to remove the criminal that reduces total crime in a network the most, would

be the most effective policy since the effort of each criminal and thus the sum of one’s friends crime

efforts will be reduced. In other words, the removal of the key player can have large effects on crime

because of the feedback effects or “social multipliers” at work (see, in particular, Kleiman, 2009;

Glaeser et al., 1996; Verdier and Zenou, 2004). That is, as the fraction of individuals participating

in a criminal behavior increases, the impact on others is multiplied through social networks. Thus,
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criminal behaviors can be magnified, and interventions can become more effective. On the contrary,

a key-player policy would have nearly no effect in the local-average model since it will not affect

the social norm of each group of friends in the network. To be effective, one would have to change

the norm for each of the criminals, which is clearly a more difficult objective. In that case, one

needs to target a group or gang of criminals to drastically reduce crime. This example of crime clear

illustrates the fact that, for the local-aggregate model, individual-based policies are more appropriate

while, for the local-average model, group-based policies are more effective. In our present analysis

of juvenile deliquency, we have shown that the local-aggregate model was at work for the AddHealth

data. This implies that a key-player policy would be the most effective policy to reduce crime for

adolescents in the United States.

6.2.2 Education

Education is clearly an important topic and effective policies are difficult to implement. There has

been some debate in the United States of giving incentives to teachers. It is, however, difficult

to determine which incentive to give to teachers in order to improve teacher quality. If the local

aggregate model is at work among teachers, then we would need to have a teacher-based incentive

policy since teachers will influence each other while, if it is the local average model, then one should

implement a school-based incentive policy because this will be the only way to change the social

norm of working hard among teachers.

If we now consider the students themselves, then the two models will be useful for policy im-

plications. If the local-aggregate model is important in explaining students’ education outcomes

(Calvó-Armengol et al., 2009), then any individual-based policy (for example, vouchers) would be

efficient. If, on the contrary, as shown in the present paper, we believe that the local-average model

is more important, then we should change the social norm in the school or the classroom and try

to implement the idea that it is “cool” to work hard at school.22 For example, in Section 2.6, we

discussed Eugene Lang’s famous offer to give a college scholarship to every student at the sixth grade

class in Harlem. This policy worked well because it changed the norm’s group by affecting all its

members.

An example of a policy that has tried to change the social norm of students in terms of education

22This is related to the “acting white” literature where it is argued that African American students in poor areas

may be ambivalent about studying hard in school because this may be regarded as “acting white” and adopting

mainstream identities (Fordham and Ogbu, 1986; Delpit, 1995; Ainsworth-Darnell and Downey, 1998; Austen-Smith

and Fryer, 2005; Battu et al., 2007; Fryer and Torelli, 2010; Battu and Zenou, 2010; Bisin et al., 2011; de Martí and

Zenou, 2012).
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is the charter-school policy. The charter schools are very good in screening teachers and at selecting

the best ones. In particular, the “No Excuses policy” (Angrist et al., 2010, 2012) is a highly

standardized and widely replicated charter model that features a long school day, an extended

school year, selective teacher hiring, strict behavior norms, and emphasizes traditional reading and

math skills. The main objective is to change the social norms of disadvantage kids by being very

strict on discipline. This is a typical policy that is in accordance with the local-average model since

its aim is to change the social norm of students in terms of education. Angrist et al. (2012) focus

on special needs students that may be underserved. Their results show average achievement gains

of 0.36 standard deviations in math and 0.12 standard deviations in reading for each year spent at

a charter school called: Knowledge is Power Program (KIPP) Lynn, with the largest gains coming

from the Limited English Proficient (LEP), Special Education (SPED), and low-achievement groups.

They show that the average reading gains were driven almost entirely by SPED and LEP students,

whose reading scores rose by roughly 0.35 standard deviations for each year spent at KIPP Lynn.

The local-average model can also help us design an adequate policy in terms of tracking at school

(Betts, 2011). Should we “track” students in a way that separates high achievers from low achievers

or should we mix them? If we believe that the local-average model matters, then the answer is that

we should separate high achievers from low achievers but then have an exogenous intervention on

the low achievers in order to change their social norms. A way to do so is to send them to a charter

school as the Angrist et al. (2012) study suggests. However, if the local aggregate mechanism of

peer effects prevails, then classes should be heterogenous with respect to students’ test scores, with

the high performing students distributed among the classes. Under this scenario, high achievers will

have a positive impact on low achievers but will not be able to change the social norm of the low

achievers.

To sum-up, an effective policy for the local-average model would be to change people’s perceptions

of “normal” behavior (i.e. their social norm) so that a school-based policy should be implemented

while, for the local-aggregate model, this would not be necessary and an individual-based policy

should instead be implemented.
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APPENDICES

A Proofs

Proof of Proposition 1. Apply Theorem 1, part b, in Calvó-Armengol et al. (2009) to our

problem. In that case, the condition for existence and uniqueness is 11()  1, where 1() is

the spectral radius of . As 1()  max (Cvetkovíc and Rowlinson, 1990, Theorem 1.1, page

4), a sufficient condition for 11()  1 to be satisfied is 1
max
  1.

Proof of Proposition 2. Our utility function (5) can be written as:

() =
¡
∗ + ∗ + ∗

¢
 − 1

2
2 −



2
( − )

2

=
¡
∗ + ∗ + ∗

¢
 − (1 + )

2
2 +  −



2
2

=
¡
∗ + ∗ + ∗

¢
 − (1 + )

2
2 + 

P
=1

∗ −


2
(
P
=1

∗)
2

We can now apply Theorem 1, part b, in Calvó-Armengol et al. (2009) to our problem.23 The

condition on eigenvalue (that guarantees that the Nash equilibrium is unique and interior) can now

be written as: 1 +   1(
∗
), or 1  21(

∗
), as 2 =


1+

and   0. Observe that ∗ is a

row-normalized matrix so that its largest eigenvalue is 1, i.e., 1(
∗
) = 1. As a result, if 2  1

then the Nash equilibrium (6) is well-defined.

Proof of Proposition 3. We need to show that  − is invertible, where  ≡ 1 + 2
∗
 .

A sufficient condition for the invertibility assumption can be derived as follows. Let  be the th

row sum of . Since 
∗
 is the row-normalized , we have  = 

∗
 , where  is a diagonal

matrix with the th diagonal element being . The invertibility of  −1−2∗ requires that
||1 + 2

∗
 ||  1 for some matrix norm || · || (see Horn and Johnson, 1900). Let || · ||∞ denote

the row-sum matrix norm. As ||∗ ||∞ = 1, we have that:

||1 + 2
∗
 ||∞ = ||1

∗
 + 2

∗||∞ ≤ ||1 + 2 ||∞ = 1
max
 + 2

where max ≡ max . Hence, a sufficient condition for the invertibility assumption would be that
1

max
 + 2  1.

23Observe that the last term − 
2
(


=1 
∗
)

2 of the utility function does not matter since the derivative of this

term with respect to  is equal to zero.
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Let

Λ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −11
 + 2 −1 −12
3 0 1− 13

 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(36)

and

Λ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 11

 − 2 −1 12

−3 −1 13 + 1

 −  − 4 1 14 − 1

−5 0 15 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
 (37)

Proof of Proposition 4. See Liu et al. (2012).

Proof of Proposition 5. Suppose  has constant row sums such that  =  for all . Then,

 = 
∗
 and  = ∗ where  = diag{}̄=1. E(3) = [E( )E(∗ )  ∗]

has full column rank if

[E( )1 +E(
∗ )2 + 3 + ∗4] = 0 (38)

implies 1 = 2 = 3 = 4 = 0. As  = ∗, we have ( − 1 − 2
∗)−1 = ∗( −

1−2
∗)−1 = 0, ( −1−2

∗)−1 = ( −1−2
∗)−1 and ∗( −1−2

∗)−1 =

( − 1− 2
∗)−1∗. Then, it follows from (25) and (26) that

E( ) = ( − 1− 2
∗)−1( +∗) (39)

E(∗ ) = ( − 1− 2
∗)−1∗( +∗) (40)

Plugging (39) and (40) into (38) gives

(−1−2∗)−1[3+(1−13)+∗(2−23+4)+∗(1−14)+∗2(2−24)] = 0

which implies

3+(1−13)+∗(2−23+4)+∗(1−14)+∗2(2−24) =  (41)
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for a constant scalar . Premultiplying (41) by ∗ gives

∗3+
∗(1−13)+∗2(2−23+4)+∗2(1−14)+∗3(2−24) = 

(42)

From (41) and (42), when ∗ ∗ ∗2 ∗2∗3 are linearly independent, then 1 = 2 =

3 = 4 = 0 if 1 6= 0 or  + 2 6= 0.

B 2SLS and GMM Estimation

We consider 2SLS and GMM estimators for the estimation of an empirical hybrid network model,

and for the estimation of augmented models in the J test. This appendix presents the derivation

and asymptotic properties of the estimators.

For any ×matrix = [ ], let vec() = (11 · · ·  )0,  = +0,  = −tr()tr(),
and − denote a generalized inverse of a square matrix . For a parameter , let 0 denote the true

parameter value in the data generating process. Let 3 and 4 denote, respectively, the third and

fourth moments of the error term.

B.1 Estimation of the hybrid network model

B.1.1 2SLS estimation

Let 0 = ( − 10− 20
∗)−1. From the reduced form equation (24), E( ) =0(

∗0 +).24

For  = [∗∗], the ideal IV matrix for the explanatory variables  in (19) is given by

 = E() =  [E( ) ∗E( )∗] (43)

However, this IV matrix is infeasible as it involves unknown parameters. Note that  can be consid-

ered as a linear combination of the IVs in ∞ =  [0
∗ 0

∗0
∗ ∗0

∗]. As 

has ̄ columns, the number of IVs in ∞ increases as the number of groups ̄ increases. Furthermore,

if |10max(
P

 )|+ |20|  1,25 we have 0 = ( − 10− 20
∗)−1 =

P∞
=0(10+ 20

∗) .

Hence,0 in ∞ can be approximated by a linear combination of [∗ 2 ∗ ∗∗2 · · · ].
24For simplicity, we assume  and  are nonstochastic. If  and  are stochastic, then the following results can

be considered as conditional on  and .
25The model represents an equilibrium so  − 10 − 20

∗ is assumed to be invertible. In Proposition 3, we
showed that a sufficient condition for the invertibility assumption is: |10max|+ |20|  1, where max ≡ max  is
the highest degree in network . On the other hand, a sufficient condition for the the invertibility of  − 10 for

the local aggregate model is |10|max  1 (see Proposition 1) and a sufficient condition for the the invertibility of

 −20
∗ for the local average model is |20|  1 (see Proposition 2). Both of them are weaker than the invertibility

condition of the hybrid model.
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To achieve asymptotic efficiency, we assume the number of IVs increases with the sample size so

that the ideal IV matrix  can be approximated by a feasible IV matrix  with an approximation

error diminishing to zero. That is, for an × IV matrix  premultiplied by  , there exists some

conformable matrix  such that || − ||∞ → 0 as  → ∞. Let  = (
0
)

−0 ,

the 2SLS estimator consider is ̂2 = (
0)−10

Let 0 = (10 20 
0
0)
0. If  → 0, then it follows by a similar argument as in Liu and

Lee (2010) that
√
(̂2 − 0 − 2)

→ (0 2̄−1), where ̄ = lim→∞ 1

 0 and 2 =

2(0)−1[tr(0) tr(
∗0) 01×2]0 = (). The 2SLS estimator has an asymp-

totic bias term due to the large number of IVs. When2→ 0, the leading order bias term
√
2

converges to zero and the proposed 2SLS estimator is efficient as the variance matrix 2̄−1 attains

the efficiency lower bound for the class of IV estimators.

To correct for the many-instrument bias in the 2SLS estimator, one can estimate the leading

order bias term and adjust the 2SLS estimator by the estimated leading-order bias ̃2. With
√
-

consistent initial estimates ̌2 ̌1 ̌2, the bias-corrected 2SLS (BC2SLS) is given by ̂2 = ̂2−
̃2 where ̃2 = ̌2( 0)−1[tr() tr(∗) 01×2]0 and  = ( − ̌1− ̌2

∗)−1.

The BC2SLS is efficient when → 0.

B.1.2 GMM estimation

The 2SLS estimator can be generalized to the GMM with additional quadratic moment equa-

tions. Let () = ( − ). The IV moment conditions 0() = 0 are linear in  at 0.

As E(01) =E(02) = 0 for 1 = (0)
 and 2 = (∗0)

, the quadratic moment

conditions for estimation are given by [1() 2()]
0() = 0. The proposed quadratic moment

conditions can be shown to be optimal (in terms of efficiency of the GMM estimator) under normal-

ity (see Lee and Liu, 2010). The vector of linear and quadratic empirical moments for the GMM

estimation is given by () = [  1() 2()]
0().

In order for inference based on the following asymptotic results to be robust, we do not impose

the normality assumption for the following analysis. The variance matrix of (0) is given by

Ω = Var[(0)] =

⎛⎜⎝ 20 3
0


3
0 (4 − 34)0 + 4∆

⎞⎟⎠ 

where  = [vec(1) vec(2)] and ∆ =
1
2
[vec(

1 ) vec(

2 )]

0[vec(
1 ) vec(


2 )]. By the generalized
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Schwarz inequality, the optimal GMM estimator is given by

̂ = argmin 
0()Ω−1() (44)

Let −1 = (4 − 34)0 + 4Υ− 23
2
0,

 = −2
⎛⎜⎝ tr(

10) tr(
1
∗0) 01×2

tr(
20) tr(

2
∗0) 01×2

⎞⎟⎠ 

̄ =  − 3
2
0 , and ̌ =  − 3

2
0. When 32 → 0, the optimal GMM estimator26 has

the asymptotic distribution

√
(̂ − 0 − )

→ (0 (−2̄ + lim
→∞

1


̄0̄)−1) (45)

where  = (
−20 + ̌0̌)−1[tr(0) tr(

∗0) 01×2]0 = ().

As the asymptotic bias
√
 is (

√
), the asymptotic distribution of the GMM estimator

̂ will be centered at 0 only if 
2 → 0. With a consistently estimated leading order bias

̃, the bias-corrected GMM (BCGMM) estimator ̂ = ̂ − ̃ has a proper centered

asymptotic normal distribution as given in (45) if 32→ 0.

The asymptotic variance matrix of the many-IV GMM estimator can be compared with that

of the many-IV 2SLS estimator. As ̄0̄ is nonnegative definite, the asymptotic variance of the

many-IV GMM estimator is smaller relative to that of the 2SLS estimator. Thus, the many-IV

GMM estimator with additional quadratic moments improves efficiency upon the 2SLS estimator.

B.2 Estimation of augmented models in the J test

In this subsection, we focus on the estimation of the augmented model in the test of model 1

against model 2. The estimator for the test of model 2 against model 1 can be derived in a

similar manner.

26The weighting matrices for quadratic moments 1 2 and the optimal weighting matrix for the objective function

Ω−1 involves unknown parameters 1 2 20 3 and 4. With consistent preliminary estimators of those unknown

parameters, the feasible optimal GMM estimator can be shown to have the same asymptotic distribution given by

(45).
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B.2.1 2SLS estimation of the augmented model

First, we consider the 2SLS estimator of the augmented model (31). Let 10 = ( − 1020
∗ −

10)
−1. The ideal IV matrix for ∗1 in (31) is given by 1 = E(∗1 ) =  [20

∗E( ) +

∗20E( )∗], where E( ) = 10[
∗(1020 + 10) + (1 + 102)]. The ideal IV matrix

1 is infeasible as it involves unknown parameters. We note that 1 can be considered as a linear

combination of the IVs in ∞ =  [∗10
∗ ∗1010

∗ 10
∗]. Furthermore, under

some regularity conditions, 10 = ( − 1020
∗ − 10)

−1 =
P∞

=0(1020
∗ + 10)

 . Hence,

10 in ∞ can be approximated by polynomials of ,  and ∗.

To achieve asymptotic efficiency, we consider an × feasible submatrix of ∞, denoted by  ,

such that the ideal IV matrix 1 can be approximated by a linear combination of  with an approx-

imation error diminishing to zero as the number of IVs  increases. Let  = (
0
)

−0

and ̃∗1 = [(̃2
∗ + ∗̃2) ∗], where ̃2 ̃2 are

√
-consistent preliminary estimates. The

2SLS estimator considered is ̂1 = (̃
∗0
1 ̃

∗
1 )
−1̃∗01 

Under the null hypothesis, it follows by a similar argument as in Liu and Lee (2010) that

if  → 0 then
√
(̂1 − 10 − 1)

→ (0 21̄
−1
1 ) where ̄1 = lim→∞ 1


 011 and

1 = 21(̃
∗0
1 ̃

∗
1 )
−1[20tr(

∗10) tr(10) 01×2]0. The term 1 is a bias due to

the presence of many IVs. We can adjust for the many-IV bias by considering the BC2SLS esti-

mator ̂1 = ̂1 − ̃1, where ̃1 is a consistent estimator of 1. If  → 0 then

√
(̂1 − 10)

→ (0 21̄
−1
1 )

B.2.2 GMM estimation of the augmented model

The GMM estimator uses both linear moment conditions 01(1) = 0 and quadratic ones

[11(1) 21(1)]
01(1) = 0

where 1 = (∗10)
 2 = (10)

 and 1(1) = ( − ̃∗11). The vector of lin-

ear and quadratic empirical moment functions for the GMM estimation is given by 1(1) =

[  11(1) 21(1)]
01(1). By the generalized Schwarz inequality, the optimal GMM estimator
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is given by ̂1 = argmin 
0
1(1)Ω

−11(1), where

Ω =

⎛⎜⎝ 21
0
 3

0


3
0 (4 − 341)0 + 41Υ

⎞⎟⎠ 

 = [vec(1) vec(2)] and Υ =
1
2
[vec(

1 ) vec(

2 )]

0[vec(
1 ) vec(


2 )].

Let −11 = (4 − 341)0 + 41Υ− 23
21
0,

1 = −21

⎛⎜⎝ 20tr(

1
∗10) tr(

110) 01×2

20tr(

2
∗10) tr(

210) 01×2

⎞⎟⎠ 

̄1 = 1 − 3
21
01, and ̌1 = 1 − 3

21
0̃∗1 . Under the null hypothesis, if 

32 → 0, the

optimal GMM estimator27 has the asymptotic distribution

√
(̂1 − 10 − 1)

→ (0 (−21 ̄1 + lim
→∞

1


̄0
11̄1)

−1) (46)

where 1 = (
−2
1 ̃∗01 ̃

∗
1 + ̌0

11̌1)
−1[20tr(

∗10) tr(10) 01×2]0 = ().

With a consistently estimated leading order bias ̃1, it follows by a similar argument as in

Liu and Lee (2010) that, if 32→ 0, the BCGMM estimator ̂1 = ̂1 − ̃1 has a

proper centered asymptotic normal distribution as given in (46).

27With consistent preliminary estimates of the unknown parameters in 1 2Ω, the feasible optimal GMM esti-

mator can be shown to have the same asymptotic distribution given by (46).
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Appendix C: Data appendix 
 

Table C.1: Description of data 
 

 Definition Mean SD 

Dependent variables    
GPA Average grade in math, science, English and history 2.91 0.78
delinquency index In the text 0.64 0.96

Peer effects (in directed networks)    
average peer GPA Average GPA of friends 2.31 1.35
average peer delinquency index Average delinquency index of friends 0.52 0.77
aggregate peer GPA Total GPA of friends 6.28 6.39
aggregate peer delinquency index Total delinquency index of friends 1.21 1.76

Peer effects (in undirected networks)    
average peer GPA Average GPA of friends 2.93 0.64
average peer delinquency index Average delinquency index of friends 0.65 0.79
aggregate peer GPA Total GPA of friends 9.78 8.99
aggregate peer delinquency index Total delinquency index of friends 1.84 2.30

Control variables    
age  Age  14.21 1.80
female 1 if female; 0 otherwise 0.54 0.50
(white) 1 if white only; 0 otherwise 0.50 0.50
black 1 if black only; 0 otherwise 0.20 0.40
asian 1 if Asian only; 0 otherwise 0.04 0.19
other races 1 if race is not white, black or Asian; 0 otherwise 0.27 0.44
born in the U.S. 1 if born in the U.S.; 0 otherwise 0.90 0.31
years in school Number of years in the current school 3.07 1.72
live with both parents 1 if live with both parents; 0 otherwise 0.71 

 
0.45

parent education: Dummy variable for parent’s education. If both 
parents are in the household, the education of the 
father is considered. 

  

(less than HS) 1 if parent’s education is less than high school (HS) 0.14 0.35
HS grad 1 if parent’s education is HS or higher but no college 

degree 
0.44 0.50

college grad 1 if parent’s education is college or higher 0.27 0.44
missing 1 if parent’s education information is missing 0.15 

 
0.35

 
parent job: Dummy variable for parent’s job. If both parents are 

in the household, the job of the father is considered. 
  

(stay home) 1 if parent is a homemaker, retired, or does not work 0.10 0.30
professional 1 if parent’s job is a doctor, lawyer, scientist, 

teacher, librarian, nurse, manager, executive, director 
0.21 0.41

other jobs 1 if parent’s job is not “stay home” or “professional” 0.57 0.49
missing 1 if parent’s job information is missing 0.11 0.32

Network topology     

network size  Number of individuals in a network 6.12 14.44

row sum of directed adjacency matrix  Number of friends in the directed network 2.08 2.01 

row sum of undirected adjacency matrix  Number of friends in the undirected network 3.26 2.83 

Notes: The variable in the parentheses is the reference category. We consider networks with network size 
between 2 and 100 individuals.In our sample, there are 490 networks with 2999 total observations. 



 
 

Table 1: 2SLS and GMM estimation of the hybrid model 
School performance  

 2SLS BC2SLS GMM BCGMM 
aggregate   0.0108***   0.0126***   0.0138***   0.0158*** 
  (0.0034)  (0.0031)  (0.0031)  (0.0031) 
average   0.2188*   0.0921*   0.2193***   0.1843*** 
  (0.1183)  (0.0500)  (0.0340)  (0.0297) 
age  -0.0424***  -0.0470***  -0.0389***  -0.0363*** 
  (0.0146)  (0.0139)  (0.0140)  (0.0139) 
female   0.1980***   0.1913***   0.1992***   0.1964*** 
  (0.0307)  (0.0297)  (0.0301)  (0.0300) 
black  -0.1351***  -0.1370***  -0.1424***  -0.1449*** 
  (0.0554)  (0.0546)  (0.0554)  (0.0552) 
asian   0.0131   0.0375   0.0103   0.0347 
  (0.1094)  (0.1061)  (0.1073)  (0.1068) 
other races  -0.1276***  -0.1320***  -0.1351***  -0.1401*** 
  (0.0417)  (0.0410)  (0.0415)  (0.0414) 
born in the U.S.  -0.0894  -0.0867  -0.0901  -0.0812 
  (0.0598)  (0.0590)  (0.0598)  (0.0596) 
years in school   0.0234**   0.0220**   0.0225**   0.0214** 
  (0.0107)  (0.0105)  (0.0106)  (0.0106) 
live with both parents   0.1602***   0.1680***   0.1598***   0.1660*** 
  (0.0348)  (0.0337)  (0.0341)  (0.0340) 
parent education: HS grad   0.1431***   0.1471***   0.1465***   0.1493*** 
  (0.0439)  (0.0432)  (0.0438)  (0.0436) 
parent education: college grad   0.2308***   0.2384***   0.2384***   0.2451*** 
  (0.0511)  (0.0500)  (0.0506)  (0.0504) 
parent education: missing   0.1256**   0.1337***   0.1276**   0.1322*** 
  (0.0558)  (0.0546)  (0.0553)  (0.0551) 
parent job: professional   0.1157**   0.1171**   0.1138**   0.1172** 
  (0.0567)  (0.0559)  (0.0567)  (0.0565) 
parent job: other  -0.0042   0.0005  -0.0054  -0.0000 
  (0.0489)  (0.0481)  (0.0488)  (0.0486) 
parent job: missing   0.0556   0.0530   0.0543   0.0566 
  (0.0649)  (0.0640)  (0.0649)  (0.0647) 
contextual effects yes yes yes yes 
network fixed effects yes yes yes yes 
1st stage F statistic 5.340    
OIR test p-value 0.655  0.137  
J test for the null hypothesis “local average model”: t statistic is 5.142 
J test for the null hypothesis “local aggregate model”: t statistic is 6.221 
 



 
Table 2: 2SLS and GMM estimation of the hybrid model 

Delinquent activities 
 2SLS BC2SLS GMM BCGMM 
aggregate   0.0227   0.0201   0.0325**   0.0391*** 
  (0.0221)  (0.0184)  (0.0151)  (0.0139) 
average   0.5445***   0.1184*   0.0375   0.0283 
  (0.2055)  (0.0620)  (0.0475)  (0.0406) 
age   0.1049***   0.1170***   0.1174***   0.1205*** 
  (0.0204)  (0.0179)  (0.0177)  (0.0177) 
female  -0.0982**  -0.0821**  -0.0804**  -0.0760** 
  (0.0430)  (0.0386)  (0.0382)  (0.0382) 
black  -0.1541**  -0.1511**  -0.1474**  -0.1570** 
  (0.0780)  (0.0711)  (0.0704)  (0.0704) 
asian   0.0789   0.0030  -0.0068  -0.0270 
  (0.1551)  (0.1378)  (0.1364)  (0.1363) 
other races   0.0865   0.0804   0.0812   0.0752 
  (0.0586)  (0.0533)  (0.0528)  (0.0528) 
born in the U.S.   0.0656   0.0561   0.0541   0.0618 
  (0.0844)  (0.0768)  (0.0761)  (0.0761) 
years in school  -0.0194  -0.0154  -0.0148  -0.0147 
  (0.0151)  (0.0136)  (0.0135)  (0.0135) 
live with both parents  -0.1139**  -0.1437***  -0.1462***  -0.1525*** 
  (0.0500)  (0.0439)  (0.0434)  (0.0433) 
parent education: HS grad  -0.0665  -0.0950*  -0.0998*  -0.1034* 
  (0.0631)  (0.0563)  (0.0557)  (0.0557) 
parent education: college grad  -0.1335*  -0.1859***  -0.1940***  -0.2050*** 
  (0.0754)  (0.0652)  (0.0644)  (0.0644) 
parent education: missing  -0.1752**  -0.2271***  -0.2349***  -0.2482*** 
  (0.0816)  (0.0712)  (0.0704)  (0.0703) 
parent job: professional   0.0213   0.0185   0.0165   0.0152 
  (0.0799)  (0.0728)  (0.0722)  (0.0721) 
parent job: other   0.0296   0.0151   0.0122   0.0057 
  (0.0690)  (0.0626)  (0.0620)  (0.0620) 
parent job: missing   0.0699   0.0413   0.0409   0.0298 
  (0.0924)  (0.0834)  (0.0826)  (0.0825) 
contextual effects yes yes yes yes 
network fixed effects yes yes yes yes 
1st stage F statistic 2.252    
OIR test p-value 0.739  0.474  
J test for the null hypothesis “local average model”: t statistic is 2.804 
J test for the null hypothesis “local aggregate model”: t statistic is 0.698 



 
Table 3: GMM estimation of local-average and local-aggregate models 

 
 School performance Delinquent activities 
 GMM BCGMM GMM BCGMM 
aggregate    0.0222***    0.0457*** 
   (0.0029)   (0.0097) 
average   0.3097***    0.6734***  
  (0.0007)   (0.0005)  
age  -0.0437***  -0.0422***   0.1020***   0.1189*** 
  (0.0141)  (0.0137)  (0.0201)  (0.0176) 
female   0.2005***   0.1872***  -0.1031***  -0.0773** 
  (0.0305)  (0.0295)  (0.0435)  (0.0381) 
black  -0.1389***  -0.1429***  -0.1531*  -0.1490** 
  (0.0562)  (0.0544)  (0.0802)  (0.0702) 
asian  -0.0091   0.0756   0.0959  -0.0216 
  (0.1086)  (0.1052)  (0.1552)  (0.1359) 
other races  -0.1287***  -0.1440***   0.0909   0.0787 
  (0.0421)  (0.0408)  (0.0602)  (0.0527) 
born in the U.S.  -0.0931  -0.0760   0.0675   0.0562 
  (0.0607)  (0.0588)  (0.0867)  (0.0759) 
years in school   0.0269***   0.0180*  -0.0196  -0.0145 
  (0.0108)  (0.0104)  (0.0154)  (0.0135) 
live with both parents   0.1580***   0.1772***  -0.1066**  -0.1508*** 
  (0.0345)  (0.0335)  (0.0494)  (0.0432) 
parent education: HS grad   0.1422***   0.1523***  -0.0613  -0.1038* 
  (0.0444)  (0.0430)  (0.0634)  (0.0555) 
parent education: college grad   0.2345***   0.2501***  -0.1206*  -0.2042*** 
  (0.0512)  (0.0497)  (0.0732)  (0.0641) 
parent education: missing   0.1258**   0.1389***  -0.1637**  -0.2457*** 
  (0.0560)  (0.0543)  (0.0801)  (0.0701) 
parent job: professional   0.1131**   0.1215**   0.0200   0.0137 
  (0.0575)  (0.0557)  (0.0822)  (0.0719) 
parent job: other jobs  -0.0070   0.0067   0.0313   0.0062 
  (0.0494)  (0.0479)  (0.0706)  (0.0618) 
parent job: missing   0.0538   0.0565   0.0746   0.0339 
  (0.0658)  (0.0638)  (0.0941)  (0.0823) 
contextual effects yes yes yes yes 
network fixed effects yes yes yes yes 



 
 

Table 4: Robustness check 
2SLS and GMM estimation of the hybrid model  

- undirected networks - 
 School performance
 2SLS BC2SLS GMM BCGMM 
aggregate   0.0073***   0.0068***   0.0101***   0.0097*** 
  (0.0023)  (0.0022)  (0.0020)  (0.0020) 
average   0.5237***   0.6270***   0.1857***   0.2307*** 
  (0.1900)  (0.0970)  (0.0300)  (0.0278) 
J test for the null hypothesis “local average model”: t statistic is 4.939 
J test for the null hypothesis “local aggregate model”: t statistic is 8.299 
  Delinquent activities 
 2SLS BC2SLS GMM BCGMM 
aggregate   0.0265*   0.0255**   0.0301***   0.0377*** 
  (0.0151)  (0.0126)  (0.0097)  (0.0092) 
average   0.4858   0.1646*   0.0270  -0.0156 
  (0.2961)  (0.0867)  (0.0402)  (0.0377) 
J test for the null hypothesis “local average model”: t statistic is 4.108 
J test for the null hypothesis “local aggregate model”: t statistic is -0.414 
Note: The control sets is as in Tables 1-3 
 


