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ABSTRACT 

Skewness Risk Premium: Theory and Empirical Evidence* 

Using an equilibrium asset and option pricing model in a production economy 
under jump diffusion, we show theoretically that the aggregated excess 
market returns can be predicted by the skewness risk premium, which is 
constructed to be the difference between the physical and the risk-neutral 
skewness. In an empirical application of the model using more than 20 years 
of data on S&P500 index options, we find that, in line with theory, risk-averse 
investors demand risk-compensation for holding stocks when the market 
skewness risk premium is high. However, when we characterize periods of 
high and low risk aversion, we show that in line with theory, the relationship 
only holds when risk aversion is high. In periods of low riskaversion, investors 
demand lower risk compensation, thus substantially weakening the skewness-
risk-premium-return trade off. 
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1. Motivation and literature review 

 

Risk compensation theory suggests that systematic negative skewness in asset returns can be 

considered to be a risk and risk-averse investors want to be compensated for accepting this risk. 

Hence, expected returns should include a reward for bearing this risk. The first paper that derived 

a theoretical relation among expected return, variance and skewness is Arditti (1967), where the 

signs of coefficients for variance and skewness are specified to be positive and negative, 

respectively. Over time, more and more studies challenge the simple mean-variance asset pricing 

framework and suggest to include higher moments. Among others, Kraus and Litzenberger (1976) 

derive a three-moment CAPM and show that systematic skewness is a priced risk factor. Harvey 

and Siddique (1999, 2000a, 2000b) use conditional skewness to mitigate the shortcomings of 

mean-variance asset pricing models in explaining cross-sectional variations in expected returns. 

Their findings suggest that conditional skewness is important and helps explaining ex ante 

market risk premiums. Other theoretical and empirical studies on the higher-moment CAPM 

include Friend and Westerfield (1980), Sears and Wei (1985, 1988), Lim (1989), Hwang and 

Satchell (1999), Dittmar (2002) and, more recently, Chabi-Yo (2008, 2012). Among others, 

Conrad et al (2012) use options market data to extract estimates of higher moments of stocks` 

probability density function. They find a significant negative relation between firm`s risk-neutral 

skewness and subsequent stock returns. In a related study, Chang et al. (2013) show that the 

market risk premium is a priced risk factor in the cross section of stock returns, which cannot be 

explained by traditional 4-factor models. 

 Risk-neutral skewness has long been regarded as a measure of the pronounced volatility 

smirk observed in options market. This third moment is also mathematically closely linked to 

and interpreted as a proxy for an observed difference between physical variance and risk-neutral 

variance. The difference between physical variance and risk-neutral variance, the variance risk 

premium, has been explored to explain asset prices. (see e.g. Bakshi and Madan (2006), Coval 

and Shumway (2001), Bakshi and Kapadia (2003), Carr and Wu (2009), Bollerslev, Tauchen and 

Zhou (2009)). The concept of “skewness risk premium” appears to be new in the asset pricing 

literature, but has been recently investigated in relation to trading strategies in options market. In 

a paper by Kozhan, Neuberger and Schneider (2011), the authors discover profits from a trading 

strategy that directly exploits the skew in implied volatility surface. They attribute the profits to 
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the existence of a “skew risk premium”, which is based on a skew swap that pays the difference 

between option implied skew and realized skew. In a related paper Ruf (2012) demonstrates how 

to decompose the price of skewness into realized skewness and a skewness risk premium and 

shows that depending on strategic situations of arbitrageurs, realized skewness could remain 

unchanged while the skewness risk premium is changing. The changing skewness risk premium 

verifies the existence of limits to arbitrage effects in option markets. 

 Variance and skewness in asset returns represent different types of risks. Using a behavioral 

paradigm, research in neurology shows that individuals’ choice behavior is sensitive to both, 

dispersion (variance) and asymmetry (skewness) of outcomes (Symmonds et al (2011)). By 

scanning subjects with functional magnetic resonance imaging (fMRI), they find that individuals 

encode variance and skewness separately in the brain, the former being associated with parietal 

cortex and the latter with prefrontal cortex and ventral striatum. Participants were exposed to 

choices among a range of orthogonalized risk factors. The authors argue that risk is neither 

monolithic from a behavioral nor from a neural perspective. Their findings support the argument 

of dissociable components of risk factors and suggest separable effects of variance and skewness 

on asset market returns. 

 We extend the understanding of the impact of skewness on market returns both theoretically 

and empirically. Theoretically, we build on an equilibrium asset and options pricing model in a 

production economy derived in Zhang, Zhao and Chang (2012). We theoretically derive and 

obtain an analytical expression for the relationship between the market equity premium and the 

skewness risk premium, defined as the difference between physical and risk-neutral skewness. 

Our paper aims to investigate the properties of skewness risk premium and test its effect on 

subsequent market excess returns. Our contribution is to provide a theoretical solution for the 

first time of the relation between market excess return, variance, variance risk premium, 

skewness and skewness risk premium in an expected utility framework. This paper also 

completes a series of empirical tests on the relationship between the market risk premium and 

higher moments of return distributions, physical as well as risk-neutral higher moments. We 

show that skewness risk premium is economically meaningful and contributes to the market 

excess return in divergent ways depending on different states of the economy. Recently, Yu and 

Yuan (2011) find evidence that the risk-return relationship depends on market conditions. Under 

normal market conditions, in line with risk compensation theory, the stock market’s expected 
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excess return is positively related to the market’s conditional variance. However, in times of 

higher demand for stocks, proxied by all months with a positive realizations of the Baker and 

Wurgler (2006, 2007) sentiment indicator, the relationship is essentially flat. They argue that 

sentiment brings higher demand for stocks, pushes up current prices and depresses expected 

returns. As a result, the return distribution is left skewed in such a regime. Consequently, the 

perception towards risk of market participants can be assumed to be different and, therefore, we 

should observe a different level of risk aversion in times when the demand for stocks is high. We 

control for this effect in our empirical analysis. 

The paper proceeds as follows. Section 2 describes the theoretical model. Section 3 discusses 

the data and section 4 presents the empirical analysis. Section 5 concludes.  

 

2. Jump Diffusion Model 

 

Following the jump-diffusion model in a production economy of Zhang, Zhao and Chang (2012), 

we assume that the process of the price of an asset S� (the market portfolio) can be described as 

 

(1) 
����� � ��	 
 ϕ�dt 
 σdB� 
 �e� � 1��dN� � λdt� 

 

where �	 is risk-free rate, ϕ represents excess market return, σ denotes volatility, B� is a 

standard Brownian motion in � (and �B� the increment), N� is Poisson process with constant 

intensity λ (and �N� the increment), �e� � 1� is the jump size with x following a normal 

distribution with mean ��  and variance ��� . We assume that the parameters and initial 

conditions have sufficient regularity for the solution of (1) to be well defined.  

 

This specification nests many popular models used for option pricing and portfolio allocation 

applications. Without jumps, E�dN�� � λdt � 0, the model reduces to a standard diffusion 

model. The drift component of the stock price dynamics increases with the risk-free rate and 

excess market return, which are associated with the risk-premium for the Brownian motion. 

However, since pure diffusive model cannot explain the tail-fatness of stock return distribution 

and cannot explain the volatility smirk phenomena shown in options data (see Andersen et al, 

1998; Bakshi et al, 1997; Bates, 2000), the addition of a jump process is of necessity. In our 
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context, the motivation to include jumps is to study how jumps, which are representatives of 

extreme events, affect the discontinuous behaviors in terms of higher moments of market return 

distributions, and how jumps are priced in expected market return through its effects on higher 

moments behaviors, especially through the third moments. 

 

In the model with jumps, the arrival of extreme events is described by the Poisson process, which 

has E�dN�� � λdt  with arrival intensityλ  0 . The relative jump size of the rare event 

is	�e� � 1�. If x is normally distributed with mean �� and variance ��� , as most literature 

modeling jump prices suggest, the expected relative jump size could reduce to E�e� � 1� �
exp��� 
 ���/2� � 1. Combining the effects of random jump intensity and jump size, the term 

λ�e� � 1�dt is a compensation for the instantaneous change in expected stock returns introduced 

by the Poisson process N�. So, we could call the last term �e� � 1��dN� � λdt� an increment of 

compensated compound Poisson, which has zero mean to guarantee the expected return to be 

μ ≡ �	 
 ϕ as constructed by Zhang, Zhao and Chang (2012).  

 

Intuitively, the conditional probability at time t of another extreme event before t 
 ∆t is 

approximately λ∆t. Conditioning on the arrival of an extreme event, a negative jump size 

represents a market crash. The model is therefore able to capture extreme event risk in additional 

to diffusive risk. Empirical evidence from options market suggests that for investors with a 

reasonable range of risk aversion, jump risk is compensated more highly than diffusive risk. For 

example, Bates (2000) regards that investors have differential pricing between diffusive and 

jump risks and thus have an additional aversion to market crashes; Liu et al (2003) consider an 

investor with uncertainty aversion towards rare events.  

 

In general, we choose the jump size with a normally distributed component x. The following 

development of the model will provide explicitly the skewness risk premium in function of the 

jump size. In the economy, suppose there is a representative investor who has a constant relative 

risk aversion utility function as 

 

(2) U�c� � *+,-./01 ,				γ 4 0, 5 6 1	lnc,																γ � 1		                 
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with U`�c� 4 0 , U``�c� : 0 . The coefficient γ � 0+;``�+�
;`�+�  is a measure of the magnitude of 

relative risk aversion.   

 

Assume the investor has a total wealth <� at time t. Given the opportunity to invest in the 

risk-free asset and risky stock, he chooses at each time t to invest a fraction = of his wealth in 

stock >� and fraction �1 � =� in the risk-free asset. In line with a basic economic setup, a 

representative investor behaves in order to maximize his expected utility of consumption 

throughout his lifetime by choosing the fraction = of wealth to investment and the consumption 

rate c� at each time t. Mathematically, 

 

(3) ?@A�B�,C�E� D β�t�U�c��F� dt 
 

Subject to his wealth constraint as 

 

 
GHIHI � J�	 
 =ϕ � =K�e� � 1� � +IHIL dt 
 =σdB� 
 =�e� � 1�dN�,  

 

where β�t�  0 �0 M t M T� is a time preference function.  

We note that ϕ represents the risk premium due to investment in risky stocks. In our context, 

such a risk premium is defined to be the excess market return that is considered to be the 

compensation for investors bearing both diffusive risk and extreme event risk.  

 

Using Ito’s lemma, integration and optimization methods under market clearing conditions, we 

get to the following propositions. 

 

Proposition1: In equilibrium of the production economy setup (1)(2)(3), market excess return	O 

by definition is equal to the sum of diffusive risk premium OP and extreme event risk premium 

OQ, which are given as follows  

 

(4) OP � 5�� 
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(5) OQ � KRS�1 � T0U���T� � 1�V 
(6) O ≡ � � �	 ≡ OP 
 OQ �

U
W X@�Y�ZW� 
 U

�W �1 � 5�>[T=Y�ZW� 
 U
/�W �25� � 35 
 2�]^�_Y�ZW� � U

`W �25� � 35 

2�SX@�Y�ZW�V� 
 U

�`W ��5a 
 25� � 25 
 1�bcd_eY�ZW� � fU
/�W ��5a 
 25� � 25 


1�SX@�Y�ZW� g >[T=Y�ZW�V 
 λγE�o�xi��  

 

where ZW � ln j��kl�� m; X@�Y�ZW�, >[T=Y�ZW�, ]^�_Y�ZW�,	bcd_eY�ZW�  are second-, third-, 

fourth-, fifth- central moment respectively under the physical measure. 

 

Proposition2: In equilibrium of the production economy setup (1)(2)(3), variance risk premium 

XnoY�ZW� and skewness have the following relation: 

 

(7) XnoY�ZW� ≡ X@�Y�ZW� � X@�Yp�ZW� � γ>[T=Y�ZW� � Uq
� ]^�_Y�ZW� 
 aUq

� SX@�Y�ZW�V� 

/
i λγaτE�o�xf�� 

 

where ZW � ln j��kl�l m; X@�Y�ZW�, >[T=Y�ZW�, ]^�_Y�ZW� are second-, third-, fourth- central 

moment respectively under the physical measure; 	X@�Yp�ZW� is the second moment under the 

risk-neutral measure. 

 

Proposition3: In equilibrium of the production economy setup (1)(2)(3), skewness risk 

premium	>noY�ZW� and kurtosis have the following relation: 

 

(8) >noY�ZW� ≡ >[T=Y�ZW� � >[T=Yp�ZW� � γ]^�_Y�ZW� � 35SX@�Y�ZW�V� � Uq
� bcd_eY�ZW� 


55�SX@�Y�ZW� g >[T=Y�ZW�V 
 /
i λγaτE�o�xi�� 

 

where ZW � ln j��kl�l m; X@�Y�ZW�, >[T=Y�ZW�, ]^�_Y�ZW�,	bcd_eY�ZW� are second-, third-, 

fourth-, fifth- central moment respectively under the physical measure; 	>[T=Yp�ZW� is the third 
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moment under the risk-neutral measure. 

 

Proposition4: In equilibrium of the production economy setup (1)(2)(3), market excess return	O, 

variance X@�Y�ZW�, variance risk premium XnoY�ZW�, skewness >[T=Y�ZW� and skewness risk 

premium	>noY�ZW� have the following relation:  

 

(9) O � U
W X@�Y�ZW� 
 01tu1q0/

iv1q XnoY�ZW� 
 0�1tu�1qu/
iv1 >[T=Y�ZW� 
 1t0�1qu�10/

/�v1 >noY�ZW� 

λγE�o�xi��  

where ZW � ln j��kl�l m. 
 

Proofs. See Appendix A. 

 

Specifically, we observe from the second proposition that skewness is supposed to have a 

positive effect on variance risk premium, which verifies the common belief that the negative 

skewness is in accordance with commonly observed volatility smirk in options market. In the 

third proposition, the positive coefficient in front of kurtosis suggests that a positive skewness 

risk premium might well result from a positive kurtosis. The fourth proposition with explicit 

relations between physical and risk-neutral moments and the relations arching different orders of 

moments provides for the first time a testable theoretical relation between excess return and 

skewness risk premium.  

We also observe from the fourth proposition that depending on the magnitude of relative risk 

aversion γ, relations vary. Assume a risk-averse investor who has a constant relative risk 

aversion coefficient that takes some value in the range of γ w 2. Our theoretical relationships 

suggest that the coefficient for variance is positive; for variance risk premium is negative; for 

skewness is negative; and for skewness risk premium is positive. These results all comply with 

risk-compensation theory. When the representative investor exhibits low risk aversion, for 

example in case of 5 w 0.5, the signs of coefficients for variance and for variance risk premium 

remain the same as before; but the signs of coefficients for skewness and for skewness risk 

premium both reverse. Two unchanged signs and two reversed signs in combination is a 

theoretical reflection of the common sense that investors with low risk aversion demand lower 
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risk compensation, and obviously it is the skewness and skewness risk premium that are much 

more sensitive to the weakening risk compensation effect. The theoretical predictions can be 

tested empirically. 

 

To give a more intuitive illustration as to how market crashes affect the skewness risk premium, 

we take a nonrandom jump size with constant x for simplicity. In such a case, an extreme event 

is supposed to have a finite definite magnitude of jump size as E�e� � 1� � exp���� � 1, where 

�� � A, X@��A� � >]T=�A� � ]^�_�A� � 0. Based on the pricing kernel constructed in Zhang, 

Zhao and Chang (2012), λy ≡ KR�T0U�� � KT0U�, the variance risk premium (VRP) can be 

written as
1
 

 

XnoY�ZW� ≡ X@�Y�ZW� � X@�Yp�ZW� � KzA��1 � T0U�� 
 

As can be seen, the variance risk premium does only depend on the jump risk and not on the 

diffusion risk. For negative jump size x<0, the variance risk premium is negative. The skewness 

in both physical and risk-neutral measures can be simplified to 

  

>[T=Y�ZW� ≡ RYSZW � RYZWVa � KzS>[T=�A� 
 3��X@��A� 
 ��aV � KzAa 

>[T=Yp�ZW� ≡ RYpSZW � RYZWVa � Kpz{>[T=p�A� 
 3��pX@�p�A� 
 ���p�a| � KzAaT0U� 

 

And, hence, the skewness risk premium (SRP) is given by  

 

>noY�ZW� ≡ >[T=Y�ZW� � >[T=Yp�ZW� � KzAa�1 � T0U�� 
 

We observe that for an extreme event with negative jump size, A : 0, the skewness risk 

premium is supposed to be positive while both the physical and risk-neutral skewness can be 

negative. 

 

Corollary 1: For a nonrandom negative jump size with A : 0, skewness in both physical and 

                                                             
1
 Proofs are provided in Appendix A. 
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risk-neutral measures are negative, while skewness risk premium is positive, namely  

>[T=Y�ZW� : 0 

>[T=Yp�ZW� : 0 

>noY�ZW� 4 0  

where ZW � ln j��kl�l m 
 

To the best of our knowledge, the property on skewness risk premium has never been presented 

in the literature. Even though there is an unanimous agreement that strongly negative risk neutral 

skewness should be responsible for the observed volatility smirks in options data, empirical 

actual return skewness is not shown to be equally high and thus risk neutral skewness should be 

the results of a skew correction. In addition, as pointed out by Polimenis (2006), the third and 

fourth moments generated by jumps are significant in pricing non-linear payoffs, the question as 

to which one is most important factor in determining the smirks is still open. Similarly in asset 

pricing, due to interactions among different orders of moments, it is theoretically hard to 

distinguish which moments have higher impact. However, through a construction of skewness 

risk premium, the corollary suggests that skewness risk premium is a much meaningful variable 

as it might have filtered out statistical interactions among moments and is expected to serve as an 

important risk component. 

 

3. Data 

 

For the empirical test of the paper, we use the S&P 500 stock index as a broad market portfolio 

and the 3-month treasury yield as the risk-free interest rate. Options and futures on the S&P 500 

index (symbol: SPX) are traded at the Chicago Board Option Exchange (CBOE). The market for 

S&P index options and futures is the most active index options and futures market in the world. 

We obtain all risk-neutral volatility and skewness data on a daily basis directly from the 

exchange. Our data covers the period January 1990 until January 2011. 

 

In a first step, we construct monthly measures of physical moments from daily S&P500 stock 

returns. On month t, the i-th daily return is given by }Y0/u ~� � }Y0/u~-,�  , where ph is the natural 
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logarithm of the price observed at time h and N is the number of return observations in a trading 

month. In order to subsequently calculate central moments, the return is demeaned. The realized 

central moments of month t under the physical measure are then computed as follows (see 

Amaya et al. (2012), Andersen et al. (2001, 2003) and Barndorff-Nielsen and Shephard (2002) 

for details): 

 

X@�c@��TY� ���Y,��
�

��/
 

>[T=�T��Y� � √���Y,�a
�

��/
 

 

where	rt,i is the mean adjusted return on day i and month t, and N is the number of trading days in 

month t. An appealing characteristic of these measures of realized central moments is that they 

are essentially model-free. Typically, one refers to these moments as the ex-post central moments 

under the physical measure. In line with Harvey and Siddique (2000a, 2000b), we consider a 

skewness, measure, which is not normalized by the standard deviation2. 

 

In a second step, we derive the risk-neutral counterparts to the physical central moments. Bakshi et 

al. (2003) derive a model-free measure of risk-neutral variance, skewness and kurtosis based on 

all options over the complete moneyness range for a particular time to maturity T3. They show 

that the variance and (non-normalized) skewness of the risk-neutral distribution can be computed 

by 

 

X@�c@��T�p��� � T��X���� � ������ 
>[T=�T���p��� � T��<���� � 3�����T��X���� 
 ��a��� 

     

 

                                                             
2
 One typically normalizes the central moments, which is not appropriate in our case. E.g. normalized skewness can be 

calculated by 
���C�����������B��t/q.  

3
 See Bekkour et al. (2012) and CBOE (2009, 2010) for a discussion of how to implement the method and perform the 

calculations with actual data.  
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Where 

����� � T�� � 1 � T��2 X���� � T��6 <���� � T��24 ����� 

X���� � � 2j1 � ln j]>�mm]� ����, ]��]u�
� 
� 2j1 
 ln j>�]mm]� }���, ]��]�

�  

<���� � � 6 ln j]>�m � 3�ln j]>�m��]� ����, ]��]u�
� �� 6 ln j>�]m � 3�ln j>�]m��]� }���, ]��]�

�  

����� � � 12 ln j]>�m � 4�ln j]>�m�a]� ����, ]��]u�
� 
� 12 ln j>�]m � 4�ln j>�]m�a]� }���, ]��]�

�
 

 

where Si is the underlying S&P500 index level on day i, K is the exercise price of the option, r is 

the risk-free interest rate corresponding to the time to maturity (T) of the option and N(.) is the 

cumulative normal distribution. c and p refer to call and put prices. As a result, one can obtain the 

risk-neutral moments on a daily basis. Furthermore, in order to obtain the monthly central 

moments X@�c@��TYp and >[T=�T��Yp that we use in the subsequent analysis, we calculate an 

average over the daily risk-neutral moments of the particular month.  

As a result, we obtain the risk-neutral counterparts of the realized first and second central 

moments under the physical measure. Typically, one refers to these moments as the ex-ante 

central moments under the risk-neutral measure. In a final step, we combine the central moments 

under both physical and risk-neutral measures and derive the variance risk premium (VRP) and 

skewness risk premium (SRP), given by, 

 

XnoY � X@�c@��TY� � X@�c@��TYp 

 

>noY � >[T=�T��Y� � >[T=�T��Yp 

 

Our final data set for the above empirical test consists of end-of-months observations of all 

relevant variables. 
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4. Empirical tests 

 

The main purpose of our empirical analysis is to test the theoretical relationships derived in 

section 2. Firstly, we discuss the summary statistics for the entire sample of daily as well as 

monthly data. Secondly, based on the jump diffusion process used in the theoretical derivation of 

the model, we calculate risk aversion coefficients in order to better understand the theoretical 

implications of the model. Thirdly, we test the implications of the theoretical model using 

regression analysis. 

 

Summary statistics 

The summary statistics of daily return, monthly excess return and moments are reported in 

Table 1. The reported values for skewness and kurtosis are non-standardized. The higher 

moments are oftentimes substantially different between the two markets. The average daily 

variance in the stock market is significantly lower than the average risk-neutral variance in the 

options market. Same relation holds in excess return of the monthly data, where physical 

variance on average (0.288%) is lower than its risk-neutral counterpart (0.404%), resulting in a 

variance risk premium that is on average negative. This is consistent with our theoretical model 

as well as previous studies, e.g. Bollerslev, Tauchen and Zhou (2009), who find that option 

implied volatility is generally higher than realized volatility. 

 

[Table 1] 

 

We obtain a similar, but even more extreme pattern for skewness. Our finding of a negative 

skewness for S&P500 index returns for the equity as well as the equity option market complies 

with previous findings. Stock returns are on average left-skewed. Risk-neutral distributions from 

options data are typically more negatively skewed compared to their physical counterparts. These 

typical findings in our model are dynamically captured by a key component, the Poisson jump. 

When there is a negative jump size, which is commonly observed in the stock market, the model 

generates a risk-neutral skewness that is more negative than its physical counterparts. This would 

results in a negative skewness risk premium, as has been shown in the corollary. Statistically, we 

confirm a negative skewness risk premium on average for our dataset. 
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[Figure 1] 

 

There are also distinct patterns in time series of the two risk premiums over the sample period, as 

can be seen in Figure 1. Variance risk premium on average remains slightly negative, then peaks 

to a high positive in crisis periods. Skewness risk premium, on the contrary but intuitively, on 

average keeps positive, and becomes even more positive during crisis periods. This pattern again 

is in accordance with our theoretical model that when market crash causes a negative jump size 

on stock price, it transfers to a positive skewness risk premium.  

 

Risk Aversion  

Both our theoretical model and the empirical test suggest that risk aversion is of crucial 

importance when studying the relationship between asset and option market risk premiums and 

excess returns. Hence, in the following, we study the parameters of the jump diffusion model, the 

risk aversion of the representative investor in particular. For expediency, we focus on the special 

case with constant jump size. 

Under jump diffusion, the physical density of daily S&P500 returns �W (z=1/252) is given 

by 

  

}��W� � /��� nTu�
0� {T0���ld�l�[�|�[ 

where 

 

�� jd�l�[�m � c[�z � /�c[�1 � c[���z 
 Kz jT��� � 1 � c[�T� � 1�m 
 

all parameters that characterizing the S&P500 returns �W (namely �, �, K, A and z as defined 

earlier) are expressed in annual terms and d�l�[�	is its characteristic function. The integral can 

be evaluated numerically, e.g. using Romberg integration methods. The parameters of the model 

can be obtained by maximizing the log likelihood function ��l��, �, K, A� � ∑ ln�}���W�����/  .  

The first three central moments in the physical measure are given by 
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R��W� � z �� � /��� � K�T� � 1 � A�  
R��W � R��W��� � z��� 
 KA�� 

R��W � R��W��a � zKAa 

 

It is apparent from the equations that all central moments are a linear combination of central 

moments of the diffusion process and the jump process. Jump risk can contribute positively or 

negatively to the mean, while it always contributes positively to the variance. The skewness of 

the returns is a result of the jump risk only.  

The equity premium is then calculated as O � � � �	, where �	 is the average risk-free rate 

over the same period. Finally, the risk aversion coefficient, 5 , can be obtained from the 

following equation 

 

� � �	 � 5�� 
 K�1 � T0U���T� � 1� 
 

Estimation results are presented in Table 2, Panel A. Over the period 1990-2010, the S&P500 

return process exhibits frequent negative jumps of a magnitude of around -3.5%. The 

combination of jump intensity and negative jump size can explain the negative skewness in the 

unconditional return distribution. This is consistent with the empirical findings of an implied 

volatility smirk and a negative variance risk premium. Additionally, negative jumps are 

consistent with the observed positive skewness risk premium. For our data, negative jumps result 

in a normalized skewness of returns of -0.65 and jump risk contributes 1/5 to overall volatility of 

around 18%. 

 

[Table 2] 

 

Given the average 3-months treasury yield �	 over the period (3.69%) as a proxy for the 

risk-free rate, we obtain 3.78% for the equity premium and, hence, a relative risk aversion 

coefficient of 1.93, which is in line with estimates obtained in previous studies. 78% of the 

equity premium is a diffusive risk premium and 22% is a jump risk premium. More importantly, 

the risk aversion coefficient is in a range, where the theoretical implications of the model comply 
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with risk-compensation theory. 

 

However, there is more and more empirical evidence that risk aversion changes over time. 

Recently, Yu and Yuan (2011) show that investor sentiment has an influence on the markets’ 

mean-variance tradeoff. They argue and present empirical evidence that in high sentiment 

periods, more sentiment traders are present in the market and have more impact on stock prices. 

In those times, the mean-variance relationship is essentially flat. Consequently, the perception 

towards risk of market participants can be assumed to change and, therefore, we should observe 

a different level of risk aversion under those market conditions. Given that the theoretical 

relationship of the variance- or skewness risk premium and the equity premium depends on the 

risk aversion of the representative investor, time varying risk aversion can be expected to have an 

impact on our analysis. We construct a set of sentiment index by taking the average of the past 

six months’ Baker and Wurgler end-of-month sentiment index as the current-month index. By 

doing so, we smooth out some noise in the data. An observation is regarded as in low sentiment 

regime if the corresponding constructed sentiment index is below zero and as in high sentiment 

regime if it is above zero. From period 1/2/1990 to 1/28/2011, of the 252 monthly smoothed 

index observations, 150 observations are below zero, accounting for roughly a bit more than half 

of the sample. 

We hypothesize that periods of high and low sentiment can be associated with different 

market conditions, where investors exhibit different levels of risk aversion. Hence, we make the 

physical density and, therefore, the parameters of the model conditional on the two market 

regimes, e.g. 

 

μ∗ � �1 � ¢Y£�μ¤ 
 ¢Y£μ¥ 

σ∗ � �1 � ¢Y£�σ¤ 
 ¢Y£σ¥ 

λ∗ � �1 � ¢Y£�λ¤ 
 ¢Y£λ¥ 

x∗ � �1 � ¢Y£�x¤ 
 ¢Y£x¥ 

 

where ¢Y£   is a dummy variable taking the value of 1 in the high sentiment state and 0 otherwise.  

Again, we calibrate the model on return data by maximizing the log likelihood function 

L§¨�μ∗, σ∗, λ∗, x∗� and obtain the parameters μ¤, σ¤, λ¤, 	x¤, μ¥, σ¥, λ¥, x¥. Results are shown in 
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Table 2, Panel B. 

 The estimated parameters obviously show divergent features. Results further suggest that 

risk aversion in low sentiment regime is relatively high (γ¤ � 3.67); and risk aversion in high 

sentiment regime is significantly lower (γ¥ � 0.22) (Table 2, Panel C). This finding is consistent 

with our hypothesis that the average risk aversion is different in the two sentiment regimes
4
. The 

consistency finds its root in the fact that the sentiment index is linked to economic fundamentals. 

Other features also reasonably show up. For example, the high sentiment regime is characterized 

by higher volatile and more negative jump size, than those in the low sentiment regime, resulting 

in a distribution that is more left skewed in the high sentiment period. Our findings can also be 

seen as a theoretical motivation of the results obtained in Yu and Yuan (2011). Theoretically, the 

mean-variance trade-off should be substantially stronger in the high risk aversion (low sentiment) 

regime compared to the low risk aversion (high sentiment) regime. This is exactly in line with 

our results and consistent with the main findings in Yu Yuan (2011). 

 

Regression results 

We test the theoretical prediction of the model in an empirical application using S&P500 index 

and index options data. The regression analysis is based on the theoretical model presented in 

proposition four. In a first step, we regress the monthly excess returns separately on the skewness 

risk premium. Additionally, we introduce a dummy variable that controls for a two-regime case. 

Given that the risk aversion is substantially lower in the high sentiment regime, our theoretical 

model predicts a different impact of the skewness risk premium on the market risk premium. We 

analyze the following two regression equations: 

 

n�u/ � @� 
 ª�>noY�nYu/� 
 ε�u/ 
 

nYu/ � @� 
 ª�>noY�nYu/� 
 @/¢Y£ 
 ª/¢Y£>noY�nYu/� 
 ε�u/ 

 

Where R�u/ is our proxy of market excess return ϕ in period t+1, the monthly return on the 

S&P500 minus the risk-free rate, proxied by the 3-month treasury yield, ¢Y£ is a dummy 

                                                             
4
 Thus, we could actually use “two-regime sentiment” to represent “different market conditions” or ”time-varying risk 

aversion”.   
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variable, taking a value of one in the high sentiment (or low risk aversion) period and zero 

otherwise and SRP�t� ≡ Skewness�± � Skewness�y is the skewness risk premium.  

 We expect ª� to be positive since there should be positive risk compensation for bearing a 

downward market prospect and we expect ª/ to be negative as investors with relatively lower 

risk aversion preference would weaken a risk-compensation effect.  

Results are reported in Table 3. There is indeed a positive tradeoff between skewness risk 

premium and excess market return either in a general market condition (ª�=1.28) or in a low 

sentiment regime (ª�=15.12, with t-statistic of 2.59). Such a tradeoff is greatly weakened 

(ª/=-15.44) during high sentiment period, as sentiment traders are present and influence the level 

of risk aversion in the market. A lower risk aversion appetite substantially weakens the 

skewness-risk-premium-return tradeoff. This finding is in line with our theoretical relation of a 

risk-compensation model. 

 

[Table 3] 

 

It is interesting to find that by distinguishing two market conditions, the impact of skewness risk 

premium on aggregate excess return becomes divergent. Looking back to the theoretical 

component of the coefficient in front of skewness risk premium, which is nothing but a relative 

risk aversion coefficient and a predetermined time horizon, this finding also questions the 

suitability of a constant relative risk aversion assumption and shows an obvious time-varying 

characteristic of it. 

In order to empirically investigate the effect of time-varying risk aversion, we test other risk 

premiums in the fourth proposition in regression equations as follows:   

 

nYu/ � @� 
 ª�X@�c@��TY��nYu/� 
 @/¢Y£ 
 ª/¢Y£X@�c@��TY��nYu/� 
 ε�u/ 
 

nYu/ � @� 
 ª�XnoY�nYu/� 
 @/¢Y£ 
 ª/¢Y£XnoY�nYu/� 
 ε�u/ 
 

nYu/ � @� 
 ª�>[T=�T��Y��nYu/� 
 @/¢Y£ 
 ª/¢Y£>[T=�T��Y��nYu/� 
 ε�u/ 
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where R�u/ , ¢Y£ , are the same definitions as in the previous regressions. Variance�± , 

Skewness�± are physical variance and physical skewness respectively, and VRP�t� ≡ Variance�± �
Variance�y is the variance risk premium. 

 

 [Table 4] 

 

Estimation results are shown in Table 4. The finding of a significant positive return-variance 

tradeoff (ª�=4.05, with t-statistic of 2.81) in high risk aversion periods and a significantly 

weakened tradeoff (ª/=-5.80, with t-statistic of -3.75) in low risk aversion periods, in line with 

theory, support our view that return-risk tradeoff varies with different risk aversion in the market. 

The other two risk factors, i.e. variance risk premium and skewness, fail to exhibit expected 

relations as the t-statistics are not significant.  

 

5. Conclusion 

 

Using an equilibrium asset and option pricing model in a production economy under jump 

diffusion, we theoretically show that the aggregated excess market returns can be predicted by 

the skewness risk premium, which is constructed to be the difference between the physical and 

the risk-neutral skewness. In the subsequent empirical test of the model using more than 20 years 

of options data on the S&P500, we find that, in line with theory, risk-averse investors demand 

risk-compensation for holding stocks when the market skewness risk premium is high. However, 

when we characterize periods of high and low risk aversion, we show that the relationship only 

holds when risk aversion is high. In periods of low risk aversion, investors demand lower risk 

compensation, thus substantially weakening the skewness-risk-premium-return trade off. Our 

study also contributes to the literature by studying properties of a skewness risk premium. We 

show theoretically that the skewness risk premium is essentially captured by the jump risk of 

stock prices. Negative jump sizes result in a positive skewness risk premium. As in accordance 

with the well documented negative jumps exhibited in stock market, the observed positive 

skewness risk premium over the whole sample period verifies the theoretical relation between 

the two.   
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Appendix A 

 

Proof of Proposition1: 

 

Based on the production process in the economy defined in setup formulas (1)(2)(3), the market 

excess return solves 

(A.1)  O ≡ OP 
 OQ � 5�� 
 KRS�1 � T0U���T� � 1�V 
 

Using Taylor expansion on both �1 � T0U�� and (T� � 1), we get 

(A.2) O � 5�� 
 KRS�1 � T0U���T� � 1�V 
� 5�� 
 KR ¶5A� 
 125�1 � 5�Aa 
 512 �25� � 35 
 2�A` 
 524 ��5a 
 25� � 25 
 1�Af
 5·�Ai��¸ 
� 5�� 
 K5R�A�� 
 12 K5�1 � 5�R�Aa� 
 K512 �25� � 35 
 2�R�A`�
 524 ��5a 
 25� � 25 
 1�R�Af� 
 K5·�Ai�� 
 

Define central moments on jump size component	A as follows 

(A.3) �� ≡ RA X@��A� ≡ R�A � RA�� ≡ ��� >[T=�A� ≡ R�A � RA�a ]^�_�A� ≡ R�A � RA�` bcd_e�A� ≡ R�A � RA�f 

 

By employing cumulant generating function, we get relations between moments and central 

moments as follows 

(A.4) R�A�� � X@��A� 
 ��� R�Aa� � >[T=�A� 
 3��X@��A� 
 ��a R�A`� � ]^�_�A� 
 4��>[T=�A� 
 6���X@��A� 
 ��̀ R�Af� � bcd_e�A� 
 5��]^�_�A� 
 10���>[T=�A� 
 10��aX@��A� 
 ��f 
 

Next we focus on how to translate the moments on jump size component A  into 

central-moments on returns ZW . 

 

Define other conditional central moments on returns ZWas follows 

(A.5) X@�Y�ZW� ≡ RYSZW � RYZWV� >[T=Y�ZW� ≡ RYSZW � RYZWVa ]^�_Y�ZW� ≡ RYSZW � RYZWV` bcd_eY�ZW� ≡ RYSZW � RYZWVf 
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As is in accordance with results in Zhang, Zhao and Chang (2012), after integrating on the jump 

diffusion model (1), the return process and its conditional expectation can be written in explicit 

form  

(A.6) 

 ZW ≡ ln j��kl�� m � ��	 
 ϕ � /
��� � λE�e� � 1�  z 
 σBW 
 ∑ A�¹¨��/  

 RY�ZW� � ��	 
 ϕ � /
��� � λE�e� � 1�  z 

 ZW � RY�ZW� � σBW 
 ∑ A�¹¨��/ � σBW 
	S�Nv � Kz��� 
	∑ �A� � ���¹¨��/ V 
 

Moment-generating functions of a standard Brownian motion, i.e. º»l�?� � T,q¼qW and of a 

Poisson process, i.e. º�l�?� � T½W�¾¿0/�, are applied to get the following properties that are 

needed in order to calculate the conditional central moments on ZW. 
(A.7) R�ÀW� � º»l` �?�|¼�� � 0 R�ÀW�� � º»l`` �?�|¼�� � z R�ÀWa� � º»l``` �?�|¼�� � 0 R�ÀẀ � � º»l````�?�|¼�� � 3z� R�ÀWf� � º»l`````�?�|¼�� � 0 R��W� � º�l` �?�|¼�� � Kz R��W�� � º�l`` �?�|¼�� � K�z� 
 Kz R��Wa� � º�l``` �?�|¼�� � Kaza 
 3K�z� 
 Kz R��Ẁ � � º�l````�?�|¼�� � K`z` 
 6Kaza 
 7K�z� 
 Kz R��Wf� � º�l`````�?�|¼�� � Kfzf 
 10K`z` 
 25Kaza 
 15K�z� 
 Kz 
 

Replacing (A.5) by (A.6) and by repeatedly using (A.7) and E�A � ��� � 0 , we get the 

relations between central-moments on returns ZW and moments on jump size component A as 

follows 

(A.8) X@�Y�ZW� ≡ RYSZW � RYZWV�
� ��RY�ÀW�� 
 RY ¶	�Nv � Kz��� 
� �A� � ���¹¨

��/ ¸� � ��z 
 KzR�A�� 
>[T=Y�ZW� ≡ RYSZW � RYZWVa � RY ¶	�Nv � Kz��� 
� �A� � ���¹¨

��/ ¸a � KzR�Aa� 
 ]^�_Y�ZW� ≡ RYSZW � RYZWV`

� �`RY�ÀẀ � 
 6��RY�ÀW��RY ¶	�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸�


 RY ¶	�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸` � KzR�A`� 
 3SX@�Y�ZW�V� 
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bcd_eY�ZW� ≡ RYSZW � RYZWVf � 10��RY�ÀW�� g RY{	�Nv � Kz��� 
 ∑ �A� � ���¹¨��/ |a 

RY{	�Nv � Kz��� 
 ∑ �A� � ���¹¨��/ |f=	KzR�Af� 
 10SX@�Y�ZW� g >[T=Y�ZW�V 
 

Where the components inside formulas (A.8) are  

RY ¶�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸ � 0 

 

RY ¶	�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸�

� ���RY�Nv � Kz�� 
 2RY ¶�Nv � Kz��� g� �A� � ���¹¨
��/ ¸


 RY ¶	� �A� � ���¹¨
��/ ¸� � ���RY�Nv � Kz�� 
 RY�Nv�RY�A� � ����

� KzS��� 
 ���V 
 

 

RY ¶	�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸a

� ��aRY�Nv � Kz�a 
 3RY ¶��Nv � Kz����� g� �A� � ���¹¨
��/ ¸


 3RY Â�Nv � Kz��� g Ã� �A� � ���¹¨
��/ Ä�Å 
 RY ¶	� �A� � ���¹¨

��/ ¸a
� ��aRY�Nv � Kz�a 
 3RY��Nv � Kz���Nv�A� � ����� 
 RY�Nv�RY�A� � ���a� KzS��a 
 3��X@��A� 
 >[T=�A�V 

 

RY ¶	�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸`

� ��̀RY�Nv � Kz�` 
 4RY ¶��Nv � Kz����a g� �A� � ���¹¨
��/ ¸


 6RY Â��Nv � Kz����� g Ã� �A� � ���¹¨
��/ Ä�Å


 4RY Â�Nv � Kz��� g Ã� �A� � ���¹¨
��/ ÄaÅ 
 RY ¶	� �A� � ���¹¨

��/ ¸`

 3RY�Nv�Nv � 1��RY�A� � ����RY�A� � ����� ��̀RY�Nv � Kz�` 
 4RY��Nv � Kz�a��aNv�A� � ����
 6RY��Nv � Kz�����Nv�A� � ����� 
 4RY��Nv � Kz���Nv�A� � ���a�
 RY�Nv�RY�A� � ���` 
 3RY�Nv�Nv � 1��RY�A� � ����RY�A� � ����� KzS��̀�3Kz 
 1� 
 6���X@��A��Kz 
 1� 
 4��>[T=�A� 
 ]^�_�A�
 3KzSX@��A�V�V 
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RY ¶	�Nv � Kz��� 
� �A� � ���¹¨
��/ ¸f

� ��fRY�Nv � Kz�f 
 5RY ¶��Nv � Kz����` g� �A� � ���¹¨
��/ ¸


 10RY Â��Nv � Kz����a g Ã� �A� � ���¹¨
��/ Ä�Å


 10RY Â��Nv � Kz����� g Ã� �A� � ���¹¨
��/ ÄaÅ


 5RY��Nv � Kz����RY ÂÃ� �A� � ���¹¨
��/ Ä`


 3RY�Nv�Nv � 1��RY�A� � ����RY�A� � ����Å 
 RY ¶	� �A� � ���¹¨
��/ ¸f


 10RY�Nv�Nv � 1��RY�A� � ����RY�A� � ���a� ��fRY�Nv � Kz�f 
 5RY��Nv � Kz�`��̀Nv�A� � ����
 10RY��Nv � Kz�a��aNv�A� � ����� 
 10RY��Nv � Kz�����Nv�A� � ���a�
 5RY��Nv � Kz���Nv�A� � ���`�
 15RY��Nv � Kz����RY�Nv�Nv � 1��RY�A� � ����RY�A� � ����
 RY�Nv�RY�A� � ���f 
 10RY�Nv�Nv � 1��RY�A� � ����RY�A� � ���a� KzS��f�10Kz 
 1� 
 10��aX@��A��4Kz 
 1� 
 10���>[T=�A��Kz 
 1�
 5��]^�_�A� 
 30Kz��SX@��A�V� 
 bcd_e�A� 
 10KzX@��A�>[T=�A�V 
 

 

Inserting formulas (A.8), which give the relations between moments on jump size component A 

and central-moments on returns ZW, into the market excess return formula (A.2), we get 

(A.9) 

O � 5z X@�Y�ZW� 
 52z �1 � 5�>[T=Y�ZW� 
 512z �25� � 35 
 2�]^�_Y�ZW�� 54z �25� � 35 
 2�SX@�Y�ZW�V� 
 524z ��5a 
 25� � 25 
 1�bcd_eY�ZW�
� 5512z ��5a 
 25� � 25 
 1�SX@�Y�ZW� g >[T=Y�ZW�V 
 λγE�o�xi�� 

 

Therefore, we arrive at formula (6). 

 

Proof of Proposition2 &3: 

 

Remember that jump size component A is normally distributed with mean �� and variance ���. 

By employing cumulant generating function and using the pricing kernel constructed in Zhang, 

Zhao and Chang (2012) as λ
y ≡ KR�T0U��, we are able to write out central moments in 

risk-neutral measure by Taylor expansion on T0U� � 1 � 5A 
 /
� 5�A� � /

i 5aAa 
 ·�A`�. 
(A.10) 
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X@�Yp�ZW� � ��z 
 Kpz{���p�� 
 ���p��| � ��z 
 KzR�A�T0U��
� ��z 
 KzR�A�� � 5KzR�Aa� 
 12 5�KzR�A`� � 16 5aKzR�o�xf�� >[T=Yp�ZW� ≡ RYpSZW � RYZWVa � Kpz{>[T=p�A� 
 3��pX@�p�A� 
 ���p�a| � KzR�AaT0U��
� KzR�Aa� � 5KzR�A`� 
 12 5�KzR�Af� � 16 5aKzR�o�xi�� 

 

Combining with physical central moments, we can write the variance risk premium and the 

skewness risk premium separately as 

(A.11) XnoY�ZW� ≡ X@�Y�ZW� � X@�Yp�ZW� � KzR�A�� � KzR�A�T0U�� >noY�ZW� ≡ >[T=Y�ZW� � >[T=Yp�ZW� � KzR�Aa� � KzR�AaT0U�� 
 

Again by using Taylor expansion on T0U� � 1 � 5A 
 /
� 5�A� � /

i 5aAa 
 ·�A`�, we get  

(A.12) 

XnoY�ZW� � K5zR�Aa� � 12 K5�zR�A`� 
 16 K5azR�o�xf��
� γ>[T=Y�ZW� � 5�2 ]^�_Y�ZW� 
 35

�
2 SX@�Y�ZW�V� 
 16 λγaτE�o�xf�� 

>noY�ZW� � K5zR�A`� � 12 K5�zR�Af� 
 16 K5azR�o�xi��
� γ]^�_Y�ZW� � 35SX@�Y�ZW�V� � 5�2 bcd_eY�ZW� 
 55�SX@�Y�ZW� g >[T=Y�ZW�V

 16 λγaτE�o�xi�� 

Therefore we arrive at formulas (7)(8). 

 

Proof of Proposition4: 

 

Rewrite (A.12) as 

(A.13) 

]^�_Y�ZW� � �2XnoY�ZW�5� 
 2>[T=Y�ZW�γ 
 3SX@�Y�ZW�V� 

bcd_eY�ZW� � �2>noY�ZW�5� 
�4XnoY�ZW�5a 
 4>[T=Y�ZW�5� 
 10SX@�Y�ZW� g >[T=Y�ZW�V 
Substitute (A.13) into formula (6), we get 

O � U
W X@�Y�ZW� 
 01tu1q0/

iv1q XnoY�ZW� 
 0�1tu�1qu/
iv1 >[T=Y�ZW� 
 1t0�1qu�10/

/�v1 >noY�ZW� 
λγE�o�xi��  
 

Therefore we arrive at formula (9). 
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Figure 1: Monthly data time series  

This figure presents the monthly return of S&P500 and its corresponding variance- and skewness risk premium, 

each at a one month horizon. The variance risk premium is physical realized variance minus risk-neutral variance; 

skewness risk premium is physical realized skewness minus risk-neutral skewness: 

 VRP�t� ≡ Variance�± � Variance�y SRP�t� ≡ Skewness�± � Skewness�y 

 

The sample consists of 252 observations from periods 1/31/1990 to 1/28/2011, with 102 observations in high 

sentiment, low risk aversion periods. The periods dotted in red with horizontal red arrows represent high sentiment 

periods. 
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Table 1: Summary statistics 

This table presents summary statistics for the sample, which consists of 5302 daily observations (Panel A) and 252 

monthly observations (Panel B) from 1/2/1990 to 1/28/2011. Monthly excess return is the sum of daily log-return on 

the S&P500 minus the risk-free rate, proxied by the 3-month treasury yield. Monthly physical variance is the sum of 

daily squared logarithm mean-adjusted returns in that month as Variance�± � ∑ r�,Æ�¹Æ�/  ; Monthly physical skewness 

is an adjusted sum of daily cubed logarithm mean-adjusted returns in that month as Skewness�± � √N∑ r�,Æa¹Æ�/ . All 

risk-neutral moments are derived from daily option prices and averaged over the particular calendar month. The 

variance risk premium is physical variance minus risk-neutral variance; skewness risk premium is physical skewness 

minus risk-neutral skewness.  

 

Panel A: Daily Data 

 

Mean 

(× 10
3
) 

Variance 

(× 10
3
) 

Skewness 

(× 10
6
) 

Kurtosis 

(× 10
6
) 

Returns 0.327 0.137 -0.326 0.223 

     

 
Mean Min Max  

Risk-Neutral Variance (× 10
3
) 0.192 0.034 2.595  

Risk-Neutral Skewness (× 10
5
) -0.568 -21.730 -0.013  

     

Panel B: Monthly Data 

 

Mean 

(× 10
2
) 

Variance  

(× 10
2
) 

Skewness 

(× 10
4
) 

Kurtosis 

(× 10
4
) 

Excess Returns 0.411 0.193 -0.667 0.168 

                

 
Mean Min Max  

Physical Variance (× 10
2
) 0.288 0.002 5.735  

Physical Skewness (× 10
4
) -0.321 -39.790 22.985  

     

Risk-Neutral Variance (× 10
2
) 0.404 0.098 3.323  

Risk-Neutral Skewness (× 10
3
) -0.544 -11.37 -0.040  

 
    

Variance Risk Premium (× 10
2
) -0.117 -0.717 2.525  

Skewness Risk Premium (× 10
3
) 0.512 -3.165 11.651  
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Table 2: Maximum likelihood estimation 

This table presents parameters estimates when calibrating the model on S&P500 returns. Estimating method is 

maximum likelihood for a sample from year 1990 to 2010. Parameters in Panels A and B are as follows:μ is average 

return; σ is average volatility of market return; λ controls for the frequency of jumps; x is a constant jump size. 

Parameters in Panel B are correspondingly defined as in Panel A, with subscript L denoting low sentiment periods; 

H denoting high sentiment periods. Panel C reports the relative risk aversion coefficient γ, with its counterparts in 

the two sub-samples. The calculation is as follows: 

 μ � rÇ � γσ� 
 λ�1 � e01���e� � 1� 
 

where rÇ � 3.69%,  rÇÊ � 3.49%	and  rÇ£ � 3.98%. 

Significance levels are indicated as  ***=1%. 

 

Panel A: Whole Sample 

 
� � K A 

Whole Period 0.0981*** 0.1578*** 5.5849*** -0.0345*** 

 (0.0166) (0.0037) (1.6693) (0.0046) 

     

Panel B: Sub-Samples 

 
�Ê��£� �Ê��£� KÊ�K£� AÊ�A£� 

Low Sentiment 0.1256*** 0.1400*** 5.7326*** -0.0292*** 

 (0.0276) (0.0013) (1.7995) (0.0018) 

     

High Sentiment 0.0489*** 0.1880*** 3.2051*** -0.0483*** 

 (0.0136) (0.0016) (0.9593) (0.0024) 

     

Panel C: Risk Aversion 

  5 5Ê 5£ 

Whole Period  1.93   

Low Sentiment   3.67  

High Sentiment    0.22 
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Table 3: Skewness Risk Premium 

This table presents regression results of the impact of skewness risk premiums on excess return. The estimation is as 

follows (t denotes month t): 

 

n�u/ � a� 
 ª�>noY�nYu/� 
 ε�u/ 

nYu/ � @� 
 ª�>noY�nYu/� 
 @/¢Y£ 
 ª/¢Y£>noY�nYu/� 
 ε�u/ 

 

where n�u/ is a proxy of the market excess return ϕ in period t+1, the monthly return on the S&P500 minus the 

risk-free rate, proxied by the 3-month T-bond yield, ¢Y£  is a dummy variable, taking a value of one in the high 

sentiment (or low risk aversion) period and zero otherwise. SRP�t� ≡ Skewness�± � Skewness�y is the skewness 

risk premium. The sample consists of 252 observations from 1/2/1990 to 1/28/2011. 

Significance levels are indicated as ***=1%.  

 

Skewness Risk Premium 

 
@� ª� @/ ª/ 

One Regime 0.0035 1.2799   

 (1.13) (0.53)   

     

Two Regime 0.0042 15.1217*** -0.0083 -15.4376*** 

 (1.02) (2.59) (-1.34) (-2.42) 
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Table 4: Other Risk Premiums, Two Regimes 

This table presents regression results of the impacts of other risk premiums on excess return. The estimation is as 

follows: 

nYu/ � @� 
 ª�X@�c@��TY��nYu/� 
 @/¢Y£ 
 ª/¢Y£X@�c@��TY��nYu/� 
 ε�u/ 

nYu/ � @� 
 ª�XnoY�nYu/� 
 @/¢Y£ 
 ª/¢Y£XnoY�nYu/� 
 ε�u/ 

nYu/ � @� 
 ª�>[T=�T��Y��nYu/� 
 @/¢Y£ 
 ª/¢Y£>[T=�T��Y��nYu/� 
 ε�u/ 

 

where n�u/ is a proxy of the market excess return ϕ in period t+1, the monthly return on the S&P500 minus the 

risk-free rate, proxied by the 3-month T-bond yield, ¢Y£  is a dummy variable, taking a value of one in the high 

sentiment (or low risk aversion) period and zero otherwise. Variance�±, Skewness�± are physical variance and 

physical skewness respectively, and VRP�t� ≡ Variance�± � Variance�y is the variance risk premium 

The sample consists of 252 observations from 1/2/1990 to 1/28/2011. 

Significance levels are indicated as follows:*=10%, **=5%, ***=1%. 

 

Two Regimes 

 
@� ª� @/ ª/ 

Variance 0.0023 4.0476*** 0.0010 -5.8030*** 

 (0.53) (2.81) (0.15) (-3.74) 

     

Variance Risk Premium 0.0055 -3.3058 -0.0140* -1.1717 

 (1.07) (1.14) (-2.09) (-0.37) 

     

Skewness 0.0098*** 1.6584 -0.0127** 17.6854 

 (2.80) (0.12) (-2.29) (1.19) 

     

 

 


