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ABSTRACT 

Towards an Efficient Use of R&D – Accounting for Heterogeneity in 
the OECD 

Expenditures devoted to research and development (R&D) are scarce and 
thus need to be used as efficiently as possible given the financial constraints 
countries are facing. This paper assesses the relative efficiency of R&D 
expenditures for 26 OECD member countries and 2 non-member countries. 
As countries differ in their national innovation systems and states of economic 
development and industrialization, e.g. transition economies in Eastern 
Europe vs. Asian countries vs. Anglo-Saxon countries, the measurement of 
R&D efficiency needs to consider differences in the technology of knowledge 
production. The existing empirical literature on R&D efficiency mainly builds 
on a homogeneous technology frontier neglecting the importance to account 
for country-specific heterogeneity. This paper models technological 
differences in knowledge production among countries using a stochastic 
frontier model for panel data. Applying a latent class model for SFA, we find 
empirical evidence for two technological classes, a `capital-intensive' and a 
`labor-intensive' one. Assuming a common knowledge production technology, 
as has been done so far in the empirical literature, thus results in biased 
efficiency estimates. 
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1 Introduction

Empirical literature affirms the importance of R&D expenditures for economic growth

(Porter and Stern, 2000; Guellec and van Pottelsberghe, 2001). However, R&D re-

sources available for the generation of new knowledge are limited due to financial con-

straints in the public and the private sector. Thus they need to be used as efficiently as

possible, given the national innovation system consisting of local, institutional, organi-

zational and legal factors. The related literature predominantly focuses on the level of

R&D expenditures and new R&D investments while paying less attention to whether

or not available resources being used in an efficient manner that maximizes innovative

output (Wang and Huang, 2007). Nevertheless, this is of particular interest because

additional R&D investments might not be helpful in promoting growth if resources are

used inefficiently (Wang, 2007).

For this reason the analysis of efficient usage of knowledge generating inputs to cre-

ate innovative output is becoming more and more important in the empirical literature

(Wang and Huang, 2007). These empirical applications all build on the same knowl-

edge production function proposed by Griliches (1979) and implemented by Pakes and

Griliches (1984), Jaffe (1986), and Hall and Ziedonis (2001). Against this background,

innovative output is the product of knowledge generating inputs, similar to the pro-

duction of physical goods Griliches (1979). Some observable measures of inputs, such

as R&D expenditures and the number of researchers, are invested in the knowledge

production process and directed toward producing economically valuable knowledge.

In this context nonparametric and parametric efficiency measurement techniques

are used in the empirical literature to measure the relative R&D efficiency and derive

a ranking of a set of observations with regard to their achieved performance.1 R&D

efficiency can be measured at the firm-level, industry-level, regional-level or in the

empirical literature, the widely used the country-level. In this framework a production

frontier is determined and then relative to this frontier the individual efficiencies of each

country is estimated. The most widely used nonparametric method in this field is Data

Envelopment Analysis (DEA), where the efficiency frontier is determined by means of

linear programming methods (Charnes et al., 1978). Empirical studies (see e.g. Wang

and Huang, 2007; Rousseau and Rousseau, 1997, 1998; Guan and Chen, 2012) point

out that a significant potential for efficiency increases prevails within the knowledge

production process. Other empirical applications (Wang, 2007) use the parametric

efficiency analysis concept of stochastic frontier analysis (SFA) to measure the relative

R&D efficiency. In this context cross-section or panel data econometric methods are

1For a detailed literature review on measurement of R&D efficiency we refer to Sharma and Thomas
(2008).
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used to construct the frontier covering the data. All parametric studies remain in the

one dimensional output context, meaning that they are limited to one single output in

the knowledge production function, usually patents.

To the best of our knowledge, the empirical applications in the empirical literature

on R&D efficiency assume a common homogeneous frontier (world patent production

frontier) for all countries. However, as one is faced with country-specific heterogene-

ity in the OECD and the world, assuming the same knowledge production function

(frontier) is a rather limiting assumption. Country-specific characteristics, e.g. access

to venture capital, degree of openness of the economy or national culture, influence

the ideas generation process, and thus the underlying reference frontier. Some of these

characteristics are observable and others are truly unobserved or too complex to be

measured and modeled in the econometric model. Thus, unobserved factors might re-

sult, on the one hand, in biased technology estimations and therefore efficiency rankings

and, on the other hand, in ambiguous and dubious policy recommendations.

We argue, that for R&D efficiency analysis at the country-level, it is important to

account for heterogeneity to model national differences in the slope and shape of the

knowledge production function because countries are so different in their national inno-

vation systems, states of economic development, and industrialization. This seems evi-

dent when we compare e.g. transition economies in Eastern Europe vs. Asian countries

vs. Anglo-Saxon countries. Thus, our modeling approach differs from previous empiri-

cal applications substantially by accounting for observed and unobserved heterogeneity.

In our econometric model we aim to highlight that groups of countries exhibit different

knowledge production functions capturing remarkable differences across the countries

with respect to their national innovation systems. We apply a latent class stochastic

production frontier model following Orea and Kumbhakar (2004) and Greene (2005).

In this framework, countries are clustered in different classes with different knowledge

production technologies and therefore frontiers. Simultaneously, estimates of a set of

distinct knowledge production functions are obtained and countries are assigned to

production functions (based on the class membership of countries). By means of this

latent class model, we test and account for country-specific heterogeneity in knowledge

production in order to obtain unbiased R&D efficiency estimates and rankings.

We conduct a parametric R&D efficiency analysis for 26 OECD countries and 2 non-

member countries, Argentina and China, for the 1993-2007 time period. We contribute

to the extant literature in two important aspects: First, we account multiple outputs

by means of an econometric distance function. We argue that different types of outputs

(patents and publications) should be considered in order to cover basic, fundamental

and applied R&D output and to ensure correct parametric efficiency estimates (Thomas
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et al., 2011). Second, by applying a latent class stochastic frontier model we allow

for country-specific heterogeneity in knowledge production and test different country-

specific factors such as access to venture capital, national culture or trade openness

having an impact in knowledge production. Section 3 describes our empirical model

and Section 4 the data used. In Section 5 we discuss the empirical results. Section 6

summarizes and outlines our major conclusions.

2 Literature review

Empirical studies show that R&D promotes innovation at the firm-level (Griliches,

1986; Jaffe, 1986; Griliches, 1998), the industry level (Griliches and Lichtenberg, 1984)

and across countries (Griliches and Mairesse, 1983; Mansfield, 1988).2 Griffith et al.

(2006) e.g. uses firm-level data from four European countries (France, Germany, Spain,

and the UK) to describe the link between R&D expenditures, innovation output and

productivity based on a structural model at the firm-level. A drawback underlined in

the paper is that R&D expenditures, as a measure of input, do not explicitly take into

account productivity and effectiveness of efforts.

Therefore measuring R&D efficiency analysis has become more and more important

in the empirical literature. In this context we are faced with varying notions: Fu and

Yang (2009) refer to patenting efficiency; Lee and Park (2005), Sharma and Thomas

(2008) and Thomas et al. (2011) refer to R&D efficiency; Wang and Huang (2007) call

the concept efficiency of R&D activities, whereas Halkos and Tzeremes (2011) refer to

innovation efficiency and Hung et al. (2009) to academic productivity.

There is a wide range of application is the empirical literature with respect to the

observation unit. R&D efficiency can be measured at the firm-level, industry-level,

regional-level, or country-level: Zhang and Zhaoc (2003) investigate R&D efficiency in

a sample of Chinese industrial firms with a special focus on the influences of ownership.

Gantumur and Stephan (2010) concentrate on innovative efficiency and productivity in

a firm-level panel based on the German Innovation Survey for the 1992-–2004 period,

and analyze to what extent the acquisition of external disembodied technology affects

the efficiency and productivity of technology acquiring firms. Thomas et al. (2011)

refer to subnational levels of the United States. Guan and Chen (2010) build on a

province-level panel dataset on R&D activities of 30 selected Chinese provinces while Li

(2009) investigates the increasing disparity in regional innovation performance between

Chinese regions. Another line of the literature analyzes national R&D efficiency, thus

the aggregated unit of observation is the entire country. This is the approach we follow

2For a literature overview see Bos and Sanders (2011).
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in our paper.

Sharma and Thomas (2008) examine the relative efficiency of the R&D process of 22

developed and developing countries in a nonparametric DEA framework, considering

one single output (patents) and two inputs (gross domestic expenditures on R&D and

the number of researchers). Wang and Huang (2007) use a three-stage DEA approach

to evaluate the relative efficiency of R&D activities across 30 countries, controlling ex-

plicitly for the external environment, such as the enrollment rate of tertiary education

and the PC density. Lee and Park (2005) measure R&D productivity at the national

level to provide policy implications, especially for Asian countries. Further, Rousseau

and Rousseau (1997, 1998) apply DEA to assess the efficiency and effectiveness of the

R&D effort of European countries and conclude that DEA can be used as a tool to

construct performance indicators for governments. Cullmann et al. (2011) updates the

measurement of R&D efficiency in the OECD using a DEA approach. Efficiency scores

were calculated using intertemporal frontier estimation for the period 1995 to 2004.

They find that Sweden, Germany and the United States are located on or close to the

technology frontier. The authors further analyze the impact of the regulatory environ-

ment using a bootstrap procedure suggested by Simar and Wilson (2007). The results

show that barriers to entry, aimed at reducing competition, actually reduced R&D

efficiency by attenuating the incentive to innovate and to allocate resources efficiently.

Guan and Chen (2012) use a DEA model for measuring the innovation efficiency of

national innovation systems for 22 OECD countries by decomposing the innovation pro-

cess into a network with a two-stage innovation production framework, an upstream

knowledge production process and a downstream knowledge commercialization process.

In a second stage they examine the effects of policy-based institutional environment

on innovation efficiency. They provide evidence that the overall innovation efficiency is

subject to commercial efficiency performance. Thus, improving commercial efficiency

should be the main focus in future innovation policy-making.

Wang (2007) considers 30 countries (23 OECD and 7 other) for the 1998-2002

period in a parametric framework. The analysis is based on a translog production

model taking into account environmental factors that influence the R&D performance

(ratio of government expenditures on R&D to total expenditures on R&D, density of

personal computers, indicator of national economic freedom). Considering 21 OECD

countries, Fu and Yang (2009) estimate a patent production frontier for the 1990-2002

period by means of SFA. Differences in patenting efficiency are explained by exogenous

characteristics within the Battese and Coelli approach (Battese and Coelli, 1995). None

of the empirical applications within the parametric framework modelled more than one

output.
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Previous empirical applications assume one common technology and, therefore, one

common efficiency frontier for all countries. Fu and Yang (2009) add directly in the

production function further variables in the traditional knowledge production function:

total expenditures on education, and the value added shares of high tech industries rel-

ative to the total economy to account for differences in the expenditure and industry

structure of the countries. Fritsch and Slavtchev (2011) define different slope parame-

ters for different regions in Germany and aim to answer the question of what factors

can explain differences in regional innovation system efficiency using (among others)

SFA techniques. Teitel (1994) uses a parametric production function approach, but not

within the frontier framework, in order to analyze the relationship between number of

patents and four explanatory variables: R&D expenditures, number of scientists and

engineers, per capita income and the population for the 1976-1985 period. The data

set is split into four different subsets of countries (low income countries, middle income

countries, high income countries and Latin America) in order to obtain better coeffi-

cient estimates. Some empirical applications define in a second stage efficiency clusters

based on post-hoc comparisons (Lee and Park, 2005). In their paper they define four

different groups of countries with respect to different efficiency dimensions (inventors,

merchandisers, academics, duds). This is different to our approach. We assume, a

priori, a different technology in producing innovative output to obtain more reliable

and unbiased efficiency estimates. This also involves that the peers are different ones

in different groups.

3 Model specification

3.1 Distance function approach

To measure the relative R&D efficiency within a knowledge production setting, the

majority of applied parametric efficiency analyses uses the production function to de-

scribe the underlying technology of the countries’ knowledge production. Single output

Cobb-Douglas or translog functional forms are most widely assumed but become crit-

ical when more than one output is modeled (Coelli, 2000).3 In this framework the

majority of applied work manages the issue by aggregating the different outputs into a

single index. Wang (2007) analyzes the relative efficiency of aggregate R&D activities

in 30 countries based on a translog specification with one aggregated output index.4

3Within the nonparametric DEA, multiple outputs can be incorporated easily, which is not the
case within parametric efficiency analysis.

4He aggregates four single outputs including the weighted sum of the number of patents (excluding
new designs) granted by each selected country, the number of patents granted by the United States
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His weighting scheme is based on the average amount of patents and papers in each

year. He imposes, a priori, the relative weights to each output assuming the same

relative impact within the knowledge production process. Imposing, a priori, weights

is questionable without an empirical cost driver analysis to test empirically for the

different impacts of the outputs.

Another approach to model multi-output production is the concept of paramet-

ric distance functions (Coelli, 2000). This approach is proposed by Shephard (1953,

1970), who derives a distance function representation of a multi-output technology as a

primal alternative that requires no aggregation, price and cost information, or behav-

ioral assumption.5 To model the knowledge production process we apply a parametric

frontier output distance function (in opposition to an input distance function) since

it is reasonable to assume that countries aim to optimize and maximize the research

output with a given level of R&D expenditures and the number of researchers (Wang

and Huang, 2007). The output distance function is defined on the output set P (x) as

do(x, y) = min{ρ : (y/ρ) ε P (x)} (1)

and considers how much the output vector y may be proportionally expanded by the

scalar distance ρ with the input vector x held fixed (Coelli, 2000).6 The term do(x, y)

will assume a value less than or equal to one if the output vector y is an element of

the feasible production set P (x). In addition, do(x, y) = 1 if it is located on the outer

boundary of the production possibility set (Coelli and Perelman, 2000).7

Imposing homogeneity, we follow Lovell et al. (1994) and Coelli and Perelman (2000)

who point out that homogeneity implies that for any w > 0

do(wx, y) = wdo(x, y). (2)

Therefore, one of the outputs may be arbitrarily chosen, such as the M -th output and

to each country studied, the annual number of papers published in the Science Citation Index (SCI)
international journals, and the annual number of papers published in the Engineering Index (EI)
international journals.

5See Coelli (2000) and Coelli and Perelman (2000) for a detailed description on the econometric
estimation and advantages and disadvantages of the distance function representation.

6It is assumed that the technology satisfies the standard axioms: do(x, y) is non-decreasing, pos-
itively linearly homogeneous and convex in y and decreasing in y (Coelli, 2000; Färe and Primont,
1995; Coelli and Perelman, 2000).

7Applications of this concept to estimate parametric distance functions using econometric methods
is quite common in infrastructure and service sectors (Färe et al., 1993; Grosskopf et al., 1995; Saal
et al., 2007) and in agriculture research (Brümmer et al., 2002, 2006).
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set w = 1/yM . This yields

do(x, y/yM) = do(x, y)/yM (3)

The distance function can be approximated by a translog functional form (Färe

et al., 1993), which is widely used in empirical application due to its flexibility for

econometric estimation.

ln do = TL(x, y, α, β, δ). (4)

To obtain the frontier surface (the transformation function) one would set do = 1,

so that the left side equals zero (Coelli and Perelman, 2000). Imposing homogeneity

(see Equation 3) by dividing Equation 4 by an optional output and some rearranging

the translog output distance function for the case of M outputs and K inputs is spec-

ified for the i-th country as

− ln yMi = α0 +
M∑
m=1

αm ln(
ymi
yMi

) +
1

2

M∑
m=1

N∑
n=1

αmn ln(
ymi
yMi

) ln(
ymi
yMi

) (5)

+
K∑
k=1

βk lnxki +
1

2

K∑
k=1

L∑
l=1

βkl lnxki lnxli

+
M∑
m=1

K∑
k=1

δmk ln(
ymi
yMi

) lnxki + ln do

where ln do is a nonnegative variable that can be associated with technical inefficiency

ui. Given the stochastic error vi, this model can be formulated in the common SFA

form with the combined error term vi + ui (see Section 3.2). Technical efficiency is

the ratio of observed output to frontier output. A radial output-oriented measure of

technical efficiency TE is then obtained by

TE =
1

do
= exp(−ui). (6)

The distance function provides a promising new solution to the single output re-

striction of the standard knowledge production functions.8 The estimated distance

8One concern in the econometric estimation is potential regressor endogeneity, which may intro-
duce possible simultaneous equation bias. Ratios on inputs appear on the right side of the estimating
equation, which may involve simultaneous feedback problems because these input variables are as-
sumed to be endogenous. Some authors propose instrumental variables estimation (see Sickles et al.,
1996; Atkinson and Primont, 2002).
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functions often fail to satisfy the concavity and quasi-concavity properties implied by

economic theory (O’Donnell and Coelli, 2005). This sometimes leads to surprising

conclusions regarding the effects of input and output changes on productivity growth

and relative efficiency levels. Therefore, the starting point before any interpretation of

inefficiencies is to check and to test for the properties.9

3.2 A latent class stochastic frontier model

To determine the relative R&D efficiency of the countries under consideration, we com-

pare some measure of actual performance against a reference technology (the stochastic

frontier). The distance to the frontier can be interpreted as a common measure of in-

efficiency. In the stochastic frontier framework, the error term in the econometric

estimation of the production technology is divided into two uncorrelated components:

a one-sided non-negative disturbance ui, half-normally distributed, representing the

inefficiency; and a symmetric disturbance vi, assumed to be normally distributed, and

capturing random noise in the sample (Greene, 2004). In our econometric model the

distance do (see Equation 5) can be defined as the sum of the two uncorrelated com-

ponents ui and vi.

In our econometric model we highlight that groups of countries exhibit different

knowledge production functions capturing remarkable differences across the countries

with respect to their national innovation systems. We therefore use a latent class

framework for SFA that is able to account for specific technological characteristics of

the countries in the sample. Countries are classified into a set of different technologies

and efficiency distributions. However the specific classification is, a priori, unknown

(Greene, 2004; Orea and Kumbhakar, 2004). In this model all parameters vary by class

standing for the different technologies.10

For the output distance function (see Equation 5), the latent class stochastic fron-

tier model is as follows

9Regularity conditions could also be imposed by estimating the model in a Bayesian framework
(O’Donnell and Coelli, 2005).

10The latent class model for SFA is applied in a number of other fields see (Orea and Kumbhakar,
2004; Greene, 2005; Caudill, 2003; Corral and Alvarez, 2008). To our knowledge we are the first to
model R&D efficiency by means of a latent class model.
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− ln yMit|j = α0j +
M∑
m=1

αmj ln(
ymit
yMit

) +
1

2

M∑
m=1

N∑
n=1

αmnj ln(
ymit
yMit

) ln(
ymit
yMit

) (7)

+
K∑
k=1

βkj lnxkit +
1

2

K∑
k=1

L∑
l=1

βklj lnxkit lnxlit

+
M∑
m=1

K∑
k=1

δmkj ln(
ymit
yMit

) lnxkit + vit|j + uit|j

where j indicates the class or regime. Class membership is unknown. One assumes

that there is a latent sorting of the observations in the data resulting in a total number

of J classes (Greene, 2007). Note, that the coefficients differ for each class, reflecting

the differences in the technology for different groups of countries. For one specific

observation from class j the model is characterized by the conditional density g(.)

determined by the class specific parameter vector Θj.

g(yMit|
ymit
yMit

, xkit, classj) = f(Θj,
ymit
yMit

, xit) (8)

The contribution of the country i to the conditional likelihood (conditional on class j)

is

P (i|j) =
T∏
t=1

P (i, t|j) (9)

The unconditional likelihood for country i is an average over the J classes. It can be

shown that the likelihood function can be expressed by (see Greene, 2005)

logLF =
N∑
i=1

log(
∑

Pij

T∏
t=1

LFijt) (10)

The class probabilities can be parameterized by a multinomial logit model:

Pij =
exp(δ′jqi)∑J
j=1 exp(δ′jqi)

(11)

where qi is a vector of country-specific but time-invariant variables. These variables,

called separating or switching variables, are included to identify any regularity in clas-

sifying the sample by means of the estimated coefficients of latent class probability

functions Θ̂j (Greene, 2007). A positive sign of the coefficient suggests that the larger

the variable the higher the probability that a country belongs to this class. Simi-
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larly, the significantly negative value of a coefficient indicates that the probability of

membership in this class decreases when the variable increases.

Under the maintained assumptions, maximum likelihood techniques will give asymp-

totically efficient estimates of all parameters. Greene (2002, 2004) point out that both

the technology as well as the probability to belong to a certain class are estimated

simultaneously. All observations in the sample are used to estimate the underlying

technology for each class. The estimated parameters can be used to compute the con-

ditional posterior class probabilities. In addition, Greene (2004) suggests that the class

probabilities apply unchanged to all years of the observation period.

In standard SFA for R&D efficiency measures, the individual efficiency is estimated

to the common frontier, since all countries are assumed to operate under the same

technology. The latent class specification estimates as many frontiers as the number

of classes. To measure the efficiency level of an individual observation (see Orea and

Kumbhakar, 2004, for a summary) technologies from every class are taken into account,

weighted with the respective probabilities (Greene, 2002). To determine the number

of J classes for the best model fit, we apply information criteria such as the Akaike

Information criterion (Greene, 2007).

4 Data

Two sets of variables are required to estimate the latent class model. First, variables in

the knowledge production frontier covering appropriate inputs and outputs are needed.

Second, variables determining class probabilities that help classify countries into the

different classes with different underlying knowledge production technologies are also

needed.

4.1 Knowledge production function

Based on the notion of a knowledge production function framework (Griliches, 1979)

we use as inputs

* Number of researchers (x1)

* R&D expenditures (x2)

and as outputs

* Patent applications (y1)

* Publications (y2)

11



Data on human capital and R&D expenditures are taken from the Main Science

Technology Indicators published by the OECD. Human capital invested into R&D is

proxied by the number of researchers per country. Consistent with the literature on

R&D efficiency (Sharma and Thomas, 2008 and Wang and Huang, 2007), we impose a

lag structure on inputs to account for the fact that efforts do not immediately lead to

innovative output (Hall et al., 1986). Therefore, inputs are lagged by two years in the

SFA application. Summary statistics and the exact definition of the variables, together

with the source of the variables, are shown in Table 1 and Table 2.

Patent applications serve as our indicator of inventive output taken from the OECD

patent statistics (see Table 2). We focus on PCT patent applications. The PCT proce-

dure is a popular approach in filing international applications as it allows applications

for patent protection in a large number of countries, thereby ensuring comparability

across countries. Previous studies on R&D efficiency suggest amending the output side

by scientific publications to consider basic and fundamental research output (Sharma

and Thomas, 2008). We therefore add scientific and technical journal articles taken

from the world development indicators as the second output dimension.

The data set covers 28 countries (26 OECD member countries and two non-member

countries, Argentina and China for the 1993-2007 period, resulting in an unbalanced

panel set of 428 observations. Countries are listed in Table 3, with the number of years

observed respectively.

Besides the relations between direct inputs and outputs, countries might differ in

the underlying technology of knowledge production due to observable or unobservable

characteristics. To appropriately measure R&D efficiency, we allow for different tech-

nologies by assigning countries to the corresponding latent classes. Class membership

is determined empirically by using switching variables that capture contextual factors

shaping the environment in which innovation takes place.

4.2 Switching variables

Country-specific variables (qi variables in Equation 11) are used to determine latent

class probabilities in order to classify the countries within the sample. In line with

the literature, the following variables are considered to be influential in identifying

technological differences in knowledge production:

* Business expenditures on R&D per GDP (BEXRD)

In the existing literature (see e.g. Wang, 2007), it is argued that the distribution of R&D

expenditures over sources (public and private) is country-specific and varies remarkably

across countries. A dollar invested in private R&D might increase a country’s patent

12



Variable Mean St.Dev. Min Max

Knowledge Production Function
x1 142252.9 270734.0 676.0 1430551.0
x2 21346.2 47498.9 61.3 286341.7
y1 3141.5 7498.4 0.1 52441.6
y2 20622.0 38700.1 104.0 209694.7

Switching Variables
V C 5.1 1.5 1.2 8.6
HTE1 16.9 10.2 1.2 57.1
OPENESS 70.8 35.1 16.0 184.7
EDUC 5.4 1.0 2.6 7.1
NC 7.2 0.8 5.3 9.0
BEXRD 0.984 0.696 0.059 3.199
HTE2 0.038 0.048 0.001 0.329

Table 1: Descriptive statistics

Variable Def. Description Sources

Knowledge Production
Function
PCT patents y1 Patent applications filed under OECD Patent Statistics

the Patent Cooperation Treaty (PCT)
Publications y2 Scientific and technical journal articles WDI
Researcher x1 Total researchers (FTE) MSTI
R&D Expenditures x2 Gross domestic expenditure on R&D MSTI

Switching Variables
Venture capital V C Venture capital is easily IMD World

available for business development Competitiveness
Yearbook

High tech. exports
(%Manufacturing) HTE1 High-technology exports WDI

(% of manufactured exports)
Trade OPENESS Trade % of GDP WBDI
Education exp. EDUC Total education expenditure WDI

per GDP
National culture NC The national culture is IMD World

open to foreign ideas Competitiveness
Yearbook

Business exp. BEXRD Business expenditure on R&D per GDP MSTI, OECD
High tech. exports HTE2 High-technology exports WDI
(% GDP) (% of GDP)

Table 2: Definition and sources of variables
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Country Number of
observed years

1993 - 2007

Argentina 9
Australia 17
Belgium 16
Canada 17
China 15
Czech republic 11
Denmark 17
Finland 14
France 17
Germany 14
Greece 17
Hungary 15
Iceland 17
Ireland 17
Italy 17
Japan 17
Korea 11
Mexico 10
Netherlands 14
New zealand 17
Norway 16
Poland 12
Portugal 17
Spain 17
Sweden 17
Turkey 16
United Kingdom 17
United States 17

Table 3: Countries in the Sample

output more than a dollar invested in public R&D (Wang, 2007). We therefore include

the share of business expenditures on R&D per GDP (BEXRD) as one of the switching

variables to control for the impact of private R&D.

* National culture (NC)

Recent empirical applications analyze the link between social and cultural factors and

innovation performance (Halkos and Tzeremes, 2011). The assumption is that cultural

factors have a direct impact on the efficiency of knowledge production. Our approach

differs as we assume national culture (NC), measured by expert ratings collected in

surveys, to have an impact on the technology itself (and its marginal products) and

not on performance levels.11

* Total education expenditure per GDP (EDUC)

11The IMD World Competitiveness Yearbook (WCY) ranks countries annually according to their
openness to foreign ideas, which in turn is used to derive the overall competitiveness of nations. A
detailed description of the construction of that indicator can be found in IMD (2011).
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Researchers can only be hired if a sufficient number of young people holds a university

degree and choose to stay in academia or applied research. Therefore, the structure

of the educational system influences the supply of human capital that is qualified for

R&D. We thus include the total expenditure on education per GDP (EDUC) as a

determinant of latent class probability. This can also be interpreted as an indicator of

the involvement of universities in research (Fu and Yang, 2009).

* Trade per GDP (OPENNESS)

The empirical literature hypothesizes that openness to trade affects the knowledge

generation of countries by enabling knowledge spillovers and easing the access to high-

quality inputs (Fu and Yang, 2009). To proxy the degree of openness of an economy,

the ratio of trade volume to GDP (OPENNESS) is tested as a potential switching

variable.12

* Share of high technology exports (HTE1) and (HTE2)

Fu and Yang (2009) emphasize the influence of the industry structure, more specifi-

cally the share of high technology activity in an economy, on innovative performance.

Evidence suggests a positive impact of the value-added share of the high-technology

industry on the patenting capacity of a country. We therefore include the share of high

technology exports in manufacturing exports (HTE1) and the share of high technol-

ogy exports per GDP (HTE2) to test whether the industrial structure matters for the

shape of the knowledge production function.

* Venture capital (V C)

The strength of venture capital markets influences the availability of resources that

can be devoted to R&D at the business level. If venture capital is easily available for

business development, high-risk projects can be developed that could not otherwise be

undertaken. This is of special importance for small firms and entrepreneurs. Access to

venture capital is, therefore, a key factor affecting innovation performance (Guan and

Chen, 2012).

Summary statistics and the exact definition of the variables, together with the

source of the variables, are shown in Table 1 and Table 2. As class membership is

constant over time, switching variables are assumed to be time-invariant. Country-

specific averages are therefore used in the estimation to capture systematic differences

that could drive the shape of the frontier.

12Trade to GDP ratio is defined as (exports + imports)/(2*GDP).
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5 Empirical results

5.1 Estimation results

We estimate a latent class model with two different classes to test whether different

underlying knowledge production technologies are prevalent in our sample, caused by

country-specific heterogeneity. The likelihood ratio test shows that the flexible translog

functional form is appropriate, not the stricter Cobb-Douglas specification.13 All vari-

ables are mean corrected to avoid outliers in the sample, which could have a large

impact on the estimation outcome. Coefficients in this case can be interpreted as elas-

ticities for the sample averages. Estimating a latent class model requires, a priori,

determination of the number of classes. The Akaike information criteria (AIC) prefers

the definition of two classes (-0.534) to a single class model (0.43).14 Therefore, we

use the two class specification. Given the small number of observations in each class

and the number of parameters to be estimated for a translog output distance function,

further segmentation up to three or more classes asks too much of the data (Schnier

et al., 2006).15 Table 4 shows the regression results of the maximum likelihood esti-

mates of the distance function estimation for two classes (see Equation 7). In terms

of the share of significant parameters, the output distance function appears to reason-

ably fit the observed data. The estimated coefficients of the first order terms have the

expected signs (the normalized second output has a positive sign and both inputs have

a negative sign) and are statistically significant. The prior class probabilities display a

relatively equal latent sorting of the observations into both classes (class A = 60 per

cent and class B = 40 per cent).

The first order elasticities αmj and βkj (see Equation 7) represent the output and

input elasticities contribution to the production of the output y1. The coefficients of

the first order output α2A and α2B and input variables β1A, β1B and β2A, β2B differ

significantly in both classes.16 With respect to outputs, the homogeneity restriction

allows us to calculate the share of both outputs in knowledge production as the output

coefficients sum up to one. The share of scientific publications (α2A, α2B) is equivalent

to 0.843 in class A and 0.890 in class B. Accordingly, the share of patents in total

13We estimate the unrestricted translog and the restricted Cobb-Douglas model and obtain a like-
lihood ratio test statistic of 275.65 favoring the unrestricted translog model.

14Following Orea and Kumbhakar (2004) and Greene (2007), the AIC can be used to compare
models with different number of classes. The appropriate model has the lowest AIC.

15Empirical results with more than two classes did not converge to a meaningful solution within the
maximum likelihood estimation. The econometric estimation problems might be due to a high degree
of within-class multicollinearity.

16Controlling for time variation, including a linear time trend and/or time dummies in different
model specifications did not reveal significant trending behavior.
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knowledge production equals 16.7 per cent in class A and 11.0 per cent in class B. The

larger share of publications is consistent with the primary data, where the number of

publications is generally higher than the number of patent applications. Estimation

results show that the marginal rate of transformation of patents and publications gen-

erated relative to the output mix differs slightly in both classes, indicating the presence

of two underlying technologies with a slightly higher patenting activity in class A.

With regard to the input side, the estimated elasticities (R&D expenditures and

number of researcher) differ significantly in both classes. In class A, the larger elasticity

with respect to R&D expenditures (β2A = -0.609) reflects its increasing share relative to

the other input: the number of researchers (β1A = -0.201) in the knowledge production

function. On the contrary, in class B the elasticities of the two input variables are

relatively similar (β1B = -0.428 and β2B = -0.448), reflecting their equal shares in the

knowledge production distance function. Comparing the two classes we therefore label

class A as ‘capital-intensive’ as the corresponding elasticities of R&D expenditures is

three times larger than the elasticity of labor input. We respectively label class B as

‘labor-intensive’, given its equal input shares in the distance function.

The second-order elasticities reflect complementary/substitution effects of the in-

puts or the outputs in the overall production (Ogundari and Brümmer, 2010; Grosskopf

et al., 2004). Negative input elasticities βkj reflect substitution effects between respec-

tive inputs (x1, x2) to the production of output (y1). Accordingly, positive input elas-

ticities indicate complementary effects of inputs. Class A shows significant evidence for

input substitution effects between R&D expenditures and the number of researchers.

For constant patent and publication output, resources can either be used to hire re-

searchers or devoted to R&D labs, equipment, materials or personnel. On the contrary,

for class B we neither find a significant substitution nor complementarity effect between

both inputs.

Empirical evidence suggests that overall parameter heterogeneity prevails in our

model. The corresponding likelihood ratio test (unrestricted vs. restricted) clearly

rejects with a test statistic of 256.5 the Null hypothesis of equal parameter estimates.

Our results show that the two classes of countries, the ‘capital-intensive’ and the

‘labor-intensive’ one, as identified by the latent class specification are characterized

by different knowledge production frontiers. Estimating a common frontier without

controlling for parameter heterogeneity, as often conducted in previous empirical liter-

ature on R&D efficiency, leads to biased estimates and therefore inconsistent individual

efficiency estimates and country rankings.
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‘Capital-intensive’ Class A ‘Labor-intensive’ Class B
Variable Coeff. St.Error Coeff. St.Error

Constant -0.506 0.036 -0.090 0.047
y2 α2A 0.843 0.023 α2B 0.890 0.029
x1 β1A -0.201 0.056 β1B -0.428 0.057
x2 β2A -0.609 0.048 β2B -0.448 0.050
y2y2 α22A 0.095 0.010 α22B 0.310 0.035
x1x1 β11A 0.854 0.221 β11B -0.013 0.139
x2x2 β22A 0.645 0.173 β22B -0.255 0.144
y2x1 δ21A -0.165 0.067 δ21B 0.049 0.048
y2x2 δ22A 0.096 0.055 δ22B 0.037 0.048
x1x2 β12A -0.760 0.190 β12B 0.180 0.142
T ηA -0.001 0.003 ηB -0.003 0.003
Sigma σA 0.300 0.021 σB 0.288 0.017
Lambda λA 3.834 1.140 λB 10.342 4.405

Constant -10.745 7.927 Fixed Parameter
V C γ1A 10.093 4.348 Fixed Parameter
BEXRD γ2A -1.085 1.039 Fixed Parameter
OPENESS γ3A -2.028 1.959 Fixed Parameter
HTE2 γ4A -0.773 0.724 Fixed Parameter

Table 4: Estimation results Model 1

5.2 Class-specific efficiencies

The reliability and consistency of the classes determined is controlled for by defined

switching variables. Table 4 displays coefficient estimates of latent class probability

functions δ̂ (see Equation 11). Including switching variables tests whether they deliver

useful information in classifying the sample, more specifically if they provide useful

information to determine the probability of a country belonging to a certain class.

Based on the empirical literature on R&D efficiency, we test seven switching vari-

ables reflecting common systematic differences in the innovative environment. In our

baseline Model 1, venture capital (V C), business expenditures on R&D per GDP

(BEXRD), trade per GDP (OPENESS) and the share of high technology exports

per GDP (HTE2) serve as switchers.17 Table 4 shows that only venture capital has

a significant impact in all specifications. We conclude that the positive sign on the

coefficient of V C in class A suggests that the better the availability of venture capital,

the greater the probability of a country to belong to class A. In contrast to venture

capital, the share of business expenditures, trade openness and the share of high tech-

nology exports are not found to have a significant contribution to the classification of

the sample. Additionally, neither national culture (NC) nor education expenditure per

GDP (EDUC) drive class probabilities (see Table 5). The evidence on the share of

17The complexity of the model means that we can only test 4 switchers at the same time, due to
the limited number of degrees of freedom. We therefore conducted different estimations of model
variations with respect to switchers, see Table 5 and Table 6.
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‘Capital-intensive’ Class A ‘Labor-intensive’ Class B
Variable Coeff. St.Error Coeff. St.Error

Constant -0.506 0.036 -0.090 0.047
y2 α2A 0.843 0.023 α2B 0.890 0.029
x1 β1A -0.201 0.056 β1B -0.428 0.057
x2 β2A -0.609 0.048 β2B -0.448 0.050
y2y2 α22A 0.095 0.010 α22B 0.310 0.035
x1x1 β11A 0.853 0.223 β11B -0.013 0.139
x2x2 β22A 0.645 0.174 β22B -0.255 0.144
y2x1 δ21A -0.165 0.067 δ21B 0.049 0.048
y2x2 δ22A 0.096 0.055 δ22B 0.037 0.048
x1x2 β12A -0.760 0.191 β12B 0.180 0.142
T ηA -0.001 0.003 ηB -0.003 0.003
Sigma σA 0.300 0.021 σB 0.288 0.017
Lambda λA 3.834 1.140 λB 10.342 4.405

Constant -3.106 11.245 Fixed Parameter
V C γ1A 11.154 5.253 Fixed Parameter
NC γ5A -0.728 5.476 Fixed Parameter
HTE1 γ6A -3.300 1.535 Fixed Parameter
EDUC γ7A -2.804 3.456 Fixed Parameter

Table 5: Estimation results Model 2

high technology exports per manufacturing exports is mixed, while the corresponding

coefficient is not found to be significant in Model 1, it becomes significant in Model 2.

Results suggest that large high technology exports increase the probability of a country

to belong to class B.

Referring to the ‘capital’- and the ’labor-intensive’ classes, we observe that the

capital-intensive class encompasses many European countries such as Germany, United

Kingdom, Netherlands, Spain, Italy, Greece, Finland, Sweden and Denmark. It also in-

cludes Non-European Anglo-Saxon countries like the United States, Australia, Canada

and New Zealand. Eastern European countries, usually formerly socialist countries

(Czech Republic and Hungary) share the labor-intensive technology, together with

small Western European countries like Belgium, Portugal, Iceland, Ireland, Norway

and Non-European developing countries (Argentina, China, Mexico). Japan and Ko-

rea, the only Asian Countries considered here, also belong to class B.

Empirical evidence shows that the modeling of inefficiency is appropriate for this

setting, as the total variance of the composed error σ =
√
σ2
v + σ2

u results to the largest

part from the inefficiency component σu and not from the unsystematic error term σv.
18.

The sample statistics for the estimated efficiencies for the whole sample and for each

estimated class are illustrated in Table 7. As opposed to nonparametric DEA, in the

18as λ = σu/σv = 3.834 is significant and larger than one (see Table 4)
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‘Capital-intensive’ Class A ‘Labor-intensive’ Class B
Variable Coeff. St.Error Coeff. St.Error

Constant -0.506 0.036 -0.090 0.047
y2 α2A 0.843 0.023 α2B 0.890 0.029
x1 β1A -0.201 0.056 β1B -0.428 0.057
x2 β2A -0.609 0.048 β2B -0.448 0.050
y2y2 α22A 0.095 0.010 α22B 0.310 0.035
x1x1 β11A 0.852 0.233 β11B -0.013 0.140
x2x2 β22A 0.644 0.178 β22B -0.255 0.144
y2x1 δ21A -0.165 0.069 δ21B 0.049 0.048
y2x2 δ22A 0.096 0.056 δ22B 0.037 0.048
x1x2 β12A -0.759 0.199 β12B 0.180 0.142
T ηA -0.001 0.003 ηB -0.003 0.003
Sigma σA 0.300 0.021 σB 0.288 0.017
Lambda λA 3.833 1.140 λB 10.342 4.405

Constant 7.793 8.410 Fixed Parameter
V C γ1A 18.779 9.449 Fixed Parameter
HTE1 γ6A -4.616 2.347 Fixed Parameter
OPENESS γ3A -4.668 3.001 Fixed Parameter
EDUC γ7A -3.978 3.706 Fixed Parameter

Table 6: Estimation results Model 3

parametric stochastic efficiency framework no country is fully efficient. The efficiency

estimates vary between 0.382 and 0.991 with the mean R&D efficiency being relatively

high: 0.853. In comparison to other nonparametric R&D efficiency studies (see e.g.

Sharma and Thomas, 2008), this can be explained by the fact that in our approach

deviation from the frontier are not only due to technical inefficiency, but also due to

noise (random error) in the data. However, in comparison to other SFA R&D efficiency

studies, our model leads to higher mean efficiencies (Fu and Yang, 2009; Wang, 2007). If

there is more than one knowledge production frontier embodied in the data, the latent

class model is able to capture the different technologies and disentangle heterogeneity

from inefficiency. Thus, larger inefficiencies within the knowledge production process

found in other empirical studies need to be interpreted with caution.

Within the latent class framework, we no longer assume a common technology and

frontier for all the countries, but two different ones, thus countries of the ‘capital-

intensive’ class A are benchmarked against the frontier of class A and countries of the

‘labor-intensive’ class B respectively to the frontier of class B.19 We observe a slight

difference in the performance levels of the latent classes (0.86 vs. 084).

Regarding the overall mean efficiencies over the observation period (1993-2007) in

Table 8 we observe that the United Kingdom is ranked highest together with other

19In fact, as explained in Section 3.2 both frontiers are taken into account weighted with the relative
probability. The posterior probabilities of class membership where clear for all the countries meaning
near by 1 for one class and zero probability for the other class.

20



Obs Mean Std.Dev. Min Max

Total 428 0.853 0.102 0.382 0.991
Class A 240 0.863 0.089 0.551 0.981
Class B 188 0.842 0.115 0.382 0.991

Table 7: Summary Statistics of efficiency Scores

Anglo-Saxon countries such as New Zealand, Australia and Canada. This result is

stable over our observation period. The Netherlands obtain a high efficiency score in

providing R&D research output, while Germany and the US are both ranked in the

middle. Small Scandinavian countries, such as Denmark and Finland, are among the

lowest ranked countries in class A. Turkey is scored last when considering the mean

efficiency, but catching up over time and finally ranked in the middle range together

with Australia and Spain in 2006. In class B Ireland, France, Belgium and Norway are

most efficient, while Korea, Mexico and Portugal are among the less efficient countries

in research and development worldwide, so little effort has been made in innovation at

the technology frontier. Mexico has remained at the bottom of the rankings, illustrated

by the low efficiency score in 2006, while Portugal has increased its R&D efficiency

over time. It is remarkably that China, starting with a low efficiency score in 1996

undertook much effort and has increased its R&D efficiency significantly. In 2006,

China was already the most efficient country in class B.

6 Summary and conclusions

This paper analyzes the R&D efficiency level of 26 OECD and 2 Non-OECD countries

over the 1993-2007 period. Comparing the performances of countries, researchers and

policy makers are faced with a high degree of cross-country heterogeneity regarding

the national innovation systems. The heterogeneity might manifest in different indus-

trial or financial structures, different national cultures or educational systems. Only

parts of this heterogeneity is observable in the data and can be accounted for in the

econometric model. What we noticed in the empirical literature on R&D efficiency is

that usually one uniform homogeneous knowledge production technology is assumed

for all countries with the same input and output intensities, marginal products and

elasticities. However, if more than one type of production frontier is embodied in the

data, unobserved factors might be interpreted as inefficiency. To avoid such types of

misspecification we argue in favor of a latent class stochastic frontier model reflecting

country-specific production patterns. This new modeling approach in the literature
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Country Class 1993-2006 1996 2001 2006

Argentina B 0.880 na 0.968 0.841
Australia A 0.909 0.910 0.930 0.880
Belgium B 0.909 0.959 0.842 0.923
Canada A 0.890 0.914 0.858 0.846
China B 0.820 0.813 0.821 0.977
Czech Republic B 0.839 na 0.827 0.905
Denmark A 0.814 0.838 0.800 0.740
Finland A 0.766 0.843 0.738 0.691
France B 0.943 0.964 0.956 0.914
Germany A 0.840 na 0.878 0.904
Greece A 0.880 0.854 0.823 0.959
Hungary B 0.836 0.764 0.947 0.842
Iceland B 0.814 0.924 0.803 0.719
Ireland B 0.947 0.967 0.960 0.954
Italy A 0.837 0.801 0.930 0.962
Japan B 0.838 0.832 0.818 0.850
Korea B 0.633 na 0.651 0.803
Mexico B 0.652 0.658 0.640 0.570
Netherlands A 0.942 0.948 0.940 0.944
New zealand A 0.946 0.961 0.957 0.926
Norway B 0.897 0.928 0.919 0.925
Poland A 0.865 0.772 0.792 0.955
Portugal B 0.803 0.644 0.793 0.948
Spain A 0.861 0.882 0.908 0.896
Sweden A 0.838 0.905 0.836 0.784
Turkey A 0.728 0.655 0.686 0.860
United Kingdom A 0.962 0.970 0.970 0.969
United States A 0.846 0.866 0.854 0.902

Table 8: Efficiency Changes in time

on R&D efficiency improves the empirical results (efficiency scores and rankings) be-

cause it simultaneously estimates a set of distinct production functions disentangling

heterogeneity from inefficiency. Unobserved production differences are explained more

appropriately by alternative production functions and not technical efficiency.

Our hypothesis of heterogeneous groups of countries is confirmed. We identify two

different latent classes being prevalent in the data: a more capital-intensive one and a

relatively labor-intensive one, according to the size of the estimated input elasticities

in the two classes. This is reflected by the significant different marginal products

(input and output elasticities) in the estimated output distance function. Differences

in the obtained efficiencies in comparison to other empirical studies are caused by

the underlying benchmarking approach: different frontiers for the different classes are

determined. We argue, that assuming a uniform homogeneous knowledge production

frontier for such different countries results in ambiguous and questionable parameter

estimates and therefore biased efficiency estimates and rankings.
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