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ABSTRACT 

Short-term GDP forecasting with a mixed frequency dynamic factor 
model with stochastic volatility* 

In this paper we develop a mixed frequency dynamic factor model featuring 
stochastic shifts in the volatility of both the latent common factor and the 
idiosyncratic components. We take a Bayesian perspective and derive a 
Gibbs sampler to obtain the posterior density of the model parameters. This 
new tool is then used to investigate business cycle dynamics and for 
forecasting GDP growth at short-term horizons in the euro area. We discuss 
three sets of empirical results. First we use the model to evaluate the impact 
of macroeconomic releases on point and density forecast accuracy and on the 
width of forecast intervals. Second, we show how our setup allows to make a 
probabilistic assessment of the contribution of releases to forecast revisions. 
Third we design a pseudo out of sample forecasting exercise and examine 
point and density forecast accuracy. In line with findings in the Bayesian 
Vector Autoregressions (BVAR) literature we find that stochastic volatility 
contributes to an improvement in density forecast accuracy. 
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1 Introduction

The conduct of monetary and fiscal policy relies on the timely assessment of current and future

economic conditions. The task of providing an accurate picture of the current cyclical position

is significantly plagued by the delay with which crucial economic indicators are released. GDP

data, for example, are usually published with a 45 days delay both in the US and in the euro

area. Important quantitative monthly indicators, like industrial production indexes, suffer more

or less from the same publication delay. Survey data, on the other hand, provide very timely

information as they are published roughly at the end of the reference month. Unfortunately,

forecasts based on qualitative data only are known to be much less reliable than predictions

based on quantitative information, see Banbura and Runstler (2011). The econometric litera-

ture has progressed significantly in the field of short-term forecasting in the past decade, and

a number of tools have been developed, capable of dealing with the asynchronous timing of

data releases, integrating data at different frequencies and dissecting the information content of

monthly releases for tracking quarterly variables. Small and large scale factor models, in partic-

ular, have become the workhorse for short term forecasting. On the small scale side, building on

the Stock and Watson (1989) coincident indicator, Mariano and Murasawa (2003), henceforth

MM03, have proposed a unified framework for modeling quarterly GDP together with monthly

indicators. The approach has recently been extended by Camacho and Perez-Quiros (2010) to

accommodate real time issues and different GDP releases. On the large data side, research by

Angelini et al. (2011) and Banbura and Modugno (2010) has documented the predictive content

of a large number of indicators for GDP growth and also introduced new tools to link monthly

data releases to GDP forecast revisions. These models are nowadays used on a regular basis to

inform decision makers both at Central Banks as well as in private institutions.1

Although the literature has moved very rapidly, there are still some gaps between the
1An alternative approach to short-term forecasting with mixed frequency data is based on the MIDAS

regressions introduced by Ghysels et al. (2004), see e.g. Clements and Galvão (2008), Foroni and Marcellino
(2012) and Marcellino and Schumacher (2008) for macroeconomic applications. Mixed frequency VARs provide
a third option, see e.g. Kuzin et al. (2011).
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demands posed by policy makers and the answers that the models discussed above can provide.

In particular, policy makers have become more and more interested in having not only point

forecasts, but also a model based assessment of the uncertainty surrounding the outlook. This is

testified by the number of Central Banks that have started publishing fan charts and confidence

bands around their medium/long term forecasts (Bank of England, Bank of Canada, Norges

Bank, South Africa Reserve, the Sveriges Riksbank, the Bank of Italy and the US Fed). Despite

the growing preference for a probabilistic assessment of economic projections, however, the focus

of short-term forecasting models is still on point forecasts.

Another open issue in the field of short-term forecasting relates to parameter instability.

As economic systems evolve and are hit by large shocks, the link between different indicators

is likely to change over time, requiring some flexibility in the models parameters. The issue of

forecast failure in the presence of structural breaks, which has been explored extensively in the

case of points forecasts, has been recently extended to density forecasting. In particular Jore

et al. (2010) show that changes in the underlying data generating process can severely hinder

the accuracy of density forecasts produced with time invariant models. If structural breaks,

however, are sufficiently large and distant in the past they do not pose serious problems. They

can be easily detected with standard statistical tests and parameter instability can then be

either incorporated in the model or simply bypassed by splitting the sample or adopting a

rolling estimation scheme. These strategies, however, are not viable if breaks are, rather than

large and discrete, small and continuous, a form of parameter time variation that has received

a lot of attention in the macro empirical literature in the past decade. Indeed a number of

papers, mainly concerned with structural monetary analysis, have documented the inadequacy

of constant parameter models for describing macroeconomic data and have called for some form

of slow, continuous, time variation in model parameters, see Benati and Surico (2008), Cogley

and Sargent (2005) and Primiceri (2005). The message coming from this literature has raised

little attention in the density forecast literature until the recent paper by Clark (2011), who

shows that allowing for stochastic shifts in the volatility of the shocks in a BVAR significantly
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increases density forecast accuracy for a number of US variables.

In this paper we take stock of these issues and develop a mixed frequency small scale factor

model that is suitable for producing density forecasts and that allows for time variation in some

of the parameters. We start off with the basic setup of MM03 and twist it in two directions.

Our first step consists of casting the model in a bayesian estimation framework. By treating

the model parameters as random variables we can draw a distribution of forecasts from the

predictive density making the model easily suitable for producing density forecasts. Secondly,

following Clark (2011), we extend the model to allow for random shifts in the volatility of the

underlying shocks. To clarify the expected gains of this modeling choice let us briefly describe

the setup. In our factor model each variable is treated as the sum of two components, a

latent factor which is common to all the variables and governs the amount of correlation across

components, and an idiosyncratic component which is uncorrelated across variables. Dynamics

are introduced by letting the common and the idiosyncratic components follow an autoregressive

process subject to random shocks. Our innovation consists of allowing the variances of these

shocks to vary continuously over time rather than being constant as in MM03.2 We expect

the model to boost the variance of the shocks in more turbulent times, hence producing wider

confidence bands and providing a more accurate assessment of the uncertainty surrounding the

median forecast. On the other hand, the richer structure of our model implies a much heavier

parametrization, posing a trade-off between model flexibility and model parsimony, an issue

that can be particularly important in relatively short samples and that can only be evaluated

empirically.

After showing how to estimate the model we turn to an empirical application in which we

use a small number of monthly indicators to predict quarterly GDP growth in the euro area.

We present three sets of results. First we extend the approach proposed by Giannone et al.

(2008), henceforth GRS, and show how successive macroeconomic releases not only improve
2See Baumeister et al. (2010), Del Negro and Otrok (2008) and Korobilis (2009) for examples of bayesian

dynamic factor models with stochastic volatility. In their models they do not handle mixed frequency data.
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point forecast accuracy but also increase the precision of density forecasts and reduce the

width of forecast intervals. Second, we illustrate how, in a given quarter, our new tool can

be applied not only to interpret the news content of monthly releases, like in Banbura and

Modugno (2010), but also to assess how much ‘confidence’ the model places on the revisions

implied by the release of monthly indicators. Third, we design a (pseudo) real time out of

sample forecasting exercise and evaluate both the point and density forecasts produced by the

model. In line with Clark (2011) we find that the introduction of stochastic volatility leads to

an improvement of both point and density forecast accuracy.

The paper is structured as follows. In section 2 we describe the model. In section 3 we

discuss the main steps of the Gibbs sampler used for simulating the posterior distribution of

the parameters. Section 4 presents the empirical application and section 5 concludes.

2 The model

In this section we spell out the details of our model. Let Yq,t be a quarterly series, which can

be seen as a monthly variable with its value associated to the third month of the quarter and

missing observations in the first two months, and Ym,t a vector of k monthly series Ymj,t, for

j = 1, 2, . . . , k (from this point onwards we use the convention that whenever we write mj we

mean the jth element in the vector of monthly variables, for j = 1, 2, . . . , k).3 Now let Yq,t be

the geometric mean of a latent random variable Y ?
qt such that:

lnYq,t =
1

3
(lnY ?

q,t + lnY ?
q,t−1 + lnY ?

q,t−2) (1)

Filtering both sides with the filter (1− L3), after some simple manipulation yields:

yq,t =
1

3
y?q,t +

2

3
y?q,t−1 + y?q,t−2 +

2

3
y?q,t−3 +

1

3
y?q,t−4 (2)

3Although the setup can easily accommodate multiple quarterly variables we confine the model description
to the single quarterly variable case to keep the notation as simple as possible.
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where small case letters indicate growth rates over the previous three months: yq,t = ∆3lnYq,t.

We assume a dynamic (single) factor model for the latent process y?q,t and the monthly observed

variables ym,t.4

The system of measurement equations is:

 y?q,t

ym,t

 =

 α?1

α2

+

 βqft

βmft

+

 uq,t

um,t

 (3)

The law of motions of the factor and of the the idiosyncratic disturbances of the quarterly and

monthly variables are described by the following:

Φf (L)ft = vte
λf,t/2 (4)

Φq(L)uq,t = εq,tσqe
λq,t/2 (5)

Φmj(L)umj,t = εmj,tσmje
λmj,t/2 j = 1, . . . , k (6)

where vt, εq,t and εmj,t are uncorrelated N(0,1) and the Φi(L) polynomials are lag polynomials

of order pi:

Φi(L) = 1− φi1L− φi2L2 − · · · − φipi
Lpi (7)

for i = f, q,mj. The log-volatilities λi,t follow a driftless random walk:

λi,t = λi,t−1 + θi,tσλ,i θi,t ∼ N(0, 1) (8)

for i = f, q,mj, and are assumed to be independent across equations. The hypothesis that

the innovations to the idiosyncratic components of the factor and of the observable are cross-

sectionally uncorrelated is an important identifying assumption that forces all the comovement
4The use of more than one common factor does not pose any additional technical difficulty as it would simply

result in an enlargement of the state vector in the State Space representation of the model.
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in the panel to occur through the common factor.

Since the variable y?q,t is not observed, the measurement equations can be rewritten in terms

of the observable variable yq,t using the identity (2):

 yq,t

ym,t

 =

 α1

α2

+

 β1(
1
3
ft + 2

3
ft−1 + ft−2 + 2

3
ft−3 + 1

3
ft−4)

β2ft

+ (9)

 1
3
uq,t + 2

3
uq,t−1 + uq,t−2 + 2

3
uq,t−3 + 1

3
uq,t−4

um,t


where α1 = 3α?1. A more compact state space representation of the model is the following:

yt = Fµt (10)

µt = Hµt−1 + ηt ηt ∼ N(0, Qt) (11)

Λt = Λt−1 + ζt ζt ∼ N(0,Ξ) (12)

where yt collects both quarterly and monthly variables, the state vector µt includes the un-

observed factor ft and the idiosyncratic components (uq,t and um,t), the matrix F collects the

factor loadings, H collects the autoregressive parameters of the laws of motion of the unob-

served factors and of the idiosyncratic components, the time varying variance matrix Qt is a

diagonal matrix whose diagonal elements are the variances eλf,t , σ2
qe
λq,t , σ2

me
λmj,t , Λt is the vec-

tor of drifting volatilities and Ξ is a diagonal matrix collecting the variances that determine the

amount of time variation of the log-volatilities (σ2
λ,i, i = f, q,mj).

This model nests the one proposed by MM03, which can be easily recovered from our more

general setup by shutting off the drifting volatilities, that is by setting Λ0 = 0 and Ξ = 0. In

this case the matrix Qt is replaced by its constant counterpart Q.

To identify the model parameters some restrictions need to be placed. First, the scale of the

factor loadings and of the factors cannot be separately identified, so we restrict the variance
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of the errors of the common factors to be 1 (see equation 4). Second, we need to fix the scale

of the stochastic volatilities, which enter as a multiplicative element of the constant variances

(see equations 4 to 6) and therefore can not be separately identified. We follow Del Negro and

Otrok (2008) and identify the stochastic volatilities by setting to zero their initial condition

λi = 0.

3 Model Estimation

The model is estimated with Bayesian methods using a Metropolis within Gibbs sampling

procedure. The Gibbs sampler simplifies the daunting task of obtaining draws of the model

parameters from the joint posterior distribution to a number of more manageable problems,

which involve sampling from the distribution of a subset of parameters conditional on the

remaining ones and on the data, see Kim and Nelson (1999). The sampling algorithm consists

of six blocks, which we briefly describe in what follows. More precise details on the Gibbs

sampler can be found in Appendix A.

3.1 Steps 1 and 2: drawing F and the time constant elements of Qt

Since the model disturbances are uncorrelated, elements of the F matrix can be drawn row by

row (equation by equation). Take the ith measurement equation:

yi,t = F (i)µt = β(i, L)ft + Φi(L)−1εi,tσie
λi,t/2 (13)

Conditioning on ft, Φi(L) and λi,t, this is a standard regression with autocorrelated and het-

eroscedastic disturbances. Pre-multiplying by Φi(L) and dividing by eλi,t/2 one obtains a stan-

dard regression model with homoscedastic, uncorrelated residuals. Positing a Normal-gamma

conjugate prior, the conditional posterior for β(i, L) and σi is also Normal-gamma.
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3.2 Step 3: drawing H

The transition matrix H can also be drawn row by row. Take the ith transition equation:

µi,t =

pi∑
j=1

φjµi,t−j + ηi,t (14)

Conditioning on µi,t and on the ith element of the Qt matrix (qi,t), this is a regression with

heteroscedastic residuals. The residuals can be whitened by dividing by qi,t. Positing a Normal

prior for the regression coefficients the conditional posterior is also Normal.5

3.3 Step 4 and 5: drawing the stochastic volatilities

There are a number of methods for drawing the stochastic volatilities λi,t and the variance

σλ,i. We employ the Jacquier et al. (1994) algorithm, which involves drawing from a log-normal

density and a Metropolis acceptance step. Details on the algorithm can be found in Cogley

and Sargent (2005), Appendix B.2.5.

3.4 Step 6: drawing µt

Conditioning on all the other parameters and on the data, draws of the state vector can obtained

via a state vector simulation smoother as in Kevin and Kohn (1994) or with the disturbance

smoother proposed by Koopman and Durbin (2003). We resort to the latter, which turns out

to be slightly more efficient from a computational point of view.
5When drawing from the conditional posterior we discard explosive roots.
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4 Empirical application: short-term forecasts of euro area

GDP

In our empirical application we apply the model to the problem of forecasting euro area GDP

growth at short horizons. Our information set consists of nine indicators, namely our target

variable, which is the rate of growth of quarterly GDP, two Industrial Production indicators

(the total index and the index for the Pulp and Paper sector), four surveys (the Germany

IFO Business Climate Index, the Composite Purchasing Manager Index for the euro area, the

Michigan Consumer Sentiment for the US, the euro area Economic Sentiment Indicator), the

bilateral US dollar euro exchange rate and a the difference between the 3 months and the 10

years spread on US Government Bonds. These indicators, listed in Table 1 were selected from a

large pool of candidate series adapting the algorithm used by Camacho and Perez-Quiros (2010)

to our Bayesian setting. More details can be found in Appendix B. The empirical specification

of the model also follows closely the one proposed by Camacho and Perez-Quiros (2010). In

particular we use a single common factor that summarizes the current state of the business

cycle. In this setting the Industrial Production indexes and the interest rate spread load on

the common factor contemporaneously. Survey data, on the other hand, are treated as if they

were in phase with the year-on-year growth rate of the Industrial Production index, therefore

loading a 11 terms moving average of the common factor.6 We also let the bilateral exchange

rate enter the model in year-on-year percentage growth, the rationale being that pricing to

market is likely to buffer temporary exchange rate short term movements with a variation in

profit margins so that only more persistent fluctuations impact on economic growth. The exact

specification of the state space matrices can be found in Appendix C.
6We also experimented with a different specification in which we relaxed this restriction and let the survey

indicators load freely on 12 distributed lags of the common factor. This modification worsened slightly the
results. Our intuition for this is that as the model is already heavily parametrized restricting the model space
leads to more efficient estimates. Also, notice that our setup allows for serial correlation in the idiosyncratic
components, so that any phase shift induced by our restriction will be picked up by the AR(2) structure of the
idiosyncratic terms. Also a model featuring two factors like in Frale et al. (2011) does not improve upon our
benchmark specifications.
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Our empirical analysis proceeds as follows. After a brief discussion of how the priors are

set (4.1), we estimate the model on the full sample to gauge the relative contributions of the

various indicators to the common factor and also to evaluate if the model actually captures

any significant shifts in the variance of the common and idiosyncratic errors (4.2). We then

turn to three empirical exercises. The first one regards the typical situation of a forecaster

that is required to update her forecasts at each release of new data. In this context we set off

by replicating with our model the analysis of news performed by GRS and evaluate how point

forecast accuracy is affected by data releases. We take advantage of the Bayesian nature of our

model and extend GRS results to examine how new data affects density forecast accuracy and

the width of forecast intervals (4.3). We then turn to a different concept of news, introduced in

the literature by Banbura and Modugno (2010). We show how our set up adds a new dimension

to their tool, as one can use draws from the posterior to derive a measure of uncertainty around

the news content of each data (or block of data) release (4.4). Our third set of results concerns a

fully fledged out-of-ample forecast exercise in which we assess the point and density forecasting

performance of our model (4.5).

4.1 Priors

To set the prior hyperparameters we follow Primiceri (2005) and retain a three years training

sample. Since the model features an unobserved component that is common to the indicators,

we start by getting an initial estimate of the common factor ft as the cross-sectional average

of the monthly indicators f startt over this training sample. Conditioning on this we then get an

estimate of the factor loadings with an OLS regression of the indicators on f startt . The prior

distributions of the factor loadings are then centered around this β̂OLS. The prior is flat as

we set the variance to 103V (βOLS). By regressing the residuals of these OLS regressions uOLS,t

on their first two lags we also obtain an OLS estimate of the autoregressive parameters of the

idiosyncratic shocks to the observable indicators. The prior distributions of the φs are then
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centered on this estimate and their variance is set to 103V (φi,OLS), where i = q, h, s. Similarly,

we use this training sample estimate of the factor f startt to set the prior mean and variance of

φf,1, φf,2. Finally, we need to set the degrees of freedom and the scales of the prior inverse-

Gamma distributions for the variances of the idiosyncratic shocks. In all the IG distributions

we set the degrees of freedom to 1, the minimum required to make the prior distributions proper

while keeping the weight of the prior as low as possible. The prior scale parameters are set at

the sum of square residuals of the OLS estimates obtained on the training sample data. The

Gibbs sampler is initialized at the prior means.

4.2 Full sample results: loadings and volatilities

In this section we report the estimation results of our model for the entire sample which starts

in January 1991 and ends in May 2011. Appendix D assesses the convergence of the Markov

Chain to the ergodic distribution based on the inefficiency factors..

A first evaluation of the relative importance of the indicators that are included in the model

is given by the posterior estimates of the factor loadings (β), which are shown in Table 2. The

highest posterior median weight (0.49) is given to the Industrial production index, followed

by GDP (0.38) and by the Industrial production index in the Pulp and Paper sector. Survey

data receive roughly the same weight (around 0.1), with a slight prevalence given to the PMI

and the weakest contribution coming from the Michigan US Consumer Survey. The annual

rate of change of the euro-dollar exchange rate and the US spread have a counter-cyclical

effect on GDP. The sign of these two parameters is easily rationalized by considering that

these indicators typically lead the business cycle, so that their correlation with current cyclical

conditions (measured by the common factor) is negative.

An alternative way to look at the relative importance of the different indicators in the

estimation of the business cycle is given by the forecast weights used by Banbura and Runstler

(2011), first derived by Koopman and Harvey (2003). Differently from factor loadings, Kalman
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filter based forecast weights take into account the different timeliness of the indicators and are

time varying. To see how these weights are computed consider the update equation of the

unobserved states that is used in the Kalman filter to update the estimate of the unobserved

states upon the arrival of new information at time t:

µt\t = µt\t−1 +Ktvt (15)

where µt\t−1 is the forecast of the states based on the information set available at time t − 1,

Kt is the Kalman gain and vt is a forecast error defined below. Now, from the measurement

and transition equations the following can be derived:

µt\t−1 = Hµt−1\t−1 (16)

vt = yt − FHµt−1\t−1 (17)

Plugging (16) and (17) in (15) an autoregressive representation of the filtered states can be

obtained:

µt−1\t−1 = Hµt−1\t−1 +Kt(yt − FHµt−1\t−1) (18)

= (I −KtF )Hµt−1\t−1 +Ktyt

Inverting equation (18) one obtains the moving average representation of the unobserved states

as a function of the observed variables. Time variation in these weights stems from the time

varying nature of the Kalman gain Kt. Given the ragged edged nature of data releases, when

timely (survey) data are published they will receive relatively more weight than lagged (hard)

indicators.

Table 3 shows these weights estimated using the last available vintage, that is May 2011.7

Given publication lags, GDP growth is known only for the first quarter of 2011 and available
7The weights are scaled as contributions to the forecasts of GDP.
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Industrial Production data refer to March 2011. The following results emerge:

1. In the last month of each quarter, when GDP is observed, the Kalman filter matches

GDP forecast with the actual figure, so that all the weight is given to GDP.

2. In the first and second month of the quarter, when GDP is unobserved but all the monthly

indicators are known (the dataset is “balanced"), over half of the estimate of (unobserved)

real activity growth depends on the two Industrial Production indexes. Soft indicators

play a minor role, with a relatively stronger contribution coming from the Economic

Sentiment Indicator

3. In the months when neither GDP nor Industrial Production data are available, the

strongest contribution to GDP forecast comes from the Economic Sentiment Indicator,

followed by the PMI.

The factor model delivers a smoothed monthly estimate of GDP growth, which we show

in Figure 1 together with the ¤-Coin indicator of Altissimo et al. (2010), which provides an

estimate of the monthly growth of euro area GDP after the removal of measurement errors,

seasonal and other short-run fluctuations.8 The estimated monthly GDP tracks very closely ¤-

Coin in periods of relative stability (from 2000 to 2008). During the recent crisis the discrepancy

between the two indicators widens considerably, owing to the fact that ¤-Coin tracks medium-

run GDP growth, while our model targets actual GDP growth and is therefore affected by

higher frequency fluctuations.

To see whether the model picks up any significant time variation in the variances of the

common and idiosyncratic errors we plot the posterior median of selected members of Qt to-

gether with their 68% confidence bands (Figure 2). Starting from the common factor (which

can be seen as a measure of the underlying business cycle) the model identifies two shifts in

volatility over the past twenty years. The former is a temporary increase at the beginning of

the past decade, roughly around the brief recession experienced by the world economy in 2001.
8Details on ¤-Coin can be found in Altissimo et al. (2010). See also http://eurocoin.bancaditalia.it/
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The latter, more persistent, starts between 2007/2008, and peaks in 2008, during the recent

Great Recession.

We next look at the hard indicators that receive the largest weights in the estimation of the

common factor (GDP and IP). Visual inspection of the variances of the idiosyncratic shocks to

these two indicators reveals that volatility has been rather stable over most of the sample, with

the exception of the latest recession, when it surged significantly until 2008 to fall thereafter.

Finally, the variance of the US spread shows a slight upward trend during the Nineties and a

much more persistent increase during the 2007/2009 recession, consistently with the financial

origins of the recent economic downturn.

4.3 News and forecasts 1

Given the mixed-frequency nature of our model, GDP forecasts are continuously updated as

new monthly data become available. The impact of data releases on forecast revisions can be

assessed using the methodology developed by GRS. To clarify the spirit of the exercise, the

concept of vintage needs to be formally introduced. The Ωvj
vintage is defined as:

Ωvj
= {Xit/vj

; t = 1, . . . , Tivj
, i = 1, . . . , n} (19)

that is the information set Ωvj
is composed of n indicators available from month 1 to month

Tivj
, where the date for which the last observation is available varies across indicators. Within

our model, a GDP forecast is obtained as an expectation of future GDP conditional on this

information set.

Now consider a new vintage Ωvj+1
, which differs from the previous one for the release of a

new observation of the ith indicator:

Ωvj+1
− Ωvj

= Xit/vj+1
(20)
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The updated information entails a change in the conditioning set and, consequently, a forecast

revision. Notice that we work with final data vintages in a pseudo real time context, that is, we

do not consider data revisions but only new end of sample releases. This means that, starting

from a given point in time, we let the information set gradually expand, one indicator at the

time.

Data releases can occur at different intervals within the month but, for simplicity, following

GRS we set up a stylized calendar in which the order of release of the various indicators is kept

fixed within the month. The stylized calendar is shown in Table 4. From a given point in time we

start enlarging our dataset by including new data on Industrial Production, typically published

around the middle of each month. In the second month of each quarter, right after Industrial

Production data are made available, GDP data are included in the information set. From the

third week onwards survey data start being published by various sources. Surveys cannot be

clearly ranked in terms of timeliness, since their release dates sometimes cross each other. We

use the convention to place the IFO index release first, followed by the PMI, the Economic

Sentiment Indicator and the US Michigan Consumer index. Finally we include exchange and

interest rates, which enter the model as monthly averages of daily data.9

GRS evaluate how efficiently their large factor model incorporates data news in terms of

Mean Squared Errors (MSE) reduction. In fact, since successive vintages carry more infor-

mation, one can reasonably expect to see a systematic fall in the forecast error variance as

indicators are updated. Exploiting the Bayesian nature of our model we add two dimensions

to this metric. First, we look at the width of the forecast distribution at different horizons

and investigate whether it shrinks as the information set expands. In a way this gives us some

indication to whether the model forecast gains confidence as new information accrues and the

forecast horizon decreases. Notice that this notion of forecast confidence is not strictly related

to forecast accuracy, since the model might produce narrower confidence bands around its cen-
9This timing convention, which is the same used by GRS, somewhat penalizes financial variables as daily

information on the dollar-euro and on the spread are disregarded.
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tral forecast but the forecast distribution might well be moving further away rather than closer

to the target as the information set expands. Second, we move beyond point forecast accuracy

and evaluate the evolution of density forecast accuracy. To this end we use the log-score, that

is the logarithm of the predictive density generated by the model evaluated at the outturn of

the series. Since the log-score measures the probability that the model assigns to the actual

value prior to its realization, we expect to see higher log-scores as the information set expands.

We view these three tools (Mean Squared Errors, confidence interval width and log-scores)

as strongly complementary in the evaluation of the impact of news on GDP forecasts. Provided

that point forecast accuracy increases with the arrival of more information (i.e. provided that

the MSE falls), it is desirable to have less uncertainty around the forecast (i.e. it is desirable

to have narrower confidence intervals) but this decrease in uncertainty must not come at the

cost of lower density forecast accuracy (i.e. the log-score must rise).

GRS provide evidence that the precision of the signal increases within the month as new

data are released in both an in-sample and an out of sample exercise. Due to computational

constraints we provide evidence only on the in-sample effect of news in a sample period spanning

the 2004-2001 period. Running a pseudo out-of-sample evaluation would, in fact, require us

to run nine (the number of indicators updated each month) MCMC for each of the months

considered in the empirical analysis, which would be computationally quite demanding. We

are, however, reassured by two considerations. First, the differences between the in-sample and

the out-of-sample analysis presented by GRS are minimal, so that the marginal impact of data

releases seems to depend on the timeliness of the releases and on the forecast horizon much

more than on parameter uncertainty (inherently higher in an out-of-sample setting). Second,

in section 4.5 we provide genuine out-of-sample evidence that successive data releases increase

point forecast accuracy, although in a simplified setting in which, instead of considering each

series separately, we consider only two partitions of the information set, i.e. hard and soft data.

The timing of the analysis is the following. We consider releases from January 2004 to May

2011 and, in line with GRS, we forecast each quarter from the first month of the quarter to
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the first month of the subsequent one, that is we compute three nowcasts and one backast.

For each month we update the vintages sequentially according to our stylized calendar, sample

1000 draws from the posterior, run the Kalman filter and smoother and, for each posterior

draw, produce nine GDP estimates, corresponding to the release of each of the nine indicators,

and consequently nine forecast errors. We compare our model forecasts with those of a naive

constant growth model.

In Figure 3 we show the evolution of the Mean Squared Errors within the month, relative

to the MSE obtained with the naive model. Three comments are in order. First, in the first

month the MSE falls monotonically within the month, albeit at a very slow rate. Going from

the first to the second month there is a discrete jump corresponding to the publication of the

Industrial production index. Within the second month a large fall in the MSE occurs at the

publication of the GDP for the previous quarter. When this information is released, the model

can exploit the serial correlation of the target variable and provide a more precise estimate of

current GDP growth. In this month the release of survey data and financial indicators offers

some marginal improvement in the estimate of current GDP. From the third month onwards

the contribution of soft data weakens further and only Industrial production provides some

further refinement of the GDP estimate. Also notice that throughout the forecast cycle the

MSE ratio remains below one, reflecting the valuable content of conjunctural indicators. All in

all, these results are consistent with findings in the literature that stress the declining value of

soft indicators and the increasing importance of hard data as the forecast horizon progressively

shortens.

We next assess the evolution of forecast confidence over the forecasting cycle. Since for

each of the nine data releases we have an entire distribution of GDP forecasts we can gauge

forecast confidence by measuring the dispersion of these forecasts. As a measure of statistical

dispersion we use the standardized interquartile range, that is the difference between the 75th

and the 25th percentiles standardized by the median. We choose the interquartile range since

it has some desirable statistical properties, in particular it is a robust statistics (i.e. it is not
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affected by outliers) and in a symmetric distribution it equals the median absolute deviation.

The evolution of the interquartile range over the forecast cycle is depicted in Figure 4. Two

results are worth stressing. First, the chart reveals a clear downward tendency in the dispersion

of GDP estimates, indicating that the confidence that the model places on its GDP forecasts

increases as conjunctural information accrues. Second, soft data play an important role in

driving the reduction in forecast dispersion, especially at the very beginning of the forecast

cycle when a strong fall in forecast uncertainty occurs as the first surveys become available.

Finally, in Figure 5 we show the evolution of the log-score (crossed line) together with

the log-score obtained with the constant growth model (dotted line). Consistently with point

forecast accuracy results, density forecast accuracy monotonically increases at the release of

each new indicator, suggesting that as the forecast horizon shortens the model assigns (ex

ante) a progressively higher probability to the actual GDP releases.

4.4 News and forecasts 2

In a recent paper Banbura and Modugno (2010) propose and derive an alternative way to map

directly news into forecast revisions. They motivate this alternative measure of news by noticing

that in factor models the forecast of the unobserved factors is a weighted average of present

and past observable indicators, with weights endogenously assigned by the Kalman smoother.

When the information set is enriched by a new release, the Kalman smoother incorporates

the new information by revising the weights assigned to all the available indicators making it

impossible to discern whether an improvement in forecast accuracy is due to the new release

or to a revision of the weights assigned to other indicators. They therefore devise a way to

dissect more precisely the contribution of each release to forecast revisions. Their method,

whose technical details are described in Appendix E, is of particular interest in cases when,

instead of considering the release of a single indicator, a whole block of data is released and the

contribution of the news content of each single indicator needs to be assessed.
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Our setup, by providing a quantification of the the uncertainty surrounding the news content

of a new data (or block of data) release, provides a more complete picture of the forecast revision

implied by the intra-monthly information flow.

We illustrate this point using as a case study the GDP forecast of the second quarter of 2010.

We start nowcasting this GDP release in the first half of April, when the February Industrial

Production numbers become available. We update our forecasts twice a month until the first

half of August, right before the first GDP estimate is published. The first by-monthly update

coincides with the release of a string of hard data, the second with the publication of survey

and of the monthly averages of financial indicators. The resulting forecast updates are shown

in Figure 6. The bars below the dotted line depict the contribution of the release (the news)

of each new indicator computed according to Banbura and Modugno methodology.10

At the beginning of the forecast cycle (mid-April) the prediction of the model stands quite

far from the final outcome, as the model envisages barely positive growth against a GDP growth

outturn of around 1%. Between the end of April and the middle of May positive signals coming

from the survey first, and from Industrial production and the release of GDP data for Q1

afterwards, push the forecast progressively upwards. In May a false signal sent by the release of

survey data depress again GDP growth expectations. From June onwards, positive news from

both soft and hard data set the model forecasts on the right track and GDP predictions start

fluctuating more or less around 1%, not far from the actual figure.

To complement the analysis with a measure of uncertainty on both (1) the overall revision

implied by the release of an entire data block and (2) the contribution of each indicators to

such revision, at each by-monthly update of our information set we draw 1000 forecasts from

the predictive density and map each of these forecasts onto the news.

In Figure 7 we report estimated kernel densities of the overall revision to the forecast due

to the release of ‘hard’ (upper panel) and ‘soft’ (lower panel) data between April and July.
10In order to evaluate the direct effect of news it is assumed that model parameters are unchanged if confronted

with the previous vintage.
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To show what the individual contributions look like we report in Figure 8 similar densities for

two selected indicators, namely Industrial production and the Economic Sentiment Indicator,

which appear to be responsible for most of the revisions over the forecast cycle.

From the comparison of these distributions with the information provided in Figure 6, the

importance of having a tool to identify the credibility of forecast updates emerges quite clearly.

In the second half of April and May, for example, the model picks up first a strong upward, then

a strong downward revision due to the release of survey data, which can be largely be attributed

to news in the Economic Sentiment Indicator. These releases contribute to a revision of GDP

forecast by around three decimal points on the way up, a little less on the way down. However,

results in Figures 7 and 8 show that in both months the overall revisions and the contribution of

the Economic Sentiment Indicator to such revisions are measured with considerable uncertainty,

calling for some caution in the interpretation of these forecast updates. In June and in July,

on the other hand, as monthly information accumulates and the forecast horizon shortens, the

dispersion of estimated revisions and contributions shrinks considerably.

4.5 Out of sample forecasting performance

The last empirical analysis we conduct is a pseudo out of sample forecast exercise. The design

of the exercise is similar in spirit to the sequence of forecasts updates discussed in the previous

section. In particular, for each quarterly GDP release we provide eight forecasts, starting from

six months before the end the quarter of interest to one month afterwards (backcast). Taking as

a target, for example, the third quarter of each year, we produce the first forecast in March and

the last one in October. We update each of these projections twice a month, when, respectively,

hard and soft data are released. The forecast exercise runs from the first quarter of 2006 to

the last quarter of 2010. We contrast the forecasting performance of our model with that of

a baseline setup, obtained by shutting off time variation in the volatility of the idiosyncratic

components and of the latent common factor.
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Starting from point forecast evaluation, the evolution of the Root Mean Squared Forecast

Errors over the forecast cycle of the two competing models are shown in figures 9. RMSFE

are reported as a ratio to the RMSFE attained by a trivial constant growth benchmark. Two

observations are in order. First, time variation in the variances increases forecast accuracy,

since the model with stochastic volatility has a lower relative RMSFE with respect to the

baseline model over most of the forecast horizon, from the beginning to the first two nowcasts.

From the end-month update of the second nowcast to the backcast, when more recent industrial

production figures are unveiled, the two models deliver instead broadly similar results. Second,

the RMSFEs of both models decline as the flow of information accumulates, yet the rate of their

decline is quite different. Compared to the linear model, the model with stochastic volatility

exploits more efficiently early data releases and starts outperforming the naive benchmark (i.e.

its RMSFE falls below 1) earlier in the forecast cycle. The gap between the two RMSFE

shrinks considerably when the previous quarter GDP is released (mid-month update of the

second nowcast) and the baseline model can use the first order GDP autocorrelation to adjust

the nowcast.

Turning to density forecast evaluation, we look first at coverage rates, that is the frequency

with which the actual outcome falls within a given confidence interval. Given the popularity

in Central Banks and among forecasters of confidence intervals and fan charts, this seems

a natural starting point. If the model produces a density forecast which matches well the

underlying unknown density function that has generated the data, one can expect that the

actual coverage rate equals the nominal one. For example one should find that in our out-of-

sample exercise GDP growth fell 10% of the times within our 10% confidence interval, 20% of

the times within our 20% confidence interval and so forth. To gauge uncertainty we run a t-test

on the null hypothesis that the actual coverage equals the nominal one.11 In Table 5 we report

the coverage rate for the baseline model (without stochastic volatility). We look at backcast

(projections one month after the end of the quarter), nowcast (projections during the quarter),
11As emphasized by Clark (2011) this test is slightly imprecise as it abstracts from parameter uncertainty
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and 1 step ahead forecast (projections for the next quarter).

It is clear that the baseline model produces far too wide confidence intervals for the backcast

and for the one quarter ahead forecast. In three and four cases out of ten, respectively, according

to the p-values these differences are statistically significant at the 10% confidence level. In the

case of the nowcast the situation improves, with the tests rejecting only once.

Table 6 shows that adding stochastic volatility to the model brings sizeable gains in density

forecast accuracy. In the case of the backcast, when the information set on the quarter of

interest is almost complete, confidence intervals are extremely accurate, with actual coverage

rates only once significantly different from the nominal ones, and never when the model is used

for nowcasting. In the case of one step ahead forecasts the model with stochastic volatility

records only two rejections.

Finally, we look at the normalized probability integral transforms (PITS) of the forecast

errors, another popular tool for evaluating density forecasts. According to the testing framework

developed by Berkowitz (2001), if the model forecast density matches the density that generated

the data, the PITS should be independent standard normal. We follow Clark (2011) and test

these conditions (zero mean, unit variance and no serial correlation) separately and jointly,

with the Berkowitz (2001) likelihood ratio test for the joint null of zero mean, unity variance,

and no serial correlation of order 1.

The p-values of these tests are presented in Table 7 for the baseline model without stochastic

volatility and in Table 8 for the model with stochastic volatility.12 For each month we consider

a mid-month and an end-month update, so that we have six different results for the one step

ahead forecast and for the nowcast and two results for the backast. Using a 10% significance

level, for both models the tests generally fail to reject the null hypotheses of zero mean, unit

variance and no serial correlation, with 11 rejections out of 48 cases in the baseline model and

a couple more in the model with stochastic volatility. The joint Normality/Independence tests
12Notice that the testing framework developed by Berkowitz (2001) for the PITS applies to one step ahead

forecasting. As such it does not immediately apply to the context of nowcasting, where the impact of different
data vintages and the presence of ragged edged data have to be taken into account.
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show p-values larger than 0.1 in all the cases considered. While no conclusive ranking emerges

from this exercise, evidence on the PITS confirms that our model provides accurate density

forecasts.

5 Conclusions

This paper introduces a mixed frequency factor model with stochastic volatility, and develops

a Bayesian procedure for its estimation. The model deals with all the challenges faced by a

forecaster that needs to produce updated quarterly GDP forecasts at each relevant data release,

like data sampled at different frequencies and ragged-edge data. Differently from existing linear

models, our setup allows for continuous shifts in the volatility of the errors of both the common

factor and of the idiosyncratic errors, a feature that in the macro forecasting literature has been

shown to improve both point and density forecast accuracy.

This measurement tool is applied to the problem of forecasting euro area GDP at short

horizons. When estimated over the whole sample, the model picks up significant shifts in the

volatility of the errors, with two peaks coinciding with the major recessionary episodes of the

past twenty years.

We further illustrate how, in a given quarter, the factor model can be used to assess the

uncertainty around the news content of monthly releases of hard, soft and financial indicators.

Consistently with findings in the literature, we find that forecast accuracy improves significantly

in connection with the release of monthly data as the forecast horizon decreases. Also, forecast

uncertainty (measured by the width of the forecast distribution) progressively decreases as more

information on the quarter of interest becomes available.

Finally, we design a (pseudo) real time out of sample forecasting exercise and evaluate

out of sample point and density forecasts accuracy. In line with Clark (2011) we find that

the introduction of stochastic volatility significantly contributes to an improvement in density

forecast accuracy.
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A Details of the Gibbs sampler

We describe in more details the six blocks that compose our Gibbs sampler procedure:

A.1 Block 1: drawing the factor loadings βq, βh, βs

In the first block of the Gibbs sampler we draw the slopes, conditional on all the other param-

eters of the model. To see how this is done let us start from the measurement equation of the

hard indicator:

yh,t = βhft + uh,t (21)

where the law of motion of the idiosyncratic shock is uh,t = φh,1uh,t−1 + φh,2uh,t−2 + εh,te
λh,t/2

and εh,t ∼ N(0, σh). Since we are conditioning on all the parameters, on the factor ft and on the

stochastic volatilies λh,t we can treat this equation as a simple regression with autocorrelated

and heteroscedastic residuals. To whiten the residuals, we quasi-difference the equation by

filtering both sides with the filter 1− φh,1L− φh,1L2 and dividing each observation by eλh,t/2:

y?h,t = βhx
?
t + εh,t (22)

where x?t = (1 − φh,1L − φh,1L2)ft/e
λh,t/2. Then positing a Normal prior: p(βh) ∼ N(βh, σβ,h)

the conditional posterior is also normal N ∼ (βh, σβ,h) where

σβ,h = (σβ,h
−1 + σ−2

h

T∑
t=1

x?2t ) (23)

βh = σβ,h(σβ,h
−1βh + σ−2

h

T∑
t=1

x?ty
?
t ) (24)

The case of survey variables can be treated accordingly after noticing that x?t = (1−φh,1L−

φh,1L
2)
∑11

j=0 ft−j/e
λs,t/2. In the case of quarterly variables two adjustments are needed. First,
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since the variable is observed only every three months only these observations can be used for

estimating the factor loading. Second, in the measurement equation an MA(4) regression error

appears:

yq,t = βqw(L)ft + w(L)uq,t (25)

where w(L) = 1
3

+ 2
3
L + L2 + 2

3
L3 + 1

3
L4. Furthermore the error term ut is an AR(2) process

uq,t = φq,1uq,t−1 + φq,2uq,t−2 + εq,te
λq,t/2. Our estimation strategy consists of working out the

variance covariance matrix of the error terms of equation (25), Φ(φq,1, φq,2, σ
2
q ), which we can

treat at this step of the sampler as if it were known. Then it suffices to divide each observation

by eλq,t/2 and premultiply both sides of the equation by Φ−
1
2 to obtain a standard regression

with uncorrelated residuals. We are now in the familiar setting in which we can posit a normal

prior and draw βq from a normal posterior.

A.2 Block 2: drawing φf,1, φf,2, φq,1, φq,2, φh,1, φh,2, φs,1, φs,2

To draw the parameters that govern the autocorrelation of the idiosyncratic shocks first notice

that since we are conditioning on the state vector µt, we can treat the common factor ft

and the residuals uq,t, uh,t, us,t as known. The transition equations become standard regression

problems which can be analyzed separately (again after pre-whitening to take into account the

stochastic volatility components). We employ normal priors p([φj,1φj,2]′) ∼ N(φj,Σφ,j), where

j = f, q, h, s, and for each equation we draw from the respective normal conjugate posteriors.

We rule out explosive roots by drawing from the untruncated Normal posterior and discarding

draws if the roots of φj(L) = 0 lie outside the unit circle.

A.3 Block 3: drawing the innovation variances σ2
f , σ

2
q , σ

2
h, σ

2
s

The variances of the innovations to the idiosyncratic shocks can also be easily drawn once we

condition on the state vector µt, on the φs and on the stochastic volatilities. We again proceed

by treating the transition equations one at the time. Let us consider a generic element of the
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state vector µi,t. Its law of motion is:

µi,t = φi,1µi,t−1 + φi,2µi,t−2 + ηi,t ηi,t ∼ N(0, σ2
i e
λi,t) (26)

For the innovation variance σ2
i we posit an inverse-Gamma prior p(σ2

i ) = IG(ni, s
2
i ). Since

the prior is conjugate it can be interpreted as adding ni artificial observations to the state

variable µi,t. The prior embodies the belief that the sum of squared residuals of these artificial

observations equals s2
i :

s2
i =

1

ni

ni∑
t=1

(µ?t,i − φi,1µ?t−1,i − φi,2µ?t−2,i)
2 (27)

Given our assumption that the idiosyncratic shocks are normal the posterior is also an

inverse-Gamma, IG(T + ni,
nis

2
i +Td2i
T+ni

) where:

d2
i =

1

ni

ni∑
t=1

(µt,i − φi,1µt−1,i − φi,2µt−2,i)
2 (28)

The weight of the prior is therefore proportional to the prior degree of freedom parameter ni.

A.4 Block 4: drawing the state vector µt

Since the model can be cast in state space draws of the state vector can obtained via a state

vector simulation smoother as in Kevin and Kohn (1994) or with the disturbance smoother

proposed by Koopman and Durbin (2003). We resort to the latter, which turns out to be

slightly more efficient from a computational point of view.13

13We did not find sizeable gains in using the univariate version of the Durbin and Koopman smoother.
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A.5 Block 5: drawing λi,t

To sample the stochastic volatilities λi,t notice that conditional on all parameters and on the

states µt the orthogonal innovations ηi,t/σh,i are observable. The λi,t can then be sampled

adopting the date-by-date blocking scheme developed by Jacquier et al. (1994).14.

A.6 Block 6: drawing σ2
h,i

The final block of the sampler involves drawing the variances of the log-volatilities. Conditioning

on the log-volatilities and postulating an inverse-Gamma prior distribution, the σ2
h,i can also

be drawn from an inverse Gamma posterior.

B The selection of the monthly indicators

Small scale models have their own “curse of dimensionality": since they rely on a small set

of indicators, they are prone to the criticism of potentially leaving out relevant information

compared to factor models that use hundreds of time series. In the literature, however, the initial

enthusiasm for the use of very large sets of data has started waning when some authors have

pointed out that models that use a smaller set of accurately targeted predictors might deliver

more accurate forecasts. Bai and Ng (2008) and Boivin and Ng (2006), for example, question the

usefulness of ’too much information’ for forecasting purposes. The former, in particular, shows

that a number of variable selection techniques (already widely used in biomedical statistics

where the number of covariates is typically very large) give encouraging results when applied

to economic time series.

To make the choice of the indicators to be included in our model as objective as possible

we proceed as follows. We start by considering a dataset of more than a hundred variables
14Details on the algorithm, which involves a Metropolis Hastings step within the Gibbs sampler, can be found

in Cogley and Sargent (2005), Appendix B.2.5
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for the period 1987-201115, and select a subset of 39 indicators similar to those employed in

Angelini et al. (2011) and in Camacho and Perez-Quiros (2010). We then set a priori four

core variables that we decide to include in the model, which are Industrial Production for the

euro area (IP), the composite Purchasing Manager Index (PMI), the European Commission

Economic Sentiment Indicator (ESI) and the Germany IFO Business Climate Index. To select

the remaining variables, we calculate as a benchmark the percentage of GDP variance explained

by the factor computed from the core variables only, as in Camacho and Perez-Quiros (2010),

and design an algorithm for the selection of a set of additional indicators which maximize this

statistic.

1. We evaluate datasets with all core variables and one other variable at a time in order to

calculate the explained variance, and the probability that it is higher than in the dataset

with core variables only. In this way we obtain a ranking of the other series.

2. We add a variable at a time, starting with the ones with an higher probability to increase

the explained variance with respect to the benchmark; we keep the variable only if this

probability increases. We end up with the small set of 8 variables described in the main

text.

C The state space specification in the empirical application

The specification we adopt follows Camacho and Perez-Quiros (2010) where surveys are modeled

as a 12 terms moving average of the unobserved factor, while hard variables load the factor

contemporaneously. This amounts to imposing that surveys are in phase with the year on year

growth rate of Industrial Production (and of the other hard indicators). To get an idea of the

state representation of the model while keeping notation to a minimum we present the case of

a toy model with one quarterly variable, one hard indicator and one soft indicator in which all
15The series are those used to compile ¤-Coin (see Altissimo et al. (2010)). For a description of the dataset

see http://eurocoin.bancaditalia.it/
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the idiosyncratic shocks follow an AR(2) process. The more general case can be easily derived

from this example. The loading matrix F in the measurement equation (10) can be written as:

F =


βq

1
3

βq
2
3

βq βq
2
3

βq
1
3

0 0 0 0 0 0 0 1
3

2
3

1 2
3

1
3

0 0 0 0

βh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

βs βs βs βs βs βs βs βs βs βs βs βs 0 0 0 0 0 0 0 1 0

(29)

where βq, βh and βs are the loadings of, respectively, the quarterly variable, the hard and

the soft indicators. The state vector is:

µt =

(
ft ft−1 . . . ft−11 uq,t . . . uq,t−4 uh,t uh,t−1 us,t us,t−1

)′
(30)

The transition matrix is:

H =



φf,1 φf,2 0 0 0 . . . 0 0 0 0 0 0 0 0 0

1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 . . . φq,1 φq,2 0 0 0 0 0 0 0

0 0 0 0 0 . . . 1 0 0 0 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 . . . 0 0 0 0 0 φh,1 φh,2 0 0

0 0 0 0 0 . . . 0 0 0 0 0 1 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 0 φs,1 φs,2

0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 0



(31)

Since the idiosyncratic shocks are collected in the state vector the matrix Rt is a (k+2)
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dimension zero matrix while the matrix Qt is a diagonal matrix which collects all the variances:

Qt = diag

(
1 0 0 0 . . . σ2

qe
λq,t 0 0 0 0 σ2

he
λh,t 0 σ2

se
λs,t 0

)
(32)

D Assessing the convergence of the Markov chain to the

ergodic distribution

We assess the convergence of the Markov chain to the ergodic distribution by looking at the

autocorrelation properties of the draws across sets of parameters. In the full sample estimate

of the models we run 30000 replications and retain the last 5000 draws. As a measure of

convergence of the Markov Chain we consider the inefficiency factors (henceforth, IFs) of the

draws, which are defined as the inverse of the relative numerical efficiency measure (RNE) of

Geweke (1991). The RNE is computed considering one parameter at the time and using the

sequence of draws as time dimension. Specifically the RNE is defined as:

RNE = (2π)−1 1

S(0)

∫ π

−π
S(ω)dω (33)

where S(ω) is the spectral density of the draws of a given parameter at the frequency ω. The

denominator S(0) is the spectral density at the zero frequency, a measure of the long run

variance of the draws. The spectral densities are estimated by the smoothed periodogram

using a 32 points Bartlett triangular window which weighs less more distant autocorrelations.

In Figure 10 we present the IFs. As the figure shows the autocorrelation of the draws is very

low, with values of the IFs overall below two, that is ten times lower than the threshold (twenty)

which can be considered as satisfactory, as stressed by Primiceri (2005).
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E News and forecast revisions

In their paper Banbura and Modugno (2010) derive a way to decompose a forecast revision as

a linear function of news.

They denote as Ωv a vintage of data corresponding to a statistical data release v, which as

an example can be mid-month for industrial production and end of month for surveys, in order

to define news as:

Iv+1,j = yij ,tj − E[yij ,tj |Ωv] (34)

the surprise incorporated in a new data with respect to what was expected given information

Ωv. A forecast revision is defined as:

E[yk,tk |Iv+1] = E[yk,tk |Ωv+1]− E[yk,tk |Ωv] (35)

and can be expressed as weighted average of news:

E[yk,tk |Iv+1] = Bv+1Iv+1 = E[yk,tkI
′
v+1]E[Iv+1I

′
v+1]

−1Iv+1 (36)

where:

E[yk,tkIv+1,j] = HkE[(µtk − E(µtk |Ωv))(µtj − E(µtj |Ωv)
′)]H ′ij (37)

E[Iv+1,jIv+1,l] = HijE[(µtj − E(µtj |Ωv))(µtl − E(µtl |Ωv)
′)]H ′il (38)

where E[(µtj − E(µtj |Ωv))(µtl − E(µtl |Ωv)
′)] is the state vector covariance matrix obtained

as a by-product of the Kalman Smoother.
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Table 1: Variable selection summary
Indicator Country

Quarterly series
GDP Euro Area

Monthly series
Industrial Production Euro Area
Industrial Production - Pulp/paper Euro Area
Business Climate - IFO Germany
Economic Sentiment Indicator Euro Area
PMI composite Euro Area
dollar-euro US-Euro
10y-3m spread US
Michigan Consumer Sentiment US

Table 2: Factor Loadings - posterior estimates
Percentiles 25th 50th 75th
GDP 0.27 0.38 0.54
IP 0.40 0.49 0.60
IP-PULP 0.23 0.29 0.36
IFO 0.10 0.12 0.13
ESI 0.10 0.12 0.14
PMI 0.12 0.13 0.15
dollar-euro -0.08 -0.05 -0.02
US-spread -0.06 -0.04 -0.02
Michigan Consumer 0.04 0.06 0.08

Table 3: Forecast weights

GDP IP IP-PULP IFO ESI PMI dollar-euro US-spread Michigan
Oct10 0.00 0.43 0.17 0.07 0.23 0.11 -0.01 -0.01 0.01
Nov10 0.00 0.44 0.16 0.07 0.23 0.10 -0.01 -0.01 0.01
Dec10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jan11 0.00 0.43 0.17 0.07 0.23 0.11 -0.01 -0.01 0.01
Feb11 0.00 0.44 0.16 0.07 0.23 0.10 -0.01 -0.01 0.01
Mar11 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Apr11 0.00 0.00 0.00 0.17 0.58 0.27 -0.02 -0.03 0.03
May11 0.00 0.00 0.00 0.17 0.58 0.26 -0.02 -0.03 0.03

Note to Table 3. Percentage contribution of the indicators in forecasting GDP computed as in Banbura
and Runstler (2011).
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Figure 1: GDP: Median monthly estimate and ¤-Coin
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Note to Figure 1: the blue continuous line is the monthly GDP growth estimate produced by the
factor model with stochastic volatility. The dotted line is the ¤-Coin indicator. ¤-Coin is an
indicator of the medium-term component of quarter on quarter euro area GDP growth published
each month by the Bank of Italy. For details see http://eurocoin.cepr.org/.
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Figure 2: Stochastic volatility for the common factor and for selected variables
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Table 4: Stylized data release calendar
Indicator Timing Publication lag Frequency
IP 11th − 15th of month 2 Monthly
IP-PULP 11th − 15th of month 2 Monthly
GDP 1 day after IP 2 Quarterly
IFO 20th − 30th of month 0 Monthly
PMI 20th − 30th of month 0 Monthly
ESI 20th − 30th of month 0 Monthly
Michigan Consumer Last Friday of the month 0 Monthly
dollar-euro Last day of month(Monthly ave.) 0 Monthly
US-spread Last day of month(Monthly ave.) 0 Monthly
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Figure 3: RMSE at different releases
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Note to Figure 3: the Figure shows the ratio of the RMSE of the factor model with stochastic
volatility to that of a naive constant growth model for each of the indicated data release. Data
releases follow the stylized calendar 4.
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Figure 4: Forecast dispersion at different releases
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Note to Figure 4: the Figure shows the difference between the 75 and the 25 percentiles (both
scaled by the median) of the forecast distribution obtained with the factor model with stochastic
volatility updated at each data release. Data releases follow the stylized calendar 4.
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Figure 5: Log-predictive score at different releases
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Note to Figure 5: the Figure shows the log-predictive score of the factor model with stochastic
volatility updated at each data release and of the naive constant growth model. Data releases
follow the stylized calendar 4.
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Figure 6: Forecast revisions 2010Q2 
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Note to Figure 6: the Figure shows the by-monthly GDP forecasts revisions relative to the second
quarter of 2010 and the contributions of the new releases. The firs forecast update is at the end of
April, the last update in the middle of August.
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Figure 7: Revisions Density evolution 2010Q2
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Note to Figure 7: the Figure shows the distributions of the by-monthly GDP forecasts revisions
relative to the second quarter of 2010. The density estimation is based on a normal kernel function,
using an optimal window parameter function of number of data points. The distribution is based
on 1000 draws from the predictive density.
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Figure 8: Revisions Density evolution 2010Q2: selected indicators
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Note to Figure 8: the Figure shows the distributions of the contributions of Industrial Production
and of the Economic Sentiment Indicator to the by-monthly GDP forecasts revisions relative to
the second quarter of 2010. The density estimation is based on a normal kernel function, using an
optimal window parameter function of number of data points. The distribution is based on 1000
draws from the predictive density.
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Figure 9: RMSE
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Note to Figure 9: the Figure shows the RMSFE of the factor model with stochastic volatility and
of a baseline factor model without stochastic volatility between the first quarter of 2006 to the last
quarter of 2010. The forecast horizon goes from six months ahead to one month after the end of
the quarter of interest (backast). Therefore the first forecast is produced with the information set
available in the middle of September 2005, the last one with data released at the end of January
2011.
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Table 5: Coverage Rates - Baseline Model
Nom Cov Backcast Nowcast 1 step ahead

Coverage P-value Coverage P-value Coverage P-value
0.1 0.14 0.63 0.15 0.25 0.17 0.15
0.2 0.32 0.26 0.23 0.60 0.26 0.29
0.3 0.50 0.08 0.41 0.08 0.42 0.05
0.4 0.59 0.09 0.50 0.11 0.55 0.02
0.5 0.59 0.41 0.56 0.33 0.58 0.22
0.6 0.64 0.73 0.67 0.26 0.59 0.88
0.7 0.77 0.44 0.73 0.62 0.61 0.13
0.8 0.86 0.41 0.79 0.81 0.65 0.01
0.9 1.00 0.09 0.88 0.60 0.74 0.01

Note to Table 5. Nominal and estimated Coverage Probabilites and p-values for the hypothesis
that they are equal. Significant differences a the 10% level are in boldface.

Table 6: Coverage Rates - Model with Stochastic Volatility
Nom Cov Backcast Nowcast 1 step ahead

Coverage P-value Coverage P-value Coverage P-value
0.1 0.09 0.89 0.14 0.40 0.05 0.04
0.2 0.18 0.83 0.26 0.29 0.23 0.60
0.3 0.32 0.86 0.32 0.75 0.30 0.96
0.4 0.45 0.62 0.41 0.88 0.44 0.52
0.5 0.59 0.41 0.47 0.63 0.48 0.81
0.6 0.68 0.43 0.61 0.92 0.58 0.69
0.7 0.86 0.04 0.73 0.62 0.71 0.83
0.8 0.91 0.10 0.82 0.71 0.73 0.19
0.9 0.95 0.24 0.89 0.87 0.77 0.02

Note to Table 6. Nominal and estimated Coverage Probabilites and p-values for the hypothesis
that they are equal. Significant differences a the 10% level are in boldface.
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Table 7: Density forecast evaluation using the pits : Baseline Model
Backcast Nowcast One step ahead

1 2 1 2 3 4 5 6 1 2 3 4 5 6
Mean 0.53 0.54 0.52 0.43 0.32 0.39 0.62 0.41 0.45 0.34 0.17 0.18 0.33 0.43

Variance 0.00 0.33 0.05 0.01 0.34 0.35 0.22 0.92 0.03 0.09 0.90 0.96 0.99 0.13
AR(1) 0.14 0.07 0.72 0.21 0.14 0.20 0.08 0.03 0.27 0.20 0.17 0.07 0.05 0.03
Joint 0.20 0.57 0.73 0.50 0.44 0.59 0.63 0.47 0.49 0.39 0.54 0.49 0.48 0.37

Note to Table 7. P-values for the null hypotheses of zero mean, unit variance, no serial correlation
and joint Normality/Indipendence of forecast errors at different horizons. Backcast refers to two
weeks (1) and one month (2) after the end of the quarter of interest. Nowcast refers to the first
two weeks (1), the first month (2)and so on of the quarter of interest. One step ahead to the next
quarter in the same periods as in Nowcast.

Table 8: Density forecast evaluation using the pits : Model with Stochastic Volatility
Backcast Nowcast One step ahead
1 2 1 2 3 4 5 6 1 2 3 4 5 6

Mean 0.13 0.00 0.16 0.12 0.08 0.08 0.01 0.13 0.22 0.13 0.05 0.04 0.00 0.22
Variance 0.05 0.00 0.84 0.38 0.63 0.98 0.24 0.83 0.06 0.20 0.20 0.01 0.01 0.78

AR(1) 0.53 0.63 0.46 0.73 0.02 0.02 0.22 0.67 0.53 0.34 0.22 0.03 0.91 0.20
Joint 0.50 0.37 0.71 0.68 0.11 0.24 0.51 0.84 0.53 0.33 0.43 0.22 0.15 0.61

Note to Table 8. P-values for the null hypotheses of zero mean, unit variance, no serial correlation
and joint Normality/Indipendence of forecast errors at different horizons. Backcast refers to two
weeks (1) and one month (2) after the end of the quarter of interest. Nowcast refers to the first
two weeks (1), the first month (2)and so on of the quarter of interest. One step ahead to the next
quarter in the same periods as in Nowcast.
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Figure 10: Inefficiency factors for the draws from the ergodic distribution
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Note to Table 10. Each panel in the figure corresponds to one of the six blocks of the Gibbs sampler
discussed in Appendix A. For example, the top left panel reports the IF for the nine slope parameters
β in the model, the top center for the 20 AR(2) parameters of the idiosyncratic errors, and so forth.
Regarding the fourth block, for the sake of simplicity instead of reporting the IF for the whole state
vector (where many elements are just repeated with a lag) we report the linear combination of the state
vector H(1, :)µt, where H(1, :) stands for the first line of the H matrix. This amounts to reporting the
IF for the GDP draws (we only report the IF for the time periods for which GDP is unobserved, since
for the remaining period the variance of the draws is zero. This vector therefore has 148 elements given
that estimation is performed on 219 observations).
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