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Abstract

It is often suggested that incentive schemes under moral hazard can be gamed by an agent with superior

knowledge of the environment and that deliberate lack of transparency about the incentive scheme

can reduce gaming. We formally investigate these arguments in a two-task moral hazard model in

which the agent is privately informed about which task is less costly for him. We examine a simple

class of incentive schemes that are “opaque” in that they make the agent uncertain ex ante about the

incentive coefficients in the linear payment rule. Relative to transparent menus of linear contracts, these

opaque schemes induce more balanced efforts, but they also impose more risk on the agent per unit

of aggregate effort induced. We identify specific settings in which optimally designed opaque schemes

not only strictly dominate the best transparent menu but also eliminate the efficiency losses from the

agent’s hidden information. Opaque schemes are more likely to be preferred to transparent ones when

(i) the agent’s privately known preference between the tasks is weak; (ii) the agent’s risk aversion is

significant; (iii) efforts on the tasks are highly complementary for the principal; or (iv) the errors in

measuring performance have large correlation or small variance. (JEL D86, D21, L22)
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1 Introduction

A fundamental consideration in designing incentive schemes is the possibility of gaming: exploitation of

an incentive scheme by an agent for his own self-interest to the detriment of the objectives of the incentive

designer. Gaming can take numerous forms, among them 1) diversion of effort away from activities which

are socially valuable but difficult to measure and reward, towards activities that are easily measured and

rewarded; 2) exploitation of the rules of classification to improve apparent, though not actual, performance;

and 3) distortion of choices about timing to exploit temporarily high monetary rewards even when socially

efficient choices have not changed. Evidence of the first type of gaming is provided by Burgess, Propper,

Ratto, and Tominey (2017) and Carrell and West (2010), of the second type by Gravelle, Sutton, and Ma

(2010), and of the third type by Oyer (1998), Larkin (2014), and Forbes, Lederman, and Tombe (2013).1

The costs of gaming are exacerbated when the agent has superior knowledge of the environment: this makes

the form and extent of gaming harder to predict and hence harder to deter.

It has been suggested that lack of transparency—deliberate opacity about the criteria upon which rewards

will be based and/or how heavily these criteria will be weighted—can help deter gaming. This idea has

a long intellectual history. It dates back at least to Bentham (1830), who argued that deliberate opacity

about the content of civil service selection tests would lead to the “maximization of the inducement afforded

to exertion on the part of learners, by impossibilizing the knowledge as to what part the field of exercise

the trial will be applied to, and thence making aptitude of equal necessity in relation to every part”.2

More recently, responding to documented gaming of the highly transparent incentive schemes which score

National Health Service organizations in England according to published lists of precisely defined performance

indicators, Bevan and Hood (2004) argued in the British Medical Journal, “What is needed are ways of

limiting gaming. And one way of doing so is to introduce more randomness in the assessment of performance,

at the expense of transparency” (p. 598). They invoke the “analogy [...] with the use of unseen examinations,

where the unpredictability of what the questions will be means that it is safest for students to cover the

syllabus” (p. 598). They reason that making it harder for hospitals to predict what performance measures

will be used and how they will be weighted, coupled with hospitals’ risk aversion, will reduce the hospitals’

incentives for gaming. Similarly, Dranove, Kessler, McClellan, and Satterthwaite (2003) document that

in the United States, report cards for hospitals “encourage providers to ‘game’ the system by avoiding sick

1Burgess et al (2017) and Gravelle et al (2010) study UK public sector organizations (an employment agency and the
National Health Service, respectively), Carrell and West (2010) use data from postsecondary education, while Oyer (1998),
Larkin (2013) and Forbes et al (2012) examine private sector organizations (salespeople and executives across various industries,
enterprise software vendors, and airlines, respectively).

2Bentham, 1830/2005, Ch. IX,§16, Art 60.1.
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patients or seeking healthy patients or both” and they argue that such gaming is facilitated by “risk-averse

providers having better information about patients’ conditions” (p. 556) than do the analysts who compile

the report cards. They present evidence that the increased transparency of incentive schemes for physicians

and hospitals provided by report cards increased gaming and even decreased patient and social welfare.3

The costs of transparency have also been discussed in the context of gaming, by law school deans, of the

performance indicators used by U.S. News to produce its influential law school rankings. The ranking method-

ology is transparent and employs a linear scoring rule incorporating multiple performance indicators.4 There is

significant evidence that law schools deploy a range of strategies that exploit their informational advantage over

U.S. News to increase their measured performance. Examples include cutting the number of full-time students

to boost median LSAT scores and GPAs, creating make-work jobs for their own graduates to inflate the num-

ber in employment, and heavily advertising their faculty’s scholarship to U.S. News.5 Law scholars (e.g., Osler,

2010) have argued that greater opacity in the ranking methodology could mitigate gaming, and U.S. News has

itself signaled its intention to move away from being “totally transparent about key methodology details”.6

Finally, one view as to why courts often prefer standards—which are somewhat vague—to specific rules

is that standards mitigate incentives for gaming. For example, Weisbach (2000) argues that vagueness

can reduce gaming of taxation rules, and Scott and Triantis (2006) argue that vague standards in contracts

can improve parties’ incentives to fulfill the spirit of the contract rather than focusing on satisfying only

the narrowly defined stipulations.

The examples discussed above suggest that “opacity” (i.e., lack of transparency) of incentive schemes

can be beneficial in reducing gaming, especially when agents have superior knowledge of the environment,

when incentive designers care about multiple aspects of performance, and when gaming takes the form

of agents’ focusing efforts on easily manipulable indicators. This line of argument is, however, incomplete.

If agents are risk-averse, then the additional risk imposed by opaque schemes is per se unattractive to them.

3Relatedly, Google has experienced manipulation of its search results by some retailers. Although many retailers have
been seeking greater transparency from Google about its search algorithm, Google has responded by moving in the direction
of greater opacity to prevent manipulation (Structural Search Engine Optimization, Google Penalty Solutions, November
4, 2011, http://www.re1y.com/blog/occupy-google-blog.html). Motivated in part by this debate, Frankel and Kartik
(2014) develop a signaling model of gaming in which the information conveyed by signals (e.g., prominence in search results)
about agents’ hidden characteristics (e.g., intrinsic relevance to the query) is “muddled” because agents are also privately
informed about their gaming ability. Jehiel and Newman (2011) develop a dynamic model in which principals learn from
agents’ behavior about the possibilities for gaming and then choose whether to take costly measures to deter gaming.

4The weights in the scoring rule are quality perception (40%), selectivity (25%), placement success (20%) and faculty
resources (15%) (U.S. News, March 11, 2013, http://www.usnews.com/education/best-graduate-schools/top-law-

schools/articles/2013/03/11/methodology-best-law-schools-rankings).
5Law School Rankings Reviewed to Deter ‘Gaming’, Wall Street Journal, August 26, 2008, http://www.usnews.

com/education/blogs/college-rankings-blog/2010/05/20/us-news-takes-steps-to-stop-law-schools-from-

manipulating-the-rankings.
6 U.S. News, May 20, 2010, http://www.usnews.com/education/blogs/college-rankings-blog/2010/05/20/us-news-

takes-steps-to-stop-law-schools-from-manipulating-the-rankings.
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Understanding when and why opaque schemes are used thus requires analyzing the tradeoff between their

incentive benefits and their risk costs. The present paper provides such an analysis.

Our analysis incorporates three vital ingredients that are featured in all of our motivating examples: (i)

the agent’s superior information about the environment, (ii) the agent’s risk aversion, and (iii) the incentive

designer’s need for the agent to choose a relatively balanced allocation of efforts across activities. This suite

of ingredients (along with a contractual restriction to incentive schemes that are ex post linear) delivers

two main messages. First, transparent incentive schemes, even when they involve menus, suffer dramatically

from the problem of gaming by the agent. Second, opaque incentive schemes not only mitigate the problem

of gaming but can generate a higher payoff for the principal.7

In our model, “opacity” corresponds to a lack of transparency about the weights on performance indicators

that are used to determine rewards. Motivated by the examples discussed above, we build on Holmstrom and

Milgrom’s (1991) multi-task principal-agent model in which a risk-averse agent performs two tasks, which are

substitutes in his cost-of-effort function, and receives compensation that is linear in his performance on each of

the tasks. These linear contracts (which have been widely studied) are “transparent” in that the agent faces

no uncertainty about the rate at which performance on each of the tasks is rewarded. The principal’s benefit

function is complementary in the agent’s efforts on the two tasks; other things equal, she prefers to induce

both types of agent to choose balanced efforts.8 Into this familiar set-up, we introduce superior knowledge

of the environment on the part of the agent. There are two types of agent, and only the agent knows which

type he is. One type has a lower cost of effort on task 1, and the other has a lower cost of effort on task 2.9

The privately-informed agent games transparent incentive schemes by choosing effort allocations that

are excessively (from an efficiency perspective) sensitive to his private information. In fact, we show that

the agent’s superior knowledge of his preferences makes it impossible for the principal, with transparent

linear schemes, to induce both types of agent to exert positive efforts on both tasks, even when menus

of contracts are used as screening devices. This is the sense in which transparent incentive schemes in our

model suffer dramatically from the problem of gaming. One approach to mitigating gaming would be for

the principal to design general (menus of) nonlinear compensation schedules. But such schedules can be

7The terms “opaque” and “transparent” may have alternative definitions in other contexts, but here, where we confine
attention to compensation schedules that are ex post linear, an “opaque” incentive scheme will always be one that leaves
the agent, when choosing efforts, uncertain about the incentive coefficients he will face, while a “transparent” scheme will
be one under which the agent faces no such uncertainty.

8Our model, like Holmstrom and Milgrom’s (1991), incorporates shocks to measured performance. These shocks are not
essential for our two main messages, given our focus on contracts that are ex post linear. In fact, as shown in Section 6.3,
our findings about the benefits of opaque incentive schemes would be even stronger in the absence of such shocks. Nonetheless,
it is natural to include them in the analysis; if the agent’s efforts were directly observable by the principal, then the problem
of moral hazard could be trivially solved by a so-called “forcing contract”.

9The analysis would be very similar if the agent types differed with respect to the task on which they were more productive.
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very complex to describe and difficult for agents to understand. Moreover, optimizing over general nonlinear

contracts is difficult, especially when agents have hidden information.

Our approach is instead to explore a class of incentive schemes that is both simple and opaque. This class

is simple in that, ex post, compensation is determined by one of two possible linear functions of performance

measures, differing with respect to which performance measure is more highly rewarded. It is opaque in

that, at the time the agent chooses his efforts, he does not know which of these two linear reward functions

will be used. In the main body of the paper, we focus on one such simple, opaque scheme, which we term ex

ante randomization. Under ex ante randomization, the principal, before the agent makes his effort choices,

commits to randomizing uniformly between the two linear compensation schedules. Ex ante randomization

encourages the risk-averse agent to choose relatively balanced efforts on the tasks in order to partially insure

himself against the wage risk generated by the random choice of compensation schedule. The more unequal

the weights on the performance measures in the two possible compensation schedules, the stronger the

agent’s incentive to self-insure and the more balanced his optimal efforts will be.10

The benefits of opaque incentive schemes in deterring gaming do, nevertheless, come at a cost: such

schemes impose more risk on the agent. Given any incentive scheme involving ex ante randomization,

there exists a transparent contract that induces the same level of aggregate effort on the two tasks and

imposes lower overall risk costs. Highlighting the importance of our three key model ingredients, we prove

that any opaque contract will be dominated by some transparent contract if (i) the agent has no private

information about his preferences, or (ii) the agent’s risk aversion is too weak for the opaque contract to

induce him to choose positive efforts on both tasks, or (iii) the agents’ efforts on the two tasks are not

sufficiently complementary for the principal to make balanced efforts socially efficient. In other words, in

these situations the principal is willing to tolerate gaming because the gains from mitigating it with opaque

contracts are outweighed by the higher wages that such contracts would require the principal to pay.

Most importantly, we also identify three environments in which our simple opaque incentive schemes,

with the relative weights on the performance measures chosen optimally, strictly dominate all transparent

incentive schemes. In the first such setting, the agent has private information about his preferences but

the magnitude of his preference across tasks is small. The second is the case where the agent’s risk aversion

is large and the variance of the shocks to measured performance is small. In the final setting, diversification

10In Section 7.1, we briefly discuss two other simple, opaque schemes, interim randomization and ex post discretion, which
differ from ex ante randomization in the assumptions on the principal’s powers of commitment. Ex post discretion is analyzed in
detail in an earlier version of our paper (Ederer, Holden, and Meyer, 2014). All three such opaque schemes work in very similar
ways. In particular, by making the risk-averse agent uncertain ex ante about the values of the incentive coefficients in the
linear payment rule, they all provide an incentive for balancing efforts. Our findings, from the analysis of ex ante randomization,
about the pros and cons of opacity are thus robust to alternative assumptions on the principal’s commitment powers.
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of the risk from the shocks is unimportant, because either their correlation is large or their variance is small.

In each of these settings, the strict superiority of ex ante randomization over the best transparent scheme

follows in the limit from the result that ex ante randomization allows the principal to achieve a payoff

arbitrarily close to what she could achieve in the absence of the agent’s hidden information.

Though the results just described focus on limiting environments to prove analytically the strict dominance

of optimally weighted ex ante randomization over all transparent menus, we also present more general

findings about what features of the environment increase the relative attractiveness of opaque schemes. We

prove that as the agent becomes more risk-averse, holding the importance of risk aversion under transparent

schemes fixed, the relative attractiveness of ex ante randomization increases, since the more balanced

efforts chosen by the more risk-averse agent not only benefit the principal directly but also lower overall

risk costs. Furthermore, we show numerically that ex ante randomization is more likely to dominate the

best transparent scheme when (i) the agent’s privately known preference between tasks is weaker, so the

uncertainty about the weights in the compensation schedule induces a more balanced effort profile, (ii) the

agent is more risk-averse, so opacity generates a stronger self-insurance motive for effort balance, (iii) efforts

on the tasks are more complementary for the principal, so she values more highly the effort-balancing effects

of opacity, or (iv) the errors in measuring performance on the tasks have higher correlation or lower variance,

so there is less of a diversification cost to designing opaque schemes to induce highly balanced efforts.

1.1 Related Literature

Our paper builds on the theoretical analyses of Holmstrom and Milgrom (1987, 1991). The first of these

provides conditions in a dynamic moral hazard setting under which a linear contract is optimal. A key

message of Holmstrom and Milgrom (1987) is that linear contracts are appealing because they are robust

to limitations on the principal’s knowledge of the contracting environment. Discussing Mirrlees’s (1974)

result that the first-best outcome in a hidden-action model can be approximated by a step-function (hence

highly non-linear) incentive scheme, they argue “to construct the [Mirrlees] scheme, the principal requires

very precise knowledge about the agent’s preferences and beliefs, and about the technology he controls.

The two-wage scheme performs ideally if the model’s assumptions are precisely met, but can be made to

perform quite poorly if small deviations in the assumptions [...] are introduced” (p. 305).11 Motivated

not only by these robustness arguments, but also by the simplicity and pervasiveness of linear contracts,

we focus our analysis on compensation schedules in which, ex post, after all choices are made and random

11Carroll (2015) also demonstrates an appealing robustness property of linear contracts. He shows that, in a static model
with limited liability, when the principal knows some but not all of the actions available to the agent and evaluates contracts
according to their worst-case performance, a linear contract is optimal.
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variables are realized, payments are linear functions of the performance measures.

Analyses of multi-task principal-agent models (e.g., Holmstrom and Milgrom (1991), Baker (1992)) have

highlighted the inefficiencies resulting under linear contracts from an agent’s ability to privately choose how to

allocate his efforts across different activities. When efforts on different tasks are technological substitutes for

the agent, an increase in incentives on one task will typically induce the agent not only to raise effort on that

task but also to lower efforts on others, an effect termed the “effort-substitution problem”. One consequence

of the effort-substitution problem that is often emphasized is that to induce an agent to exert effort on tasks

that are difficult to measure, it may be necessary for contracts to offer low-powered incentives on all tasks, even

those that are easy to measure. The effort-substitution problem is present in our model, and we show that

with transparent linear incentive schemes, the inefficiencies it generates are dramatically exacerbated when

the agent is better informed than the principal about his cost function. Nevertheless, our focus is not on the

implications of the effort-substitution problem for the optimal overall strength of incentives. Rather, we focus

on how opaque incentive schemes can mitigate the costs of the effort-substitution problem by making the rela-

tive rewards for different tasks random. And our analysis of opaque incentive schemes focuses primarily on the

optimal degree of uncertainty about relative rewards rather than on the optimal overall strength of incentives.

Like us, MacDonald and Marx (2001) analyze a principal-agent model with two tasks where the agent’s

efforts on the tasks are substitutes for the agent but complements for the principal, and where the agent

is privately informed about his preferences. Because they restrict task outcomes to be binary, it is possible

to solve for the optimal contract, and they show that the more complementary the tasks are for the

principal, the more the optimal reward scheme makes successes on the tasks complementary for the agent.

They do not consider ex ante randomization, and in fact, under their specific assumptions, it would

have no power to mitigate gaming.12 In our model, with a more general production technology, optimal

nonlinear, non-separable contracts are prohibitively difficult to characterize, but at the same time, ex ante

randomization over two linear schedules proves to be both a simple and a powerful tool for mitigating

the excessive sensitivity of agents’ effort allocations to their private information.

Randomization has, of course, been studied before in incentive provision. In general single-task hidden-

action models allowing arbitrarily complex contracts, Gjesdal (1982) and Grossman and Hart (1983) show

that exogenous randomization may be optimal, but only if the agent’s risk tolerance varies with the level of

12In their model, ex ante randomization over which task to reward more highly would not generate a self-insurance motive
for balancing efforts, even for a risk-averse agent. The reason is that, since effort affects the probability of good performance
rather than the level of good performance, the marginal benefit to the agent of effort on a task would not be weighted by
the agent’s marginal utilities in the two events corresponding to the two possible compensation schedules. In our model,
in contrast, the marginal benefit of effort on a task is weighted by the agent’s marginal utilities. The difference in these
marginal utilities is the source of the self-insurance motive for effort balance under ex ante randomization.
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effort he exerts. In our model, the agent’s risk tolerance is independent of his effort level; the attractiveness

of opaque incentives stems from their ability to mitigate the agency costs of multi-task incentive problems

when compensation schedules are constrained to be ex post linear.

The potential benefits of exogenous randomization have also been explored in hidden-information models,

especially those studying the design of optimal tax schedules. Stiglitz (1982) and Pestieau, Possen, and Slutsky

(1997), among others, have shown that randomization can facilitate the screening of privately-informed

individuals and is especially effective when private information is multi-dimensional. In our hidden-action

cum hidden-information setting, in contrast, ex ante randomization in fact eliminates the need for screening.

The costs and benefits of transparency in incentive design are also explored in Jehiel (2015) and Lazear

(2006). Jehiel (2015) shows in an abstract moral hazard setup that a principal may gain by keeping

agents uninformed about some aspects of the environment (e.g., how important specific tasks are). The

benefits of suppressing information in relaxing incentive constraints can outweigh the costs of agents’ less

efficient adaptation of actions to the environment. Lazear (2006), in a model in which agents have no

hidden information, explores high-stakes testing in education and the deterrence of speeding and terrorism,

identifying conditions under which a lack of transparency can have beneficial incentive effects. In Lazear’s

analysis of testing, there is an exogenous restriction on the number of topics that can be tested, whereas

in our model, even when all tasks can be measured and rewarded, we show that deliberate opacity about

the weights in the incentive scheme can be desirable.13

The remainder of the paper proceeds as follows. Section 2 outlines our model. Section 3 studies

transparent incentive schemes, while Section 4 analyzes opaque schemes. Section 5 identifies settings in

which opaque schemes are dominated by transparent ones. Section 6 identifies environments in which

optimally weighted opaque schemes dominate the best transparent one. Sections 7 and 8 contain extensions

and concluding remarks. Proofs not provided in the text are in the appendix.

2 The Model

A principal (she) hires an agent (he) to perform a job for her. The agent’s performance on the job has two

distinct dimensions, which we term “tasks”. Measured performance, xj, on each task j = 1,2 is verifiable and

depends both on the effort devoted by the agent to that task, ej, and on the realization of a random shock,

13The costs and benefits of transparency are also a focus of interest in international relations. Wikipedia defines the policy of
“strategic ambiguity” as “the practice by a country of being intentionally ambiguous on certain aspects of its foreign policy [...].
It may be useful if the country has contrary foreign and domestic policy goals or if it wants to take advantage of risk aversion to
abet a deterrence strategy.”(http://en.wikipedia.org/wiki/Policy_of_deliberate_ambiguity). Multiple objectives of the
principal and risk aversion of the agent are also important in our model in generating the beneficial incentive effects of opacity.
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εj. In particular, xj = ej + εj, where (ε1, ε2) have a symmetric bivariate normal distribution with mean

0, variance σ2, and covariance ρσ2 ≥ 0. The efforts chosen by the agent are not observable by the principal.

Our multi-task moral hazard model incorporates three key ingredients that are featured in all of our

motivating examples in Section 1. The first of these is that at the time of contracting, the agent is better

informed than the principal about his cost of exerting efforts. Specifically, with probability 1
2 , the agent’s

cost function is c1 (e1, e2) = 1
2 (e1 + λe2)

2 , in which case we will term him a type-1 agent, and with

probability 1
2 his cost function is c2 (e1, e2) = 1

2 (λe1 + e2)
2, in which case he will be termed a type-2

agent. The parameter λ is common knowledge, and λ ≥ 1. For each type of agent i = 1,2, efforts are

perfect substitutes: ∂ci/∂e1
∂ci/∂e2

does not vary with (e1, e2).
14 Nevertheless, since λ ≥ 1, the type-i agent has

a preference for task i: the marginal cost of effort on task j (j 6= i) is λ times as large as that on task i.

The second key ingredient is the agent’s risk aversion. We assume that both types of agent have an

exponential von Neumann-Morgenstern utility function with coefficient of absolute risk aversion r, so

the type-i agent’s utility function is U = − exp{−r (w− ci (e1, e2))}, where w is the payment from the

principal. The two types of agent are assumed to have the same level of reservation utility, which we

normalize to zero in certainty-equivalent terms.

The third key feature of our model is that the agent’s efforts on the tasks are complementary for the

principal. We capture this by assuming that the principal’s payoff, which consists of the benefit to her

from the agent’s efforts minus the payment to the agent, takes the following form:

Π =
δe+ e

δ + 1
−w,

where e is the smaller of the efforts on the two tasks, e is the larger of the efforts, and the parameter

δ ∈ [1,∞). Notice that as δ goes to ∞, the benefit to the principal goes to e, so that the tasks are perfect

complements for her. On the other hand, when δ = 1, the principal’s payoff is 1
2(e+ e), so that the tasks

are perfect substitutes for her. When the agent chooses perfectly balanced efforts e = e = e, the principal’s

benefit is e, which is independent of δ.15

The relative size of δ and λ determines what allocation of effort across tasks would maximize social

surplus. If δ > λ, so the principal’s desire for balanced efforts is stronger than the agent’s preference across

tasks, then the surplus-maximizing effort allocation involves both types of agent exerting equal effort on

the two tasks. If, instead, δ < λ, then in the socially efficient effort allocation, each type of agent focuses

exclusively on his preferred task.

14In Section 7.2, we show that our key results continue to hold when the degree of substitutability of efforts for the agent
is high but imperfect.

15We assume throughout that difficulties of coordination would prevent the principal from splitting the job between two
agents, with each agent responsible for only one dimension (task).
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The principal’s benefit, δe+eδ+1 , is assumed non-verifiable. Therefore, the only measures on which the agent’s

compensation can be based are x1 and x2. The principal chooses a compensation scheme to maximize

her expected payoff, subject to participation and incentive constraints for the agent that reflect the agent’s

hidden information and hidden actions. We will compare incentive schemes according to the (expected)

payoff generated for the principal.

Below we consider a variety of incentive schemes. Throughout the analysis, we restrict attention to

compensation schedules in which, ex post, after all choices are made and random variables are realized,

the agent’s payment is a linear and separable function of the performance measures: w = α+ β1x1 + β2x2.

We will say an incentive scheme (possibly involving menus) is transparent if, at the time the agent signs

the contract or makes his choice from the menu, he is certain about what values of α, β1, and β2 will

be employed in determining his pay. If, instead, even after making his choice from a menu, the agent is

uncertain about the value of α, β1, or β2, we will say that the incentive scheme is opaque.

In the next section, we study transparent incentive schemes. Section 4 then analyzes the class of opaque

scheme on which we focus, ex ante randomization (henceforth EAR). A contract with EAR specifies that

with probability 1
2 the agent will be compensated according to w = α+ βx1 + kβx2 and with probability 1

2

according to w = α+ βx2 + kβx1, where the parameter k ∈ (−1,1).16 Under EAR, the principal commits

to employ a randomizing device to determine which of these two linear schedules will be used. Thus, the

agent, when choosing efforts, is uncertain about which performance measure will be more highly rewarded,

and by varying the level of k, the principal can affect how much this uncertainty matters to the agent.17

3 Transparent Incentive Schemes

3.1 The No Hidden Information Benchmark

Suppose that the principal can observe the agent’s cost type and offer each type a different contract. This

simplifies the setup from a model with hidden action (moral hazard) and hidden information (private

information about types) into a model with only hidden action. We will refer to this as the “no hidden

16In contrast to transparent incentive schemes, the performance of EAR cannot be improved by the inclusion of menus.
Section B.3 of the online appendix shows that the principal’s payoff under EAR is highest when she offers a single EAR
contract that randomizes with equal probability between the two wage schedules.

17The restriction of the contracting space to ex post linear contracts is crucial to our analysis. If arbitrarily complex nonlinear
contracts were available to the principal, it would be possible to show, by extending an argument of Grossman and Hart (1983), that
given any contract with EAR, there would exist a nonlinear transparent contract that provides both types of agent with the same
expected utility as a function of efforts as the contract with EAR and that (since the agent is risk-averse) entails a lower payment by
the principal. However, this construction would necessitate a nonlinear contract that is complicated to describe and difficult to un-
derstand, whereas a contract which randomizes over two linear schedules is considerably simpler to describe and understand. This
view is supported by the findings of Abeler and Jäger (2015), who show that the real-effort choices of subjects faced with complex
incentive schemes are more dispersed and further from the payoff-maximizing level than those of subjects faced with simple ones.
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information benchmark” (henceforth NHI). The NHI benchmark is important because, as we will see, there

are environments in which optimally designed opaque contracts allow the principal, even in the presence

of hidden information, to achieve a payoff arbitrarily close to that achievable in this benchmark.

In this setting, the optimal pair of contracts (one for each type of agent) can take one of two possible

forms. The first form makes each type of agent willing to choose equal efforts on the two tasks but imposes a

relatively large risk cost on the agent. The second form induces each type to exert effort only on his less costly

task but provides better insurance for the agent.18 The first form is a pair of contracts (Cbal1 ,Cbal2 ), where

Cbal1 : w1 = α+ βx1 + λβx2 and Cbal2 : w2 = α+ βx2 + λβx1,

with β > 0, and where the principal assigns the contract Cbali to the type-i agent. The incentive coefficients

in Cbali are chosen to equate the ratio of the marginal benefits of efforts on the two tasks to the ratio of their

marginal costs for type i. As stressed by Holmstrom and Milgrom (1991) and Milgrom and Roberts (1992,

p. 228), equalizing these ratios is necessary for a contract to induce strictly positive efforts on both tasks,

an observation often referred to as the “equal compensation principle”. Here, since these ratios are constant,

independent of the chosen efforts, it follows that type i is indifferent over all non-negative effort pairs

satisfying β = ei+λej. Among such effort pairs, the principal prefers type i to choose the perfectly balanced

effort allocation, ei = ej = β
1+λ , since efforts on the tasks are complementary for the principal (δ > 1).

Throughout the paper, we assume that the agent, if indifferent over effort pairs, chooses the pair that

is best for the principal. This assumption is relevant only for transparent schemes; opaque schemes never

leave the agent indifferent. Therefore, by assuming the best-case scenario for transparent schemes, we are

strengthening our findings in Section 6 that opaque schemes can outperform transparent ones.

Figure 1 illustrates the outcomes from the contract pair (Cbal1 ,Cbal2 ) in the NHI benchmark when λ > 1.

Since with transparent linear contracts, the cost of the risk imposed on the agent (stemming from the shocks

to measured performance) is independent of the efforts chosen, each type of agent maximizes expected

utility by maximizing the difference between the expected wage payment and the quadratic effort cost.

For a type-1 agent, the isocost curves (shown in red) are linear in (e1, e2)-space with slope equal to −1/λ.

Under the contract Cbal1 , this agent’s isobenefit curves (the curves of constant expected wage, one of which

is shown in black) are also linear with the same slope −1/λ. Consequently, if for example the type-1 agent

finds it optimal to incur a total effort cost corresponding to the isocost curve through points P and Q1 in

the figure, he is indifferent over all effort pairs on this isocost curve, since they all yield the same expected

wage. Hence under our assumption on the agent’s behavior when indifferent, he will choose the point P ,

18Under our assumption that for both types of agent, efforts are perfect substitutes in the cost function, any linear contract
either makes an agent willing to choose perfectly balanced efforts or induces him to exert effort only on his less costly task.
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Figure 1: Isocost and isobenefit curves under transparent contracts. Contract Cbal
1 makes the type-1 agent willing to choose

point P , at which e1 = e2, and similarly the contract Cbal
2 makes the type-2 agent also willing to choose P . The ST contract

induces both types of agent to choose fully focused efforts: the type-1 agent chooses Q1 and the type-2 agent Q2.

at which e1 = e2. Symmetrically, for a type-2 agent, his isocost curves (blue) and the isobenefit curves

corresponding to contract Cbal2 (black) are all linear with slope −λ, and since the value of β is the same

in Cbal2 as in Cbal1 , the type-2 agent will also choose point P .

Suppose that, instead of tailoring the incentive coefficients to the agent’s preferences over tasks, the

principal offered both types of agent a “symmetric transparent” (henceforth ST) contract

ST : w = α+ βx1 + βx2,

with β the same as in (Cbal1 ,Cbal2 ). Now the isobenefit curves for both types of agent would have slope −1

(one such curve is shown in Figure 1 as the dotted black line), and for both types the strictly optimal effort

pair given the ST contract would be a corner solution, Q1 for type 1 and Q2 for type 2, corresponding

to efforts fully focused on that type’s less costly task. For λ > 1, the incentives provided by a symmetric

transparent contract are unattractive for a principal who values effort balance: For any value of the
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principal’s complementarity parameter δ such that δ > λ, the principal’s benefit δe+e
δ+1 from the fully focused

effort pairs Q1 and Q2 is strictly below that from the perfectly balanced pair P .

In the special case where λ = 1, there is only one type of agent, and Cbal1 and Cbal2 both reduce to the ST

contract. In this special case, the ST contract makes the agent indifferent between effort pairs and thus willing

to choose balanced efforts e1 = e2 = β
2 . Consequently, in the NHI benchmark, under our assumption on the

agent’s behavior when indifferent, the efforts induced by the contract pair (Cbal1 ,Cbal2 ), and hence the payoff re-

ceived by the principal, are continuous in λ, approaching as λ→ 1 their values under the ST contract at λ = 1.

Even though inducing perfectly balanced efforts from both types of agent, via (Cbal1 ,Cbal2 ), is feasible

in the NHI benchmark, it is not necessarily optimal because of the cost of the risk imposed on the agent

stemming from the shocks to the two performance measures. The second type of contract pair which can

be optimal in the NHI benchmark is a pair of the form

Cfoc1 : w1 = α+ βx1 − ρβx2 and Cfoc2 : w2 = α+ βx2 − ρβx1,

with β > 0, where the principal assigns Cfoci to the type-i agent. Since contract Cfoci has a strictly positive

incentive coefficient only on xi, this contract induces type i to exert effort only on his less costly task,

task i, and for any λ ≥ 1 to set ei = β and ej = 0. Despite its drawback of inducing fully focused efforts,

contract Cfoci has the advantage of using performance on task j to provide insurance for the type-i agent

(without weakening his incentives on task i), by optimally exploiting the correlation between the shocks

to the two performance measures.19 Among all contract pairs that induce each type to focus only on his

less costly task, pairs of the form (Cfoc1 ,Cfoc2 ) are the most attractive for the principal.20

In choosing, in the NHI setting, between a contract pair of the form (Cbal1 ,Cbal2 ) and one of the form

(Cfoc1 ,Cfoc2 ), the principal faces a trade-off between the more balanced efforts induced by the former and

the lower risk cost imposed by the latter. The following lemma shows that, if and only if the efforts on

the two tasks are sufficiently complementary for the principal, the benefits of the balanced efforts elicited

by (Cbal1 ,Cbal2 ) outweigh the costs of the extra risk imposed on the agent by this contract pair.

Lemma 1 For any λ ≥ 1, in the NHI benchmark, there exists a critical value of the task complementarity

parameter δ in the principal’s benefit function, δNHI(λ, rσ2, ρ), increasing in each of its arguments, such

that for δ > δNHI (respectively, δ < δNHI), the principal’s unique optimal contract pair has the form

19The logic here is analogous to the logic behind using relative performance evaluation to minimize an agent’s exposure
to risk for any given level of incentives. See, for example, Holmstrom and Milgrom (1990).

20Although the values of α and β could in principle be allowed to differ between Cbal
1 and Cbal

2 and, analogously, between
Cfoc

1 and Cfoc
2 , the symmetry of the model with respect to the two types of agent makes it optimal for these values to be

the same within each type of contract pair. Moreover, this symmetry also implies that it is never uniquely optimal to offer
a pair of the form (Cfoc

1 ,Cbal
2 ) or (Cbal

1 ,Cfoc
2 ).
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(Cbal1 ,Cbal2 ) (respectively, the form (Cfoc1 ,Cfoc2 )).

3.2 The General Case: Hidden Information

In the general case where λ > 1 and the agent is privately informed about his preferences across tasks,

the principal can use menus of contracts as a screening device. However, Lemma 2 shows that the power

of menus to solve the effort-substitution problem is extremely limited in the presence of hidden information.

Lemma 2 When λ > 1, under hidden information no menu of transparent linear contracts can induce

both types of agent to choose strictly positive efforts on both tasks.

To understand Lemma 2, observe that the “equal compensation principle” has the following implication for

a menu of transparent linear contracts: the only way to induce both types of agent to exert strictly positive

efforts on both tasks is to induce each type to choose a contract that rewards performance on his more costly

task at a rate λ times as high as it rewards performance on his less costly task. Therefore, if a menu existed

which could induce both types to choose strictly positive efforts on both tasks, it would have the form

C1 : w1 = α1 + β1x1 + λβ1x2 and C2 : w2 = α2 + β2x2 + λβ2x1

and would induce the type-i agent to choose contract Ci.

We now use Figure 2, which builds on Figure 1, to explain why, no matter how (α1, β1, α2, β2) were

chosen, a menu of the form above would give at least one type of agent an incentive to select the “wrong”

contract from the menu, in which case he would exert effort only on his less costly task. Suppose first

that the principal sets β1 = β2 and α1 = α2, so that (C1,C2) matches the mirror-image pair (Cbal1 ,Cbal2 )

discussed in Section 3.1. Then if the type-1 agent were to choose Cbal1 , the perfectly balanced efforts of

point P would maximize his expected utility. Moreover, given that Cbal1 and Cbal2 are mirror images of

each other, point P would yield this agent the same expected utility under both contracts. Yet if the type-1

agent chose Cbal2 , under which his isobenefit curves would be more steeply negatively sloped (with slope

−λ) than his isocost curves, then fully focusing his efforts by choosing point Q1 would yield him strictly

higher utility than would point P : He would incur the same overall effort cost as at P but would earn a

strictly higher expected wage. Therefore, if β1 = β2 and α1 = α2, the type-1 agent strictly prefers to choose

contract Cbal2 over Cbal1 , and symmetrically, the type-2 agent strictly prefers to choose Cbal1 over Cbal2 .21

21The point Q1 is not the type-1 agent’s optimal effort choice under Cbal
2 (he would prefer an effort pair with an even

higher value of e1, and e2 = 0), but because Q1 yields the type-1 agent higher expected utility than does P , it follows that
this agent strictly prefers Cbal

2 to Cbal
1 .
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Figure 2: Graphical explanation of Lemma 2. Faced with the menu (Cbal
1 ,Cbal

2 ), if the type-1 agent were to choose Cbal
1 ,

the perfectly balanced efforts of point P would maximize his expected utility. But choosing Cbal
2 and fully focusing his efforts

on task 1 (point Q1) would yield strictly higher expected utility, since Cbal
2 rewards task 1 more highly than does Cbal

1 .

The principal could, by raising β1 and α1 sufficiently relative to β2 and α2, induce the type-1 agent to

choose C1 from the menu (C1,C2). However, since for any β1 and α1, C1 rewards task 2 more highly than

task 1, the type-2 agent always derives strictly higher expected utility from C1 than does the type-1 agent.

Thus, any adjustment in β1 and α1 that made the type-1 agent willing to choose C1 would continue to

induce the type-2 agent to select C1 and would thus induce the latter agent to choose fully focused efforts.

In sum, with transparent linear contracts, which correspond in Figures 1 and 2 to linear isobenefit curves,

the only way to solve the effort-substitution problem for a given type of agent is to reward more highly his

more costly task. But because the bribe implicit in such a contract is even more attractive to the other type

of agent, it is impossible, even with menus of transparent linear contracts, to solve the effort-substitution

problem for both types of agent in the presence of hidden information.

The above discussion shows that the principal might benefit from contracting instruments that generate

convexity in the isobenefit curves. Since the isocost curves of the two types of agent are linear, though
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differently sloped, contracts that yield sufficiently convex isobenefit curves could simultaneously make

interior effort choices optimal for both types of agent. We will see in Section 4 that ex ante randomization

(EAR) over linear schedules putting asymmetric weights on the performance measures can indeed generate

sufficiently convex isobenefit curves to mitigate the effort-substitution problem.

Before analyzing EAR, though, we characterize the optimal menu of transparent linear contracts and

summarize some of its key properties. Recall that Lemma 2 shows that no menu of transparent linear

contracts can induce both types of agent to choose strictly positive efforts on both tasks. Thus any menu

must induce strictly positive efforts on both tasks either from one type of agent or from neither type of

agent. By an extension of the logic used in Section 3.1 to confine attention to contracts Cbali and Cfoci ,

an optimal menu inducing the former pattern of efforts must have the following form, which we term an

“asymmetric transparent menu” (henceforth ATM)

CATM1 : w1 = α1 + β1x1 − ρβ1x2 and CATM2 : w2 = α2 + β2x2 + λβ2x1.

Similarly, an optimal menu inducing the latter pattern of efforts must have the form

CSTM1 : w1 = α+ βx1 − ρβx2 and CSTM2 : w2 = α+ βx2 − ρβx1,

which we term a “symmetric transparent menu” (henceforth STM).

The two mirror-image contracts in an STM match the contracts (Cfoc1 ,Cfoc2 ). Since each of these

contracts attaches a positive coefficient to only one performance measure, it is clear that each type of agent

chooses from the menu the schedule which rewards performance on his preferred task and exerts effort

only on that task. As explained in Section 3.1, the negative coefficient −ρβ on output xj in CSTMi uses

the correlation between the shocks to x1 and x2 to provide insurance to the type-i agent.

Now consider an ATM. Through appropriate choice of (α1, α2), given (β1, β2), an ATM of the form

above induces the type-2 agent to select schedule CATM2 , which leaves him indifferent over all effort pairs

such that β2 = e1 + λe2. Given our assumption on the agent’s behavior when indifferent, the type-2 agent

therefore chooses the perfectly balanced effort allocation e1 = e2 = β2
1+λ . At the same time, the type-1

agent is induced to select the schedule CATM1 , which incentivizes him to choose fully focused efforts (and

uses the coefficient on x2 to provide insurance). Inducing the type-1 agent to choose CATM1 over CATM2

necessitates leaving a rent to this agent type. This rent arises because the contract CATM2 designed for the

type-2 agent bribes that agent to choose balanced efforts by rewarding task 1 exactly λ times more highly

than task 2. But CATM2 is even more attractive to the type-1 agent for whom task 1 is the less costly task.

Relative to an STM, an ATM has the benefit of inducing one type of agent (here, type 2) to choose
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balanced efforts, but it imposes more risk on that agent type and also necessitates leaving a rent to the

other type (here, type 1). Whether this benefit of an ATM outweighs these costs depends on whether δ,

the strength of the principal’s preference for balanced efforts, is large enough.

Proposition 1 (i) When the agent is privately informed about his preferences, there exists a critical

δHI(λ, rσ2, ρ), increasing in each of its arguments, such that for δ > δHI, the best transparent menu for

the principal is an optimally designed ATM, and for δ < δHI, her best transparent menu is an optimally

designed STM.

(ii) For all λ > 1 and for all (rσ2, ρ), δHI(λ, rσ2, ρ) > δNHI(λ, rσ2, ρ), and as λ→ 1, δHI − δNHI → 0.

(iii) For any λ > 1, if δ > δNHI(λ, rσ2, ρ), the principal is strictly worse off when hidden information is

present than when it is absent.

(iv) For δ > δHI(1, rσ2, ρ), the limit as λ→ 1 of the principal’s maximized payoff under hidden information

is strictly below her maximized payoff in the NHI benchmark.

The result in (ii) that δHI(λ, rσ2, ρ) > δNHI(λ, rσ2, ρ), for all λ > 1, says that the principal’s

complementarity parameter δ must be larger when hidden information is present than when it is absent for it to

be optimal for her to induce balanced efforts (even from just one type of agent). The reason is the informational

rent that hidden information forces the principal to leave to one agent type when offering an ATM.22

Part (iii) of the proposition follows from the facts, proved in Lemmas 1 and 2, that for δ > δNHI it is

a strict optimum for the principal in the NHI benchmark to induce both types of agent to choose perfectly

balanced efforts and that this outcome is infeasible under hidden information. Part (iv) shows that under

hidden information, when δ > δHI(1, rσ2, ρ), the principal’s maximized payoff drops discontinuously as λ is

increased from 1 (where an ST contract is optimal and induces perfectly balanced efforts) to a value slightly

greater than 1 (where the optimal scheme is an ATM).23 This discontinuous drop reflects the impossibility, for

even a small degree of privately-known preference across tasks, of inducing balanced efforts from both types

with a transparent scheme. In contrast, in the NHI benchmark, where it is feasible to induce balanced efforts

from both types for all λ, the principal’s maximized payoff decreases continuously as λ is increased from 1.

22The gap between δHI and δNHI remains even for r = 0, highlighting that it arises from hidden information alone, rather
than from the combination of hidden information and risk aversion.

23Note that we are continuing to use our assumption that the agent, when indifferent over effort pairs, chooses the pair
that maximizes the principal’s payoff.
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4 Opaque Incentive Schemes: Ex Ante Randomization

A contract with ex ante randomization (EAR) specifies that with probability 1
2 , the agent will be compensated

according to w = α+βx1 +kβx2, and with probability 1
2 , according to w = α+βx2 +kβx1, where the key

parameters are the incentive intensity β > 0 and the weighting factor k ∈ (−1,1).24 Under this incentive

scheme, the principal commits to employ a randomizing device to determine whether the agent’s pay will

be more sensitive to performance on task 1 or task 2. If the agent chooses unequal efforts on the tasks, the

principal’s randomization exposes the agent to extra wage risk, risk against which he can insure himself by

choosing more balanced efforts. By varying k, the principal can affect how much risk the randomization per

se imposes on the agent and can thereby affect the strength of the agent’s incentives to balance his efforts. If

k were equal to 1, the randomized scheme would collapse to the symmetric transparent (ST) contract defined

in Section 3.1, which, whenever λ > 1, induces both types of agent to exert effort only on their preferred

task. The smaller k is, the greater is the risk imposed on the agent by the principal’s randomization, and

therefore the stronger are the agent’s incentives to self-insure by choosing more balanced efforts.

Since the two equally likely compensation schedules under EAR are mirror images with respect to the

two tasks and since the cost functions of the two types of agent are also mirror images, the optimal effort

choices of the two types of agent will also be mirror images. Hence we can describe both agents’ optimal

efforts by the same pair (eEAR, eEAR), where eEAR denotes the effort on the agent’s less costly task and

eEAR the effort on the agent’s more costly task. Furthermore, since the principal’s benefit function depends

only on the minimum and maximum of the efforts on the two tasks, and not which task attracted larger

effort, the principal’s expected payoff under EAR can also be written as a function of (eEAR, eEAR).

Proposition 2 (i) Under EAR, k < 1
λ is a necessary condition for each agent’s optimal efforts on both

tasks to be strictly positive. When EAR induces interior solutions for efforts,

(ii) the efforts choices of each type of agent satisfy

eEAR + λeEAR =
β(1 + k)

λ+ 1
(1)

exp
[
rβ(1− k)(eEAR − eEAR)

]
=

λ− k
1− kλ

; (2)

(iii) the gap in efforts, eEAR − eEAR, is increasing in λ, approaching 0 as λ → 1; decreasing in rβ,

approaching 0 as rβ →∞; and increasing in k, approaching 0 as k→−1+;

24The lump-sum payment α has no effect on the agent’s effort incentives, and will optimally be set by the principal to
make the participation constraint binding for both types of agent.
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(iv) the principal’s expected payoff under EAR, for given β > 0 and k ∈ (−1, 1λ), is

ΠEAR(β,k) =
δeEAR + eEAR

δ + 1
− β2(1 + k)2

2(λ+ 1)2

− 1

2
rσ2β2(1 + 2ρk+ k2)− 1

2r
ln

[
(λ+ 1)2 (1− k)2

4(1− kλ)(λ− k)

]
. (3)

If k ≥ 1
λ , then for both types of agent, whichever compensation schedule is randomly selected, the ratio of

the marginal benefit of effort on the less costly task to that on the more costly task is at least as large as the

corresponding ratio of the marginal costs and strictly larger for one schedule. By the “equal compensation

principle”, therefore, both agent types would exert effort only on their less costly task.

Since for both types of agent, the effort cost is a function of e+ λe, we will refer to the quantity e+ λe

as the aggregate effort. Equation (1) shows the aggregate effort induced by EAR (at an interior solution),

while equation (2) yields the gap between efforts on the two tasks.

Equation (1) follows from the facts that, under EAR, the sum of the marginal costs of effort on the

two tasks is (1 + λ)(e+ λe), while the sum of the marginal monetary returns to effort is β(1 + k) because,

whatever the outcome of the randomization, one task will be rewarded at rate β and the other at rate kβ.

Note that the aggregate effort induced by EAR is independent of the agent’s risk aversion. To understand

equation (2), observe that each type of agent’s expected utility under EAR can be written as

− exp{−r[b(e, e)− c(e, e)−RP]} , (4)

where c(e, e) = 1
2(e+λe)2 is the cost of efforts, RP = 1

2rσ
2β2(1 + 2ρk+ k2) is the risk premium stemming

from the shocks to measured performance, and b(e, e) is the certainty equivalent of the benefit, under EAR,

from effort levels (e, e) and is given by

b(e, e) = α+
β(1 + k)

2
(e+ e)− 1

r
ln

{
exp[−1

2rβ(1− k)(e− e)] + exp[12rβ(1− k)(e− e)]
2

}
. (5)

Note that b(e, e) is less than α+ β(1+k)
2 (e+ e), the expected payment under EAR. The negative term in

(5) is the risk premium stemming from the principal’s randomization over payment schedules. Because RP

is independent of efforts, an interior solution (e, e) must equate ∂b
∂e/

∂b
∂e to ∂c

∂e/
∂c
∂e , which yields equation (2).

In contrast to transparent linear contracts, under EAR the isobenefit curves of b(e, e) for a risk-averse

agent are convex to the origin. As the effort gap between the two tasks e− e rises from 0, ∂b∂e/
∂b
∂e falls from

1. This convexity reflects that when the efforts are more unequal, the wage risk from the randomization

is greater, so the incentive to self-insure by reducing e− e is stronger.

Figure 3 illustrates the effort incentives created by EAR. With e1 on the horizontal and e2 on the vertical
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Figure 3: Under EAR with k < 1, the isobenefit curves for a risk-averse agent are convex to the origin and symmetric
about the line e1 = e2. For the solid black isobenefit curve, each type of agent’s optimal effort pair (S1 for type 1 and S2

for type 2) is a point of tangency between that curve and an isocost curve for that type of agent.

axis, isocost curves for the type-1 agent are shown in red and isocost curves for the type-2 agent in blue.

Defining b(e1, e2) by substituting e1 for e and e2 for e in equation (5), we plot the isobenefit curves of

b(e1, e2) in black. Since compensation under EAR is ex ante symmetric with respect to the two performance

measures, these isobenefit curves are symmetric about the line e1 = e2. For each type of agent, equation

(1) determines which isocost curve (corresponding to a level of aggregate effort) the chosen effort pair lies

on, while the solution to equation (2) is represented, for each type, by a point of tangency between that

isocost curve and an isobenefit curve of b(e1, e2). In Figure 3, the optimal effort pair for the type-1 agent

is S1, with e1 > e2 > 0, and that for the type-2 agent is, by symmetry, S2, with e2 > e1 > 0.

Equation (2) and Figure 3 both show how each type of agent’s optimal degree of self-insurance against the

wage risk imposed by EAR varies with the parameters of the incentive scheme and with his preferences. First,

the smaller the parameter k is, the more different the two possible compensation schedules are and the more

costly the wage risk imposed by the randomization. This is reflected in greater convexity of the isobenefit
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curves (∂b∂e/
∂b
∂e falling from 1 faster as e− e rises from 0).25 As a consequence, reducing k strengthens the

agent’s incentive to self-insure by choosing more balanced efforts, and the optimal effort gap e− e falls. As

k→−1+, the self-insurance motive approaches its strongest level, and the optimal effort gap approaches 0.

Second, greater risk aversion of the agent (larger r) and a larger value of the incentive intensity β also

make the wage risk imposed by the randomization more costly and so, just like a smaller k, make the

isobenefit curves more convex. As a result, the larger is rβ, the stronger is the self-insurance incentive under

EAR, and thus the smaller the optimal effort gap e− e. In Figure 3, as r→∞, the slope of the isobenefit

curves approaches −k for points below the 45-degree line and −1/k for points above the 45-degree line.

One such curve is shown by the dashed black line. Hence for k < 1/λ, as r→∞, the optimal effort gap

e− e for each type of agent approaches 0. This corresponds to full self-insurance. Moreover, it follows

from equation (1) that for each type of agent his optimal effort pair remains on the same isocost curve

as r increases, and hence as r→∞ with β held fixed, each type’s optimal choice approaches point P .

If k were 1 or the agent were risk-neutral, then equation (5) and Figure 3 show that the isobenefit curves

of b(e, e) would be linear with slope −1, coinciding with the isobenefit curves for an ST contract as defined

in Section 3.1. One such curve is shown by the dotted black line. In either of these extreme cases, therefore,

EAR would, like an ST contract, induce fully focused efforts for any λ > 1.

Finally, the smaller the cost difference between tasks (i.e., the smaller is λ and thus the closer the slope

of the linear isocost curves to −1), the less costly it is for the agent to self-insure by choosing a smaller

effort gap e− e. As λ→ 1, full self-insurance becomes optimal, so e− e approaches 0.

Introducing a small amount of hidden information about the agent’s preferences (raising λ from 1) has

a strikingly different effect under EAR than under transparent contracts. Under EAR, for any value of

k ∈ (−1,1), both the agent’s efforts and the principal’s payoff are continuous in λ at λ = 1 as long as

the agent is risk-averse. In contrast, Proposition 1 shows that the principal’s payoff under an optimal menu

of transparent contracts drops discontinuously as λ is raised from 1. Thus EAR is more robust to the

introduction of private information on the part of the agent than is the best transparent menu.26 EAR

is also more robust to uncertainty about the magnitude of λ than is a transparent menu: If the principal

tries to design a transparent menu to induce one type of agent to choose balanced efforts but is even slightly

wrong about the magnitude of λ, her payoff will be discontinuously lower than if she were right. The

performance of EAR does not display this extreme sensitivity.27

25In fact, for k ∈ (−1,0), the risk from the randomization makes ∂b
∂e

negative for e− e sufficiently large (while ∂b
∂e

is always

positive), so for k ∈ (−1,0), the isobenefit curves of b(e1, e2) become positively sloped far enough away from the 45-degree line.
26Even outside the exponential-normal framework we have been using, EAR induces more balanced efforts than an ST

contract and is more robust to the introduction of hidden information, as shown in Section B.4 of the online appendix.
27Bond and Gomes (2009) also study a multi-task principal-agent setting in which a small change in the agent’s preferences
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The effort-balancing incentives generated by EAR do, however, come at a cost in terms of the risk imposed

on the risk-averse agent. As shown by equations (4) and (5), EAR imposes two distinct types of risk costs. The

first is the risk stemming from the shocks to measured performance (which is the risk that would be imposed

by a transparent contract of the form w = α+ βx1 + kβx2) and represented by the term RP in (4). The

second is the risk imposed by the principal’s randomization over payment schedules, given by the negative term

in (5), reflecting the amount by which b(e, e) falls short of the expected wage under EAR. Correspondingly,

in the principal’s payoff expression (3) in Proposition 2, the penultimate term is the risk premium stemming

from the shocks, while the final term is the risk premium stemming from the randomization.

We saw above how the principal, under EAR, can affect the strength of the agent’s incentives for balanced

efforts by varying k, the parameter representing the degree of asymmetry in the weights on the performance

measures in the two possible compensation schedules. However, k also affects the level of aggregate effort

induced, since as equation (1) shows, aggregate effort is proportional to β(1 + k). To isolate the effect

of k on the principal’s payoff, holding aggregate effort fixed, we define B ≡ β(1 + k) and use equations

(1) and (2) to re-express the principal’s payoff (3) as a function of B and k:

ΠEAR(B,k) =
δeEAR + eEAR

δ + 1
− B2

2 (λ+ 1)2
− 1

2
rσ2B21 + 2ρk+ k2

(1 + k)2
− 1

2r
ln

[
(λ+ 1)2 (1− k)2

4(1− kλ)(λ− k)

]
, (6)

where

δeEAR + eEAR

δ + 1
=

B

(λ+ 1)2
− δ − λ
δ + 1

ln
(
λ−k
1−kλ

)
(λ+ 1) rB

(
1−k
1+k

) . (7)

Equations (6) and (7) show that increasing k has three effects. First, a larger k raises the effort gap e− e

and, with B and hence aggregate effort e+ λe held fixed, this larger gap lowers the principal’s benefit δe+e
δ+1

whenever δ > λ. Second, a larger k, because it induces less balanced efforts, raises the cost of compensating

the agent for the risk imposed by the randomization per se. This second effect of raising k also reduces

the principal’s payoff and is reflected in the final term in (6). Finally, a larger k reduces the cost (per unit

of aggregate effort induced) of the risk imposed on the agent from the shocks to measured performance.

This improved diversification raises ΠEAR(B,k), as reflected in the second-to-last term in (6).

In general, the optimal design of a contract with EAR involves a trade-off among these three different

effects. Weighting the performance measures more equally in the two possible compensation schedules

is costly in terms of effort balance and thereby in terms of the risk imposed by the randomization, but

is helpful in allowing better diversification of the measurement errors. The next proposition describes how

the optimal value of k varies with several parameters of the contracting environment, holding fixed the

can result in a large change in the behavior induced by a contract and a consequent large drop in the principal’s payoff,
a situation they term “contract fragility”.
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aggregate effort to be induced, and also how the optimal k changes as the desired aggregate effort changes.

Proposition 3 For any given level of aggregate effort to be induced, the optimal level of k under EAR

is smaller (the optimal weights on the performance measures should be more unequal)

(i) the larger is δ, given δ > λ (i.e., the stronger the principal’s preference for balanced efforts);

(ii) the smaller is r, holding rσ2 fixed (i.e., the less risk-averse the agent, holding fixed the importance of

risk aversion under transparent contracts);

(iii) the smaller is σ2(1− ρ) (i.e., the lower the importance of diversification of the risk from the shocks

to measured performance);

(iv) the smaller is B (i.e., the smaller the level of aggregate effort to be induced).

In Section 7.3, where we study EAR in a setting with an arbitrary number n of tasks, we show that

changes in the number of randomly chosen tasks to reward have the same qualitative effects on incentives

and risk as do changes in the weighting parameter k in the two-task model. Consequently, the comparative

statics results for the optimal number of tasks to reward are the same as those above for the optimal k.

5 When Are Transparent Incentive Schemes Preferred?

Section 4 showed that the key advantage of EAR is the effort-balancing incentives it generates for the

privately informed risk-averse agent. Proposition 4 below identifies environments in which this benefit of

opacity in mitigating gaming is outweighed by the higher wages that EAR requires the principal to pay

because of the higher risk costs imposed on the agent. The proposition also demonstrates that each of

the three key model ingredients we have highlighted—the agent’s hidden information about his preferences,

the agent’s risk aversion, and the principal’s desire for the agent’s efforts to be balanced across tasks—is

necessary for EAR to dominate the best transparent scheme.

Proposition 4 For any given (β,k), with k ∈ (−1,1), EAR yields a strictly lower payoff for the principal

than a suitably designed transparent contract, if any of the following conditions hold:

(ia) λ > 1 and the principal knows which task the agent finds less costly;

(ib) λ = 1, so the agent finds both tasks equally costly, and ρ < 1;

(ii) the agent is not sufficiently risk-averse for EAR to induce positive effort on both tasks;

(iii) δ ≤ λ, so the principal’s desire for balanced efforts is outweighed by the agent’s preference across tasks.

Underlying each part of this proposition is the demonstration that, given any EAR scheme and the

aggregate effort eEAR + λeEAR it induces, there exists a transparent contract that induces the same level
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of aggregate effort and that imposes lower overall risk costs on the agent. For part (ia), where there is

no hidden information, the relevant transparent contract for the type-i agent is Cbali , as defined in Section

3.1, with the incentive coefficient β in Cbali set equal to eEAR + λeEAR. For parts (ib), (ii), and (iii), the

relevant transparent contract is an ST contract, as also defined in Section 3.1, with β again set equal to

eEAR + λeEAR. Both of these contracts impose strictly lower risk costs on the agent than EAR because

they avoid the explicit randomization and because, by virtue of weighting the two performance measures

more equally than under EAR, they better diversify the risks from the shocks to measured performance.

In each of the four parts of Proposition 4, the constructed transparent contract yields a higher overall

expected payoff to the principal than EAR because, in addition to imposing lower overall risk costs on

the agent and inducing the same effort costs, it generates a weakly larger benefit δe+e
δ+1 for the principal.

In part (ia), given the absence of hidden information, the contract Cbali generates perfectly balanced efforts

from the type-i agent, whereas EAR does not. In parts (ib) and (ii), the constructed ST contract induces

exactly the same effort pair from each type of agent as EAR does (perfectly balanced in the former case,

where λ = 1, and fully focused in the latter). Finally, in part (iii), the principal’s benefit is higher from

the ST contract because, when δ ≤ λ, the fully focused efforts induced by the ST contract are socially

more efficient than the partially balanced efforts induced by EAR.

Proposition 4 highlights that while opaque contracts can mitigate the gaming problem, there are a variety

of settings in which the principal will not want to use them, because these incentive benefits are outweighed

by the cost of compensating the agent for the imposition of greater risk. Proposition 4 also emphasizes

that each of our three key model ingredients is necessary for EAR to outperform the best transparent

menu. The next section identifies when these three key ingredients together are sufficient for EAR to do so.

6 When Are Opaque Incentive Schemes Preferred?

We now analytically and later numerically identify environments in which opaque schemes, when designed

optimally, strictly dominate the best transparent menu. In each of the three environments for which we

prove the superiority of EAR analytically, this superiority follows in the limit from our demonstration that

EAR allows the principal to achieve a payoff arbitrarily close to what she could achieve if she knew the

agent’s preferences across tasks, as in the NHI benchmark. Hence, in these limiting environments, EAR

eliminates the efficiency losses from the agent’s hidden information.

It may initially seem surprising that we can find environments in which optimally designed EAR yields

the principal a payoff arbitrarily close to her NHI benchmark payoff. The explanation is as follows. In each
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of our three limiting environments, EAR, with the weighting parameter k adjusted optimally, simultaneously

induces essentially perfectly balanced efforts and diversifies the risk from the shocks to measured performance

as well as in the NHI benchmark.

Despite our focus on limiting environments, our analytical results are strong in two respects. First,

they show not only that optimally designed EAR outperforms the best transparent menu under hidden

information, but also that it approximates the principal’s payoff in the NHI benchmark. Second, they show

that for any level of aggregate effort to be induced, EAR dominates the best transparent menu. Hence,

even without optimizing the overall intensity of incentives, we can be sure that in these environments (and

those close to them), EAR dominates. Thus, even if the benefit component of the principal’s payoff were

scaled up or down relative to the wage cost, the results of Propositions 5, 6, and 7 would continue to hold.

6.1 Weak Preferences across Tasks for the Agent

Consider first a setting in which the agent has private information about his preferences, but the magnitude

of his preference across tasks is very weak. Formally, we study the case in which λ is strictly greater than

but arbitrarily close to 1, which we term the limiting case as λ→ 1+.

We saw in Section 4 that under EAR the agent’s effort choices and the principal’s payoff are continuous

in λ at λ = 1. This robustness of EAR to the introduction of hidden information underlies the superiority

of this scheme as λ→ 1+, as we now show.

Proposition 2 shows that as λ→ 1, so the two tasks become equally costly, e− e→ 0 for any k ∈ (−1,1)

under EAR. Equations (6) and (7) show how varying k affects the principal’s payoff from EAR, ΠEAR(B,k),

holding fixed at B
1+λ the level of aggregate effort induced. Whereas in general, as discussed in Section 4,

increasing k has conflicting effects on ΠEAR(B,k), in the limit as λ→ 1 the situation is dramatically simpler:

lim
λ→1

ΠEAR(B,k) =
B

4
− B2

8
− 1

2
rσ2B2

(
1 + 2ρk+ k2

(1 + k)2

)
. (8)

Because, as λ→ 1, efforts under EAR become perfectly balanced, the risk cost imposed by the randomization

tends to zero. Hence an increase in k has only one effect on ΠEAR(B,k), holding B fixed: it improves

the diversification of the shocks to measured performance, as reflected in the final term of (8). Thus, as

λ→ 1, ΠEAR(B,k) is increasing in k (strictly so for ρ < 1), as long as k induces interior solutions, which it

does as long as k < 1
λ . Therefore, as λ→ 1, ΠEAR(B,k) is maximized, for any B, by setting k arbitrarily

close to, but less than, 1 (k→ 1−). With k set in this way, the principal’s payoff approaches

lim
k→1

lim
λ→1

ΠEAR(B,k) =
B

4
− B2

8
− 1

4
rσ2B2 (1 + ρ) . (9)
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The right-hand side of (9) equals the payoff the principal would achieve, if λ were exactly equal to 1, from

a symmetric transparent (ST) contract with β = B
2 , since such a contract would induce effort B

4 on each

task and generate the same diversification of the shocks as EAR does when k→ 1−.28 Thus, for any B,

as λ→ 1+, the principal’s payoff under optimally weighted EAR is arbitrarily close to that from an ST

contract when the agent has no preference between tasks.29

For the NHI benchmark, Section 3.1 shows that the efforts and payoff from the contract pair (Cbal1 ,Cbal2 )

are continuous at λ = 1, where they match the efforts and payoff from the ST contract. Lemma 1

shows that as λ → 1, a pair of the form (Cbal1 ,Cbal2 ) is strictly optimal for the principal as long as

δ > limλ→1 δ
NHI(λ, rσ2, ρ). On the other hand, Proposition 1 shows that under hidden information, even

as λ→ 1+, the principal’s maximized payoff from a transparent menu is bounded away from that in the

NHI benchmark, because even for λ arbitrarily close to 1, it is impossible to induce positive efforts on both

tasks from both types of agent.

The arguments in the preceding paragraphs together imply:

Proposition 5 Consider the limiting case as λ→ 1+. Under EAR, for any given level of aggregate effort,

e+ λe, to be induced:

(i) the gap in efforts, e− e, approaches 0 for any k ∈ (−1,1);

(ii) the optimal value of k→ 1−;

(iii) with k adjusted optimally, the principal’s payoff under EAR approaches her payoff in the NHI benchmark

from (Cbal1 ,Cbal2 ). This limiting payoff equals the principal’s payoff from the symmetric transparent (ST)

contract at λ = 1.

Therefore, for δ > limλ→1 δ
NHI(λ, rσ2, ρ), EAR with k and β adjusted optimally strictly dominates the

best transparent menu under hidden information.

6.2 Large Risk Aversion and Small Variance of the Shocks

Consider now the effect of increasing the agent’s coefficient of absolute risk aversion r, holding fixed the value

of the product rσ2. This change has no impact on the principal’s payoff from any transparent scheme, since

with transparent schemes, the agent’s efforts are independent of r, and the risk premium from the shocks to

measured performance depends on r only via the product rσ2. This change does, however, increase the princi-

28See equation (14) in the proof of Lemma 1 in the appendix, and set λ = 1.
29Note that when λ = 1, an ST contract leaves the agent indifferent to how total effort is split between the tasks, while

under EAR, for any k < 1, the optimal allocation of efforts is unique. Thus, when λ = 1, with the weighting parameter
k set arbitrarily close to (but less than) 1, EAR not only yields the principal a payoff arbitrarily close to the best-case payoff
from the ST contract, but EAR also ensures that the agent has a strict preference for choosing perfectly balanced efforts.
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pal’s payoff under EAR, as long as EAR induces interior solutions for efforts. The reason is that, as shown by

equations (1) and (2), an increase in the agent’s risk aversion r has no effect on the aggregate effort induced by

EAR, but strengthens the agent’s incentive to self-insure against the wage risk from the randomization. The

resulting reduction in e−e both raises the principal’s benefit, as shown in equation (7), and reduces the cost

of compensating the agent for the risk from the randomization, as shown by final term in (6). To summarize:

Lemma 3 Holding rσ2 fixed, increasing r increases the principal’s payoff from EAR, as long as EAR

induces interior solutions for efforts, but leaves the principal’s payoff from any transparent scheme unchanged.

It follows from Lemma 3 that the more risk-averse the agent, holding rσ2 fixed, the more likely it is

that optimally designed EAR will dominate the best transparent menu. We now consider the limiting

case where r gets very large and σ2 gets very small, with rσ2 fixed at R <∞. Proposition 2 shows that, in

this environment, for any k ∈ (−1, 1λ), (e− e)→ 0 under EAR. As the agent becomes infinitely risk-averse,

it becomes optimal for him to choose perfectly balanced efforts, which provide full self-insurance against

the wage risk generated by the randomization.

Under EAR, in the limit as r→∞ and σ2 = R
r → 0, both e and e approach B

(λ+1)2
(as long as k < 1

λ).

As a consequence, ΠEAR(B,k), as given by equations (6) and (7), simplifies to

lim
r→∞,σ2=R/r→0

ΠEAR(B,k) =
B

(λ+ 1)2
− B2

2(λ+ 1)2
− 1

2
RB21 + 2ρk+ k2

(1 + k)2
. (10)

Equation (10) shows that, in this limiting case, the only effect on ΠEAR(B,k) of increasing k, over

the range k ∈ (−1, 1λ) where the induced gap in efforts (e − e) is approximately 0, is to improve the

diversification of the shocks to measured performance. Hence, just as when λ→ 1+, it is optimal for the

principal to set k arbitrarily close to, but less than, 1
λ (k→ ( 1λ)−), thereby generating a payoff approaching

lim
k→(1/λ)−

lim
r→∞,σ2=R/r→0

ΠEAR(B,k) =
B

(λ+ 1)2
− B2

2(λ+ 1)2
− 1

2
RB2λ

2 + 2ρλ+ 1

(λ+ 1)2
. (11)

The right-hand side of (11) is exactly the payoff the principal would obtain, in the NHI benchmark, from

using (Cbal1 ,Cbal2 ) with β = B
1+λ , since this pair of contracts would induce from each type of agent effort

B
(λ+1)2

on each task and would impose a risk premium (from the shocks to measured performance) given

by the final term.30

Thus as r → ∞ and σ2 = R
r → 0, optimally weighted EAR allows the principal, for any B, to get

arbitrarily close to her payoff in the NHI benchmark. Since, by Proposition 1, the best transparent menu

under hidden information leaves the principal strictly worse off than in the NHI benchmark whenever

δ > δNHI(λ,R,ρ), we have proved:

30See equation (14) in the appendix, and set rσ2 = R.
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Proposition 6 Consider the limiting case where r→∞ and σ2 = R
r → 0. Under EAR, for any given

level of aggregate effort, e+ λe, to be induced:

(i) the gap in efforts, e− e, approaches 0 for any λ and for any k < 1
λ;

(ii) the optimal value of k→
(
1
λ

)−
;

(iii) with k adjusted optimally, the principal’s payoff under EAR approaches her payoff in the NHI benchmark

from (Cbal1 ,Cbal2 ).

Therefore, for δ > δNHI(λ,R,ρ), EAR with k and β adjusted optimally strictly dominates the best

transparent menu under hidden information.

6.3 High Correlation between the Shocks or Small Variance

Our third limiting environment is one in which diversification of the risk from the shocks to the performance

measures becomes irrelevant, either because the correlation, ρ, between the shocks approaches 1 or because

their variance, σ2, approaches 0. Proposition 3 showed that as σ2(1− ρ), which captures the importance

of diversification of the risk from the shocks, falls, the optimal value of the weighting factor k under EAR

falls, for any given level of aggregate effort induced. As σ2(1− ρ) approaches 0, the principal’s payoff

ΠEAR(B,k), given in (6) and (7), becomes a decreasing function of k, for any given B, since the risk

premium due to the shocks, 1
2rσ

2B2 1+2ρk+k2

(1+k)2
, becomes independent of k in this limit.

Hence, when σ2(1− ρ) → 0, it becomes optimal under EAR to use k to induce essentially perfectly

balanced efforts, by setting k arbitrarily close to, but larger than, −1 (k→−1+). With k set in this way,

for the case ρ→ 1, the principal achieves under EAR a payoff arbitrarily close to31

lim
k→−1+

lim
ρ→1

ΠEAR(B,k) =
B

(λ+ 1)2
− B2

2(λ+ 1)2
− 1

2
rσ2B2. (12)

Similarly, for the case σ2 → 0, the principal’s payoff under EAR approaches

lim
k→−1+

lim
σ2→0

ΠEAR(B,k) =
B

(λ+ 1)2
− B2

2(λ+ 1)2
. (13)

The right-hand side of (12) (respectively, (13)) matches what the principal would obtain, in the NHI

benchmark with ρ = 1 (respectively, σ2 = 0), from using (Cbal1 ,Cbal2 ) to induce perfectly balanced efforts

and setting β = B
1+λ .32 Thus, in this limiting environment as well, optimally weighted EAR yields the

principal as high a payoff as in the absence of hidden information, for any level of aggregate effort induced.

Combining these results with Proposition 1 yields:

31As k is lowered, the coefficient β must be raised to keep aggregate effort, which is proportional to B ≡ β(1 + k), fixed.
The value of k must remain slightly larger than −1 to ensure that aggregate effort is strictly positive.

32See equation (14) in the appendix, and set ρ = 1 (respectively, σ2 = 0).

28



Proposition 7 Consider the limiting case where σ2(1 − ρ) → 0. Under EAR, for any given level of

aggregate effort, e+ λe, to be induced:

(i) the optimal value of k→−1+, and the resulting gap in efforts, e− e, approaches 0 for any λ;

(ii) with k adjusted optimally, the principal’s payoff under EAR approaches her payoff in the NHI benchmark

from (Cbal1 ,Cbal2 ).

Therefore, for all δ such that it is optimal in the NHI benchmark to induce perfectly balanced efforts, EAR

with k and β adjusted optimally strictly dominates the best transparent menu under hidden information.

6.4 Numerical Results

A general analytic characterization of the optimal values of the weighting factor k and the incentive intensity

β under EAR is prohibitively complex. As shown in equations (6) and (7), k has complicated nonlinear

effects on the principal’s payoff, and even if k were fixed at some specified value (e.g., 0), the optimal β would

be the solution to a cubic equation, because increasing β not only increases incentives for aggregate effort

(equation (1)), but also strengthens the agent’s self-insurance motive for balancing efforts (equation (2)).

This section uses numerical methods to optimize both the weighting factor k and the incentive intensity

β under EAR. We then compare the principal’s maximized payoff under EAR to that under the best

transparent menu. Recall that the best transparent menu, characterized in Proposition 1, is either an

asymmetric transparent menu (ATM), inducing one type of agent to choose perfectly balanced efforts and

the other fully focused efforts, or a symmetric transparent menu (STM), inducing both types to choose

fully focused efforts. The numerical analysis demonstrates the robustness of the effects highlighted by our

analyses of limiting environments. Specifically, it confirms that the benefits of EAR in inducing balanced

efforts are more likely to outweigh the extra risk costs it imposes when (i) the agent’s privately known

preference between tasks is weaker (λ is smaller), so for any weighting factor k his optimal effort profile

is more balanced, (ii) the agent is more risk-averse (r is larger), so EAR generates a stronger self-insurance

motive for effort balance, (iii) efforts on the tasks are more complementary for the principal (δ is higher),

or (iv) the errors in measuring performance have larger correlation (ρ is larger) or smaller variance (σ2

is smaller), so there is less of a diversification cost to designing EAR to induce highly balanced efforts.

Figure 4a plots the regions in which EAR (black), STM (gray) or ATM (white) are optimal for the principal

for different combinations of the agent’s preference parameter λ and the principal’s task complementarity

parameter δ, holding the other parameters fixed at r = 4, σ2 = 0.02, and ρ = 0. EAR is optimal for λ not

too large and δ sufficiently large. As the strength λ of the agent’s preference between tasks rises, and hence

his optimal effort gap, ceteris paribus, becomes larger, it eventually becomes too costly for the principal to
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(a) r = 4 and σ2 = 0.02 (b) r = 8 and σ2 = 0.01

Figure 4: Optimal schemes for different combinations of λ and δ, with ρ = 0.

compensate him for the total costs of the risk imposed by EAR, even when δ, capturing the importance of

effort balance to the principal, is high. Consistent with Proposition 1, between the two types of transparent

menus ATM and STM, the former is optimal only when δ is sufficiently large relative to λ.

Figure 4b shows how the dominance regions for the three incentive schemes change as the agent’s risk

aversion r increases and the variance σ2 of the shocks to the performance measures falls, holding rσ2

constant (and keeping ρ = 0). The contrast between Figures 4a and 4b illustrates the implication of Lemma

3 in Section 6.2: Increasing the risk aversion of the agent, holding rσ2 constant, expands the region in

parameter space in which EAR outperforms the best transparent menu. The expansion of the dominance

region for EAR occurs primarily at the expense of the dominance region for ATM.

Figure 5a plots the dominance regions for different combinations of the agent’s preference parameter λ and

risk aversion r, adjusting σ2 as r changes so as to keep rσ2 constant at 0.08 and fixing δ = 2 and ρ = 0. As im-

plied by Lemma 3 and Proposition 6, for any λ there is a critical value of r above which EAR is superior to the

best transparent menu. Figure 5a shows that this critical value of r is increasing in λ, because as λ increases,

inducing balanced efforts under EAR necessitates imposing greater risk on the agent. Furthermore, this criti-

cal r increases more steeply with λ for (the large) values of λ for which STM dominates ATM. This is because

the payoff from STM is independent of λ, whereas that from ATM (like that from EAR) declines with λ.

Figure 5b shows how the dominance regions change as the principal’s task complementarity parameter

δ increases from 2 to 3, keeping everything else the same as in Figure 5a. As balanced efforts become

more important to the principal, the dominance region for EAR expands, as does that for ATM. These
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(a) δ = 2 (b) δ = 3

Figure 5: Optimal schemes for different combinations of λ and r, with rσ2 = 0.08 and ρ = 0.

expansions arise because EAR and ATM, unlike STM, achieve some degree of effort balance.

(a) ρ = 0.5 (b) ρ = 0.9

Figure 6: Optimal schemes for different combinations of λ and δ, with r = 4 and σ2 = 0.02.

Figures 6a and 6b show that raising the correlation ρ of the shocks to the performance measures improves

the performance of EAR relative to that of the transparent menus. These figures plot the dominance regions

for different combinations of λ and δ, using the same parameter values as Figure 4a (where ρ = 0), except

that now ρ = 0.5 and ρ = 0.9. Contrasting these three figures shows that the dominance region for EAR

expands with the increase in ρ, primarily at the expense of that for ATM. Consistent with Propositions

3 and 7, the relative attractiveness of optimally designed EAR increases as ρ rises because there is less
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of a diversification cost to using a low value of the weighting factor k to induce highly balanced efforts. For

exactly the same reason, the dominance region for EAR expands when the variance σ2 of the shocks falls.33

These numerical results demonstrate the robustness of the effects highlighted by our analytical results for

the limiting environments. They confirm that EAR is more likely to dominate the best transparent menu

when the agent’s privately known preference between tasks is weaker, when the agent is more risk-averse,

when the tasks are more complementary for the principal, or when the shocks to the performance measures

have higher correlation or lower variance.

7 Extensions and Robustness

7.1 Alternative Assumptions on the Principal’s Commitment Powers

We have analyzed the trade-offs involved in the choice between transparent and opaque incentive schemes

under the assumption that under EAR the principal can, before the agent makes his effort choices, commit

to randomizing uniformly between the two compensation schedules.34 It is natural to wonder whether

opaque incentive schemes corresponding to alternative assumptions about the principal’s commitment

powers would change our conclusions.

Assume, instead, that the principal chooses the randomizing probability at the same time as the agent

chooses efforts. We term this incentive scheme interim randomization. We can prove that under interim ran-

domization, the unique (Bayes-Nash) equilibrium is exactly the same as the outcome described in Proposition

2, so all of our results on the benefits and costs of opacity continue to hold.35 Thus, the attractive properties of

EAR are not crucially dependent on the principal’s having the power to commit to the randomizing probability.

We also obtain qualitatively similar results for another class of opaque incentive schemes. Under a

contract with ex post discretion (EPD), the principal, after observing the performance measures x1 and x2,

chooses whether to pay the agent according to w = α+ βx1 + kβx2 or w = α+ βx2 + kβx1, where again

k ∈ (−1,1). EPD provides the agent with the same self-insurance motive but also generates an additional

incentive for effort balance. The principal’s strategic ex post choice of which linear schedule to use means

33To save space, we have omitted the figures illustrating this last result.
34Given the power to commit to a randomizing probability, it is optimal for the principal to commit to randomize uniformly. Do-

ing so results in the most balanced profile of effort choices, assessed ex ante, and also avoids leaving any rent to either type of agent.
35To see that the outcome described in Proposition 2 is an equilibrium under interim randomization, note that given that

the two types of agent are equally likely and given that their effort profiles are mirror images, the principal anticipates equal
expected output on the two tasks, so is willing to randomize uniformly over the two mirror-image compensation schedules.
Given that the principal randomizes uniformly, the optimal behavior for each type of agent is clearly as described in the
proposition. To see that this outcome is the unique equilibrium, observe that if the two types of agent conjectured that
the principal would choose the schedule rewarding task 1 more highly than task 2 with a probability greater than (less than)
1/2, then the ex ante expected profile of efforts would be skewed towards task 1, so the principal would strictly prefer to
choose the schedule rewarding task 2 more (less) highly than task 1.
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that the more the agent focuses his effort on his preferred task, the less likely that task is to be the more

highly compensated one, so the lower the relative marginal return to that task. In an earlier version of

this paper (Ederer, Holden, and Meyer, 2014), we showed that the opaque incentives resulting from EPD

generate at least as great a payoff for the principal as EAR because (i) EPD induces a strictly smaller gap in

efforts e− e than EAR, while the two schemes induce the same aggregate effort e+ λe and hence the same

total cost of effort, and (ii) EPD imposes lower risk costs on the agent than EAR. As a result, the beneficial

incentive effects of EAR are robust even if the agent suspects that the principal might deviate to EPD.

7.2 Imperfect Substitutability of Efforts for the Agent

So far we have assumed that efforts are perfect substitutes in the agent’s cost function. This assumption

does not qualitatively affect the performance of EAR, but it simplifies the analysis of transparent schemes.

However, even with some substitutability of efforts, transparent schemes continue to suffer dramatically

from the problem of gaming by an agent with hidden information. As we show in Section B.1 of the online

appendix, it remains true that (i) if tasks are sufficiently complementary for the principal, EAR is superior

to transparent menus in settings where EAR generates very strong incentives for balanced efforts, and

(ii) in such settings, EAR eliminates the efficiency losses from the agent’s hidden information.

7.3 Opaque Incentives and the Choice of How Many Tasks to Reward

We have assumed so far that the job performed by the agent involves only two distinct tasks (dimensions)

and that noisy measures of performance on both tasks are used in opaque incentive schemes. When, however,

performance on a job has many distinct dimensions, the costs of monitoring the different dimensions may

become significant. The principal can economize on monitoring costs, while still providing incentives for

balanced efforts, by randomizing over compensation schedules each of which rewards only a subset of the

tasks. In Section B.2 of the online appendix we study some of the trade-offs involved in the design of

randomized incentive schemes in environments with many tasks. We find that reducing the number of

tasks randomly selected to be rewarded, holding fixed the aggregate effort induced, has qualitatively the

same effects on the agent’s incentives and on the principal’s payoff as reducing the weighting coefficient

k in EAR in the two-task model. Analogously with Proposition 3, therefore, the optimal number of tasks

to reward is smaller, (i) the stronger the principal’s preference for balanced efforts, (ii) the less risk-averse

the agent (holding rσ2 fixed), (iii) the lower the importance of diversification of the risk from the shocks

to measured performance, and (iv) the smaller the level of aggregate effort to be induced.
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8 Conclusion

Gaming of incentive schemes is a serious concern to incentive designers in a wide range of settings. We

analyzed a principal-agent model in which the agent’s superior information about the environment leads

to severe gaming of menus of transparent linear contracts. In contrast, opaque incentive schemes not

only mitigate the agent’s gaming but can yield a higher overall payoff for the principal despite imposing

additional risk on the agent. In general, the principal faces a trade-off between the benefits of the more

efficient effort allocations induced by opaque schemes and the costs of the greater risk they impose.

We showed that opaque schemes are superior when (i) the agent’s privately known preference between

tasks is weak, so even a small degree of opacity generates a high degree of effort balance, or (ii) the agent’s

risk aversion is significant, so opaque schemes give him a powerful self-insurance motive for balancing efforts,

or (iii) the principal values effort balance highly, or (iv) the errors in measuring performance on the tasks

have large correlation or small variance. Our analysis also identifies conditions under which the benefits

of opacity in mitigating gaming are outweighed by the higher wages that it forces the principal to pay

because of the greater risk imposed on the agent.

We emphasize that, because of the agent’s hidden information, opaque schemes can dominate transparent

ones even when pay can be based upon measured performance on both tasks. When costs of measurement

constrain an incentive designer to use only one performance measure, the attractiveness of opacity about

which task will be measured and rewarded is clearly significantly enhanced relative to the best transparent

contract rewarding only one task.

Our analysis suggests that even beyond the specific multi-task setting on which we have focused, opacity

of incentive schemes can be a valuable tool for incentive designers when there are restrictions on the

complexity of reward schemes or when resources for monitoring agents are limited. By making agents more

uncertain about the consequences of their actions for their rewards, opaque schemes can help principals

mitigate the costs of gaming by agents who are exploiting their hidden information. Future research should

explore the benefits of opaque incentive schemes in deterring gaming in other settings, identifying under

what conditions these incentive benefits can outweigh the risk costs of opacity.
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A Omitted Proofs

Proof of Lemma 1. Consider first the pair of contracts (Cbal1 ,Cbal2 ). Under our assumption on the agent’s behavior
when indifferent over effort pairs, Cbali induces agent i to choose ei = ej = β

1+λ , yielding each type i a certainty
equivalent of

ACEi(C
bal
i ) = E(wi)− ci(e1, e2)− 1

2
rσ2var(wi) = α+ β2 − β2

2
− 1

2
rσ2β2(1 + 2ρλ+ λ2).

The principal will set α to satisfy each type’s participation constraint with equality, and her expected payoff from
each type, as a function of β, will be

Πbal(β) =
β

1 + λ
− β2

2
− 1

2
rσ2β2(1 + 2ρλ+ λ2). (14)

With β chosen optimally, the resulting maximized payoff is

Πbal =
1

2(1 + λ)2 [1 + rσ2(1 + 2ρλ+ λ2)]
. (15)

This payoff is continuous as λ→ 1.
Now consider the pair of contracts (Cfoc1 ,Cfoc2 ). Cfoci induces type i to choose ei = β and ej = 0. The principal

will set α to satisfy each type’s participation constraint with equality, and her expected payoff from each type, as
a function of β, will then be

Πfoc(β) =
β

δ + 1
− β2

2
− 1

2
rσ2β2

(
1− ρ2

)
.

With β chosen optimally, the resulting maximized payoff is

Πfoc =
1

2(δ + 1)2[1 + rσ2(1− ρ2)]
. (16)

Comparison of the expressions for Πbal and Πfoc shows that there is a critical value of δ,

δNHI(λ, rσ2, ρ) ≡ (λ+ 1)

[
1 + rσ2(1 + 2ρλ+ λ2)

1 + rσ2(1− ρ2)

]1
2

− 1, (17)

above (below) which Πbal > (<) Πfoc. It is straightforward to verify that δNHI is increasing in each of its arguments.

Proof of Lemma 2. For a transparent menu of linear contracts to induce both types of agent to exert strictly
positive efforts on both tasks, it is necessary that each type be induced to choose a contract that equates the (constant)
ratio of the marginal benefits of efforts on the tasks to the (constant) ratio, for that type, of the marginal costs.
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Therefore, if such a menu existed, it would have the form

C1 : w1 = α1 + β1x1 + λβ1x2 and C2 : w2 = α2 + β2x2 + λβ2x1,

and would induce agent i to choose Ci.
Let ACEi(Cj) denote the certainty equivalent achieved by agent i from selecting contract Cj and choosing efforts

optimally. For agent 1 to be willing to choose C1 requires ACE1(C1) ≥ ACE1(C2), and the analogous self-selection
constraint for agent 2 is ACE2(C2) ≥ ACE2(C1). Now for all λ > 1, ACE2(C1) > ACE1(C1), since agent 1’s
certainty equivalent from contract C1 equals that which he would obtain from focusing all his effort on task 1 (which is
one of his optimal effort allocations), whereas agent 2’s certainty equivalent from C1 equals that which he would obtain
from focusing all his effort on task 2 (which is his unique optimal effort choice), and task 2 is more highly rewarded
than task 1 in contract C1. Similarly, for all λ > 1, ACE1(C2) > ACE2(C2). If ACE1(C1) ≥ ACE2(C2), then
ACE2(C1) > ACE1(C1) implies that ACE2(C1) > ACE2(C2), so the self-selection constraint for agent 2 would be
violated. If, instead, ACE1(C1) < ACE2(C2), then ACE1(C2) > ACE2(C2) implies that ACE1(C1) < ACE1(C2),
so the self-selection constraint for agent 1 would be violated. Therefore, there is no way to choose (α1, β1, α2, β2) so
that the menu above induces both types of privately-informed agent to choose the contract that would make each willing
to choose perfectly balanced efforts. Hence perfectly balanced efforts from both types of agents cannot be achieved.

Furthermore, since faced with a menu of transparent linear contracts, an agent either is willing to exert perfectly
balanced efforts or strictly prefers fully focused efforts, this argument also shows that it is not possible for the principal
to induce both types of agent to exert strictly positive efforts on both tasks.

Proof of Proposition 1.
Part (i): Consider first an STM, consisting of the contract pair

CSTM1 : w1 = α+ βx1 − ρβx2 and CSTM2 : w2 = α+ βx2 − ρβx1.

Agent i strictly prefers contract Ci to contract Cj and, having chosen Ci, will then set ei = β and ej = 0. This STM
generates the same outcome, for each type of agent, as the principal achieves in the NHI benchmark setting from
the contract pair (Cfoc1 ,Cfoc2 ). Therefore, the principal’s maximized payoff from an STM, ΠSTM , is given by the
expression in (16). Compared to an STM, an ST contract would, for all λ > 1, also induce fully focused efforts from
both agent types but would impose a larger risk premium and hence generate a lower payoff for the principal.

Now consider an ATM, consisting of the contract pair

CATM1 : w1 = α1 + β1x1 − ρβ1x2 and CATM2 : w2 = α2 + β2x2 + λβ2x1.

In this menu, Ci is the contract intended for agent i. If agent 2 chooses C2, he would be indifferent over all effort
pairs such that β2 = e1 + λe2. Given our assumption on the agent’s behavior when indifferent, agent 2 chooses the
perfectly balanced effort allocation e1 = e2 = β2

1+λ . If, instead, agent 2 chooses C1, he would set e1 = β1
λ2 and e2 = 0.

If agent 1 chooses C1, he would set e1 = β1 and e2 = 0, whereas if he chooses C2, he would set e1 = λβ2 and e2 = 0.
The certainty equivalents that each of C1 and C2 offers to each type of agent are:

ACE1 (C1) = α1 +
(β1)

2

2
− 1

2
rσ2 (β1)

2 (
1− ρ2

)
; ACE1 (C2) = α2 +

(λβ2)2

2
− 1

2
rσ2 (β2)

2 (
λ2 + 2ρλ+ 1

)
;

ACE2 (C2) = α2 +
(β2)

2

2
− 1

2
rσ2 (β2)

2 (
λ2 + 2ρλ+ 1

)
; ACE2 (C1) = α1 +

(β1)
2

2λ2
− 1

2
rσ2 (β1)

2 (
1− ρ2

)
.

Since the principal is equally likely to be facing each type of agent, her problem is to choose (α1, β1, α2, β2) to maximize

1

2

[
β1

δ + 1
− α1 − (β1)

2

]
+

1

2

[
β2

1 + λ
− α2 − (β2)

2

]
,

subject to participation and self-selection constraints for both types of agent:

ACE2 (C2) ≥ 0 and ACE2 (C2) ≥ ACE2 (C1) ,

ACE1 (C1) ≥ 0 and ACE1 (C1) ≥ ACE1 (C2) .
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Since for all λ > 1 we have ACE1(C2) > ACE2(C2), agent 1’s participation constraint will not bind, and hence
agent 1 earns an “information rent”.

For the two self-selection constraints to be satisfied simultaneously, it is necessary that β1 ≥ λβ2. For given
(β1, β2), it is optimal for the principal to set α2 so agent 2’s participation constraint binds and to set α1 so agent
1’s self-selection constraint binds. Then the constraint β1 ≥ λβ2 is both necessary and sufficient for agent 2 to be
willing to choose C2. We may then restate the principal’s problem as

max
β1,β2


1
2

[
β1
δ+1 −

(β1)2

2 − 1
2rσ

2 (β1)
2 (

1− ρ2
)
−
(
λ2 − 1

) (β2)2

2

]
+1

2

[(
β2

1+λ

)
− (β2)2

2 − 1
2rσ

2 (β2)
2 (
λ2 + 2ρλ+ 1

)]
 s.t. β1 ≥ λβ2.

There exists a δ̂ such that the constraint β1 ≥ λβ2 will be binding at the optimum if and only if δ ≥ δ̂. If δ < δ̂,
then the principal’s maximized payoff from this “unconstrained” ATM (ATMU) is

ΠATMU =
1

4(δ + 1)2

[
1

1 + rσ2 (1− ρ2)
+

(1 + δ)
2

(1 + λ)
2

1

λ2 + rσ2 (λ2 + 2ρλ+ 1)

]
,

whereas if δ ≥ δ̂, then his maximized payoff from the “constrained” ATM (ATMC) is

ΠATMC =

(
λ2 + λ+ δ + 1

)2
8(δ + 1)2 (1 + λ)

2
{
λ2 + rσ2

[(
1− ρ2

2

)
λ2 + ρλ+ 1

2

]} .
It remains to determine whether an ATM (unconstrained or constrained) or an STM is optimal. It can be checked

that the crucial comparison is between ΠSTM and ΠATMU and furthermore that if

δ < δHI(λ, rσ2, ρ) ≡ (λ+ 1)

√
λ2 + rσ2 (λ2 + 2ρλ+ 1)

1 + rσ2 (1− ρ2)
− 1,

then the best STM dominates the best ATM, whereas if δ > δHI(λ, rσ2, ρ), then the best ATM dominates the best

STM. We have δHI < δ̂. This proves part (i).
Part (ii): This is easily confirmed algebraically.
Part (iii): This is proved in the second paragraph of the text following the statement of the proposition.
Part (iv): For δ > δHI(1, rσ2, ρ) = δNHI(1, rσ2, ρ), the limit as λ → 1 of the principal’s maximized payoff in
the NHI benchmark is the limit as λ → 1 of Πbal, as given in equation (15). Under hidden information, when
δ > δHI(1, rσ2, ρ), the principal’s best transparent menu for λ sufficiently close to 1 is an ATM. We know that
ΠATMC ≤ ΠATMU , and it is easy to confirm algebraically that for δ > δHI(1, rσ2, ρ),

lim
λ→1

ΠATMU < lim
λ→1

Πbal.

Proof of Proposition 2.
Parts (i) and (ii): For each type of agent, let e (respectively, e) denote effort on his less costly (respectively, more costly)
task, and define x and x analogously. Under EAR, with probability 1

2 , w = α+βx+kβx, in which case we letEU denote
an agent’s expected utility, and with probability 1

2 , w = α+βx+kβx, in which case we denote expected utility by EU .
Recall that k ∈ (−1,1). Each agent’s unconditional expected utility under EAR is

1

2
EU +

1

2
EU = −1

2
E exp

{
−r
[
α+ βx+ kβx− 1

2
(e+ λe)2

]}
− 1

2
E exp

{
−r
[
α+ βx+ kβx− 1

2
(e+ λe)2

]}
= −1

2
exp

{
−r
[
α+ βe+ kβe− r

2
σ2β2(1 + 2ρk+ k2)− 1

2
(e+ λe)2

]}
− 1

2
exp

{
−r
[
α+ βe+ kβe− r

2
σ2β2(1 + 2ρk+ k2)− 1

2
(e+ λe)2

]}
(18)
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Hence the first-order conditions for interior solutions for e and e, respectively, are

1

2
[β − (e+ λe)]EU +

1

2
[kβ − (e+ λe)]EU = 0

1

2
[kβ − λ (e+ λe)]EU +

1

2
[β − λ (e+ λe)]EU = 0.

These first-order conditions can be rewritten as

βEU + kβEU = (e+ λe)(EU +EU) (19)

kβEU + βEU = λ(e+ λe)(EU +EU). (20)

Equations (19) and (20) in turn imply

EU + kEU =
k

λ
EU +

1

λ
EU.

If k ∈ [ 1
λ ,1), then the left-hand side of this equation strictly exceeds the right-hand side, so in this case interior

solutions for efforts cannot exist. This proves Part (i).
Adding the first-order conditions (19) and (20) and rearranging yields equation (1). Using (1) to substitute for

aggregate effort (e+ λe) in (19) yields, after a little algebra, (λ− k)EU + (kλ− 1)EU = 0, which simplifies to
equation (2).
Part (iii): Solving (2) for e− e yields e− e = [ln( λ−k1−kλ)]/[rβ(1− k)]. For k ∈

(
−1, 1

λ

)
and λ > 1, therefore, e− e is

greater than 0, increasing in λ and k, and decreasing in r. (e− e)→ 0 as λ→ 1, k→−1+, or r→∞.
Part (iv): Using (1) and (2) to substitute into (18), and then simplifying, allows us to express each type of agent’s
expected utility under EAR as

1

2
EU +

1

2
EU = − exp

{
−r

[
α+ β (e+ ke)− β2 (1 + k)

2

2 (λ+ 1)
2 −

1

2
rσ2β2

(
1 + 2ρk+ k2

)
− 1

r
ln

(
1 + λ−k

1−kλ
2

)]}
.

Since both types receive the same expected utility, it is optimal for the principal to set α to ensure that their
participation constraints bind. Setting α in this way (so that the whole expression in square brackets above is equal
to 0), the principal’s expected payoff, for given (β,k), can be simplified to equation (3) as follows:

ΠEAR(β,k) =
δe+ e

δ + 1
− α− 1

2
β(e+ ke)− 1

2
β(e+ ke)

=
δe+ e

δ + 1
+

1

2
β(1− k)(e− e)− β2 (1 + k)

2

2 (λ+ 1)
2 −

1

2
rσ2β2

(
1 + 2ρk+ k2

)
− 1

r
ln

(
1 + λ−k

1−kλ
2

)

=
δe+ e

δ + 1
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk+ k2)− 1

2r
ln

[
(λ+ 1)

2
(1− k)

2

4(1− kλ)(λ− k)

]
,

where the final line uses (2).

Proof of Proposition 3. Define B ≡ β (1 + k) and note, from (1), that aggregate effort e+ λe is proportional to
B. Using (1), (2), and β = B

1+k to substitute into (3) yields (6) and (7) in the text. To prove the claims regarding the

effect of varying δ, r (with rσ2 fixed), or σ2(1−ρ) on the optimal level of k, we use (6) and (7) to examine the sign of
the cross-partial derivative of ΠEAR(B,k) with respect to k and the relevant parameter, holding B and hence aggregate
effort fixed. For Part (iv), we examine the sign of the cross-partial derivative of ΠEAR(B,k) with respect to k and B.

Part (i): Only the second term on the right-hand side of (7) generates a non-zero value of ∂2Π
∂δ∂k . As long as δ > λ,

∂2Π
∂δ∂k < 0, so the optimal k decreases as δ increases.
Part (ii): With rσ2 held fixed, only the second term on the right-hand side of (7) and the fourth term in (6) vary

as r increases. Examining these terms shows that ∂2Π
∂r∂k > 0, so as r decreases (holding rσ2 fixed), the optimal k

decreases.
Part (iii): ∂Π

∂k depends on σ2 and ρ only via the third term in (6), and ∂Π
∂k is increasing in σ2(1− ρ), so the optimal
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k decreases as σ2(1− ρ) decreases.

Part (iv): ∂2Π
∂B∂k > 0, so as the B to be induced decreases, the optimal k decreases.

Proof of Proposition 4.
Part (ia): Given what will be shown in parts (ib), (ii), and (iii), it suffices to focus here on the case where δ > λ > 1 and
where EAR, for the given (β,k) with k ∈ (−1,1), induces interior optimal efforts. We will show that EAR yields a strictly
lower expected payoff for the principal than a suitably designed contract of the form Cbali , as defined in Section 3.1.

Using equations (1) and (2) in Proposition 2 to substitute for eEAR and eEAR in equation (3), we have

ΠEAR(β,k) =
β(1 + k)

(λ+ 1)2
− δ − λ
δ + 1

ln
(
λ−k
1−kλ

)
(λ+ 1) rβ(1− k)

− β2(1 + k)2

2(λ+ 1)2

−1

2
rσ2β2(1 + 2ρk+ k2)− 1

2r
ln

[
(λ+ 1)

2
(1− k)

2

4(1− kλ)(λ− k)

]

<
β(1 + k)

(λ+ 1)2
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk+ k2).

The inequality follows from the assumptions that δ > λ > 1 and k > −1 and the fact, proved in Part (i) of Proposition
2, that k < 1

λ is a necessary condition for EAR to induce interior optimal efforts.
If the principal knows which task the agent finds less costly, so we are in the NHI benchmark, the principal

can induce the agent to choose perfectly balanced efforts by offering the type-i agent a contract of the form Cbali :

w = α + βbal + λβbal for some βbal. By choosing βbal = β(1+k)
λ+1 , the principal can induce with Cbali the same

aggregate effort as under EAR for the given values of β and k. Using βbal = β(1+k)
λ+1 and equation (14), we can write

the principal’s payoff under Cbali as

Πbal(βbal) =
β(1 + k)

(λ+ 1)2
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β

2(1 + k)2

(λ+ 1)2
(1 + 2ρλ+ λ2).

Hence

Πbal(βbal)−ΠEAR(β,k) >
1

2
rσ2β2(1 + k)2

[
(1 + 2ρk+ k2)

(1 + k)2
− (1 + 2ρλ+ λ2)

(λ+ 1)2

]
≥ 0,

where the second inequality follows since k < 1/λ and since (1+2ρk+k2)
(1+k)2 is decreasing in k and equals (1+2ρλ+λ2)

(λ+1)2 for

k = 1/λ. The second inequality is strict for ρ < 1.
Part (ib): We will show that for λ = 1 and any given (β,k) with k ∈ (−1,1), EAR yields a weakly lower expected
payoff for the principal than a suitably designed symmetric transparent (ST) contract, of the form defined in Section
3.1, and a strictly lower expected payoff if ρ < 1.

For λ = 1, aggregate effort under EAR is eEAR + λeEAR = β(1+k)
2 , and eEAR = eEAR = β(1+k)

4 . Hence, for
λ = 1, equation (3) simplifies to

ΠEAR(β,k) =
β(1 + k)

4
− 1

8
β2(1 + k)2 − 1

2
r(σ)2β2(1 + 2ρk+ k2). (21)

Consider now an ST contract with coefficient βST chosen to induce the same level of aggregate effort as under

EAR for the given values of β and k: βST = β(1+k)
2 . Since λ = 1, eST = eST = β(1+k)

4 , so the ST contract also
induces exactly the same effort levels on each task as EAR. The principal’s payoff under the ST contract is

ΠST (βST ) =
βST

2
− 1

2

(
βST

)2 − rσ2
(
βST

)2
(1 + ρ) =

β(1 + k)

4
− 1

8
β2(1 + k)2 − 1

4
rσ2β2(1 + k)2(1 + ρ). (22)
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Subtracting (21) from (22) yields

ΠST (βST )−ΠEAR(β,k) =
1

2
rσ2β2[(1 + 2ρk+ k2)− (1 + ρ)

2
(1 + k)2] =

1

4
rσ2β2(1− k)2(1− ρ).

Hence with λ = 1 and ρ < 1, ΠST (βST )−ΠEAR(β,k) > 0. If ρ = λ = 1, then ΠST (βST )−ΠEAR(β,k) = 0.
Part (ii): When EAR induces a corner solution for efforts (so eEAR = 0), the first-order condition (19) for eEAR

reduces to:

exp
{
rβēEAR(1− k)

}
=

β − ēEAR

ēEAR − kβ
. (23)

Since the left-hand side of (23) is strictly greater than 1 for k < 1, (23) implies that ēEAR < β(1+k)
2 . When EAR

induces each type of agent to choose the corner solution
(
ēEAR,0

)
, each type’s expected utility can be written as

1

2
EU +

1

2
EU = − exp

{
−r
[
α+ βe− 1

2
e2 − 1

2
rσ2β2(1 + 2ρk+ k2)− 1

r
ln

(
1 + exp{rβ(1− k)e}

2

)]}
.

The principal optimally sets α so that both types’ participation constraints bind (i.e., so that the whole expression
in square brackets above is 0). Setting α in this way, the principal’s expected payoff, for given (β,k), can be simplified
as follows:

ΠEAR(β,k) =
e

δ + 1
− α− 1

2
βe− 1

2
βke

=
e

δ + 1
+

1

2
β(1− k)e− 1

2
e2 − 1

2
rσ2β2

(
1 + 2ρk+ k2

)
− 1

r
ln

(
1 + exp{rβ(1− k)e}

2

)
=

e

δ + 1
− 1

2
e2 − 1

2
rσ2β2

(
1 + 2ρk+ k2

)
− 1

2r
ln

(
[1 + exp{rβ(1− k)e}]2

4 exp{rβ(1− k)e}

)

<
e

δ + 1
− 1

2
e2 − 1

2
rσ2β2

(
1 + 2ρk+ k2

)
,

where the inequality follows since exp
{
rβēEAR(1− k)

}
> 1.

Consider now an ST contract with incentive coefficient βST chosen to induce the same effort pair
(
ēEAR,0

)
as

under EAR for the given values of β and k: βST = ēEAR. The principal’s payoff under this ST contract is

ΠST
(
βST

)
=
ēEAR

δ + 1
− 1

2

(
ēEAR

)2 − rσ2
(
ēEAR

)2
(1 + ρ) . (24)

Therefore,

ΠST
(
βST

)
−ΠEAR (β,k) >

1

2
rσ2

[
β2(1 + 2ρk+ k2)− 2

(
ēEAR

)2
(1 + ρ)

]
>

1

2
rσ2β2

[
(1 + 2ρk+ k2)− (1 + ρ)

2
(1 + k)2

]
=

1

4
rσ2β2(1− k)2(1− ρ)

≥ 0,

where the second strict inequality follows from the fact that ēEAR < β(1+k)
2 .

Part (iii): We will show that, when λ ≥ δ ≥ 1, with at least one of these inequalities strict, then for any (β,k) with
k ∈ (−1,1) such that EAR induces strictly positive efforts on both tasks, EAR yields a strictly lower expected payoff
for the principal than a suitably designed ST contract.
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Starting from equation (3) in Proposition 2, we can write

ΠEAR(β,k) =

(
δeEAR + eEAR

δ + 1

)
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk+ k2)− 1

2r
ln

[
(λ+ 1)

2
(1− k)

2

4(1− kλ)(λ− k)

]

<

(
δeEAR + eEAR

δ + 1

)
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk+ k2)

≤
(
λeEAR + eEAR

δ + 1

)
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk+ k2)

=
1

δ + 1

β(1 + k)

λ+ 1
− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk+ k2).

The first inequality follows from the assumptions that λ > 1 and k > −1 and the fact that k < 1
λ is necessary for

EAR to induce interior optimal efforts. The second inequality follows since λ ≥ δ, and the final equality follows from
equation (1) in Proposition 2.

Consider now an ST contract with incentive coefficient βST chosen to induce the same aggregate effort as under

EAR for the given values of β and k: βST = β(1+k)
1+λ . Since λ > 1, the ST scheme induces e = βST , e = 0, and the

principal’s payoff under this ST contract is

ΠST (βST ) =
1

δ + 1

β(1 + k)

λ+ 1
− β2(1 + k)2

2(λ+ 1)2
− rσ2β

2(1 + k)2

(λ+ 1)2
(1 + ρ).

Hence

ΠST (βST )−ΠEAR(β,k) >
1

2
rσ2β2

[
(1 + 2ρk+ k2)− 2

(1 + k)2

(λ+ 1)2
(1 + ρ)

]
>

1

2
rσ2β2

[
(1 + 2ρk+ k2)− (1 + k)2

2
(1 + ρ)

]
=

1

4
rσ2β2(1− k)2(1− ρ)

≥ 0.

The second strict inequality follows since λ > 1.

B Online Appendix: Not for Publication

B.1 Imperfect Substitutability of Efforts for the Agent

Let the two equally likely types of agent have cost functions of the form

c(e, e) =
1

2

(
e2 + 2sλee+ λ2e2

)
, (25)

where the parameter s ∈ [0,1] measures the degree of substitutability of efforts. Perfect substitutability corresponds
to s = 1 and no substitutability to s = 0.

With the cost function given in (25), the ratio of the marginal cost of effort on the agent’s costlier task to that

on his cheaper task is ∂c/∂e
∂c/∂e = sλe+λ2e

e+sλe . When efforts are imperfect substitutes for the agent (s < 1), the isocost

curves of c(e, e) are concave to the origin: Starting from perfectly balanced efforts, as the agent shifts his effort

allocation towards his preferred task (increasing e and decreasing e), ∂c/∂e∂c/∂e falls. However, the minimum value of this

ratio, attained when e = 0, is sλ. It follows that as long as sλ ≥ 1 (representing a situation of high, but imperfect,
substitutability), a symmetric transparent contract (for which the isobenefit curves have slope −1) still induces fully
focused efforts from both types of agent, just as with perfect substitutability.

It also follows that, under hidden information, the only way with transparent contracts to induce interior efforts
from both types of agent is to induce each type to choose, from a menu, a contract that rewards his costlier task
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at least sλ times as highly as his cheaper task. But with sλ ≥ 1, the bribe implicit in such a contract is even more
attractive to the other type of agent. As a consequence, Lemma 2 continues to hold as long as sλ ≥ 1, implying
that it is impossible, even with menus of transparent linear contracts, to solve simultaneously the effort-substitution
and the hidden-information problems.

In the NHI benchmark, on the other hand, the principal can offer each type of agent a contract of the form
w = α+ βx+ vβx with v ≥ 1, where x (respectively, x) denotes measured performance on the preferred (respectively,
other) task. The weighting factor v is a choice variable for the principal, and under the simplifying assumption that the
tasks are perfect complements for her (δ→∞), it is always optimal for her to induce each type to choose equal efforts

on the two tasks, which is achieved by vNHI = λ(λ+s)
1+sλ . This finding, combined with the generalization of Lemma

2 noted above, implies that the principal’s maximized payoff from transparent menus under hidden information is
bounded away from that in the NHI benchmark.

Importantly, the incentives provided by EAR are not qualitatively affected by whether efforts are imperfect or
perfect substitutes for the agent. EAR continues to give the risk-averse agent an incentive to partially self-insure
by choosing relatively balanced efforts on the two tasks. Interior optimal efforts under EAR satisfy

∂c

∂e
+
∂c

∂e
= β(1 + k) (26)

and

exp [rβ(1− k)(e− e)] =

∂c/∂e
∂c/∂e − k

1− k ∂c/∂e∂c/∂e

. (27)

Equation (27) generalizes (2), replacing the constant λ with the function ∂c/∂e
∂c/∂e of (e, e).

Consider now the three environments studied in detail in Section 6. As λ→ 1+ or as r→∞, σ2 → 0, it follows from

(27) that EAR induces perfectly balanced efforts for any k ∈ (−1, ∂c/∂e∂c/∂e).36 Therefore, in these limiting cases, the only

effect of increasing k is to improve the diversification of the risk from the shocks. Hence it is optimal in both environments

to set k as large as possible subject to keeping efforts perfectly balanced, i.e., to take k→ (∂c/∂e∂c/∂e)−. Since with perfectly

balanced efforts, ∂c/∂e∂c/∂e = 1+sλ
λ(λ+s) = 1/vNHI , it follows that as λ→ 1+ or as r→∞, σ2 → 0, the optimal k approaches

1/vNHI . Therefore, just as in the original model, in these two limiting environments, optimally weighted EAR generates
a payoff for the principal arbitrarily close to what she achieves in the NHI benchmark. In the setting where σ2(1−ρ)→ 0,
the weight k has no effect on diversification, so it is optimal under EAR to set k to induce perfectly balanced efforts;
in this setting, too, optimally weighted EAR generates a payoff arbitrarily close to that in the NHI benchmark.

As long as sλ ≥ 1, we saw above that under hidden information, the principal’s maximized payoff from transparent
menus is bounded away from that in the NHI benchmark. It follows, therefore, that in the environments studied
in Section 6, optimally designed EAR is superior to the best transparent menu. Hence, allowing the agent’s efforts
on the tasks to be less than perfect substitutes in his cost function does not alter our main results.

B.2 Ex Ante Randomization and the Choice of How Many Tasks to Reward

In Section 7.3 we discussed the trade-offs involved in the design of randomized incentive schemes in environments
with many tasks. In this section we provide the derivations for our results.

Let the job performed by the agent consist of n > 2 tasks, for each of which measured performance xj = ej + εj,
where (ε1, . . . , εn) have a symmetric multivariate normal distribution with mean 0, variance σ2, and pairwise
correlation ρ ≥ 0. Suppose there are n equally likely types of agent, with the agent of type i having cost function
ci(e1, . . . , en) = 1

2(λei +
∑
j 6=i ej)

2. Thus, each type of agent has a particular dislike for exactly one of the n tasks,
and λ measures the intensity of this dislike. Let the principal’s payoff be given by

Π =
δ

δ + n− 1
min{e1, . . . , en}+

1

δ + n− 1

 n∑
j=1

ej −min{e1, . . . , en}

−w,
36If k > ∂c/∂e

∂c/∂e
, (27) shows that EAR cannot induce interior solutions for efforts.
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where δ parameterizes the strength of the principal’s desire for a balanced effort profile. As in the two-task model,
the socially efficient effort profile is perfectly balanced whenever δ > λ.

Consider an EAR scheme in which each subset of κ out of n tasks is chosen with equal probability, and each
task in the chosen subset is rewarded at rate β. We will not explicitly model the direct costs of generating the
performance measures. Since this scheme is symmetric with respect to all n tasks and since each type of agent’s
preferences are symmetric with respect to each of his n− 1 “non-disliked” tasks, each agent’s optimal effort profile
can be described by e, his effort on his disliked task, and by e, his effort on each of the other tasks. If the task that
an agent dislikes is included (respectively, not included) in the chosen subset, denote his (conditional) expected utility
by EU (respectively, EU). For any given task, the number of subsets that include it is

(
n−1
κ−1

)
, while the number

that do not is
(
n
κ

)
−
(
n−1
κ−1

)
=
(
n−1
κ

)
. Hence each type of agent’s unconditional expected utility is(

n−1
κ

)(
n
k

) EU +

(
n−1
κ−1

)(
n
k

) EU.

We focus on the case where optimal efforts are interior.
The aggregate effort exerted by an agent is λe+ (n− 1) e, which we define as A. To find the optimal level of

A, we equate the sum over all tasks of the expected marginal monetary returns to effort to the sum over all tasks
of the marginal cost of effort. Formally, this corresponds to adding the first-order conditions for effort on each of
the n tasks. This yields κβ = (n− 1 + λ)A, so the optimal level of A = κβ

n−1+λ . To derive the optimal value of
e− e, we need the first-order condition for e, which is(

n−1
κ−1

)
[β − λA]EU +

(
n−1
κ

)
[−λA]EU = 0, (28)

since the net marginal monetary return to e is β − λA if the subset of rewarded tasks includes the agent’s disliked
one and is −λA otherwise. Substituting for the optimal value of A in (28) and rearranging yields

e− e =
1

rβ
ln

[
λ (n− κ)

n− 1− (κ− 1)λ

]
.

A necessary condition for interior solutions is k−1 ≤ n−1
λ . Each type of agent’s unconditional expected utility is given by

EU = −
(
n−1
κ−1

)(
n
κ

) exp

{
−r

[
α+ β ((κ− 1) e+ e)− 1

2

κ2β2

(λ+ n− 1)
2 −

1

2
rσ2β2κ (1 + ρ(κ− 1))

]}

−
(
n−1
κ

)(
n
κ

) exp

{
−r

[
α+ βκe− 1

2

κ2β2

(λ+ n− 1)
2 −

1

2
rσ2β2κ (1 + ρ(κ− 1))

]}
.

The principal will optimally set α to ensure that the participation constraint binds for each type of agent. With
α set in this way, and using the expressions for each type of agent’s optimal choices of A and e− e, the principal’s
expected payoff as a function of β and κ can be simplified to

Π(β,κ) =
δe+ (n− 1)e

δ + n− 1
− κ2β2

2 (λ+ n− 1)
2

− 1

2
rσ2β2κ (1 + ρ(κ− 1))− 1

nr
ln

[
(n− κ)n−κ(n− 1 + λ)n

nnλκ ((n− 1)− (κ− 1)λ)
n−κ

]
, (29)

where
δe+ (n− 1)e

δ + n− 1
=

κβ

(λ+ n− 1)2
− (δ − λ)(n− 1)

(δ + n− 1)(λ+ n− 1)rβ
ln

[
λ(n− κ)

(n− 1)− (κ− 1)λ

]
. (30)
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Using β̃ = κβ to substitute for β in the above payoff expression yields the following expressions

Π(β̃, κ) =
δe+ (n− 1)e

δ + n− 1
− β̃2

2 (λ+ n− 1)
2

− 1

2
rσ2β̃2 (1 + ρ(κ− 1))

κ
− 1

nr
ln

[
(n− κ)n−κ(n− 1 + λ)n

nnλκ ((n− 1)− (κ− 1)λ)
n−κ

]
, (31)

where
δe+ (n− 1)e

δ + n− 1
=

β̃

(λ+ n− 1)2
− (δ − λ)(n− 1)κ

(δ + n− 1)(λ+ n− 1)rβ̃
ln

[
λ(n− κ)

(n− 1)− (κ− 1)λ

]
. (32)

Holding β̃ fixed and varying κ isolates the effect of changing the number of tasks rewarded, holding fixed the
level of aggregate effort. Comparison of equations (31)-(32) with equations (6)-(7) reveals that changes in κ have
qualitatively the same three effects on the principal’s payoff in this n-task model as do variations in the weighting
coefficient k in EAR in the original two-task model. Specifically, an increase in κ, by inducing a larger gap e− e,
has two negative effects: First, it lowers the principal’s benefit e+ n−1

δ e when aggregate effort is held fixed, as long
as δ > λ. This corresponds to the fact that (32) is decreasing in κ. Second, it raises the cost of compensating the
agent for the risk imposed by the exogenous randomization (this corresponds to the fact that the term in square
brackets in (31) is increasing in κ). At the same time, raising κ also improves the diversification of the risk from

the shocks to measured performance. This is reflected in the fact that 1+ρ(κ−1)
κ in (31) is decreasing in κ.

To verify the first three comparative statics claims in Section 7.3 regarding the optimal value of κ, we need to
sign the cross-partial derivative of Π(β̃, κ) in (31) with respect to κ and the relevant parameter, holding β̃ fixed.

It is straightforward to show that ∂2Π
∂δ∂κ < 0, ∂2Π

∂r∂κ > 0, and ∂2Π
∂(σ2(1−ρ))∂κ > 0, from which the claims follow. The

final claim follows from the fact that ∂2Π
∂β̃∂κ

> 0.

B.3 Menus of Opaque Incentive Schemes

This section shows that the performance of EAR cannot be improved by the use of menus. Consider the following
incentive-compatible menu of two incentive schemes, each involving randomization. For k ∈ (−1,1), Scheme i ∈ {1,2},
intended for the agent who prefers task i, specifies that with probability p ∈ (1

2 ,1), w = α+ βxi + kβxj, and with
probability 1− p, w = α+ βxj + kβxi. As p→ 1/2, the two schemes become identical, so the menu reduces to EAR.

The value of p has no effect on aggregate effort. However, as p rises, each type of agent faces less uncertainty about
his compensation schedule, hence has weaker incentives to self-insure by balancing his effort choices, so the induced
effort gap e− e rises. In this respect, a larger p mirrors the effect of a larger weighting parameter k. Nevertheless,
there is a crucial difference between p and k. An increase in k improves the diversification of the risk from the
shocks to measured performance. However, because, regardless of the value of p, the agent is ultimately paid either
α+ βx1 + kβx2 or α+ βx2 + kβx1, changes in p have no effect on the diversification of this risk.

In consequence, whereas Proposition 3 and Section 6 showed that the weighting factor k is a valuable instrument
in the design of opaque schemes, we have the following negative conclusion for the role of p: If a symmetric menu
of randomized schemes with parameters (β,k, p) induces interior solutions for efforts, then as long as δ > λ, the
principal’s payoff will be increased by lowering p to 1/2, thus replacing such a menu by EAR as analyzed in Section
4. Hence the principal’s payoff from EAR cannot be augmented by the use of menus.

B.4 Beyond the Exponential-Normal Model

Our findings that opaque incentive schemes induce more balanced efforts than symmetric transparent ones and do
so in a way more robust to hidden information of the agent, apply even outside the exponential-normal framework.
Let the measurement technology remain xi = ei + εi, but now let (ε1, ε2) have an arbitrary symmetric joint density.
Let each type of agent’s utility be U(w − c(e, e)), with U(·) an arbitrary strictly concave function and c(e, e), as
in (25), reflecting imperfect substitutability of efforts.
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Under EAR, interior optimal effort choices for each type of agent satisfy

∂c

∂e
+
∂c

∂e
= β(1 + k) and

E
[
U ′(·)I{x is more highly rewarded}

]
E
[
U ′(·)I{x is more highly rewarded}

] =

∂c/∂e
∂c/∂e − k

1− k ∂c/∂e∂c/∂e

.

The second equation is a generalized version of (2) and shows that just as for the exponential-normal model, EAR gives
the risk-averse agent an incentive to choose more balanced efforts to partially self-insure against the risk stemming
from the uncertainty about which payment schedule will ultimately be used.

Nevertheless, we can show that whenever the symmetric transparent contract induces interior efforts, EAR does as
well, and effort choices under EAR are more balanced than under the ST contract. Moreover, when efforts are perfect
substitutes for the agent (s = 1), as λ increases from 1, eEAR/eEAR increases continuously from 1, whereas eST/eST

jumps from 1 to∞. Thus, even outside the exponential-normal framework, EAR provides stronger incentives for
effort balance and is more robust to hidden information.
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