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ABSTRACT 

Common-Value All-Pay Auctions with Asymmetric Information* 

We study two-player common-value all-pay auctions (contests) with 
asymmetric information under the assumption that one of the players has an 
information advantage over his opponent. We characterize the unique 
equilibrium in these contests, and examine the role of information in 
determining the players' expected efforts, probabilities of winning, and 
expected payoffs. In particular, we show that the players always have the 
same probability of winning the contest, and that their expected efforts are the 
same, but their expected payoffs are different. It is also shown that budget 
constraints may have an unanticipated effect on the players' expected payoffs, 
i.e., a player's information advantage may turn into a payoff disadvantage. 
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1 Introduction

All-pay auctions are used in diverse areas of economics, such as lobbying in organizations, R&D races,

political contests, promotions in labor markets, trade wars, and biological wars of attrition. In the all-pay

auction each player submits a bid (e¤ort) and the player who submits the highest bid wins the contest, but,

independently of success, all players bear the cost of their bids. All-pay auctions have been studied both

under a complete information framework where each player�s type (the value of winning the contest or ability)

is common knowledge (see, e.g., Hillman and Samet (1987), Hillman and Riley (1989), Baye et al. (1993,

1996), Che and Gale (1998), and Siegel (2009)), and under an incomplete information framework where

each player�s type is private information and only the distribution from which the players�types is drawn is

common knowledge (see, for example, Amann and Leininger (1996), Moldovanu and Sela (2001, 2006), and

Moldovanu et al. (2010)). In most of the literature on all-pay auctions with incomplete information it is

assumed that the players�types are independent. However, in several competitive environments the players�

types may not be independent (see Milgrom and Weber 1982).1 Krishna and Morgan (1997) analyzed the

equilibrium strategies of the all-pay auction with interdependent types in the Harsanyi-type formulation

of Bayesian games. They assumed that the players�types are a¢ liated and symmetrically distributed. A

generalization of their work to a model where players�types are asymmetrically distributed is usually not

tractable.

We study the value of information in a contest with ex-ante asymmetrically informed players by consid-

ering a two-player common-value all-pay auction with asymmetric information, where the value of winning

is the same for all players in the same state of nature, but the information about which state of nature was

realized is di¤erent. This model captures situations in which winning a contest would be of similar bene�t

to each contestant, but the precise value of winning, which depends on several random parameters, may

be unknown. In our framework, the information a player has about the value of winning is described by

a partition of the space of states of nature, which is assumed to be �nite. This partition representation is

equivalent to the more common Harsanyi-type formulation of Bayesian games (see Jackson (1993) and Vohra

(1999)) but it is more suitable for expressing the information advantage some players may have over others,

1Examples of auctions with intedependent values include treasury bill auctions, spectrum auctions, and oil and gas leases.
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which will �gure prominently in our model.

In our (two-player) model of asymmetric information, we assume that information sets of each player

are connected with respect to the value of winning the contest (see Einy et al. (2001, 2002) and Forges

and Orzach (2011)). This means that if a player�s information partition does not enable him to distinguish

between two possible values of winning, then he also cannot distinguish between all intermediate values.

Connectness seems plausible in environments where the information of a player allows him to put upper

and lower bounds on the actual value of winning, without ruling out any outcome within these bounds.

We additionally assume that one player has an information advantage over the other, which means that his

information partition is �ner than that of his opponent. It can be shown that without loss of generality,

we can assume that one player is completely informed about the state of nature, while the other player is

completely uninformed.

We establish the uniqueness of equilibrium in mixed strategies in this class of contests, and provide its

complete characterization. In equilibrium, the expected payo¤ of the uninformed player is zero, while the

expected payo¤ of the informed payer is positive. Our results also show that although the players have

asymmetric strategies that yield di¤erent expected payo¤s, the expected e¤orts of both players are the same.

Moreover, the probability of each player to win the contest in equilibrium is the same. Hence, we �nd

that asymmetry of information between the players does not result in di¤erent expected e¤orts or di¤erent

chances to win the contest, but it does a¤ect the allocation of payo¤s between the players.

We then examine how the relation between players�information sets a¤ect their expected total e¤ort. We

�nd that maximizing the total e¤ort calls for narrowing the information gap between the players. Speci�cally,

if there are three players (a,b and c) where a has an information advantage over b who has an information

advantage over c, then the expected total e¤ort in the contest between a and c is necessarily lower than in

the contest between b and c. In other words, when the players�information are similar to each other their

total e¤ort is larger.

Finally, we assume that players face budget constraints, which implies that there are caps on the bids

that the players are able to place. A budget constraint changes the players�equilibrium behavior compared

to the same contests without budget constraints. This was shown, among others, by Che and Gale (1998)
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and Gavious, Moldovanu and Sela (2003) in the standard all-pay auction under complete and incomplete

information.2 This observation is also valid in common-value all-pay auctions where the budget constraint

may drastically change the relation between the players�expected payo¤s. Furthermore, we show that the

budget constraint may imply the unusual result according to which the player with the information advantage

will have a lower expected payo¤ than his opponent. In other words, an information advantage may turn

into a payo¤ disadvantage.

Several researchers used the same framework as ours to analyze common-value second-price auctions

(see Einy et al. (2001, 2002), Forges and Orzach (2011), and Abraham et al. (2012)) and common-value

�rst-price auctions (see Malueg and Orzach (2009, 2012)) but not to analyze asymmetric all-pay auctions.

Without budget constraints, in the common-value all-pay auctions, as well as in the common-value �rst-price

and second-price auctions, the player with an information advantage has a higher expected payo¤ than his

opponent. However, in common-value all-pay auctions the players�bids (e¤orts) as well as their chances of

winning are the same despite the asymmetry of information.

Although we analyze two-player (common-value all-pay) auctions, our results can be generalized to any

number of players as long as the players� information partitions can be ranked, namely, in all pairwise

comparisons one player will have an information advantage over the other. In such a case, as well as in the

complete information all-pay auction (see Baye et al. 1996), there will be an equilibrium in which only the

two most informed players participate, and the rest stay out of the contest (or, alternatively, place bids of

zero).

The paper is organized as follows. In Section 2 we present the model. In Section 3 we give a numerical

example that demonstrates how to �nd the equilibrium in our model. Section 4 is divided into three subsec-

tions: In Section 4.1 we characterize the equilibrium and prove its uniqueness. In Section 4.2 we analyze the

players�expected e¤ort, their probabilities of winning, and their expected payo¤s. In Section 4.3 we examine

the e¤ect of information on the players�total e¤ort. In section 5 we study the model with budget-constrained

players. Section 6 concludes. The proof of Proposition 1 is provided in the appendix.

2Che and Gale (1998) and Gavious, Moldovanu and Sela (2003) deal with all-pay auctions with bid caps (budget constraints

that the contest designer imposes on the contestants).
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2 The model

Consider the set N = f1; 2; :::; Ng of N � 2 players who compete in an all-pay auction where the player with

the highest e¤ort (output) wins the contest, but all the players bear the cost of their e¤ort. The uncertainty

in our model is described by a �nite set 
 of states of nature, and a probability distribution p over 
 which

can be interpreted as the common prior belief about the realized state of nature (w.l.o.g. p(!) > 0 for every

! 2 
): A function v : 
! R+ represents the common value of winning the contest, i.e., if ! 2 
 is realized

then the value of winning is v(!) for every player.

The private information of each player n 2 N is described by a partition �n of 
: We assume that each

�n is connected with respect to the common value function v; i.e., for every element �n 2 �n; if !1; !2 2 �n

and ! 2 
 satisfy v(!1) � v(!) � v(!2); then ! 2 �n:3

A common-value all-pay auction starts when nature chooses a state ! form 
 according to the distribution

p: Each player n 2 N is informed of the element �n(!) of �n which contains !. Thus, �n(!) constitutes

the information set of player n at !, and then he chooses an e¤ort xn 2 R+: The players will typically have

di¤erent information partitions, and thus are ex-ante asymmetric.

The utility (payo¤) of player n 2 N is given by the function un : 
� RN+ ! R as follows:

un(!; x) =

8>><>>:
1

m(x)v(!)� xn; if xn = maxfxkgk2N ;

�xn; if xn < maxfxkgk2N ;

wherem(x) denotes the number of players who exert the highest e¤ort, namely,m(x) = jn 2 N : xn = maxfxkgk2N j.

A common-value all-pay auction with di¤erential information is fully described by and identi�ed with the

collection G = (N; (
; p); fungn2N ; f�ngn2N ):

In all-pay auctions, there is usually no equilibrium in pure strategies. Thus our attention will be given

to mixed strategy equilibria. A mixed strategy of player n 2 N is a function Fn : 
�R+ ! [0; 1]; such that

for every ! 2 
; Fn (; �) is a cumulative distribution function (c.d.f.) on R+; and for all x 2 R+, Fn (�; x)

is a �n-measurable function (that is, Fn (�; x) is constant on every element of �n): If player n plays a pure
3 It is worth noting that our analysis remains valid if 
 is an in�nite set of states of nature provided the partitions are �nite.

To see this simply replace 
 with a �nite 
0, which is the coarsest partition of 
 that re�nes all f�ngn2N ; and, for each � 2 
0;

let the value of winning at �, v(�); be equal to the conditional expectation E(v (�) j �):
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strategy given �n; i.e., if the distribution represented by Fn (�n; �) is supported on some y 2 R+; we will

identify between Fn (�n; �) and y wherever appropriate.

Given a mixed strategy pro�le F = (F1; :::; FN ), denote by En(F ) the expected payo¤ of player n when

players use that strategy pro�le, i.e.,

En(F ) � E(
Z 1

0

:::

Z 1

0

un(�; (x1; :::; xN ))dF1(�; x1); :::; dFN (�; xN )):

For �n 2 �n; En(F j �n) will denote the conditional expected payo¤ of player n given his information set

�n; i.e.,

En(F j �n) � E(
�Z 1

0

:::

Z 1

0

un(�; (x1; :::; xn))dF1(�; x1); :::; dFi(�; xi); :::; dFN (�; xN )
�
j �n):

An N -tuple of mixed strategies F � = (F �1 ; :::; F
�
N ) constitutes a Bayesian equilibrium in the common-

value all-pay auction G if for every player n, and every mixed strategy Fn of that player, the following

inequality holds:

En(F
�) � En(F �1 ; :::; Fn; :::; F �N ):

3 An Example

We begin with a simple example to illustrate the players�behavior in our model. Consider a common-value

all-pay auction with two players. Assume that there are three states of nature such that in state !i the value

of winning is v(!i) = i with probability of pi = 1
3 ; for i = 1; 2; 3: Player 1 knows only the prior distribution

p; and hence he has the trivial information partition, �1 = ff!1; !2; !3gg ; while player 2 is completely

informed of the value of winning, hence �2 = ff!1g; f!2g; f!3gg partitions 
 into singletons:

It can be easily veri�ed that the corresponding common-value all-pay auction does not have an equilibrium

in pure strategies. However, there does exist a mixed strategy equilibrium. In this equilibrium, player 1�s
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mixed strategy F �1 is a state-independent c.d.f. given by

F �1 (x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0 if x < 0;

x, if 0 � x � 1
3 ;

x
2 +

1
6 ; if 13 < x � 1;

x
3 +

1
3 if 1 < x � 2;

1; if 2 < x:

Player 2�s mixed strategy F �2 does depend on the state of nature (of which he is informed):

F �2 (!1; x) =

8>>>>>><>>>>>>:
0 if x < 0;

3x; if 0 � x � 1
3 ;

1 if x > 1
3 ;

F �2 (!2; x) =

8>>>>>><>>>>>>:
0; if x � 1

3 ;

3
2x�

1
2 ; if 13 < x � 1;

1; if x > 1;

F �2 (!3; x) =

8>>>>>><>>>>>>:
0; if x < 1;

x� 1; if 1 � x � 2;

1; if x > 2:

In order to see that the above strategies are in equilibrium, note that, given player 2�s mixed strategy

F �2 , player 1�s expected payo¤ if he exerts e¤ort x 2 [1; 2] is

E1(x; F
�
2 ) =

1

3
� 1 + 1

3
� 2 + 1

3
� 3 � (x� 1)� x = 0

When x 2 [ 13 ; 1],

E1(x; F
�
2 ) =

1

3
� 1 + 1

3
� 2 � (3

2
x� 1

2
)� x = 0;

and when x 2 [0; 13 ],

E1(x; F
�
2 ) =

1

3
� 1 � (3x)� x = 0:

As any e¤ort above 2 would result in a negative expected payo¤, [1; 2] is the set of player 1�s pure strategy

best responses to to F �2 ; and in particular his mixed strategy F
�
1 is a best response to F

�
2 as it results in an

expected payo¤ of zero.
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Now, �x payer 1�s mixed strategy F �1 , and assume that !3 is the realized state of nature. If player 2

exerts e¤ort x 2 [1; 2]; then his conditional expected payo¤ is

E2(f!3g ; F �1 ; x) = 3 � (
x

3
+
1

3
)� x = 1:

If he exerts x 2 [ 13 ; 1) or x 2 [0;
1
3 ]; his expected payo¤ is, correspondingly,

E2(f!3g ; F �1 ; x) = 3 � (
x

2
+
1

6
)� x = x

2
+
1

2
< 1;

or

E2(f!3g ; F �1 ; x) = 3 � x� x = 2x < 1;

and thus, conditional on the realization of !3; [1; 2] is the set of player 2�s pure strategy best responses to

F �1 : In particular, conditional on !3; F
�
2 (!3; �) is a mixed strategy best response to F �1 :

If !2 is the realized state, by exerting x 2 [ 13 ; 1] player 2 obtains the expected payo¤

E2(f!2g ; F �1 ; x) = 2 � (
x

2
+
1

6
)� x = 1

3
:

As before, it can be seen that all e¤ort levels outside [ 13 ; 1] lead to a lower expected payo¤, and thus conditional

on !2; F �2 (!2; �) is a mixed strategy best response to F �1 :

If !1 is the realized state, by exerting x 2 [0; 13 ] player 2, in expectation, obtains

E2(f!1g ; x) = 1 � x� x = 0;

while e¤ort levels outside [0; 13 ] lead to negative expected payo¤s. Thus, also conditional on !1; F
�
2 (!1; �)

is a mixed strategy best response to F �1 : We conclude that F
�
2 is a best response of player 2 also w.r.t.

the unconditional expected payo¤. Hence, the pair (F �1 ; F
�
2 ) is a mixed strategy equilibrium. The expected

payo¤ of player 2 is then

E2(F
�
1 ; F

�
2 ) =

1

3
(E2(f!1g ; F �1 ; F �2 ) + E2(f!2g ; F �1 ; F �2 ) + E2(f!3g ; F �1 ; F �2 )) =

4

9
:

In the next section, we characterize the players� mixed-strategy equilibrium in a general two-player

common-value all-pay auction, and prove its uniqueness.
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4 Results

4.1 Equilibrium analysis

We will consider �rst the case of two players, where player 2 has an information advantage over player 1 (i.e.,

information partition �2 of player 1 is �ner than �1): Without loss of generality, we assume that �1 = f
g

and �2 = ff!1g; f!1g; :::; f!ngg:4 That is, player 1 has no information on the realized state of nature (other

than the common prior distribution p) and thus has the trivial information partition, while player 2 knows

the realized state precisely, and thus his information partition is the �nest one possible.

For each state of nature !i 2 
; denote vi = v(!i) and pi = p(!i) > 0: Assume that the possible values

are strictly ranked: 0 < v1 < v2 < ::: < vn: In what follows, we describe a mixed strategy equilibrium

(F �1 ; F
�
2 ) of the all-pay auction.

Let x0 � 0; and

xi �
iX

j=1

pjvj (1)

for each i = 1; :::; n: Thus, x0 < x1 < ::: < xn: Consider a function F �1 on R+ given by

F �1 (x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0 if x < 0;

: :

x
vi
+
Pi�1

j=1 pj

h
1� vj

vi

i
; if x 2 [xi�1; xi] ;

: :

1; if x > xn:

i = 1; :::; n (2)

4 In the general case of �2 being �ner than �1 note the following. Given �1 2 �1; the event �1 is common knowledge at

any ! 2 �1. Thus, the equilibrium analysis can be carried out separately for each �1 2 �1; as the auction G conditional on

the occurence of �1 can be viewed as a distinct common-value all-pay auction G0, where the set of states of nature is 
0 = �1

and the conditional distribution p(� j �1) serves the common prior distribution p0. In G0, player 1 has the trivial information

partition, �01 = f�1g : Furthermore, since the mixed strategies of both players are constant on every �2 � �1; �2 2 �2; there

will be no payo¤ distinction between G0 and its variant G00; where the set of states of nature 
00 = �2 j�1 consists of those

elements of �2 that are subsets of �1 (i.e., all states of nature in 
0 that are contained in the same element of �1 are lumped

into one state). By de�nition, the information partition of player 2 in G00 will be the �nest possible, consisting of singletons in

�2 j�1 :
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It is easy to see that F �1 (x) is well de�ned, strictly increasing, and continuous. Moreover, F
�
1 (x0) = 0 and

F �1 (xn) = 1. Thus, F �1 (x) is a c.d.f. of a continuous probability distribution supported on the interval

[x0; xn] : (Such a distribution is obtained by assigning probability pi to each interval [xi�1; xi] ; randomly

choosing an interval, and then selecting a point w.r.t. the uniform distribution on the chosen interval). Being

that the function F �1 ; is state-independent, it can be viewed as a mixed strategy of the uninformed player 1.

Note next that

E2(f!ig; F �1 ; x) = viF
�
1 (x)� x (3)

= viF
�
1 (xi�1)� xi�1 = E2(f!ig; F �1 ; xi�1) (4)

for every x 2 [xi�1; xi], and i = 1; :::; n: Thus, given that !i was realized, the informed player 2 is indi¤erent

between all e¤orts in the interval [xi�1; xi] ; provided that his rival acts according to F �1 : Since the slopes of

the function viF �1 (x)� x are positive when x < xi�1 and negative when x > xi�1; the set of player 2�s pure

strategy best responses is the interval [xi�1; xi] :

Now, for each i = 1; :::; n; consider a function F �2 (!i; x) on R+ given by

F �2 (!i; x) =

8>>>>>><>>>>>>:
0 if x < xi�1;

x�
Pi�1

j=1 pjvj

pivi
; if x 2 [xi�1; xi] ;

1 if x > xi;

(5)

Note that F �2 (!i; x) is well de�ned, strictly increasing, continuous, F
�
2 (!i; xi�1) = 0 and F �2 (!i; xi) = 1.

Thus, F �2 (!i; x) is a c.d.f. of a probability distribution supported on [xi�1; xi], and in particular F �2

constitutes a mixed strategy of player 2. Moreover,

E1(x; F
�
2 ) =

i�1X
j=1

pjvj + piviF
�
2 (!i; x)� x = 0 (6)

for every x 2 [xi�1; xi] : Thus, player 1 is (in expectation) indi¤erent between all e¤orts in [x0; xn] (and is

obviously worse o¤ when e¤orts are outside [x0; xn]) provided his rival 2 acts according to F �2 :

We conclude that (F �1 ; F
�
2 ) is a mixed strategy equilibrium. It turns out that it is the only one:

Proposition 1 The mixed strategy equilibrium (F �1 ; F
�
2 ) described above is the unique equilibrium in G.

Proof. See Appendix.
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Thus far we have assumed that there are only two players. This entails no loss of generality in the following

sense. Suppose that there are N > 2 players, such that the players�information endowments are ranked as

follows: player 2 has an information advantage over player 1, and player 1 has an information advantage

over (or the same information endowment as) players 3; :::; N: Let (F �1 ; F
�
2 ) be the unique equilibrium in

the contest between 1 and 2 (which exists by Proposition 1 and footnote 4). We claim that in the contest

between 1; 2; :::; N , strategy pro�le (F �1 ; F
�
2 ; 0; 0; :::0) constitutes a Bayesian equilibrium. That is, all but the

two players with the best information submit bids of zero which means that they are e¤ectively staying out

of contest, while players 1 and 2 behave as if they were engaged in a two-player contest. This will ensure that

any N -player contest in which information endowments are ranked possesses a reduction to the two-player

case.

In order to see that (F �1 ; F
�
2 ; 0; 0; :::0) is a Bayesian equilibrium, note �rst that players 1 and 2 have no

incentive to unilaterally deviate from their strategies in (F �1 ; F
�
2 ; 0; 0; :::0); since their payo¤s are identical to

those in a two-player contest where such deviations are not pro�table in expectation. Note next that if any

of the remaining players (say, player 3) had a pro�table deviation F3 from bid 0; we would have had

E3(F
�
1 ; F

�
2 ; F3; 0; :::; 0) > E3(F

�
1 ; F

�
2 ; 0; 0; :::; 0) = 0;

and hence

E3(F
�
1 ; F

�
2 ; F3; 0; :::; 0) > 0:

Since player 1 has an information advantage over (or the same information as) player 3, F3 is also a Bayesian

strategy of player 1. As F �1 is 1�s best response to (F
�
1 ; F

�
2 ; 0; 0; :::0), it follows that

E1(F
�
1 ; F

�
2 ; 0; 0; :::0) � E1(F3; F

�
2 ; 0; 0; :::; 0)

= E3(0; F
�
2 ; F3; 0; :::; 0)

� E3(F
�
1 ; F

�
2 ; F3; 0; :::; 0) > 0:

Thus

E1(F
�
1 ; F

�
2 ; 0; 0; :::0) > 0;

and in particular E1(F �1 ; F
�
2 ) > 0 in the two-player contest between 1 and 2. However, it follows from (6),

Proposition 1, and Footnote 4 that the expected payo¤ to player 1 in the unique equilibrium is zero, a

11



contradiction. We conclude that players 3; ::; N cannot unilaterally deviate from bid 0 and make pro�t, and

hence that (F �1 ; F
�
2 ; 0; 0; :::0) is a Bayesian equilibrium of the N -player contest, as claimed.

In the next section, using the characterization of equilibrium in Proposition 1, we study the e¤ect of

information on players�payo¤s, e¤orts and probabilities of winning.

4.2 Expected payo¤s and e¤orts

We have shown that the equilibrium strategies in a two-payer common-value all-pay auction are determined

uniquely. The expected equilibrium payo¤ of player 1 is zero: it follows from (6) that

E1(F
�
1 ; F

�
2 ) = 0: (7)

It follows from (3)-(4) that player 2�s expected payo¤ is

E2(F
�
1 ; F

�
2 ) =

nX
i=1

pi(viF1 (xi�1)� xi�1) (8)

=

nX
i=1

pi(

i�1X
j=1

pj(vi � vj)):

The equilibrium strategies F �1 ; F
�
2 of the two players are quite di¤erent. Among other distinctions, F

�
2

is state-dependent, while F �1 is not. However, both players have the same ex-ante distribution of the e¤ort

they make. Indeed, for every i = 1; 2; ::::; n; and every x 2 [xi�1; xi] (where xi is given by (1)), the ex-ante

probability F2(x) that player 2 will exert an e¤ort that is smaller than or equal to x according to his strategy

F �2 is given by

F2(x) =
i�1X
j=1

pj + piF
�
2 (!i; x) =

i�1X
j=1

pj + pi �
x�

Pi�1
j=1 pjvj

pivi

=
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
= F �1 (x) :

Thus, the ex-ante distribution of equilibrium e¤ort is identical for both players. This fact leads to the

following proposition.

Proposition 2 In the unique equilibrium (F �1 ; F
�
2 ) of every two-player common-value all-pay auction:

(i) each player has probability 1
2 to win;

12



and

(ii) both players exert the same expected e¤ort

nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A :
Proof. It was shown above that the players have ex-ante identical (and, obviously, independent) distrib-

utions of e¤orts, and hence, as claimed in (i), each wins the contest with the same probability. It also follows

that the expected e¤orts of both players are equal. Calculating the expected payo¤ for player 1 (using (2))

leads to the formula claimed in (ii):

EE1 =

Z xn

x0

xdF �1 (x) =

nX
i=1

Z xi

xi�1

x

vi
dx =

nX
i=1

x2i � x2i�1
2vi

=

nX
i=1

pi

0@i�1X
j=1

pjvj +
1

2
pivi

1A :
Q:E:D:

According to Proposition 2, the asymmetry in information does not a¤ect the ratio of the two players�

expected e¤orts, as the expected e¤orts are equal. However, the asymmetric information does a¤ect the

players�expected total e¤ort. In the next section we will examine the e¤ect of asymmetry in information on

the expected total e¤ort and the expected total payo¤.

4.3 Comparative results

We just showed that the expected payo¤ of player 1, over whom player 2 has an information advantage,

is zero in equilibrium. We will now examine how the extent of information advantage a¤ects the expected

payo¤ of player 2. Assume, as before, that �1 = f
g and �2 = ff!1g; f!1g; :::; f!ngg: Also consider an

additional player 2�with an "intermediate" connected information partition �02; which is a strict coarsening

of �2 and a strict re�nement of �1: Then we have the following comparative result.

Proposition 3 In a two-player common-value all-pay auction, the expected payo¤ of player 2 (when he

competes against player 1) is higher than the expected payo¤ of player 2�(when he competes against player

1).

13



Proof. By (8), the expected payo¤ of player 2, when he competes against player 1, is given in equilibrium

by

E2 =
nX
i=1

pi(
i�1X
k=1

pk(vi � vk)):

Regarding player 2�, assume �rst that �02 is di¤erent from �2 only in that player 2�cannot distinguish between

the states !j and !j+1; for some 1 � j < n: Thus, �02 = ff!1g; f!2g; :::f!j�1g; f!j ; !j+1g; f!j+2g; :::f!ngg:

The auction in which player 2�competes against player 1 is amenable to our previous analysis, but with a

minor modi�cation: the set of states of nature must be rede�ned as 
0 = (
nf!j ; !j+1g) [ f!j;j+1g; where

the new state !j;j+1 is the amalgamation of !j and !j+1; occurring with probability pj;j+1 = pj + pj+1 and

having the common value of vj;j+1 =
pj

pj+pj+1
vj +

pj+1
pj+pj+1

vj+1: In this modi�ed contest (payo¤-equivalent to

the original), player 1 has the trivial information, while player 2�has the �nest possible information partition.

Applying (8) to this contest, the expected payo¤ of player 2 is equilibrium is given by

E02 =

j�1X
i=1

pi(
i�1X
k=1

pj(vi � vj))

+pj;j+1

j�1X
k=1

pk(vj;j+1 � vk)

+

nX
i=j+2

pi(
X

k�i�1;k 6=j;k 6=j+1
pk(vi � vk) + pj;j+1(vi � vj;j+1)):

Then we have

E2 � E02 = pjpj+1(vj+1 � vj) +
nX

i=j+2

pi(

j+1X
k=j

pk(vi � vk)� pj;j+1(vi � vj;j+1)):

Since pjpj+1(vj+1�vj) > 0 and
nX

i=j+2

pi(
Pj+1

k=j pk(vi�vk)�pj;j+1(vi�vj;j+1)) = 0 we obtain that E2�E02 > 0:

We have thus shown that player 2�obtains in expectation less than player 2 (when competing against 1

in a two-player auction) if �02 is a connected partition which is a strict coarsening of �2 with j�02j = j�2j� 1

: Inductively, the claim can be extended to any connected partition �02 with j�02j < n: Q:E:D:

The next result shows that there is an opposite relation between the players�total expected payo¤ and

their total expected e¤ort (bid).

Proposition 4 In a two-player common-value all-pay auction, the expected total e¤ort when player 2 com-

petes against player 1 is lower than the expected total e¤ort when player 2�competes against player 1.
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Proof. In every common-value all-pay auction, the relation between the players�expected total e¤ort

and their expected total payo¤ is

Expected total e¤ort = Expected reward � Expected total payo¤

Since the expected payo¤ of player 1 when he competes against player 2 or against 2�is zero (see (7)), in

both auctions

Expected total e¤ort = Expected reward� Expected payo¤ of player 2 (or, 2�)

By Proposition 3, the expected payo¤ of player 2 is higher than that of player 2�(when competing against

player 1): On the other hand, both contests clearly have the same expected reward, E(v). Thus, the expected

total e¤ort when player 2 competes against player 1 is lower than when player 2�competes against 1. Q:E:D:

The above propositions demonstrate that increasing asymmetry between players in a two-player common-

value all-pay auction has a positive e¤ect on the expected payo¤ of the player with an information advantage,

and a negative e¤ect on the expected total e¤ort.

5 Budget Constraints

We have thus far assumed that players submit any bids they wish without any constraint. In this section

we will show that having (even identical) budget constraints can change our results in a signi�cant way. We

shall assume, as in Section 4, that there are two players, and that �1 = f
g and �2 = ff!1g; f!1g; :::; f!ngg;

i.e., player 1 has no information on the realized states of nature (other than the common prior distribution

p), while player 2 knows the realized state precisely. As before, for each state of nature !i 2 
; denote

vi = v(!i) and pi = p(!i): Each player can submit any bid that is lower than or equal to a given budget

constraint d > 0. The following example (the same one as in Section 3 but with budget constrained players)

demonstrates the e¤ect of the budget constraint on the players�equilibrium strategies, and, in particular,

shows that having a budget constraint may imply a higher expected payo¤ to player 1 (the uninformed

player) compared to player 2 (the informed player).
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Example 1 Assume that n = 3; and that in state !i the value of winning is v(!i) = i with probability of

pi =
1
3 ; i = 1; 2; 3: Assume also that the players have the same budget constraint, d = 5

6 : Then the contest

possesses the following pure strategy Bayesian equilibrium: player 1�s bid is independent of the state of nature,

x�1 � 5
6 ; and player 2�s state-dependent bid is given by

x�2(!) =

8>><>>:
0; if ! = !1

5
6 ; if ! 6= !1

:

The expected payo¤ of player 1 is then

E1 =
1

3
� 1 + 1

3
� 1
2
� 2 + 1

3
� 1
2
� 3� 5

6
=
1

3
;

and the expected payo¤ of play player 2 is

E2 =
1

3
� (1
2
� 2� 5

6
) +

1

3
� (1
2
� 3� 5

6
) =

5

18
:

Thus, the expected payo¤ of the uninformed player (player 1) is higher than that of the informed player

(player 2).

In Example 1, we showed that the uninformed player�s expected payo¤ could be higher than that of the

informed player. In the following we describe some su¢ cient conditions under which this unusual result is

obtained.

Proposition 5 Consider a two-player common-value all-pay auction with a budget constraint d for both

players. Suppose that there exists 1 � j � n� 1 such that

(i)

1

2

nX
m=j+1

pjvj � d; (9)

(ii)

vj
2
� d < vj+1

2
; (10)

and

(iii)
jX

m=1

pm(vm � d) � 0: (11)
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Then, there exists a pure strategy Bayesian equilibrium in which the expected payo¤ of the uninformed player

(player 1) is higher than that of the informed player (player 2).

Proof. Given the conditions (9) and (10), the contest possesses a pure strategy Bayesian equilibrium

(x�1; x
�
2) ; in which

x�1 � d; (12)

and

x�2(!k) =

8>><>>:
0, for k = 1; :::; j;

d, for k = j + 1; :::; n
: (13)

If the players use the strategies given by (12) and (13), the expected payo¤ of player 2 is

E2 (x
�
1; x

�
2) =

nX
m=j+1

pm(
1

2
vm � d); (14)

and the expected payo¤ of player 1 is then

E1 (x
�
1; x

�
2) =

jX
m=1

pm(vm � d) +
nX

m=j+1

pm(
1

2
vm � d): (15)

To check that (x�1; x
�
2) constitutes an equilibrium, we do the following. If player 1 submits a bid of x1 = " < d;

then by (9)

E1 (x1; x
�
2) =

jX
m=1

pmvm � " < E1 (x�1; x�2)

Thus x�1 is player 1�s (unique) best response to x
�
2:

If player 2 unilaterally deviates from x�2 to a strategy x2 with 0 < x2 (!k) = " � d for some 1 � k � j;

then

E2 (f!kg ; x�1; x2) � max
�
�"; vk

2
� d

�
� 0 = E2 (f!kg ; x�1; x�2) ;

where the second inequality is implied by (10). But, also by (10), if player 2 unilaterally deviates from x�2

to a strategy x2 with 0 � x2 (!k) = " < d for some j + 1 � k � n; then

E2 (f!kg ; x�1; x2) = �"

� 0 � vk
2
� d = E2 (f!kg ; x�1; x�2) ;
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By taking expectation over !k; it follows that

E2 (x
�
1; x2) � E2 (x�1; x�2)

for any pure strategy x2 of player 2 that obeys his budget constraint, and thus x�2 is player 2�s best response

to x�1:

We can conclude now that (x�1; x
�
2) is an equilibrium. By comparing the players�expected payo¤s given

by (14) and (15), we obtain that the expected payo¤ of player 1 is higher than that of player 2 if and only

if (11) holds. Q.E.D.

The existence of a pure strategy equilibrium as established in Proposition 5 is based on assumptions

(9) and (10). Furthermore, if the budget constraint d is below v1
2 ; both players would make a bid equal to

the bid cap in all the states of nature in a pure strategy equilibrium. But our model with identical budget

constraints may also have a mixed strategy equilibrium, and for a su¢ ciently large cap d the equilibrium

would in fact be unique and identical to the one in Proposition 1.

6 Concluding remarks

In models with asymmetric information, di¤erences in players�information usually result in di¤erent equi-

librium strategies, probabilities of winning, and expected payo¤s. In this model we show that even when the

players�information can be ranked, with one player having an information advantage over his opponent, the

players�expected e¤orts as well as their probabilities of winning the contest are the same. The di¤erence in

information only manifested itself in the di¤erent expected payo¤s. We also show that the highest expected

total e¤ort is obtained when the di¤erence in the players�information is as small as possible. Thus, a contest

designer who wishes to maximizes the players�expected total e¤ort has an incentive to reduce the informa-

tion di¤erence between the players. But, if players face budget constraints, the information advantage might

become a disadvantage: the player with the information advantage may have a lower expected payo¤ than

his opponent. This unusual result implies that by imposing bid caps, the contest designer can control the

relation between the players�expected payo¤s.

We established our results under the assumptions that information sets of each player are connected with
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respect to the value of winning the contest and that the di¤erent information endowments can be ranked.

These assumptions are found to be su¢ cient for the existence of a unique equilibrium. When information

cannot be ranked, however, the existence of an equilibrium remains an open problem.

It would be interesting to examine whether the results in this paper can, at least partially, carry over

to other contest forms with common values and asymmetric information. In particular, the question of

how asymmetric information is re�ected in the relation between the players�expected e¤orts and in their

probabilities of winning seems worthy of further attention.

6.1 Proof of Proposition 1

Fix an equilibrium (F1; F2) in the auction G. We will prove that (F1; F2) = (F �1 ; F
�
2 ):

In what follows, for k = 1; 2 and ! 2 
; Fk (!; �) will be treated either as a probability distribution on

R+; or as the corresponding c.d.f., depending on the context. Also, as F1 is state-independent, F1 (!; �) will

be shortened to F1 (�) ; whenever convenient.

Notice that Fk (�; fcg) � 0 for any e¤ort c > 0 and k = 1; 2: Indeed, if Fk (!; fcg) > 0 for some k and !;

then Fm (!0; (c� "; c]) = 0 for the other player m and every !0 2 
; and some su¢ ciently small " > 0: But

then k would be strictly better o¤ by shifting the probability from c to c� "
2 , a contradiction to Fk being an

equilibrium strategy. Thus, F1 (�) ; F2 (!; �) are non-atomic on (0;1) for every ! 2 
: Notice also that there

is no interval (a; b) � (0;1) on which in some state of nature only one player places positive probability

according to his equilibrium strategy. Indeed, otherwise there would exist a0 > a such that only one player

places positive probability on (a0; b), and it would then be pro�table for that player to deviate (in at least

one state of nature, if this is the informed player 2) by shifting positive probability from (a0; b) to a0.

Suppose now that there is a bounded interval (a; b) � (0;1) such that F1 ((a; b)) = 0 (and thus

F2 (!; (a; b)) = 0 for every ! 2 
; by the previous paragraph), but F1([0; a]) > 0 and F1 ([b;1)) > 0.

By extending this interval if necessary, it can also be assumed that (a; b) is maximal with respect to this

property, i.e., that F1([max(a � "; 0); a]) > 0 and F1 ([b; b+ "]) > 0 for every small enough " > 0: However,

using the fact that F2 (!; �) is non-atomic on (0;1) for every ! 2 
; the expected payo¤ of player 1 at a+b
2

is strictly bigger than his payo¤ for any e¤ort in [b; b + "], if " > 0 is small enough: This contradicts the
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assumption that F1 ([b; b+ "]) > 0. This contradiction shows that there exists no interval (a; b) as above,

meaning that F1 (�) must have full support on some closed interval. Denote this interval5 by [c; d] : Notice

also that, for every ! 2 
; F2 (!; �) must be supported on the interval [c; d] (though there need not be full

support), since otherwise there would be an interval where only player 2 places positive probability, and this

was ruled out.

Note next that c = 0: Indeed, if c > 0 then F2 (�; fcg) � 0, and thus player 1 has a negative expected

payo¤ for e¤orts in [c; c+ "] for all small enough " > 0 (because with e¤orts in [c; c+ "] he loses the contest

almost for sure while expending positive e¤ort of at least c). He would then pro�tably deviate from F1 by

shifting the probability from [c; c + "] to e¤ort 0. Thus, indeed, c = 0: Note also that the interval [0; d] is

non-degenerate, i.e., 0 < d; since otherwise the equilibrium strategies would prescribe the constant e¤ort 0,

and it is clear that each player would have a pro�table unilateral deviation to some " > 0:

Given i; i = 1; :::; n, we will now show that F2 (!i; �) has full support on a (possibly degenerate) subinterval

of [0; d]. Indeed, if not, there would exist an open subinterval (a; b) � [0; d] such that F2 (!i; (a; b)) = 0, but

F2 (!i; [0; a]) > 0 and F2 (!i; [b; d]) > 0: Since F1 ((a; b)) > 0, there must be j 6= i such that F2 (!j ; (a; b)) =

0 > 0: Assume that i < j (the opposite case is treated similarly). Then there are x 2 [b; d] and y 2 (a; b)

such that

viF
1(x)� x = E2

�
f!ig ; F 1; x

�
(16)

� E2
�
f!ig ; F 1; y

�
= viF

1(y)� y (17)

and

vjF
1(x)� x = E2

�
f!jg ; F 1; x

�
(18)

� E2
�
f!jg ; F 1; y

�
= vjF

1(y)� y: (19)

But x > y; and therefore

(vj � vi)F 1(x) > (vj � vi)F 1(y) (20)

since vi < vj and the c.d.f. F 1 is strictly increasing on [0; d]: Adding (20) to the inequality in (16)-(17)

contradicts the inequality obtained in (18)-(19), and therefore no such (a; b) exists. Consequently, each

5The interval must be bounded as no e¤orts above vn will be made in equilibrium, due to the associated negative payo¤.
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F2 (!i; �) has full support on some subinterval6 [ai; bi] of [0; d]:Moreover, if i < j then [ai; bi] lies below [aj ; bj ]

(barring boundary points), since otherwise it would have been possible to �nd x > y; where x 2 [ai; bi] and

y 2 [aj ; bj ]; such that inequalities (16)-(17) and (18)-(19) hold. As above, this would lead to a contradiction

via (20).

Thus, the intervals f[ai; bi]gni=1 are disjoint (barring boundary points), and "ordered" according to the

index i on the interval [0; d]: Moreover, [ni=1 [ai; bi] = [0; d]; since otherwise there would be a "gap" (a; b)

on which only player 1 places positive probability, which is impossible as we have seen earlier. It follows

that there are points 0 = x0 � x1 � ::: < xn � d such that [ai; bi] = [xi�1; xi] for every i = 1; 2; :::; n; i.e.,

F 1 (�) has full support on [0; xn]; and, for i = 1; :::; n; F2 (!i; �) has full support on [xi�1; xi]: Denote by i0

the smallest integer with xi0 > 0:
7

Since F 1 (�) has full support on [0; xn] and F2 (!; �) has no atoms (except possibly at 0); player 1 is

indi¤erent between any two e¤orts in (0; xn]. Thus, the following equality must hold for every i = i0; :::; n

and every positive x 2 [xi�1; xi] :

i�1X
j=1

pjvj + piviF2(!i; x)� x = E1(x; F2) = lim
y&0

E1(y; F2) � e1 � 0:

In particular,

F2(!i; x) =
x�

Pi�1
j=1 pjvj + e1

pivi
(21)

for every i = i0; :::; n and every positive x 2 [xi�1; xi]: Since F2 (!i; �) is supported on [xi�1; xi]; we have

F2(!i; xi) = 1; and thus

xi =
iX

j=1

pjvj � e1 (22)

for every i = i0; :::; n:

Since, for i = i0; :::; n; F2 (!i; �) has full support on [xi�1; xi] and F1 (�) has no atoms (except, possibly,

at 0); player 2 is indi¤erent between all positive e¤orts in [xi�1; xi]. Thus, the following equality must hold

for every positive x 2 [xi�1; xi] :

viF1 (x)� x = E2(f!ig; F1; x)

= E2(f!ig; F1; xi) = viF1 (xi)� xi:
6All these subintervals are either non-degenerate (of positive length), or f0g ; as only the latter can be an atom of F2 (!i; �) :
7Since each interval [xi�1; xi] is either non-degenerate or f0g, 0 = x0 = ::: = xi0�1 < xi0 < ::: < xn:
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In particular,

F1 (x) =
x

vi
+ F1 (xi)�

xi
vi
;

and using the fact that F1 (xn) = 1 and (22); we obtain

F1 (x) =
x+ e1
vi

+
i�1X
j=1

pj

�
1� vj

vi

�
(23)

for every i = i0; :::; n; and every positive x 2 [xi�1; xi]:

If e1 > 0; it follows from (23) that F1 (�) has an atom at e¤ort 0. Then, obviously F2(!i; �) cannot

have an atom at 0, for any i, since otherwise each player would have a pro�table unilateral deviation that

shifts the probability from zero to an e¤ort slightly above zero. In particular, all intervals f[xi�1; xi]gni=1 are

non-degenerate, i.e., i0 = 1: But then, by (21), F2(!1; �) has an atom at 0; a contradiction. We conclude

that e1 = 0:

If i0 > 1; xi0�1 = 0, and thus (21) should hold for i = i0 and any su¢ ciently small x. But then, if

x < p1v1

F2(!i0 ; x) =
x�

Pi0�1
j=1 pjvj

pi0vi0
� x� p1v1

pi0vi0
< 0;

and thus F2(!i0 ; x) is not a c.d.f., a contradiction. Consequently, i0 = 1:

It now follows from (22), (21), and (23) that

xi =

iX
j=1

pjvj

for every i = 1; :::; n; that

F1 (x) =
x

vi
+

i�1X
j=1

pj

�
1� vj

vi

�
for every i = 1; :::; n and every x 2 [xi�1; xi]; and that

F2(!i; x) =
x�

Pi�1
j=1 pjvj

pivi

for every i = 1; :::; n and positive x 2 [xi�1; xi]: Thus, (F1; F2) coincides with (F �1 ; F �2 ) as described in (2)

and (5).

Q.E.D.
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