
 
 
 
 

DISCUSSION PAPER SERIES 

 
 
 

     ABCD 
 

www.cepr.org 
 
 

Available online at: www.cepr.org/pubs/dps/DP9288.asp
 www.ssrn.com/xxx/xxx/xxx

  

 
 

 
 
 
 

No. 9288 
 

SELECTION EFFECTS WITH 
HETEROGENEOUS FIRMS 

 
 

Monika Mrázová and J Peter Neary 
 
 

  INTERNATIONAL TRADE AND 
REGIONAL ECONOMICS 

 
 

 



ISSN 0265-8003 

SELECTION EFFECTS WITH HETEROGENEOUS 
FIRMS 

Monika Mrázová, University of Surrey and CEP, LSE 
J Peter Neary, University of Oxford and CEPR 

 

Discussion Paper No. 9288 
January 2013 

Centre for Economic Policy Research 
77 Bastwick Street, London EC1V 3PZ, UK 

Tel: (44 20) 7183 8801, Fax: (44 20) 7183 8820 
Email: cepr@cepr.org, Website: www.cepr.org 

This Discussion Paper is issued under the auspices of the Centre’s research 
programme in  INTERNATIONAL TRADE AND REGIONAL ECONOMICS.  
Any opinions expressed here are those of the author(s) and not those of the 
Centre for Economic Policy Research. Research disseminated by CEPR may 
include views on policy, but the Centre itself takes no institutional policy 
positions. 

The Centre for Economic Policy Research was established in 1983 as an 
educational charity, to promote independent analysis and public discussion 
of open economies and the relations among them. It is pluralist and non-
partisan, bringing economic research to bear on the analysis of medium- and 
long-run policy questions.  

These Discussion Papers often represent preliminary or incomplete work, 
circulated to encourage discussion and comment. Citation and use of such a 
paper should take account of its provisional character. 

Copyright: Monika Mrázová and J Peter Neary 



CEPR Discussion Paper No. 9288 

January 2013 

ABSTRACT 

Selection Effects With Heterogeneous Firms* 
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extremely robust. "Second-order" ones, how firms serve a market conditional 
on entry, are less so: more efficient firms will select into the entry mode with 
lower market-access costs, if and only if firms' maximum profits are 
supermodular in production and market access costs. Supermodularity holds 
in many cases but not in all. Exceptions include FDI (both horizontal and 
vertical) when demands are "sub-convex" (i.e., less convex than CES), fixed 
costs that vary with access mode, and R&D with threshold effects. 
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1 Introduction

Why do different firms choose to serve particular markets in different ways? Ten years

ago, economists had little theory to guide them in thinking about such questions, though a

growing body of empirical work had already documented systematic patterns in firm-level

data that were unexplained by traditional theory. In the intervening decade, a new and

exciting body of theoretical work has emerged which has placed these empirical findings

in context and inspired further extensions and elaborations. The starting point of this

recent literature is the explicit recognition that firms differ in one or more underlying

attribute, typically identified with their productivity; and its central prediction is that

more productive firms select into activities with higher fixed costs but lower variable

costs. The locus classicus for this pattern of behavior is Melitz (2003), who extended the

theory of monopolistic competition with differentiated products in general equilibrium to

allow for firm heterogeneity, and showed that more efficient firms select into exporting,

whereas less efficient ones serve the home market only.1 Subsequent work in the same

vein has shown that more efficient firms select into many different activities, such as

producing in-house rather than outsourcing, as in Antràs and Helpman (2004); serving

foreign markets via foreign direct investment (FDI) rather than exports, as in Helpman,

Melitz, and Yeaple (2004); paying higher wages as in Egger and Kreickemeier (2009)

and Helpman, Itskhoki, and Redding (2010); and producing with more skill-intensive

techniques as in Bustos (2011). Exploring the implications of firm heterogeneity has

already had a profound effect on the study of international trade, and is increasingly

being extended to other fields, including international macroeconomics, international tax

competition, and environmental economics.2

This literature on heterogeneous firms prompts a number of observations. First,

international trade is not the only field in economics where it has been noted that a firm’s

1A related result of this recent literature, also due to Melitz (2003), is a new source of gains from trade:
trade liberalization encourages exit by less productive firms and entry by more productive ones, and so,
even when the productivity of each individual firm is unchanged, aggregate productivity rises. However,
recent work by Arkolakis, Costinot, and Rodŕıguez-Clare (2012) suggests that this effect operates in a
similar fashion to the gains from trade in traditional models with homogeneous firms.

2See Ghironi and Melitz (2005), Davies and Eckel (2010), and Forslid, Okubo, and Ulltveit-Moe
(2011), respectively.
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superiority in one dimension may be associated with enhanced performance in others. The

same idea, though expressed in very different ways, can be found in Milgrom and Roberts

(1990), who argued that such a complementarity or “supermodularity” between different

aspects of firm performance is typical of modern manufacturing. They also advocated

using the mathematical tools of robust comparative statics to examine the responses of

such firms to exogenous shocks, especially in contexts where variables may change by

discrete amounts. This suggests that it may be worth exploring possible links between

these two literatures, and possible payoffs to adapting the tools of robust comparative

statics to better understand the behavior of heterogeneous firms.

Second, the question immediately arises whether the results derived to date in the

literature on heterogeneous firms and trade are robust. One dimension of robustness is

that of functional form. All the papers cited above assume that consumers have Dixit-

Stiglitz or constant-elasticity-of-substitution (CES) preferences, and all but Melitz (2003)

assume that firm productivities follow a Pareto distribution. These assumptions have

been relaxed in some papers; for example, Melitz and Ottaviano (2008) show that more

efficient firms also select into exports when preferences are quadratic rather than CES.

However, with existing techniques each small change in assumptions requires that the

model be solved again in full, and, as a result, the question of robustness with respect to

functional form has been relatively little explored. A different dimension of robustness is

symmetry: existing studies typically assume that countries are identical, both in size and

in the distribution of firm productivities. Does this matter for the results? Yet another

dimension of robustness is market structure. All the literature on heterogeneous firms

to date assumes that the industry is monopolistically competitive, so firms produce a

unique product but are infinitesimal in their market. However, if successful firms are

indeed large in every dimension, then monopolistic competition may not be the best way

of modeling market structure. At least in some markets, it may be more plausible to

allow for the emergence of a small number of large firms, competing strategically against

each other, and possibly coexisting with a “monopolistically competitive fringe” as in

Neary (2010). Clearly it would be desirable to know if the selection effects that have
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been derived assuming monopolistic competition are also likely to hold in oligopolistic

markets. Finally, turning robustness on its head, we can ask whether the fact that more

efficient firms engage in more activities is a universal tendency. Should we always expect

more productive firms to engage in more and more complex activities? Or are there

interesting counter-examples?

In this paper we seek to illuminate these issues both substantively and technically. At

a substantive level, we distinguish between two different classes of selection effects, one

much more robust than the other. On the one hand, what we call “first-order selection

effects” arise when a firm faces a zero-one choice of either engaging or not in some activity,

such as production or exporting. On the other hand, “second-order selection effects” arise

when a firm faces a choice between different ways of pursuing some goal, such as serving

a foreign market via either foreign direct investment or exporting.

We first show that first-order selection effects are extremely robust, requiring only a

restriction on the first derivative of the ex post profit function, which as we show holds

very widely. This allows us to generalize effortlessly existing results on firm selection into

production and exporting, and also into spending on marketing and on worker screening.

By contrast, we show that second-order selection effects are considerably less robust.

Here, our main substantive contribution is a general result on firm selection which fully

characterizes the conditions under which what we call the “conventional sorting” pattern

occurs: more efficient firms select into activities with lower marginal costs. We first

prove this result in a simple though canonical context: that of a single monopoly firm

choosing between serving a foreign market by either exports or horizontal FDI. We then

show that, with appropriate qualifications, the result extends to a wide variety of market

structures, including both monopolistic competition and oligopoly; and to a wide variety

of firm decisions, including vertical FDI, in-house production versus outsourcing, and

choice of technique. In all cases, the key consideration is how a firm’s own marginal cost

of production interacts with the marginal cost of serving the market under different access

modes. Our result reveals the unifying structure underlying a wide range of results in

the literature, and also shows how they can easily be generalized in new and important
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ways.

From a technical point of view, our results on second-order selection effects contribute

to the small but growing literature which uses the techniques of monotone comparative

statics, and in particular the concept of supermodularity, to illuminate issues in interna-

tional trade.3 Supermodularity arises very naturally in our context. Our interest is in

comparing firms whose production costs differ by a finite amount, and in particular in

comparing their behavior under different modes of serving a market, whose marginal costs

also differ by a finite amount. Supermodularity imposes a natural restriction on the finite

“difference-in-differences” of the firm’s profit function which we need to sign in order to

make this comparison. As we show, the profit function exhibits supermodularity under a

wide range of assumptions, which allows us to generalize existing results and derive new

ones with remarkably few restrictions on technology, tastes, or market structure.

The plan of the paper is as follows. Section 2 shows that first-order selection effects

arise naturally in a wide range of models, and are not sensitive to assumptions about

functional form. Sections 3 and 4 turn to second-order selection effects, and focus on a

single monopoly firm which faces the decision of how to serve a foreign market, trading off

the proximity benefits of foreign direct investment against the concentration advantage of

producing at home and exporting. Section 3 introduces the setting and explains the re-

strictions implied by supermodularity. Section 4 formalizes the gains from tariff-jumping

and derives our main result on how firms of different productivities will select into one

or other mode of serving the foreign market. The remainder of the paper shows that

our approach applies in a wide range of contexts, both old (including some of the most

widely-used models in international trade), and new. Sections 5 and 6 look at alterna-

tive market structures, considering monopolistic competition and oligopoly respectively.

Section 7 turns to explore firm choices other than that between exports and FDI. It re-

3For more technical details on the application of monotone comparative statics to economics, see
Milgrom and Roberts (1990), Milgrom and Shannon (1994), and Athey (2002). Other applications
of supermodularity to international trade include Grossman and Maggi (2000), Costinot (2009), and
Costinot and Vogel (2010), who use it to study problems of matching between different types of workers
or between workers and sectors; Limão (2005), who considers links between trade and environmental
agreements; and Costinot (2007), who shows how the assumption of log-supermodularity permits an
elegant restatement of the results of Antràs and Helpman (2004) and Helpman, Melitz, and Yeaple
(2004), assuming CES preferences and a Pareto distribution of firm productivities.
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views a range of other applications, and considers the implications of heterogeneous and

endogenous fixed costs of production. The overall message of the paper is that supermod-

ularity holds in many cases but is not inevitable. Among the specific examples we give

where supermodularity may be violated, and so the conventional assignment of firms to

different modes of accessing foreign markets may be reversed, are FDI (both horizontal

and vertical) when demand functions are less convex than the CES, fixed costs that vary

with access mode, and R&D with threshold effects.

2 First-Order Selection Effects

Consider a profit-maximizing firm which contemplates serving a particular market. Do-

ing so incurs a fixed cost fX > 0, which, except where otherwise noted, we assume is

exogenous and constant across firms. Potentially offsetting this are the firm’s operating

profits, which depend on various exogenous features of the market, such as market size,

access costs, and the behavior of other firms: we assume that the firm takes all these as

given.4 Operating profits also depend on a range of decisions taken by the firm in this

and all other markets, including prices and sales levels of each of its products, expendi-

ture on marketing, input choice, whether to outsource or not, etc. We assume the firm

takes these decisions optimally, and focus on its maximum or ex post operating profits,

which we denote by π(c). Here c denotes the one remaining determinant of profits: the

firm’s own intrinsic exogenous characteristics. In many applications we will follow the

literature and identify c with the firm’s marginal cost of production, the inverse of firm

productivity. However, other interpretations will sometimes prove desirable. We focus

on the case of a scalar c, though our results can easily be extended to allow for a vector

of firm characteristics.5

We make only two assumptions about the maximum profit function:

Assumption 1. π(c) is continuous and strictly decreasing in c.

4We discuss access costs in Section 4 and show how our approach extends to strategic interaction
between firms in Section 6.

5Heterogeneous firm models with multiple firm characteristics have been considered by Antràs and
Helpman (2004), discussed in Section 7.1 below, and Hallak and Sivadasan (2009).
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This assumption is natural given our interpretation of c as a cost parameter, though it

is non-trivial to establish that it holds in some models, as we will see.

Assumption 2. π(0) > fX and lim
c→+∞

π(c) < fX .

By the intermediate value theorem, Assumptions 1 and 2 immediately imply the following

result; though mathematically elementary, it has many important economic applications

as we will see:6

Proposition 1. There exists a c∗ ∈ (0,+∞) such that π(c∗) = fX . For any c ≥ c∗,

π(c) ≤ fX , and for any c2 < c1 ≤ c∗, π(c2) > π(c1) ≥ fX .

Thus, there is a threshold cost level c∗ such that all firms with lower costs will enter the

market and earn strictly positive profits, while those with higher costs will exit. This

proposition can be applied either to a single monopoly firm in partial equilibrium or

to a continuum of monopolistically competitive firms in industry equilibrium. In the

monopoly context it can be interpreted in either a time-series or cross-section context:

as a comparative statics statement about the effects of a change in cost, or as a ceteris

paribus statement about the difference between two firms with different costs, operating

in otherwise identical markets. In the monopolistically competitive context it should be

interpreted only in the cross-section context: as a comparison between different firms in

the same equilibrium.

To see the power of Proposition 1, we first apply it to a canonical example, the

heterogeneous firms model of Melitz (2003), extended to a general demand function:

Example 1. [Selection into Production or Exports] Suppose the maximum oper-

ating profits of a firm in a particular market equal:

π (c) ≡Max
x

π̃ (x; c) , π̃ (x; c) = {p (x)− τc}x (1)

Here p(x) is the inverse demand function taken as given, i.e., “perceived”, by the firm: we

impose no restrictions other than p′ < 0; τ ≥ 1 is an iceberg transport cost, representing

6The wording of the Proposition is deliberately modeled on that of Proposition 1 in Arkolakis (2010b).
See also Example 2 below.
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the number of units which must be produced in order to deliver one unit to consumers;

and π̃ denotes the ex ante operating profit function, maximization of which yields the ex

post function π. Differentiating (1) and invoking the envelope theorem, it follows that

profits are decreasing in c: πc = π̃c = −τx < 0. In the Appendix, Section 9.1, we express

this and the relationship between firms’ costs and sales in terms of proportional changes

(denoted by a “hat” over a variable, e.g., x̂ ≡ d log x, x > 0):

x̂ = −ε− 1

2− ρ
ĉ, π̂ = −(ε− 1)ĉ (2)

Here ε ≡ − p
xp′

and ρ ≡ −xp′′

p′
denote the elasticity and the convexity of the demand

function respectively.7 Equation (2) shows that both output and profits are strictly

decreasing in c for c > 0.8 This confirms that the Melitz model extended to general

demands satisfies Assumption 1, and therefore Proposition 1 applies: more productive

firms select into serving a market, whether domestic (τ = 1) or foreign (τ > 1), for all

downward-sloping demand functions.

The point of Example 1 is not just that it extends the original Melitz model to

arbitrary demand functions.9 Even more important is what is missing: no assumptions are

made about the distribution of costs across firms or about symmetry between countries.

All that is needed is π decreasing in c: a very mild assumption. Why is our approach so

simple? The standard approach in models of monopolistic competition is to compute the

industry equilibrium, and then check that it exhibits selection effects. By contrast, our

approach in effect assumes that an equilibrium exists, and then shows that π decreasing

in c is sufficient for the conventional selection effects to emerge. Our approach parallels

that of Maskin and Roberts (2008), who show that all the central theorems of normative

general equilibrium theory can be proved using elementary methods once the existence

of equilibrium has been established. Our approach cannot confirm that an equilibrium

7In the CES case, where σ is the constant elasticity of substitution, ε = σ and ρ = σ+1
σ , so the first

equation in (2) simplifies to x̂ = −σĉ.
8The firm’s first-order condition requires that ε ≥ 1, with ε > 1 for c > 0; the second-order condition

requires that ρ < 2.
9Melitz (2003) demonstrated selection effects assuming CES preferences, while Melitz and Ottaviano

(2008) showed they also hold under quadratic preferences.
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exists.10 However, by dispensing with computing one explicitly, it applies without specific

restrictions on the functional forms of preferences, technology, or the distribution of

costs; it avoids the need to assume that countries are symmetric; and it extends easily to

considering firm choices in other models, as we shall see in the next two examples.

Finally, while our results apply to cross-section comparisons in a given equilibrium,

they also extend to time-series comparisons between equilibria. In particular, we can

invoke a result of Bertoletti and Epifani (2012), that selection effects in time series com-

parisons are robust to changes in functional form, specifically, a reduction of trade costs

in an open economy reduces the threshold cost parameter for selection into exporting.

The proof of this result relies on Assumption 1, which these authors adopt without dis-

cussion. As we have seen, this is natural in the Melitz model, but less immediate in other

examples, to which we now turn.

Example 2. [Selection into Marketing] To see how our approach can be applied more

widely, consider the case of a firm which must engage in marketing expenditure in order

to reach consumers. Following Arkolakis (2010b), it faces two decisions: what price p

to charge, or, equivalently, how much to sell per consumer, x; and what proportion n of

consumers to target:11

π (c) ≡Max
x,n

[π̃ (x, n; c)] , π̃ (x, n; c) = {p (x)− c}nx− f (n; c) (3)

Increased spending on marketing targets a higher proportion of potential consumers n,

but incurs a higher fixed cost f (n; c), with f(0; c) = 0, fn > 0, and lim
n→1

f(n; c) =∞. (Note

that this fixed cost is endogenous, so we include it in operating profits; as in Example

1, the firm may also incur an exogenous fixed cost.) We make the natural assumptions

that the fixed cost of marketing is weakly higher for less productive firms, fc ≥ 0, and is

10Though this is not a major limitation of our analysis. Equilibrium in monopolistically competitive
models of the kind considered in the applied theory literature is unlikely to be a problem. Negishi (1961)
proved that equilibrium exists in a very general model of monopolistic competition, assuming that firms
have convex production sets and perceive linear demand functions. Arrow and Hahn (1971), Section 6.4,
relaxed these assumptions and also allowed for heterogeneous multi-product firms.

11To reduce inessential notation, we normalize the size of the market, transport costs, and wages to
unity, we assume that consumers are homogeneous, and we assume that n is both the proportion of
consumers targeted and the proportion who purchase the good. The latter feature is guaranteed with
CES preferences, but may not hold if preferences are such that demand functions exhibit a choke price.
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convex in the number of consumers targeted, fnn > 0.12 Arkolakis (2010b) assumes that

preferences are CES, and that the marketing cost function takes a particular parametric

form.13 Now consider the effects of costs on profits. Using the envelope theorem as before

we obtain:

πc = π̃c = −nx− fc < 0 (4)

It follows that the Arkolakis model, extended to general functional forms as here, exhibits

unambiguous first-order selection effects: more efficient firms select into both exporting

and marketing. This shows that Proposition 1 of Arkolakis (2010b) extends to a wider

class of functional forms for demand and marketing costs. Moreover, we show in the

Appendix that more productive firms have higher sales and engage in more marketing:

(2) continues to hold, irrespective of the shape of the fixed-cost function;14 while the

effect of costs on marketing is also unambiguously negative:

n̂ = −
ε− 1 + cfnc

fn
nfnn
fn

ĉ (5)

irrespective of the convexity of the demand function.15

Example 3. [Selection into Worker Screening] Our final example is one where

workers have unobservable heterogeneous abilities. Following Helpman, Itskhoki, and

Redding (2010), a firm must choose n, which in this example denotes the number of

workers it screens for their ability, as well as a, the threshold ability level it will accept.

Each of these incurs direct costs: search costs bn in the case of workers sampled, and

screening costs c0
δ
aδ in the case of the hiring threshold.16 These two variables in turn

12The latter assumption is necessary for an interior solution: the second-order condition for choice of
n is fnn > 0.

13Arkolakis (2010b) assumes that the marketing cost function takes the form: f (n) = 1−(1−n)1−β

1−β ,

β ∈ (0,∞), β 6= 1. As β approaches one, this can be shown, using L’Hôpital’s Rule, to equal f (n) =
log(1 − n), a case explored by Butters (1977) and Grossman and Shapiro (1984). When β equals zero,
the model reduces to the standard Melitz case. Arkolakis (2010a) allows for a more general marketing
cost function similar to here, though retaining CES preferences.

14The expression for π̂ in equation (2) holds with π interpreted as operating profits before the endoge-
nous fixed costs f(n; c) are paid.

15With the Arkolakis specification of the fixed-cost function given in footnote 13, this simplifies to n̂ =
− 1−n

n
ε−1
β ĉ. A different special case is to assume the fixed cost is log-linear in c: f(n; c) = f̃(n)cα, α ≥ 0;

Arkolakis (2010b) assumes α = 0. In this case (5) simplifies to n̂ = −f̃n ε−1+α
nf̃nn

ĉ.
16The search cost b depends on the tightness of the labour market and so is endogenous in general
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determine the number of workers hired, h, which incur wage costs of w(·)h, where the

wage is the outcome of a bargaining game to be explained below. Finally, fixed costs may

also depend on firm productivity, denoted by the inverse of c as in previous examples.17

All of these costs have to be subtracted from sales revenue r(x) = p(x)x to yield operating

profits, so the ex post profit function is:

π (c) ≡Max
n,a

[
π̃ (n, a; c) : x = c−1hγ k

k−1
a, h = n

(
a
a

)−k]
,

π̃ (n, a; c) = p (x)x− w(·)h− bn− c0
δ
aδ − f (c)

(6)

Maximization of profits is subject to two kinds of constraints. First there are technological

constraints on production and hiring, as indicated in the square brackets in (6): sales

x are increasing in the number of workers hired h and the screening threshold a, while

hires are increasing in the number of workers sampled but decreasing in a.18 Second, the

firm must bargain with its workers over the wage. As in Helpman, Itskhoki, and Redding

(2010), we follow Stole and Zwiebel (1996) and assume that the firm cannot write binding

contracts with its workers, but must incentivize them to stay with the firm. It does so by

engaging in multilateral bargaining after all non-wage costs have been sunk, offering each

worker a wage which just equals the reduction in surplus which the firm would suffer

if the worker were to leave.19 Since the firm’s surplus equals its revenue less its wage

costs, this implies a differential equation in the wage, the solution to which is the final

constraint on the firm’s profit maximization.

The effects of costs on profits cannot be established by inspection in this model.

equilibrium. However, it is taken as given by firms.
17While Helpman, Itskhoki, and Redding (2010) assume that fixed costs are common across firms,

Helpman, Itskhoki, Muendler, and Redding (2012) in an empirical extension allow for heterogeneous
fixed costs of exporting.

18The functional forms of both constraints reflect the assumption that worker abilities follow a Pareto
distribution with a minimum ability level a and a shape, or inverse dispersion, parameter k. Hence
setting a threshold ability a yields a truncated Pareto distribution of hired workers with average ability
equal to k

k−1a.
19This assumes for simplicity that an individual worker’s ability is unobservable, and that workers

are risk-neutral, face an outside option of zero, and have equal bargaining power with the firm. For
further discussion, see Stole and Zwiebel (1996), Acemoglu, Antràs, and Helpman (2007), and Helpman,
Itskhoki, and Redding (2010).
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However, we show in the Appendix that they take a simple form:

πc = π̃c = −wh
cγ
− fc (7)

Therefore, as in the previous two examples, Assumption 1 holds and so the model exhibits

unambiguous first-order selection effects, irrespective of the form of the demand function.

We also derive in the Appendix the responses of other variables to differences in costs

across firms:

x̂ = −Γ−1ĉ, r̂ = θx̂, n̂ =
γθ − ω
γω

x̂, ŵ =
k

δ
n̂, ĥ =

δ − k
δ

n̂, â =
1

δ
n̂ (8)

where ω is the share of wages in revenue: ω ≡ wh
r

; and Γ is the inverse elasticity of sales

with respect to costs: Γ ≡ 1− γθ−ω
γω

1+γ(δ−k)
δ

.20 Equation (8) shows that, if and only if Γ

is positive, all variables are monotonically decreasing in c: more productive firms screen

more workers, and also hire more, despite imposing a higher threshold ability level; as

a result they have higher sales, revenue and profits, though at the same time they also

pay higher wages. Crucially, all these results hold irrespective of the form of the demand

function.

3 Operating Profits and Supermodularity

Having shown that first-order selection effects are extremely robust, we turn in the re-

mainder of the paper to consider second-order selection effects. In this section we consider

a firm located in one country which contemplates serving consumers located in a foreign

country. The maximum operating profits the firm can earn in the foreign country equal

20As in Helpman, Itskhoki, and Redding (2010), the parameters must satisfy a number of constraints
for the model to make sense and to accord with stylized facts. From the output and hiring constraints,
1−γk is the elasticity of output with respect to the threshold ability level, for a given number of workers
screened n; this must be positive if the firm is to have an incentive to screen. From the penultimate
equation in (8), δ − k must be positive if the model is to exhibit an employer-size wage premium. From
equations (54) and (57) in the Appendix, γθ − ω must be positive since sales are increasing in numbers
of workers hired and in the threshold ability level. None of these conditions guarantees that Γ itself
must be positive, though the model exhibits bizarre behaviour if it is not. See the Appendix for further
discussion.
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π (t, c), where t is the access cost (tariffs and transport costs) it faces and c is an exogenous

cost parameter, as in Section 2. The parameter c equals the firm’s marginal production

cost in many applications, though not in all: we will see exceptions in Example 5 and

Section 7 below. We assume that π is non-increasing (though not necessarily continuous)

in both t and c. As in Section 2, profits also depend on the firm’s choice variables and

on other exogenous variables, however, the former have been chosen optimally and so are

subsumed into the π function, while the latter are suppressed for convenience; we give

some examples of each below.

We define ∆c as the finite difference between the values of a function evaluated at two

different values of c, c1 and c2, with the convention that c1 is greater than or equal to c2.

Applying this to the operating profit function π gives:

∆cπ (t, c) ≡ π (t, c1)− π (t, c2) when c1 ≥ c2 (9)

So, ∆cπ (t, c) is the profit loss of a higher-cost relative to a lower-cost firm and is always

non-positive. Note that, when π (t, c) is differentiable in c, ∆cπ(t,c)
c1−c2 reduces to the partial

derivative πc as c1 approaches c2.21

We can now define what we mean by supermodularity in the context of our paper:22

Definition 1. The function π (t, c) is supermodular in t and c if and only if:

∆cπ (t1, c) ≥ ∆cπ (t2, c) when t1 ≥ t2. (10)

When π (t, c) is differentiable in t and c, supermodularity of π implies that the second

derivative πtc is positive as t1 approaches t2 and c1 approaches c2. Intuitively, supermod-

ularity of π means that a higher tariff reduces in absolute value the cost disadvantage

of a higher-cost firm. Putting this differently, the profit function exhibits the “Matthew

Effect”: “to those who have, more shall be given”. Rewriting the definition we can see

21We use subscripts of functions to denote partial derivatives: e.g., πc ≡ ∂π/∂c and πtc ≡ ∂2π/∂t∂c.
22More generally, following Milgrom and Roberts (1990) and Athey (2002), supermodularity can be

defined in terms of vector-valued arguments: π is supermodular in a vector-valued argument when
π (x ∨ y)+π (x ∧ y) ≥ π (x)+π (y), where x∨y ≡ inf {z | z ≥ x, z ≥ y} and x∧y ≡ sup {z | z ≤ x, z ≤ y}.
This is equivalent to the definition in the text when we set: x = {c2, t1} and y = {c1, t2}.
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that supermodularity is equivalent to:

π (t2, c2)− π (t1, c2) ≥ π (t2, c1)− π (t1, c1) ≥ 0 when t2 ≤ t1 and c2 ≤ c1 (11)

Thus, when supermodularity holds, a lower tariff is of more benefit to a more productive

firm. This might seem like the natural outcome, since a lower tariff contributes more to

profits the more a firm sells, and we might expect a more productive firm to sell more.

As we will see, this is often the case, but there are important counter-examples. When

the first inequality in (10) is reversed, we say that the function is submodular.

Example 4. A simple case which helps to fix ideas is that of a single-product monopoly

firm with constant marginal cost and specific tariffs. Let p (x) denote the inverse demand

function which the firm faces, where p and x denote its price and sales respectively. Its

operating profits therefore equal:

π (t, c) ≡Max
x

[{p(x)− c− t}x] (12)

It is easy to check that the profit function is supermodular in t and c in this case.23

Intuitively, a firm with higher production costs c has lower sales; hence its profits are

reduced less by a rise in the tariff.

Example 4 exhibits two key features: π is continuous in trade and production costs,

and it depends only on their sum. If both these conditions hold, then supermodularity in

t and c is equivalent to convexity of π in both t and c: if π(t, c) = π(t+ c) and π is differ-

entiable, then πtc = πcc. Our next example is a simple case where one of these conditions

does not hold and as a result the profit function may not exhibit supermodularity.

Example 5. Consider next the same example as above except that marginal cost varies

23It follows from the envelope theorem that the first derivative of π with respect to t is minus the initial
level of sales: πt = −x (t, c). Hence the second cross-partial derivative of profits is minus the partial
derivative of sales with respect to c: πtc = −xc > 0. To establish the sign of this term, differentiate the
first-order condition p− c− t+ xp′ = 0 to get: xc = −H−1. The expression H ≡ − (2p′ + xp′′) must be
positive from the firm’s second-order condition. Hence we have that πtc = −xc = H−1 > 0, and so π in
(12) is supermodular in t and c.
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with output.24 Assume the firm’s problem is as follows:

π (t, c) ≡Max
x

[{p(x)− t}x− C (c, x)] (13)

Here c is not equal to marginal cost, but rather it is a parameter representing the firm’s

inverse productivity. The new expression C (c, x) is the firm’s total variable cost: it

depends positively on c and on output x. Now the second cross-derivative of the profit

function equals the following:25

πtc = −xc = H−1Cxc (14)

The term H is positive from the second-order condition for profit maximization, which

works in favor of supermodularity. However, this term is offset, and the profit function

is submodular in t and c, if C is submodular in its arguments {x, c} so Cxc is negative;

that is, if the cost of production falls faster (or rises more slowly) with output for a firm

with higher c (i.e., a less productive firm). Figure 1 illustrates this possibility. Firm 1 is

less productive than firm 2 overall, but it is relatively more productive at higher levels of

output. As a result, its marginal cost curve MC1 lies below that of firm 2 and so it has

lower marginal cost and (facing the same marginal revenue curve) higher output. The

profit function in this case is therefore submodular rather than supermodular.

The configuration shown in Figure 1, though not pathological, is somewhat contrived

and of limited empirical relevance. In general, supermodularity will hold as long as static

differences in efficiency between firms work in the same direction on average and at the

margin, which seems the natural case. In later sections we will consider more plausible

examples of submodularity.

24We are grateful to Dermot Leahy for suggesting this example.
25As in Example 5.3, the envelope theorem implies that πt = −x(t, c), and so π is supermodular in

t and c if and only if x is decreasing in c: πtc = −xc. Direct calculation yields equation (14) where
H = − (2p′ + xp′′ − Cxx).
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Figure 1: An Example of Submodularity

4 Selection into FDI versus Exporting

We now return to the general case where π (t, c) is unrestricted, and compare the relative

profitability of different modes of serving the foreign market. We first restate in our

notation the familiar proximity-concentration trade-off, and then derive a general result

on which firms will select into exporting or FDI.26

Exporting faces a higher access cost, so FDI has the advantage of proximity. However,

it foregoes the benefits of concentration. In addition to operating profits, the firm must

incur a fixed cost of serving the market, which differs depending on the mode of access.

The fixed cost equals fX if the firm exports and as a result total profits of exporting are:

ΠX = π (t, c)− fX (15)

When the firm engages in FDI and builds a plant in the market in question, the fixed

cost equals fF , which is not less than fX . Assuming that access costs conditional on FDI

are zero, the total profits from locating a plant in the target market are:

ΠF = π (0, c)− fF (16)

26Our formalization of the proximity-concentration trade-off follows Neary (2002).
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We define the tariff-jumping gain γ as the difference between these two:27

γ(t, c, f) ≡ ΠF − ΠX = π(0, c)− π(t, c)− f (17)

Here f ≡ fF − fX is the excess fixed cost of FDI relative to exporting. For a proximity-

concentration trade-off to exist, f has to be such that γ(t, c, f) changes signs at least once

on the range of parameters considered. On the one hand, f has to be strictly positive

since π(0, c) − π(t, c) > 0 for all t > 0 and c. In other words, the fixed costs of FDI

must be strictly greater than the fixed costs of exporting otherwise all firms would want

to engage in FDI. On the other hand, f must not be such that, for all t and c, we have

γ(t, c, f) < 0. In other words, the fixed cost of FDI must not be prohibitive otherwise

no firms would want to engage in it. For t > 0, set f̄ ≡ max
c

[π(0, c)− π(t, c)]. In what

follows, we assume that f ∈ (0, f̄).28

We can now apply the finite difference operator ∆c to the tariff-jumping gain:29

∆cγ(t, c, f) = ∆cπ(0, c)−∆cπ(t, c) (18)

Recalling the definition of supermodularity in (10), we can sign this unambiguously, which

gives our first result:

Lemma 1. If and only if the profit function π is supermodular in t and c, ∆cγ(t, c, f) is

negative.

The economic implications of this are immediate: if and only if π is supermodular in t and

c, the tariff-jumping gain is lower for higher-cost firms and higher for more productive

ones. Since γ measures the incentive to engage in FDI relative to exporting, we can go

further and state one of the key results of our paper:

Proposition 2. If and only if the profit function π is supermodular in t and c, higher-cost

firms will select into exports, while lower-cost firms will select into FDI, for all f ∈ (0, f̄).

27Strictly γ is the trade-cost-jumping gain, but the shorter title is traditional and simpler.
28Note that f̄ may be infinite if for example lim

c→0
[π(0, c)− π(t, c)] = +∞.

29To avoid confusion, we include f among the arguments of ∆cγ(t, c, f). However, this finite difference
is independent of f , a feature which will prove important below.
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The sufficiency part of the proposition follows immediately from Lemma 1. The necessity

part is more subtle and reflects the fact that we require the result to hold for all admissible

fixed costs. A formal proof is in the Appendix.30 Here we give an intuitive account.

 F

XX

X

g FDI

 fX
1c

 fF 

1c
 f f

Figure 2: The Conventional Sorting can Hold without Supermodularity

The upper quadrant of Figure 2, based on Helpman, Melitz, and Yeaple (2004), gives

a hypothetical illustration of total profits under the two modes of market access, as

functions of inverse production costs.31 The lower quadrant shows γ(t, c, f), the difference

between ΠF and ΠX . In the example shown, this curve is non-monotonic in c, and so the

profit function is not supermodular in t and c. Despite this, the conventional sorting holds:

there is a unique cost threshold, with all firms that have lower costs engaging in FDI and

all those that have higher costs engaging in exports. This shows that supermodularity is

not necessary for the conventional sorting to hold for a given fixed cost: the necessary

condition, that the two profit curves cross only once, is weaker. However, Figure 3 shows

that supermodularity is necessary if the conventional sorting is to hold for any fixed cost.

30The proof relies on the fact that ΠX and ΠF , though very general functions of t and c, are quasilinear
with respect to fX and fF , respectively. It proceeds in a similar way to Proposition 10 of Milgrom and
Shannon (1994).

31Helpman, Melitz, and Yeaple (2004) assume CES preferences, in which case the total profit curves are
linear in a decreasing transformation of costs; see Section 5 below for further discussion. More generally,
the total profit curves must satisfy only two restrictions: (i) both must be upward-sloping, reflecting the
assumption that operating profits are non-increasing in c; and (ii) ΠF must lie everywhere above ΠX

when fF = fX , reflecting the assumption that operating profits are non-increasing in t.
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If γ is not monotonic in c, we can always find an f which leads to a violation of the

conventional sorting. In the case shown in Figure 3, the level of fF , the fixed cost of FDI,

is lower than in Figure 2, shifting the γ(t, c, f) curve upwards such that the conventional

sorting no longer holds: both the lowest- and the highest-cost active firms engage in FDI.

Hence we can conclude that supermodularity of the profit function in t and c is necessary

as well as sufficient for higher-cost firms to select into exports, and lower-cost firms to

select into FDI, for all admissible fixed costs f .

 F

XX

g
FDIX

FDI

f
 fX
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 fF



1c f

Figure 3: Absent Supermodularity, the Conventional Sorting Fails for Some Fixed Costs

A striking feature of Proposition 2 is that it does not depend directly on fixed costs.

While fixed costs affect the level of the tariff-jumping gain γ, they vanish when we com-

pare across two firms using the finite difference operator ∆c. Fixed costs are essential for a

proximity-concentration trade-off, and hence they are necessary for the existence of selec-

tion effects. However, they do not necessarily predict their direction. So statements like

“Only the more productive firms select into the higher fixed-cost activity” are often true,

but always misleading: they are true given supermodularity, but otherwise not.32 What

matters for the direction of selection effects is not a trade-off between fixed and variable

costs, but whether there is a complementarity between variable costs of production and

of trade. Putting this differently, for FDI to be the preferred mode of market access, a

32The quoted statement is from Oxford graduate trade lecture notes in late 2009.
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firm must be able to afford the additional fixed costs of FDI, but whether it can afford

them or not depends on the cross-effect on profits of tariffs and production costs. When

supermodularity prevails, a more efficient firm has relatively higher operating profits in

the FDI case, but when submodularity holds, the opposite is true.

Of course, all this assumes that fixed costs are truly fixed, both for a single firm as

output varies, and for cross-section comparisons between firms. Matters are different if

they depend on either t or c, as we shall see in Section 7. First, we turn to compare

Proposition 1 with the result obtained by Helpman, Melitz, and Yeaple (2004). Our

result is more general than theirs in that it places no restrictions on the functional form

of the demand function: only mild restrictions on the maximized profit function π(t, c)

are needed. However, at first sight our result seems more special since it holds only for

the case of a single monopoly firm, whereas Helpman, Melitz, and Yeaple (2004) proved

their result in a general equilibrium model with monopolistic competition. In the next

section we show that this apparent limitation of our result is illusory. With suitable

reinterpretation, our result holds in a large class of monopolistically competitive models,

including that of Helpman, Melitz, and Yeaple (2004).

5 Monopolistic Competition

To see how our result extends to models of monopolistic competition, we need to address

the issue of market structure per se, to explore demand systems other than the CES, and

to examine the specification of transport costs. We consider these issues in turn.

5.1 Exports versus FDI with CES Preferences

As already noted, Helpman, Melitz, and Yeaple (2004) were the first to consider how

firms of different costs will select into different modes of serving foreign markets. They

considered this issue in a model of heterogeneous firms in monopolistic competition with

CES or Dixit-Stiglitz preferences, iceberg transport costs, and a Pareto distribution of

firm productivities. In our notation the variable-profit function for a typical firm in such
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a model is:

π (t, c) = (τc)1−σ B (19)

where τ ≡ 1 + t ≥ 1 is an iceberg transport cost;33 σ is the elasticity of substitution in

demand, which must be greater than one; and B is a catch-all term which summarizes

the dependence of the demand for one firm’s good on total expenditure and the prices

of all other goods.34 Consider first the partial equilibrium or firm-level case where B is

taken as given. In that case, the profit function is clearly supermodular in t and c:

πtc = (σ − 1)2 (τc)−σ B > 0 (20)

Hence, from Proposition 2, the ranking of firms by their mode of serving foreign markets

established by Helpman, Melitz, and Yeaple (2004) follows immediately without any need

to compare the levels of profits in different modes.

In full industry equilibrium, the demand term B is endogenous. It depends directly on

the level of total expenditure E and on the overall price index P in the market in question,

while P in turn depends on all the variables that affect the global equilibrium, including

at a minimum the number of active firms serving this market from every country i, the

distribution of firm costs g (c), and the transport cost τ :

B = B̃ (E,P ) P = P̃ [{ni} , g (c) , τ ] (21)

However, for the comparisons we wish to make, this endogeneity is not relevant. The

price index and hence the demand term B would be affected by changes in transport

costs which disturb the full equilibrium. But our concern is not with such a time-series

comparison, rather with characterizing the pattern of firm selection between alternative

modes of serving a foreign market which incur different transport costs. Since any pair

of firms is infinitesimal relative to the mass of all firms, we can compare their choices

33For continuity with previous sections we continue to write ex post profits as a function of t. This is
not a restriction since ∂π/∂τ = πt.

34In typical specifications, B = (σ−1)σ−1

σσ A, where A is the constant term in the demand function
x = Ap−σ. A in turn depends on nominal expenditure E and the aggregate price index P : A = EPσ−1.

21



while holding constant the actions of all other firms. Hence, partial equilibrium is the

appropriate framework for the cross-section comparisons between different firms in the

same equilibrium that we want to make.

Π
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X
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Figure 4: Inferring Selection Effects from Supermodularity

This key point can be made differently by considering Figure 4, which is based on

Helpman, Melitz, and Yeaple (2004). Their approach, now standard in the literature, is

to compute the general equilibrium of the world economy and then to investigate what

pattern of selection effects it exhibits. Thus they calculate not only the profit functions

ΠF and ΠX , allowing for their dependence on expenditure and price indices in general

equilibrium, but also their point of intersection, which is the threshold cost level at which

a firm is indifferent between exports and FDI. By contrast, our approach is very different.

We assume that an equilibrium exists, and that π is supermodular. We can then pick an

arbitrary pair of firms, say those with the unit costs c1 and c2 in Figure 4. Rewriting the

supermodularity condition ∆cπ(t, c) > ∆cπ(0, c), and adding −fF +fX to both sides gives
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a ranking of the two firms’ total profits when they engage in FDI rather than exporting:

π(t, c1)− π(t, c2) > π(0, c1)− π(0, c2) (22)

⇔ π(0, c2)− π(t, c2) > π(0, c1)− π(t, c1)

⇔ ΠF (c2)− ΠX(c2) > ΠF (c1)− ΠX(c1)

Repeating this comparison for every pair of firms allows us to infer the qualitative prop-

erties of the ΠF and ΠX loci without the need to calculate the full equilibrium, just as

we saw for first-order selection effects in Section 2.

5.2 General Demands

While the result in the last sub-section has already been derived by Helpman, Melitz,

and Yeaple (2004), the strength of our approach is that it allows us to sign selection

effects into FDI for any demand system, not just the CES. Write the demand function

facing the firm in inverse form, p = p(x), with no restrictions other than that consumers’

willingness to pay is decreasing in price, p′ < 0; and write the elasticity of demand as a

function of sales: ε (x) ≡ −∂x
∂p

p
x

= − p
xp′

. To determine which specifications of demand

favor the conventional sorting, we introduce the term “superconvex” demand: we define a

superconvex demand function as one for which log p is convex in log x.35 As we show in the

Appendix, this is equivalent to the demand function being more convex than a constant-

elasticity CES demand function (for which ε equals σ), and to one whose elasticity of

demand is increasing in output, so εx is non-negative. The case where demand is not

superconvex, so ε is decreasing in x, we call subconvex. Subconvexity is sometimes called

“Marshall’s Second Law of Demand”, as Marshall (1920) argued it was the normal case, a

view echoed by Krugman (1979). It implies plausibly that consumers are more responsive

to price changes the greater their consumption; and it encompasses many of the most

35For a formal definition, and proofs of the statements that follow, see the Appendix, Section 9.3.
The term “superconvexity” seems to be used, if at all, as a synonym for log-convexity, i.e., log x convex
in p. (See Kingman (1961).) For related discussions, see Bertoletti and Epifani (2012), Neary (2009),
and Zhelobodko, Kokovin, Parenti, and Thisse (2012). For the most part, these papers assume that
preferences are additively separable, though this is not necessary for our approach, since we only consider
the demand function from the firm’s perspective.
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widely-used non-CES specifications of preferences, including quadratic (to be considered

further below), Stone-Geary, and translog preferences.36 Strict superconvexity is less

widely encountered; an example is where the inverse demand function has a constant

elasticity relative to a displaced or “translated” level of consumption: p = (x−β)−1/σ with

β strictly positive.37 It is shown in Lemma 8 of the Appendix that superconvex demands

come “closer” than subconvex demands to violating the firm’s second-order condition

for profit maximization. Note that super- and subconvexity are local properties, and

in particular ε need not be monotonic in x; both ε and εx are variable in general, and

the latter could be negative for some levels of output and positive for others. However,

monotonicity holds for many special cases, including those of quadratic and Stone-Geary

preferences.

The importance of superconvexity in this context is shown by the following result:

Proposition 3. With iceberg transport costs and a constant marginal production cost, a

sufficient condition for the profit function to be supermodular in t and c for all levels of

output is that the demand function is weakly superconvex, i.e., the elasticity of demand

is non-decreasing in output, εx ≥ 0.

The proof, given in the Appendix, follows by expressing the cross-partial derivative of

the profit function in terms of the elasticity of demand and its responsiveness to output:

πtc =
(ε− 1)2 + xεx
ε− 1− xεx

x (23)

The denominator ε − 1 − xεx must be positive from the second-order condition. Hence

the numerator shows that, whenever εx is strictly negative, submodularity may hold for

sufficiently high x. We can be sure that supermodularity holds for all output levels only

in the CES and strictly superconvex cases.38

36Feenstra (2003) shows how the translog can be adapted to allow for a variable number of varieties
consumed, and so used in models of monopolistic competition with free entry. He also shows that
it implies an elasticity of demand which is always increasing in price, and so, from Lemma 7 in the
Appendix, the translog demand function is subconvex. (See Feenstra (2003), p. 85).

37We are grateful to Rob Feenstra for suggesting this example.
38In the CES case, when εx is zero, (23) reduces to πtc = (σ − 1)x and is always positive. This is

equivalent to equation (20), using the fact that output with CES preferences equals: x =
(

σ
σ−1τc

)−σ
.
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Intuitively, the result follows from another implication of superconvexity. A positive

value of εx means that larger firms face a higher elasticity of demand. Since output is

decreasing in c in this model (xc < 0), this implies that, if and only if εx is positive,

more productive firms face more elastic demand. Hence, they also have lower mark-

ups, as measured by the Lerner Index, L ≡ p−τc
p

, since L = 1
ε
.39 This implies that a

more productive firm will have an incentive to expand output more in order to maximize

profits. As a result, the Matthew Effect is stronger when εx is positive, sufficiently so that

supermodularity is guaranteed. By contrast, when εx is negative, the Matthew Effect is

weaker and so more productive firms may not benefit as much from avoiding the tariff

by engaging in FDI.

Proposition 3 is important for highlighting which classes of demand function are con-

sistent with super- or submodularity, but it is only a sufficient condition. To determine

whether a particular demand function exhibits supermodularity, we can use the necessary

and sufficient condition given by the following:

Proposition 4. With iceberg transport costs and a constant marginal production cost, a

necessary and sufficient condition for the profit function to be supermodular in t and c is

that the sum of the elasticity and convexity of demand is greater than three.

The proof (given in the Appendix) proceeds by showing that equation (23) can be reex-

pressed as follows:

πtc =
ε+ ρ− 3

2− ρ
x, ρ ≡ −xp

′′

p′
(24)

where ρ is our measure of convexity of demand. Proposition 4 can alternatively be

expressed in terms of the elasticity of marginal revenue:

Corollary 1. The condition for supermodularity from Proposition 4, ε+ ρ > 3, holds if

and only if the elasticity of marginal revenue is less than one in absolute value.

Proposition 4 implies that submodularity is more likely when demand is less elastic and

more concave. In particular, it may arise for any linear or concave demand system, and

even for demands that are “not too” convex.

39It can be checked that the Lerner index falls as costs fall if and only if εx is positive: dL
dc = − εxε2

dx
dc .
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To illustrate how these results can be applied in practice, we consider two subconvex

demand systems, one of which implies that profits are always supermodular and the

other which implies submodularity for high values of output. The first is a version of the

translated CES case already mentioned:

Lemma 2. The demand function p = (x − β)−1/σ, with β strictly negative, is always

subconvex, but the implied profit function is supermodular at all levels of output provided

σ ≥ 5
4
.

In this case, higher sales are associated with a lower demand elasticity and thus a higher

markup, implying that more productive firms do not exhibit such a large difference in

output. Nevertheless, the elasticity of demand never falls sufficiently low to allow sub-

modularity to emerge.40

Our second example is the case of quadratic preferences, which have been studied in

the context of heterogeneous firms by Melitz and Ottaviano (2008). Their model has been

extended to the choice between exports and FDI by Nefussi (2006), but only by solving

for the full general equilibrium. Using our approach it is easy to establish its properties

and to show that its predictions for firm selection into FDI are ambiguous. Writing the

inverse demand function as p = A − bx, we can express the elasticity of demand as a

function of output:41

ε(x) =
A− bx
bx

(25)

This is monotonically decreasing in x, so from Proposition 3 we know that for high values

of output the profit function may be submodular. However, we need to check that this will

happen for values of x that are admissible in equilibrium. To confirm this we specialize

Proposition 3 to the quadratic case:

40As shown in the Appendix, Section 9.6, ε = x−β
x σ and ρ = x

x−β
σ+1
σ . Though the demand function

is subconvex for β < 0, it is always strictly convex. It follows that ε + ρ − 3 = ε + σ+1
ε − 3, which can

be negative only for very low σ.
41As always in monopolistic competition, the demand parameters A and b are taken as given by

firms, but are endogenous in general equilibrium. For example, in the Melitz-Ottaviano framework,
A ≡ γα+ηNp̄

γ+ηN and b ≡ γ
L , where α, γ and η are demand parameters, L is market size, N is the mass of

firms, and p̄ is the aggregate price index.
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Lemma 3. With quadratic preferences, iceberg transport costs, and a constant marginal

production cost, the profit function π is submodular on the interval c ∈
[
0, A

2τ

]
and super-

modular on the interval c ∈
[
A
2τ
,∞
]
.

(The proof is in the Appendix.) Unlike the CES case, the profit function is therefore

submodular for low-cost exporters, although it continues to be supermodular for high-

cost ones. Hence, provided both exporting and FDI are profitable in the relevant range,

we can expect a threefold selection effect in this model: the highest-cost firms select into

exporting, but so do the lowest-cost ones, while intermediate-cost firms select into FDI.42

Figure 5 illustrates this configuration.43

PX 

PF 

P 

c  0 

Figure 5: Selection Effects with Quadratic Preferences and Iceberg Transport Costs

As already noted, Lemma 3 generalizes the result of Nefussi (2006), dispensing with

the assumptions of symmetric countries and a Pareto distribution of firm productivities

which he makes. Our result also extends easily to explain the pattern of firm selection

42This case holds provided a number of boundary conditions are met: (i) exporting must be profitable,
ΠX ≡ π(t, c) − fX > 0, which requires: c < 1

τ

(
A− 2

√
bfX

)
; (ii) FDI must be profitable, ΠF ≡

π(0, c) − fF > 0, which requires: c < A − 2
√
bfF ; and (iii) some selection must take place, i.e., the

quadratic equation in c defined by ΠX = ΠF must have two real roots, which requires: (τ − 1)A2 >
4(τ+1)b (fF − fX). Note that we allow for a non-zero fixed cost of exporting, unlike Melitz and Ottaviano
(2008). To solve their model in full, they have to assume that exports do not incur any fixed costs, in
which case the demand parameter A equals the marginal cost of the threshold firm in equilibrium. Our
approach can accommodate fixed costs of exporting, so this property does not necessarily hold here.

43To facilitate comparison with earlier figures, c is measured from right to left, starting at zero.
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into exporting, export-platform FDI, and multi-market FDI when there is more than one

foreign market. This is particularly convenient because, as Behrens, Mion, and Ottaviano

(2011) show, it does not seem to be possible to compare two different FDI equilibria

analytically when preferences are quadratic. The problem arises from the fact that all

variables in any given equilibrium can be written as functions of the cost cutoff (the

threshold level of marginal cost above which a firm finds it unprofitable to produce).44

However, comparing two different cutoffs is extremely difficult. Our approach makes it

unnecessary to do so: we assume that an equilibrium exists in which firms select into

different modes of serving the market, and can then invoke our result on supermodularity

to justify which mode is relatively more profitable for any pair of firms, and, by extension,

for all firms.

5.3 General Transport Costs

The result in the previous sub-section that the largest firms select into exporting for a

wide class of demand functions is not necessarily paradoxical. It may simply be viewed as

yet another example of large firms’ “supermodular superiority.”45 To the extent that the

most efficient firms are more productive in all the activities in which they engage, then it

is reasonable to assume that they also incur the lowest per unit transport costs. Perhaps

they are able to avail of economies of scale in transportation, or to negotiate better terms

with transport contractors. From that perspective, the assumption of iceberg transport

costs can be seen as a convenient reduced-form way of modeling this superiority of more

efficient firms. On the other hand, the suspicion remains that this result is an artifact

of iceberg transport costs. It is stretching credulity to assume that the most efficient

firms produce the cheapest icebergs, and, in particular, that highly efficient firms, with

production costs close to zero, also incur negligible transport costs irrespective of distance.

But this is what is implied by the iceberg assumption: to sell x units it is necessary to

produce and ship τx units, so the technology of transportation is identical to that of

44Though this is only possible if there is no fixed cost of exporting, an assumption which our approach
does not require, as discussed in the previous footnote.

45We are grateful to Adrian Wood for suggesting this line of reasoning.
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production: (p− τc)x = px− c(τx).

To see how alternative specifications of transport costs affect the outcome, consider a

general specification of the ex post profit function as the outcome of choosing output x to

maximize π̃ (x; τ, c), the firm’s operating profits as a function of the exogenous variables

τ and c and an arbitrary level of output:

π (t, c) ≡Max
x

π̃ (x; τ, c) (26)

We can now express the desired cross-partial derivative of π in terms of second derivatives

of π̃:46

πtc = π̃τc + π̃τx
dx

dc
= π̃τc − π̃τx (π̃xx)

−1 π̃xc (27)

This shows that supermodularity of the profit function in t and c depends on the balance

between two effects: a direct effect given by π̃τc, which is the effect of a difference in

production costs on the profit disadvantage of higher transport costs at a given level of

output; and an indirect effect given by the second term on the right-hand side. The

expression π̃xx is negative from the firm’s second-order condition, so the sign of the

indirect effect depends on the product π̃τxπ̃xc. This is presumptively positive; for example

it must be so in the case of constant production costs and iceberg transport costs, when

π̃τx = −c and π̃xc = −τ . This is the Matthew Effect from Section 3: it arises because a

higher-cost firm is less vulnerable to a rise in transport costs since it has presumptively

lower sales: both π̃τx and dx
dc

are negative, so their product is positive. By contrast,

the direct effect is less robust. In the case of iceberg transport costs it simply equals

π̃τc = −x and is clearly the source of the potential for submodularity identified in the

previous sub-section. It reflects the fact that a higher-cost firm loses more from a rise

in transport costs (π̃τ is more negative) since its cost of shipping one unit of exports is

(τ − 1) c.

It is immediate that the direct effect vanishes if transport costs and production costs

are separable in the profit function π̃. This corresponds to the case where exports do not

46To derive this we use the envelope theorem to set πt = π̃τ , and totally differentiate the first-order
condition π̃x = 0 to obtain dx

dc = − (π̃xx)
−1
π̃xc.
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melt in transit, but trade costs are levied instead on the value of sales:

π̃ (x; τ, c) = R (x, τ)− cx (28)

Here net sales revenue accruing to the firm, R, depends in a very general way on the

transport cost parameter. However, there is no direct interaction between transport

costs and production costs. As a result, there is no direct effect in the supermodularity

expression given by (27): total transport costs and hence π̃τ do not depend directly on

c, implying that the direct effect π̃tc is zero. By contrast, the indirect effect is positive

as before. Hence, profits are supermodular in t and c for all levels of output and all

specifications of demand when transport costs and production costs are separable in this

way.

Specific transport costs, already considered in Example in Section 3 above, provide

one example of (28). Another is where transport costs are ad valorem or proportional

to price, so net sales revenue becomes: R(x, τ) = xp(x)
τ

. Relative to the case of iceberg

transport costs, the firm’s first-order condition is unchanged, but profits are deflated by τ :

π̃ (x; τ, c) =
[
p(x)
τ
− c
]
x. Similar derivations to those already given shows that equation

(27) now becomes: πtc = −c(2p′ + xp′′)−1 > 0. Thus the full effect is unambiguously

positive for all demand systems, and so the profit function is always supermodular.

Figure 6 illustrates the case of quadratic preferences and proportional transport costs.

Clearly, the conventional sorting is now restored, and the model predicts that the most

efficient firms will always engage in FDI rather than exporting.

6 Selection Effects in Oligopoly

The previous section, like almost all the recent literature on trade with heterogeneous

firms, assumed that markets are monopolistically competitive. Rare exceptions to this

generalization include Porter (2012), who shows that the more efficient firm in a duopoly

is more likely to engage in FDI than exporting, and Leahy and Montagna (2009) who

show a similar result for outsourcing. It is desirable to establish whether similar results
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Figure 6: Selection Effects with Quadratic Preferences and Ad Valorem Transport Costs

hold more generally when firms are large enough to exert market power over their rivals,

so markets are oligopolistic. As already noted, this is of interest both as a check on the

robustness of the results and also because, to the extent that more successful firms are

likely to engage in a wider range of activities, the assumption that they remain atomistic

relative to their smaller competitors becomes harder to sustain.

If individual firms are no longer of measure zero then the arguments used in Section

5.1 no longer hold. If we wish to compare a firm’s profits under exporting and FDI, we

can no longer assume that the industry equilibrium is unaffected by its choice. However,

our earlier result still holds when we take behavior by rival firms as given. To illustrate

with a simple example, consider the case where there are two rival U.S. firms, labeled “1”

and “2”, both of which consider the choice between exporting to the EU and locating

a foreign affiliate there. The payoffs to firm 1, conditional on different choices of firm

2, are given in Table 1. Thus, the first entry in the first row, π(t, c,X) − fX gives the

operating profits which it will earn if it exports to the foreign market, conditional on the

rival firm 2 also exporting. We would expect this to be always less than the second entry,

π(t, c, F )−fX , which is conditional on firm 2 engaging in FDI: better market access by the

rival presumably reduces firm 1’s profits, ceteris paribus. However, what matters for firm
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1’s choice is the comparison between different entries in the same column, and it is clear

that, conditional on a given mode of market access by firm 2, firm 1’s choice will reflect

exactly the same considerations as in previous sections. Hence, provided supermodularity

holds in each column, and in the columns of the corresponding table for firm 2, our earlier

result goes through: when that is the case, more efficient firms will select into FDI and

less efficient ones into exporting.

Choice of Firm 2: Export FDI

Export: π(t, c,X)− fX π(t, c, F )− fX
FDI: π(0, c,X)− fF π(0, c, F )− fF

Table 1: Payoffs to Firm 1 Given Choices of Firm 2

While the central result derived earlier still holds, it has to be applied with care.

One issue is that boundary cases have to be considered in detail. Depending on the

configuration of the two firms’ costs, in the Nash equilibrium only one of them may serve

the market at all, or do so via FDI. There may be no equilibria in pure strategies, in

which case mixed strategy equilibria have to be considered. Finally, the necessity part of

Proposition 2 does not survive. This is because, even when we allow for all values of fixed

costs as in the proof of Proposition 2, supermodularity of the profit function conditional

on rivals’ responses is necessary for the conventional sorting only at those points which

are relevant to a particular Nash equilibrium. Thus it is conceivable that supermodularity

might not hold over a range of the profit function; but if that range was never relevant

for any value of fixed costs, then the conventional sorting would still apply.

7 Other Applications

So far, our focus has been on the choice between exports and FDI.47 However, as we

show in this section, the same approach applies to a wide range of other firm choices. We

47In Mrázová and Neary (2010) we show that similar considerations can be used to predict whether
firms choosing how to serve a number of foreign markets will select into export-platform or multi-plant
FDI.
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first look at the issues of both choice of location and choice of organizational form which

arise when firms can vertically disintegrate. We then turn to show how our approach

extends to the case where fixed costs differ between locations and between firms. Finally,

we consider how selection effects can also be inferred in models where fixed costs are

endogenous, determined by prior investments in variables such as technology, research

and development (R&D), or marketing. In all cases, results analogous to those derived

above apply: supermodularity between the firm’s own cost parameter and a parameter

representing the marginal cost of the mode of accessing a market is necessary and sufficient

for the standard selection effect, whereby more productive firms select into the access

mode with lower marginal cost.

7.1 Vertical Disintegration and Choice of Organizational Form

Our discussion of FDI in previous sections concentrated on the horizontal kind, where the

firm is considering how to serve a foreign market, and FDI involves effectively reproducing

abroad the production facilities which are already located in the home country. This

archetypal problem is also one in which differences between the two countries are not

central: in particular, we assumed for convenience that the marginal cost of production

was the same whether the firm engaged in exporting or in FDI. A different problem arises

in the case of a firm whose goal is to serve its home market, but which faces two distinct

choices about its organizational form. On the one hand, it has the option of producing

either at home or in a lower-cost location abroad. On the other hand, it can choose either

to produce in-house or to outsource: the choice of whether or not to vertically integrate

arises irrespective of where production is located. The classic treatment of this issue in a

model with heterogeneous firms is by Antràs and Helpman (2004), and we draw on their

work in what follows. However, since our specification is a reduced-form one, it is also

consistent with other ways of modeling the choice of organizational form.48

Ignoring fixed costs for the present, the choice of production location and organiza-

tional form will depend on the total operating profits that are realized in each case. We

48Kohler and Smolka (2011) present a similar approach to ours.
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write this as:

π (w,ψ, c) ≡Max
x

(1− ψ) [p(x)− wc]x (29)

Unlike in previous sections, we abstract from transport costs. In other respects the

model is more complicated. First, the wage which the firm must pay differs between

locations. If production takes place in the home country, which we will henceforth refer

to as “North”, the wage equals wN , while if it takes place in “South” it equals wS, with

wS < wN . Second, the firm owner or “headquarters” must use the services of the supplier

of an intermediate input, the quality of which, though observable to both parties, is not

contractible.49 This leads to a profit loss due to incomplete contracting between the firm

owner and the intermediate-input supplier, represented by the parameter ψ. Structural

microfoundations for this parameter are provided in Antràs and Helpman (2004).50 Here

we need only assume that it may differ both between location and organization form; in

particular, we assume that, irrespective of location, it is lower when the firm vertically

integrates than when it outsources and must contract with an outside supplier: ψVj < ψOj ,

j = N,S.51

Considering only variable costs, the firm owner has an incentive to locate production

in the South, and to produce in-house rather than outsource. Offsetting these differences

in variable costs, the fixed costs of locating in the South are higher then in the North,

irrespective of the choice of organizational form: f iS > f iN , i = O, V ; and the fixed

costs of vertical integration or in-house production are higher then those of outsourcing,

irrespective of the choice of location: fVj > fOj , j = N,S. This configuration of fixed and

variable costs ensures that there is a trade-off between different modes of organization,

49Either the costs of writing a comprehensive contract are infinite, or the outcomes cannot be observed
by a third-party arbitrator. In either case a complete contract cannot be enforced.

50They assume that the input supplier’s outside option is zero, so it must be paid a fixed amount to
persuade it to participate. The headquarters maximizes (1− ψ)π − T − f where T is the fixed amount
that it must pay the supplier. This is equivalent to maximizing (1− ψ)π − f .

51Our reduced-form specification covers both the case where internalization eliminates all costs of
incomplete contracting, as in Williamson (1975) and Grossman and Helpman (2002), and the case where
even vertical integration in the North incurs some cost, as in Grossman and Hart (1986), Hart and Moore
(1990), and Antràs and Helpman (2004). Our approach can easily be extended to allow the efficiency
cost of incomplete contracting to depend on either firm productivity or wages or both: just replace ψ in
(29) by Ψ (ψ, c, w), where ψ now represents a structural parameter that determines the cost of incomplete
contracting for given values of c and w.
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and opens up the possibility that some selection by firms will take place. However, just

as in previous sections, it does not predict the direction of selection effects, except in the

special case of CES preferences considered by Antràs and Helpman (2004).

Firm’s Decision Profits εx ≥ 0 εx < 0

HFDI with iceberg transport costs: π̃(x; t, c) = [p(x)− τc]x, τ ≥ 1 Yes No
HFDI with separable transport costs: π̃(x; τ, c) = R(x; τ)− cx, τ ≥ 1 Yes Yes
Produce in North or South: π̃(x;w, c) = [p(x)− wc]x Yes No
Produce in-house or outsource: π̃(x;ψ, c) = (1− ψ) [p(x)− wc]x Yes Yes
Invest in low- or high-tech technology: π̃(x; ξ, c) = [p(x)− ξc]x, ξ ≥ 1 Yes No

Table 2: Is the Profit Function Supermodular at all Levels of Output?

To see this, we consider in turn the two choices which the firm must make. Consider

first the simplest form of the choice of location, where we assume that there is no efficiency

cost of incomplete contracting, so ψ in (29) equals zero. This corresponds to the choice

between outsourcing to a Northern contractor and offshoring to a Southern contractor

in Antràs and Helpman (2004). Comparing the first and third row of Table 2, it is clear

that the profit function in this case has exactly the same form as the profit function

with iceberg transport costs in the horizontal FDI (HFDI) case considered in previous

sections, with the wage w playing the role of the iceberg cost parameter τ .52 Hence the

results of previous sections apply immediately. From Proposition 2, if selection takes

place, then more efficient firms will offshore and less efficient ones will outsource at home

if and only if the profit function is supermodular in w and c; while from Proposition

3 we can only be sure that the profit function is supermodular for all output levels if

the elasticity of demand is constant or increasing in sales. Thus, without the need for

any further analysis, we can conclude that more efficient firms select into outsourcing at

home when preferences are CES, but not necessarily otherwise. For example, the sorting

predicted by Antràs and Helpman (2004) need not hold under quadratic or Stone-Geary

preferences, even with all of their other assumptions retained: very efficient firms are

likely to choose to outsource at home rather than to offshore, since they are less affected

52We defer consideration of the fifth row of the table until Sub-Section 7.3.
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by the higher wage in the North. On the other hand, with CES preferences, their results

go through irrespective of how firm productivities are distributed or whether countries

are symmetric or not, provided only that an equilibrium exists.53

Consider next the simplest type of choice of organizational form, where we hold lo-

cation constant and hence the wage is given. From the fourth row of Table 2, selection

effects now depend on whether the profit function is supermodular in ψ and c. It turns

out that this is always the case. The direct effect of a difference in costs between firms

is straightforward: the higher-cost firm has lower profits, and as a result is less affected

by a higher profit leakage due to incomplete contracts. In fact, the direct effect is simply

π̃ψc = x. As for the indirect effect, it equals zero: although the higher-cost firm has

lower sales, it is neither more nor less vulnerable to a rise in the profit leakage parameter

ψ, since this is analogous to a uniform profits tax on all firms: π̃ψx = −π̃x = 0. Thus,

adapting equation (27) to this case, we have:

πψc = π̃ψc − π̃ψx (π̃xx)
−1 π̃xc = x > 0 (30)

This implies that the selection effect for outsourcing is very robust: more efficient firms

select into the lower-ψ organizational form (i.e., producing in-house rather than outsourc-

ing) for all preferences and productivity distributions.

Finally, selection effects into vertical FDI are ambiguous in general. Relative to pro-

ducing as an integrated firm at home, vertical FDI faces conflicting incentives. On the

one hand, it incurs a higher cost of incomplete contracting, ψVS > ψVN , since in the event of

the relationship breaking down, the headquarters cannot expect to retain as large a share

of profits when production is in the South. On the other hand, it incurs a lower wage

rate, wS < wN . Thus the profit function is unlikely to be unambiguously supermodular

or submodular in c and the cost vector [ψ w], and the predicted selection effects are

53Note a further generalization which our approach makes possible. Antràs and Helpman (2004)
assume that fixed costs are always incurred in the North, so Π = π − wNf . Suppose instead that fixed
costs are incurred in the country where production is located. In that case we can redefine variable profits
as π(w, c) = (p−wc)x−wf , w = wN , wS , and we can see that this makes no difference to whether π is
supermodular or not in w and c. Hence the assumption made by Antràs and Helpman is not needed for
the results. (The only complication is that, for the necessity part of the proof of Proposition 2, we need
to assume that there is some component of fixed costs which is independent of w.)
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likely to be highly sensitive to the specification of the model.

7.2 Heterogeneous Fixed Costs

Up to this point we have followed most of the literature on heterogeneous firms in assum-

ing that fixed costs are the same for all firms and in all foreign locations. This is clearly

unrealistic, and we need to examine whether our approach can be extended to the case

where fixed costs differ between firms or locations.

The previous analysis is unaffected if fixed costs vary with trade costs t only, so f

becomes f(t). For example, Kleinert and Toubal (2010) allow the fixed costs of a foreign

plant to increase with its distance from the parent country, and show that this change

in assumptions rationalizes a gravity equation for FDI, while Kleinert and Toubal (2006)

show that it also avoids the counter-factual prediction that falling trade costs lower FDI.

These are important insights, but the model’s predictions about selection effects are

unchanged. The reason is simple: although the fixed cost varies with trade costs, the

finite difference operator applied to the gain from FDI relative to exporting γ eliminates

the fixed cost since ∆cfF (t) = 0. While differences in fixed costs between locations clearly

affect locational choice, they do so in the same way for all firms.

Matters are more complicated if fixed costs vary with both production costs c and

trade costs t. Technically, our approach can still be applied, but some care is needed. We

now need to include any firm-specific fixed costs in the definition of operating profits.54

Thus, let π̃(t, c) denote operating profits, and define total operating profits π(t, c) as

operating profits net of firm-specific fixed costs:

π (t, c) ≡ π̃ (t, c)− [1− 1(t)] fF (c), 1(t) ≡

 1 t > 0

0 t = 0
(31)

The indicator function 1(t) equals one when t is positive (the exporting case), and equals

zero when t is zero (the FDI case). Thus the fixed cost of a foreign plant must be

54If the necessity part of Proposition 2 is to hold, we must also assume that there is a component of
fixed costs which is common to all firms, as before.
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subtracted to get total operating profits in the case of FDI, and this varies with the

firm’s productivity. Now, there is an additional reason why supermodularity may not

hold, depending on how fixed costs vary with productivity. Applying the finite difference

operator to the total operating profits function (31) gives:

∆cπ(t, c)−∆cπ(0, c) = [∆cπ̃(t, c)−∆cπ̃(0, c)] + ∆cfF (c) (32)

The first term in parentheses on the right-hand side is the same as in previous sections.

The second term is new, and shows that supermodularity is more likely to hold if fixed

costs are higher for less efficient firms.

Two examples illustrate how this effect can work in different directions. The first

is from Behrens, Mion, and Ottaviano (2011), who assume that a firm’s fixed costs

are proportional to its variable costs, fF (c) = cf , so more efficient firms incur lower

fixed costs of establishing a foreign plant. In this case, the final term in (32) becomes

∆cfF (c) = (c1 − c2)f , which is strictly positive for c1 > c2. Hence, supermodularity of π

and so the conventional sorting pattern are reinforced in this case.

A second example comes from Oldenski (2012), who develops a model of task-based

trade in services. Because they use knowledge-intensive tasks disproportionately, higher-

productivity firms in service sectors are more vulnerable to contract risk when located

abroad. This implies that their fixed costs of FDI are decreasing in c: f ′F < 0. As a result,

the final term in (32) becomes ∆cfF (c) = fF (c1) − fF (c2), which is strictly negative for

c1 > c2, so π may be submodular. In this case the conventional sorting may be reversed,

as higher-productivity firms may find it more profitable to locate at home. Oldenski

presents evidence for this pattern in a number of U.S. service sectors.

7.3 Endogenous Fixed Costs

The previous sub-section considered fixed costs that differ exogenously between firms. By

contrast, there are many ways in which a firm can influence the level of its fixed costs as

well as its variable costs in each market: R&D, marketing, and changing its product line
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are just three examples. (For simplicity we focus on the case of R&D in what follows.)

It is desirable to explore whether our approach extends to these cases, where firms faces

more complex trade-offs. We can distinguish between two kinds of decisions. First,

conditional on serving a market, does the firm engage in R&D? Second, conditional on

engaging in R&D, how much does it invest? In each case we want to understand how

differences in productivity between firms affect their choices.

Consider first the participation decision. Following Bustos (2011), it is natural to

model this as a choice between two technologies: “high” has higher fixed cost but lower

variable cost than “low”. Extending the notation used in previous sections, operating

profits can be written as follows:

π (ξ, c) ≡Max
x

[{p(x)− ξc}x] , ξ ≥ 1 (33)

When the “low” technology is adopted, ξ is strictly greater than one, marginal production

cost is ξc > c, and fixed cost equals fl. By contrast, ξ equals one when the “high”

technology is adopted, reducing marginal cost to c but incurring a higher fixed cost of fh.

Writing the variable profit function in this way shows that it is formally identical to the

case of exports versus FDI considered in Section 4. In particular, the gain from adopting

the “high” technology can be written as follows:

γ(ξ, c) = π (1, c)− π(ξ, c) (34)

As in Section 4, the fixed costs of each technology are the same for all firms, so they do

not affect selection at the margin. All that matters for selection is whether profits are

supermodular:55

Corollary 2. If and only if the variable profit function π(ξ, c) is supermodular in ξ and

c, higher-cost firms will select into the “low” technology, while lower-cost firms will select

into the “high” one, for all f ∈ (0, f̄).

The implications of this are summarized in the final row of Table 2. In particular, very

55Here f ≡ fh − fl, and f̄ is defined as in Proposition 2.
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efficient firms that already have a low variable cost of production have less incentive to

invest in reducing it, and may not do so if their sales are high and they face a sub-convex

demand function.

Consider next the case where the firm has decided to invest in R&D or marketing,

assumed to be specific to a particular foreign market, but faces the choice of how much

to invest and whether to locate its investment at home or in the target market. The

earlier derivations go through with relatively little modification, provided we redefine the

maximized profit function as the outcome of the firm’s choice of both its sales and its level

of investment. To fix ideas, consider the case of investment in cost-reducing R&D. (Other

forms of investment, such as in marketing or product innovation, can be considered with

relatively minor modifications.) Let k denote the level of investment which the firm

undertakes. This incurs an endogenous fixed cost F (k) but reduces average production

costs, now denoted C (c, k). Here c is, just as in earlier sections, a parameter representing

the firm’s exogenous level of costs (though it can no longer be interpreted as the inverse of

its productivity), while k is chosen endogenously. C (c, k) is increasing in c and decreasing

in k, while fixed costs F (k) are increasing in k. The maximum profits which the firm can

earn in a market, conditional on t and c, are:56

π (t, c) ≡Max
x,k

π̃ (x, k; τ, c) , π̃ (x, k; τ, c) = [p (x)− C (c, k)− t]x− F (k) (35)

As we will see, π is supermodular in t and c for many commonly used specifications of

the cost functions F (k) and C (c, k), so all our results apply in those cases too. However,

there are also economically interesting examples where supermodularity is violated, and

so the selection pattern of firms into different modes of serving foreign markets given by

Proposition 2 is reversed.

To check whether the profit function (35) exhibits supermodularity in t and c, we

proceed as in Example 1. The envelope theorem still applies, so the derivative of max-

56To highlight the new features which arise from investment in R&D, we focus in the text on the
case of ad valorem transport costs only. If instead we assume iceberg transport costs, then the ex ante
variable profit function becomes: π̃ (x, k; τ, c) = {p (x)− τC (c, k)}x− F (k). Supermodularity of the ex
post profit function now depends on πtc = π̃τc+ π̃τν π̃

−1
νν π̃νc, where ν = [x k]

′
, so submodularity can arise

if either the demand function or the investment cost function exhibits “too little” convexity.
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imum profits with respect to the tariff equals minus the level of output: πt = −x (t, c).

Hence it follows as before that: πtc = −xc. So, to check for supermodularity, we need

only establish the sign of the derivative of output with respect to the cost parameter c.

We show in the Appendix, Section 9.8, that it equals:

πtc = −xc = D
+

−1
[
Cc (xCkk + F ′′)︸ ︷︷ ︸

+

− xCk
−
Ckc

]
(36)

The second-order conditions imply that the determinant D and the first term inside

the brackets are positive, as indicated, which work in favor of supermodularity of π.

The second could work either way. In particular, the term could be negative, and so

supermodularity might not prevail, if Ckc is negative, so a lower-productivity firm benefits

more from investment, in the sense that its costs fall by more; or, equivalently, if Cck is

negative, so investment lowers the cost disadvantage of a lower-productivity firm. Ruling

out this case gives a sufficient condition for supermodularity of π:

Proposition 5. π (t, c) is supermodular in {t, c} if C (c, k) is supermodular in {c, k}.

Proposition 5 applies to one of the most widely-used models of R&D:

Example 6. [Linear-Quadratic Costs] d’Aspremont and Jacquemin (1988) assume

that the marginal cost function is linear while the investment cost function is quadratic

in k:57

C (c, k) = c0 − c−1
1 k F (k) =

1

2
γk2 (37)

Firms may differ in either the c0 or c1 parameters, but it is clear that in either case

output must be decreasing in c: Cck is zero if firms differ in c0 and positive if they differ

in c1.58 Hence, the right-hand side of (36) is positive and supermodularity is assured for

this specification of R&D costs.

What if the cost function is not supermodular in {c, k}? We can get a necessary and

57This specification has been applied to the study of FDI by Petit and Sanna-Randaccio (2000). Both
they and d’Aspremont and Jacquemin also allowed for spillovers between firms.

58When c = c1, Cck = c−2 > 0.
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sufficient condition for supermodularity of π with the following specification:

C (c, k) = c0 + cφ(k), φ′ < 0, and F ′′ = 0 (38)

This cost function is always submodular: Cck = cφ′ < 0; despite which, we can state the

following:

Proposition 6. Given (38), π (t, c) is supermodular in {t, c} if and only if φ (k) is log-

convex in k.

(The proof is in the Appendix, Section 9.9.) Just as, in previous sections, supermodularity

of the profit function was less likely the less convex the demand function, so here it is less

likely the less convex the marginal cost function. Two examples illustrate the applicability

of Proposition 6:

Example 7. [Exponential Costs of R&D] An implausible feature of the d’Aspremont-

Jacquemin specification is that the returns to investing in R&D are constant.59 A more

attractive and only slightly less tractable alternative due to Spence (1984) is also widely

used:60

C (c, k) = c0 + c1e
−θk F (k) = k (39)

0

1

2

3

0 1 2 3 4 5

c

k

c1 = 1
c1 = 2

(a) Spence Model: a = 1

0
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2

3

0 0.5 1 1.5 2

c

k

c1 = 1
c1 = 2

(b) Threshold Effects in R&D: a = 2

Figure 7: Marginal Cost of Production as a Function of Investment

59The linearity of C in k also suggests that the cost of production can become negative, though
second-order conditions ensure that this never happens in equilibrium.

60These specifications of C (c, k) and F (k) come from Section 5 and from equation (2.3) on page 104
of Spence (1984), respectively.
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In this case investment lowers marginal production costs (Ck = −θc1e
−θk < 0) but at

a diminishing rate (Ckk = θ2c1e
−θk > 0), as illustrated in Figure 7(a) (drawn for c0 =

θ = 1); while the direct cost of investment increases linearly in k (F ′′ = 0). Once again,

firms may differ in either the c0 or c1 parameters, and supermodularity is assured if they

differ in c0. However, matters are different if firms differ in c1 (so we set c1 = c from now

on). Now, a lower-productivity firm benefits more from investment: Cck = −θe−θk < 0,

and this effect is sufficiently strong that it exactly offsets the diminishing returns to

investment.61 Expressed in terms of Proposition 6, equation (39) is a special case of (38),

with φ(k) = e−θk. Hence d log φ
dk

= −θ, so φ is log-linear in k, implying that equation (36)

is zero and so π (t, c) is modular, i.e., both supermodular and submodular: the expression

in Definition 1 holds with equality. It follows that, other things equal, two firms with

different cost parameters produce the same output. The implications for how two firms

of different productivities will assess the relative advantages of exporting and FDI are

immediate. For any given mode of accessing a market, both firms will produce the same

output, the less productive firm compensating for its higher ex ante cost by investing

more, and so they earn the same operating profits.62 Hence both firms face exactly the

same incentive to export or engage in FDI. We cannot say in general which mode of

market access will be adopted, but we can be sure that both firms will always make the

same choice. More generally, for any number of firms that differ in c1, all firms will adopt

the same mode of serving the foreign market, so no selection effects will be observed.

Example 8. [R&D with Threshold Effects] The fact that the specification due to

Spence is just on the threshold between super- and submodularity has implausible impli-

cations as we have seen. It also implies from Proposition 6 that a less convex marginal

cost function would yield submodularity. Such a specification is found by generalizing

61Formally, the semi-elasticities of both Cc and Ck with respect to k, Cck/Cc and Ckk/Ck, are equal
to −θ.

62From (70), the effect of a difference in the cost parameter c on the level of investment is given by:
Dkc = (2p′ + xp′′)xCkc + CcCk. In general the first term on the right-hand side is ambiguous in sign
while the second is negative. In the Spence case, the first term is positive and dominates the second,
and the expression as a whole simplifies to: kc = θc.
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that of Spence as follows:

C (c, k) = c0 + ce−θk
a

, a > 0 F (k) = k (40)

In this case φ(k) = e−θk
a

and so d2 log φ
dk2

= −θa(a − 1)ka−2, which is negative for a > 1,

so profits are submodular in {c, t}. This case is illustrated in Figure 7(b) (drawn for

c0 = θ = 1 and a = 2).63 For values of a greater than the Spence case of a = 1, the

marginal cost function is initially concave and then becomes convex.64 This justifies

calling this specification one of threshold effects in R&D : low levels of investment have a

relatively small effect on production costs whereas higher levels yield a larger payoff. In

the FDI context this implies that firms will select into different modes of market access

in exactly the opposite way to Proposition 2. Since profits are submodular in t and c,

less efficient firms have a greater incentive to establish a foreign affiliate and carry out

their R&D investment locally. By contrast, more efficient firms gain relatively little from

further investment in R&D, and find it more profitable to concentrate production in their

home plant and serve foreign markets by exporting. Hence the conventional sorting is

reversed.

8 Conclusion

This paper has provided a novel approach to one of the central questions in recent work

on international trade and other applied theory fields: how do different firms select into

different modes of serving a market? As well as presenting many new results, we give a

unifying perspective on a large and growing literature, identify the critical assumptions

which drive existing results, and develop an approach which can easily be applied to new

ones.

63The case of a = 2 is the Gaussian distribution.
64From (40), Ckk = −θacka−2e−θk

a

(a− 1− θaka). For 0 < a ≤ 1 this is always positive. However,
for a > 1 it is negative for low k and then becomes positive. The point of inflection occurs where the
expression in brackets is zero, which is independent of c and so (for given a and θ) is the same for all firms.
In the case illustrated, with θ = 1 and a = 2, this occurs at k = 1/

√
2. No firm will produce positive

output below the inflection point, since Ckk must be positive from the second-order conditions. Note
that, while the function is concave at some points and convex at others, it is log-concave everywhere.
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Our first main contribution is to emphasize an important but hitherto unnoticed

distinction between what we call first-order and second-order selection effects. First-

order selection effects exhibit a “To be or not to be” feature: firms face a zero-one choice

between engaging in some activity (such as serving a market) and not doing so. By

contrast, second-order selection effects exhibit a “Scylla versus Charybdis” feature: firms

face a choice between two alternative ways of serving a market, each incurring different

costs, but both profitable in themselves. The distinction matters because the two types

of effects have very different determinants, and the first kind has much more robust

predictions than the second.

We show that first-order selection effects between firms with different productivities

depend only on the first derivative of the ex post profit function with respect to marginal

cost. This derivative is presumptively negative in all models (though proving this is non-

trivial in some cases), which immediately implies that the standard selection effect holds:

the most efficient firms will select into serving the market, the least efficient ones will not.

This result applies irrespective of the form of the demand function faced by firms, and

requires no assumptions about the distribution of firm productivities. Thus it generalizes

substantially a wide range of results: these include the original result of Melitz (2003),

that more efficient firms will choose to produce for the home market and to export, less

efficient ones will not; as well as the prediction that more efficient firms will engage in

marketing, as in Arkolakis (2010b); and that more efficient firms will engage in worker

screening, paying higher wages as a result of ex post bargaining with workers hired, as in

Helpman, Itskhoki, and Redding (2010).

By contrast, our second main contribution is to show that second-order selection

effects are much less robust, and depend on the second cross-derivative of the profit

function with respect to the firm’s marginal cost of production and the marginal cost

of the higher-cost activity. If and only if profits are supermodular in these two cost

variables, firms exhibit the conventional sorting pattern: more efficient firms select into

the lower-variable-cost mode of serving the market, whereas less efficient firms select into

the higher-variable-cost mode. We first proved this result for a special case where a single
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monopoly firm chooses between exporting to a foreign market and engaging in foreign

direct investment there. We then showed that our approach generalizes to other market

structures, both oligopolistic and monopolistically competitive; and to a wide range of

other firm choices, including between outsourcing and producing in-house, and between

producing with more or less skill- or R&D-intensive techniques.

The key criterion of supermodularity that we highlight is extremely parsimonious:

all that needs to be checked is whether the function giving the maximum profits a firm

can earn in a market is supermodular in the firm’s own cost parameter, and in a second

parameter measuring the marginal cost of accessing the market. Our criterion is simple

both in what it includes and in what it omits: no special assumptions are required

about the structure of demand, about the distribution of firm productivities, nor about

whether countries are symmetric. We are able to dispense with such assumptions because

our approach sidesteps the key issue of existence of equilibrium. As Maskin and Roberts

(2008) show in a different context, conditional on an equilibrium existing, its properties

can often be established relatively easily.

Since the impact effect of both production costs and market access costs is to lower

profits, it is not so surprising that there are many cases where their cross effect is positive,

so that supermodularity holds. Nevertheless, the restriction of supermodularity is a non-

trivial one, and we have shown that there are many plausible examples where it does not

hold. In an important subset of cases, where production and market-access costs affect

profits multiplicatively, supermodularity and hence the conventional sorting pattern is

only assured if the demand function is “superconvex,” meaning that it is more convex than

a CES demand function with the same elasticity. By contrast, most widely-used demand

systems, except the CES, exhibit “subconvexity.” Thus, for example, if preferences are

quadratic or Stone-Geary, and if selection is observed, it is likely that the most efficient

firms will select into exporting rather than FDI. Surprisingly, this multiplicative-costs

class includes the canonical case of horizontal FDI where exports incur iceberg transport

costs. In this case, the source of the anomalous result can be traced to the assumption of

iceberg transport costs: when higher productive efficiency translates into lower transport
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costs, the most efficient firms suffer a lower transport penalty and so will select into

exporting rather than FDI. However, in the case of choosing between outsourcing at home

versus offshoring to a lower-wage location, our result continues to hold, even in the absence

of transport costs. It implies that for most non-CES preferences more productive firms

will select into outsourcing at home, where their greater efficiency offsets the higher wage

penalty they incur. We have also identified other plausible cases where supermodularity

may fail, such as fixed costs which are higher for more efficient firms, and market-specific

investment costs which are subject to threshold effects.

Our results cast the role of fixed costs as determinants of selection effects in a new

light. For example, in the choice between FDI and exports, a fixed cost of FDI is essential

for a proximity-concentration trade-off to exist: for a firm to face the luxury of choosing

between the two modes of market access, it must be sufficiently efficient to afford the

additional fixed cost of FDI in the first place. However, conditional on facing the choice,

fixed costs do not determine which firms will choose which mode. What matters for this

is the difference-in-differences effect on profits of the marginal costs of production and

trade. When supermodularity prevails, a more efficient firm has relatively higher profits

in the low-tariff case, but when submodularity holds, the opposite is true. In this paper

we first highlighted the implications of this insight for selection into FDI, and then noted

that the general point applies to other cases, including selection by more efficient firms

into offshoring as in Antràs and Helpman (2004), or into more skill-intensive techniques

as in Bustos (2011). There are likely to be many other models which can be illuminated

by our approach, and other contexts where the assumption of supermodularity helps to

bound comparative statics responses.

9 Appendix

9.1 Derivations for Section 2

Example 1: The first-order condition sets marginal revenue equal to marginal cost: p +

xp′ = τc. Totally differentiating gives: (2p′ + xp′′) dx = τdc. Reexpressing in terms
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of proportional changes, using the first-order condition to eliminate c, and using the

definitions of ε and ρ, gives x̂ in equation (2). A similar elimination of τc yields the

expression for π̂.

Example 2: The first-order condition for sales per consumer is unchanged from Ex-

ample 1. The first-order condition for the number of consumers equates the net revenue

from selling to an additional consumer to the marginal cost of targeting that consumer:

(p− τc)x = fn. Totally differentiating gives: −τxdc = fnndn + fncdc. Collecting terms

gives equation (5).

Example 3: We first review the implications of the Stole-Zwiebel bargaining rule

with a general demand function. Define revenue as a function of sales r(x); and, via

the production function, revenue as a function of hires, the screening threshold, and the

firm’s cost R(h, a; c):

r(x) ≡ xp(x), R(h, a; c) ≡ r [x(h, a; c)] (41)

Next, define S(h, a; c) as the surplus retained by the firm after wages are paid out of sales

revenue:

S(h, a; c) ≡ R(h, a; c)− w(h, a; c)h (42)

This is less than operating profits, π + f , because of hiring and screening costs, which

are sunk before the bargaining stage. With equal bargaining weights, the wage of the

marginal worker must equal the additional surplus to the firm from hiring her: w(h, a; c) =

Sh(h, a; c). Substituting from (42) yields a differential equation in w(h, a; c):

2w(h, a; c) = Rh(h, a; c)− wh(h, a; c)h (43)

The solution to this is the wage schedule as a function of the number of workers hired:

w(h, a; c) =
1

h2

∫ h

0

Rξ(ξ, a; c)ξdξ (44)

In the CES case, R is a power function of h and so (44) can be integrated directly. With
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general demands, integrate by parts and rearrange to obtain Proposition 3 in Stole and

Zwiebel (1996):

S (h, a; c) =
1

h

∫ h

0

R (ξ, a; c) dξ (45)

Thus the surplus retained by the firm when h workers are hired is an unweighted mean

of the revenues generated by all workforces ξ ∈ [0, h].

With general demands, equation (45) cannot be expressed in closed form. However,

all we need are the partial derivatives of the surplus function:

Sh = −S
h

+ 1
h
R (h, a; c) = w

Sa = 1
h

∫ h
0
Ra (ξ, a; c) dξ = 1

h

∫ h
0
r′ [x (ξ, a; c)]xa (ξ, a; c) dξ = 1

ha

∫ h
0
r′ [x (ξ, a; c)]x (ξ, a; c) dξ = wh

aγ

Sc = 1
h

∫ h
0
Rc (ξ, a; c) dξ = 1

h

∫ h
0
r′ [x (ξ, a; c)]xc (ξ, a; c) dξ = − 1

hc

∫ h
0
r′ [x (ξ, a; c)]x (ξ, a; c) dξ = −wh

cγ

(46)

To derive the second and third of these, we use the derivatives of the production function,

xa = 1
a
x, xc = −1

c
x, and xh = γ

h
x, as well as equation (44):

∫ h

0

r′ [x (ξ, a; c)]x (ξ, a; c) dξ =
1

γ

∫ h

0

r′ [x (ξ, a; c)]xξ (ξ, a; c) ξdξ =
1

γ

∫ h

0

Rξ(ξ, a; c)ξdξ =
wh2

γ

(47)

Summarizing, the total derivative of the surplus function is:

Ŝ =
ω

1− ω

[
ĥ+

1

γ
(â− ĉ)

]
(48)

where ω ≡ wh/r is the share of wages in sales revenue.

We can now restate the firm’s problem from (6) as an unconstrained maximization

problem:

Max
n,a

[π̃ (n, a; c)] , π̃ (n, a; c) = S [h (n, a) , a; c]− bn− c0

δ
aδ− f (c) , h (n, a) = n

(
a

a

)−k
(49)

Applying the envelope theorem yields equation (7) in the text, with πc = π̃c = Sc − fc =

−wh
cγ
−fc. To derive the other properties of the model, we begin by differentiating (49) to

obtain the first-order conditions for the number of workers screened n and the threshold
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ability level a:

π̃n (n, a; c) = Shhn − b = 0 ⇒ wh = bn

π̃a (n, a; c) = Shha + Sa − c0a
δ−1 = 0 ⇒ 1−γk

γ
wh = c0a

δ
(50)

Thus, as in Helpman, Itskhoki, and Redding (2010), wage costs wh equal hiring costs

bn and a multiple γδ
1−γk of screening costs c0aδ

δ
. Totally differentiating the first-order

conditions gives:

ŵ + ĥ = n̂ and δâ = ŵ + ĥ (51)

The next equation comes from totally differentiating the bargaining rule r = wh +

S (h, a; c):

r̂ = ω
(
ŵ + ĥ

)
+ (1− ω) Ŝ = ω

[
ŵ + 2ĥ+

1

γ
(â− ĉ)

]
(52)

making use of (48). The remaining equations comes from totally differentiating the

revenue function and the production and hiring constraints:

r̂ = θx̂, x̂ = γĥ+ â− ĉ, and ĥ = n̂− kâ (53)

Here the sales-elasticity of revenue, θ, is a simple transformation of the elasticity of

demand: θ = ε−1
ε

.

All that remains is to solve the six equations in (51), (52), and (53) for changes in

the six variables, r, x, h, a, w and n, as functions of changes in c. We first combine the

two first-order conditions from (51) with the total derivative of the hiring constraint from

(53) to solve for changes in h, a and n as functions of ŵ:

ĥ =
δ − k
k

ŵ, â =
1

k
ŵ, and n̂ =

δ

k
ŵ (54)

Substituting for ĥ and â into the total derivative of the production function in (53) gives:

x̂ =
1 + γ(δ − k)

k
ŵ − ĉ (55)
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Substituting from this and the expression for ĥ from (54) into the total derivative of the

bargaining rule (52) yields:

r̂ = ω

[
ŵ + ĥ+

1

γ
x̂

]
= ω

[
δ

k
ŵ +

1

γ
x̂

]
(56)

Equating this to the total derivative of the revenue function from (53) shows that sales

and wages are monotonically related:

x̂ =
γ

γθ − ω
ωδ

k
ŵ (57)

Using this we can eliminate ŵ from (55) to get the expression for x̂ in equation (8). The

other expressions in that equation follow immediately.

Note how these equations simplify in the case of CES preferences considered by Help-

man, Itskhoki, and Redding (2010). Now, the demand elasticity, ε, is a constant, so the

sales-elasticity of revenue, θ, is also a constant; the bargaining rule becomes: wh = γθ
γθ+1

r,

which when totally differentiated implies r̂ = ŵ + ĥ; and the fixed wage share ω = γθ
γθ+1

implies that γθ−ω
γω

= θ = 1
γ

ω
1−ω . As a result, the inverse elasticity of sales with respect

to costs, Γ, simplifies to: ΓCES = 1 − θ 1+γ(δ−k)
δ

. This parameter also equals the ratio of

operating profits to firm surplus: π+f
S

∣∣
CES

= ΓCES. The latter property does not extend

to the general case: π+f
S

= Γ +
(
θ − 1

γ
ω

1−ω

)
1+γ(δ−k)

δω
.

9.2 Proof of Proposition 2

Sufficiency, SM ⇒ CS, is trivial. To prove necessity, SM ⇐ CS, we proceed by contra-

positive and prove ¬SM ⇒ ¬CS: if π is not supermodular then there exists a fixed cost

f ∈ (0, f̄) for which there is unconventional sorting.

Let t > 0. If π is not supermodular in t and c, then there exist some c1 and c2 such

that c1 > c2 and π(t, c1)− π(t, c2) < π(0, c1)− π(0, c2). Rearranging terms gives:

π(0, c1)− π(t, c1) > π(0, c2)− π(t, c2) (58)
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Let α1 ≡ π(0, c1) − π(t, c1) and α2 ≡ π(0, c2) − π(t, c2). Now choose f such that f =

1
2

[α1 + α2]. As operating profits are non-increasing in t, α1 > α2 ≥ 0, hence f > 0. Also,

max
c

[π(0, c)− π(t, c)] ≥ α1 > α2, hence f < f̄ . Thus f ∈ (0, f̄).

Now notice that, for this f , we have γ(t, c1, f) = π(0, c1) − π(t, c1) − f > 0 and

γ(t, c2, f) = π(0, c2)− π(t, c2)− f < 0. Since γ measures the incentive to engage in FDI

relative to exporting, the higher-cost firm will serve the foreign market via FDI while the

lower-cost firm will serve it by exports. Thus, if π is not supermodular in t and c we can

always find a fixed cost in (0, f̄) such that the conventional sorting is reversed. It follows

that supermodularity is necessary for the conventional sorting.

9.3 Superconvexity

Our formal definition of superconvexity is as follows:

Definition 2. p(x) is superconvex if and only if log p is convex in log x.

This can be compared with log-convexity:

Definition 3. The inverse demand function p(x) is log-convex if and only if log p is

convex in x. Analogously, the direct demand function x(p) is log-convex if and only if

log x is convex in p.

Some implications of superconvexity are easily established:

Lemma 4. Superconvexity of the inverse demand function is equivalent to superconvexity

of the direct demand function, and implies log-convexity of the inverse demand function,

which implies log-convexity of the direct demand function, which implies convexity of both

demand functions; but the converses do not hold.

Proof. Direct calculation yields the entries in Table 3, expressed in terms of ε ≡ − p
xp′

and ρ ≡ −xp′′

p′
. The Lemma follows by inspection. Note that the log-convexity ranking of

the direct and inverse demand functions requires that ε > 1, whereas the others require

only that ε > 0.

52



Direct Demand Inverse Demand

Convexity d2x
dp2

= x
p2
ερ ≥ 0 d2p

dx2
= p

x2
ρ
ε
≥ 0

Log-convexity d2 log x
dp2

= ε2

p2
(ρ− 1) ≥ 0 d2 log p

dx2
= 1

x2ε

(
ρ− 1

ε

)
≥ 0

Superconvexity d2 log x
d(log p)2

= ε2
(
ρ− ε+1

ε

)
≥ 0 d2 log p

d(log x)2
= 1

ε

(
ρ− ε+1

ε

)
≥ 0

Table 3: Criteria for Convexity of Direct and Inverse Demands

Lemma 5. A demand function is superconvex if and only if it is more convex than a

CES demand function with the same elasticity.

Proof. Differentiating the CES inverse demand function p = αx−1/σ gives: p′ =−α 1
σ
x−(1+σ)/σ;

and p′′ = ασ+1
σ2 x

−(1+2σ)/σ. Hence we have εCES = σ and ρCES = σ+1
σ

. From the final row

of Table 3, it follows that an arbitrary demand function which has the same elasticity as

a CES demand function at their point of intersection is superconvex at that point if and

only if its convexity exhibits ρ > ε+1
ε

= σ+1
σ

= ρCES, which proves the result.

Lemma 6. A demand function is superconvex if and only if its elasticity is increasing in

sales.

Proof. Differentiating the expression for the elasticity of demand, ε (x) = − p(x)
xp′(x)

, yields:

εx = −1

x
+
p (p′ + xp′′)

(xp′)2 = −1

x
(1 + ε− ερ) (59)

Comparison with the final row of Table 3 gives the required result.

Super-convexity can also be expressed in terms of the direct demand function x = x(p),

with elasticity e(p) ≡ −px′

x
= ε [x (p)]:

Lemma 7. A demand function is superconvex if and only if its elasticity is decreasing in

price.

Proof. Differentiating the identity equating the two expressions for the elasticity of de-

mand, e(p) = ε [x (p)], yields ep = εxp
′. Hence the result follows from Lemma 6.

Our final lemma relates superconvexity to the second-order condition:
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Lemma 8. Provided marginal cost is strictly positive, a demand function is superconvex

if and only if the elasticity of marginal revenue is less than the inverse of the elasticity

of demand in absolute value.

Proof. Define revenue r as r(x) ≡ xp(x). Clearly, rx = xp′+p = xp′(1−ε) = τc, which is

strictly positive by assumption; and rxx = 2p′ + xp′′ = p′(2− ρ), which must be negative

from the second-order condition. Hence the elasticity of marginal revenue, or minus the

convexity of revenue, equals:

ρr ≡ −xrxx
rx

=
2− ρ
ε− 1

(60)

Recalling the final row of Table 3, it follows that, when c > 0, so ε > 1, superconvexity

of the demand function is equivalent to ρr < 1
ε
:

ρ >
ε+ 1

ε
⇔ 2− ρ < ε− 1

ε
⇔ ρr <

1

ε
(61)

When marginal cost is constant and strictly positive, the second-order condition requires

that the profit function be strictly concave: 2p′ + xp′′ < 0 ⇒ ρ < 2 ⇒ ρr > 0. Hence

Lemma 8 formalizes the notion that superconvex demands come “closer” than subconvex

demands to violating the second-order condition.

9.4 Proof of Proposition 3

Differentiating the profit function π (t, c) = Max
x

[p (x)− τc]x gives: πt = −cx; and

πtc = −x− cdx
dc

= −x− τc

2p′ + xp′′
(62)

We want to express the right-hand side in terms of ε and εx. First, solve (59) for p′+xp′′

in terms of εx, and add p′ to it. Next, use the definition of ε to eliminate p′, p′ = − p
xε

,

which gives the second-order condition in terms of ε and εx:

2p′ + xp′′ = − p

xε2
(ε− 1− xεx) (63)
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This confirms that the second-order condition 2p′+xp′′ < 0 is equivalent to ε−1−xεx > 0.

The last preliminary step is to use the first-order condition p − τc + xp′ = 0 to express

τc in terms of p and ε: τc = p + xp′ = p − p
ε

= ε−1
ε
p. (This is very familiar in the CES

case.) Finally, substitute these results into (62):

πtc = −x+
ε− 1

ε− 1− xεx
εx (64)

Collecting terms gives the desired expression in (23).

9.5 Proof of Proposition 4

The proof follows immediately by substituting for εx from (59) into the expression for

πtc in (23), and noting that, as in (23), the denominator must be positive from the

second-order condition.

The proof of Corollary 1 follows immediately from equation (60) in Lemma 8:

ρr ≡ −xrxx
rx

=
2− ρ
ε− 1

= 1− ε+ ρ− 3

ε− 1
(65)

9.6 Proof of Lemma 2

For the demand function p = (x − β)−1/σ, we have p′ = − 1
σ
(x − β)−

σ+1
σ and p′′ =

σ+1
σ2 (x−β)−

2σ+1
σ . Hence ε = x−β

x
σ and ρ = x

x−β
σ+1
σ

. It follows immediately that εx = β
x2
σ,

and so the demand function is strictly subconvex (εx < 0) if and only if β is negative. To

establish for which values of σ the profit function is supermodular, rewrite the elasticity

as ε = σ+1
ρ

. Hence we seek to minimize σ = ερ − 1 by choice of ε and ρ, subject to the

supermodularity constraint from Proposition 4, ε + ρ ≥ 3. Solving gives the boundary

values ε∗ = ρ∗ = 1.5, which imply that the threshold value of σ is σ∗ =
(

3
2

)2−1 = 1.25.

9.7 Proof of Lemma 3

Maximizing operating profits, π = (p−τc)x, yields the first-order condition, A−2bx = τc,

which can be solved for optimal output: x = 1
2b

(A − τc). Substituting back into the
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expression for profits gives the maximized operating profit function:

π(t, c) = bx2 =
1

4b
(A− τc)2 (66)

Hence the second cross-derivative is:

πtc = −x+
τc

2b
= − 1

2b
(A− 2τc) (67)

This is clearly positive for c ≥ A
2τ

and negative for c ≤ A
2τ

, which proves the Lemma.

9.8 Proof of Proposition 5

The first-order conditions for output x and investment k are:

p− C − t+ xp′ = 0 (68)

−xCk − F ′ = 0 (69)

Totally differentiate these and write the results as a matrix equation:

 2p′ + xp′′ −Ck

−Ck −(xCkk + F ′′)


 dx

dk

 =

 Ccdc+ dt

xCkcdc

 (70)

From the firm’s second-order conditions, the diagonal terms in the left-hand coeffi-

cient matrix must be negative, and the determinant of the matrix, which we denote

by D = − (2p′ + xp′′) (xCkk + F ′′) − C2
k , must be positive. Solving for the effect of the

cost parameter on output and substituting into πtc gives equation (36).

9.9 Proof of Proposition 6

Specializing equation (36) to the investment cost functions in (38) gives:

πtc = D−1cx
[
φφ′′ − (φ′)

2
]

(71)
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Since d log φ
dk

= φ′

φ
and so d2 log φ

dk2
= φφ′′−(φ′)2

φ2
, a positive value for (71) is equivalent to φ

being log-convex.
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Acemoglu, D., P. Antràs, and E. Helpman (2007): “Contracts and technology

adoption,” American Economic Review, 97(3), 916–943.
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