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ABSTRACT 

Can we use seasonally adjusted indicators in dynamic factor 
models?* 

We examine the short-term performance of two alternative approaches of 
forecasting from dynamic factor models. The first approach extracts the 
seasonal component of the individual indicators before estimating the dynamic 
factor model, while the alternative uses the non-seasonally adjusted data in a 
model that endogenously accounts for seasonal adjustment. Our Monte Carlo 
analysis reveals that the performance of the former is always comparable to or 
even better than that of the latter in all the simulated scenarios. Our results 
have important implications for the factor models literature because they show 
the that the common practice of using seasonally adjusted data in this type of 
models is very accurate in terms of forecasting ability. Using five coincident 
indicators, we illustrate this result for US data. 
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1. Introduction 

 

The late-2000s recession, sometimes referred to as the Great Recession, magnified the interest 

of economic agents in having efficient short-term forecasting models that help monitor 

ongoing economic developments. This may be why the recent resurgence of dynamic factor 

models, first developed by Stock and Watson (1991), which have proven to be useful in 

growth and inflation forecasting. Among others, recent examples are Arouba, Diebold and 

Scotti (2009), Arouba and Diebold (2010) and Camacho and Perez-Quiros (2010). 

 To our knowledge, all of the forecasting analyses developed in this related literature 

used seasonally adjusted data, where the seasonal components were extracted individually 

from each variable either by the official statistical office that publishes the data or by the 

analyst (when seasonally adjusted data are not available) before estimating the models.1 

Therefore, only one common factor and several idiosyncratic components are estimated in 

these dynamic factor models. We will call this approach traditional, because it is the standard 

procedure in the literature. 

This traditional approach has some limitations. First, behind the individual seasonal 

adjustments there exists the implicit assumption that the seasonal component for each variable 

is necessarily idiosyncratic (not common). Second, removing the seasonal component from 

the individual indicators before estimating the models may lead to losses of information about 

the seasonal components that could potentially be useful for forecasting.  

As an alternative to this traditional approach, the structural dynamic factor models 

have the advantage of being formulated in terms of common components, such as trends, 

seasonal components and cycles that have a direct interpretation. Modelling these features 

could be of great benefit since they could be easily projected into the future, leading to 

potential forecasting improvements. 

This paper aims to evaluate the performance of traditional versus structural factor 

models. We use a Monte Carlo exercise to show that when the data generating process 

exhibits idiosyncratic seasonal components the traditional dynamic factor model that uses 

seasonally adjusted data (the outcomes of TRAMO-SEATS) outperforms the structural 

dynamic factor model, especially when the idiosyncratic seasonal components are erroneously 

modelled as if they were common across series.2 Interestingly, when the data are generated 

                                                
1 Note that the literature on large-scale dynamic factor models, which include a vast number of indicators, also 
uses seasonally adjusted data. Although our results can be extended to large-scale models, we focus on small-
scale models for the sake of simplicity. 
2 We use the TRAMO-SEATS (Gomez and Maravall (1996)) version dated March 11, 2011, as downloaded 
from the Bank of Spain database. Alternative filters as X-11, X-12, and ARIMA models would lead to 
qualitatively similar results. 
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with common seasonal components, the performance of traditional factor model is still 

comparable to or even better than that of structural factor models, even in the case that the 

seasonal components are correctly modelled as common across the series. These results have 

important implications for the literature on factor models since they show the good 

forecasting performance of the standard models that use seasonally adjusted data with respect 

to alternative models that handle seasonally adjustments endogenously. 

The results obtained in the Monte Carlo analysis are confirmed by using a set of five 

coincident US economic indicators. Our empirical results also suggest that the standard 

strategy of forecasting from dynamic factor models that use seasonally adjusted data is the 

most advisable way to compute the forecasts. 

The paper is structured as follows. Section 2 describes the main features of structural 

and traditional dynamic factor models. Section 3 outlines the Monte Carlo simulation and 

discusses the results. Section 4 addresses the empirical analysis. Section 5 concludes. 

  

2. Methodological framework 

 

2.1. Structural factor decomposition 

 

The trend stationary economic indicators are assumed to admit a structural factor 

decomposition. Therefore, each of the N trend stationary indicators, yit, can be written as the 

sum of three stochastic components: a common component, ft, which represents the overall 

business cycle conditions; an idiosyncratic component, itu , which refers to the particular 

dynamics of the series; and a seasonal component, its , which refers to the periodic patterns 

and are allowed to be either idiosyncratic or common3. According to this structural factor 

decomposition, the structural dynamic factor model can be stated as 

                                                         ,itittiit sufy                                                           (1) 

where i=1,…,N, and the i  are the loading factors.4 

We assume the following dynamic specifications for the three components. The 

common component and the idiosyncratic components follow autoregressive processes of 

orders p1 and p2, respectively: 

                                      ftptptt fafaf   1111 ... ,                                                 (2) 

                                                
3 Note, that the series are trend stationary (or stationary at zero frequency), but allowed to be seasonally non-
stationary (or integrated of order one at seasonal frequencies). 
4 To identify the model, we assume unit loading factor for the first variable ( 11  ). 
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where  2,0~ fft iN  , and 

                                      ,... 2211 itpitipitiit ububu                                                 (3) 

where  2,0~ iit iN  , with i=1,…,N. 

For the purposes of the paper, the treatment of the seasonal components deserves 

special comments. In standard applications that use factor decomposition analyses, which we 

called traditional models, the seasonal component of the series is extracted before estimating 

the model and, therefore, model selection, estimation and forecasting is carried on from 

seasonally adjusted series. The seasonal adjustment techniques are developed either by the 

researcher, usually with the help of automatic procedures, such as TRAMO-SEATS or X11, 

or by the statistical agencies, which in some cases publish official seasonally adjusted 

versions of the time series. In expression (1), this implies that 0its , i=1,…,N.  

Alternatively, the dynamic properties of the seasonal components could be accounted 

for within the structural dynamic factor model. In line with trigonometric seasonality model 

(see Harvey (1989) for details), we assume that the seasonal component can be viewed as the 

sum of its s/2 cyclical components  

                                                 



2/

1

s

j
ijtit ss ,                                                                   (4) 

where s  is the number of observations per year. In this expression, the cyclical components 

are modelled as trigonometric terms at the seasonal frequencies, sjj  2 , through the 

model 
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where j=1,…,s/2, i=1,…,N, ijt  and *
ijt  are mutually uncorrelated noises with common 

variance 2

ij
 , and the term *

ijts  appears by construction to form ijts . In addition, we use the 

standard assumption that the error terms exhibit the same variance across frequencies, i.e., 

22

iij     for all j=1,…,s/2. To complete the statistical specification of the model, we assume 

that all the disturbances driving the three stochastic components are mutually and serially 

uncorrelated. 

To facilitate simulations and estimations, we prove in the Appendix that this seasonal 

component can be alternatively expressed using a seasonal autoregressive integrated moving 

average specification. For quarterly data,5 the seasonal components are 

                                                
5 For the sake of simplicity, we derive all the expressions for quarterly data. Although the expressions would be 
larger, all the results obtained in the paper could easily be obtained for monthly data. 
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                                  itit LLsLLL 232 1869.03187.011  ,                            (6) 

where L is the backshift operator,  2,0~
i

iNit   reflects that the seasonal effect is allowed to 

change over time, and i=1,…,N.6 To derive this expression, we used s=4, since the seasonal 

behaviour of our quarterly indicators is often related to the time of a year. 7 

Regarding identification issues, it is crucial to distinguish between the cases of 

assuming common and idiosyncratic seasonal components. When the periodic patterns are 

common across the different indicators, the standard identification rules for multivariate 

unobserved components in factor models apply. Hence, to identify the two common 

components (the overall business conditions and the seasonal component) one needs at least 

five indicators in the model.8 In addition, we assume that the first time series does not contain 

seasonal components ( 01 ts ), and that the seasonal patterns are proportional across series 

( it i ts s , with i=2,3,4,5 and 2 1  ).  

However, when seasonality is different across indicators, it cannot be separately 

identified from the idiosyncratic component, itu . Although we will estimate this model as an 

alternative way to model seasonal components, we acknowledge that in this case the noise can 

be transmitted from the seasonal component, sit, to the idiosyncratic component, uit, and vice 

versa, which may influence the in-sample fitting performance of the model negatively. 

 

2.2. State-space representation 

 

To estimate model’s parameters and to infer unobserved components by using the 

Kalman filter, it is convenient to rewrite the equations that describe the model’s dynamics in a 

state-space representation. In the case of N economic indicators which are collected in the 

vector Yt, the appropriate state-space form of the model requires the specification of both the 

measurement equation, ttt eHhY  , with  RiNet ,0~ , and the prediction equation 

ttt hh  1 , with  ,0~ iNt .  

For this purpose, it is worth pointing out that the seasonal components 

                                                
6 In this case, the yearly sum of the seasonal effects is expected to be zero, since the disturbance term has zero 

expectation. A model of deterministic seasonality is easily obtained by imposing 0it . 
7 Although we focus on trigonometric seasonality as in Harvey (1989), there are alternative ways of allowing 
seasonal variables to change over time, as in Hannan et al. (1970) or Harrison and Stevens (1976). However, the 
Hannan et al. (1970) seasonal model and the Harvey (1989) model with non-equal variances are the same models 
in the Gaussian case, or when innovations follow a mixture of normal distribution as in Bruce and Jurke (1992). 
The Harrison and Stevens (1976) seasonality with correlated disturbances model and the Hannan's model are the 
same models, which are also identical to the model that we use in the Gaussian case. 
8 An identified model with N variables and k common components should satisfy the inequality N2k+1. 
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can be written as 

                                                     itit LLs 21869.03187.01                                             (8) 

where   ititLLL   321 , with   2var
iit   , i=2,…,5. 

The specific forms of these two equations depend on the assumption about the 

seasonal component. Using the assumptions that N=5, p1=p2=1, when seasonal components 

are common across the different indicators, the state space representation of the model 

becomes: 
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and 
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where R=0, and  is a diagonal matrix with main diagonal  

                                                 '22
5

2
4

2
3

2
2

2
1

2 0,0,,,,,,,  fdiag  .                               (11) 

The state-space form of traditional dynamic factor models that use either the official 

seasonally adjusted data sets or the seasonally adjusted outcomes from TRAMO-Seats can 

easily be derived from these expressions. It is obtained by imposing 

1 2 3 0t t t t         , and 0t . 
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However, when the seasonal component is assumed to be idiosyncratic for each 

economic indicator, the state-space representation of the model is  
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and 
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where  '1869.0,3187.0,1A ,  
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, 0,0it itZ  , and i=2,..,5. 
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0R  , and  is a diagonal matrix with main diagonal  
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5432   fdiag  .              (15) 

  

3. Monte Carlo simulations 

 

In this section, we design a Monte Carlo experiment to study some of the finite-sample 

properties of structural dynamic factor models that account for common or idiosyncratic 

seasonal components against traditional dynamic factor models that manage seasonally 

adjusted data. As shown in Table 1, the experiment is conducted with a comprehensive set of 
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coefficients in order to capture a wide range of specifications, allowing for different degrees 

of common factor correlation, different persistence of idiosyncratic components, and 

idiosyncratic components that are heterogeneous. 

To cover a large variety of combinations, Table 1 reports that the loading factor of the 

first variable is set to unity in order to achieve identification, while other factor loadings are 

either positive for variables 2 and 3 (0.7 and 1.1, respectively) or negative for variables 4 and 

5 (-0.8 and -0.5, respectively). We generate two alternative scenarios for the seasonal 

components.9 The first scenario, called M1, tries to mimic the empirical forecasting exercise 

where seasonal components are idiosyncratic.10 The second scenario, called M2, tries to 

mimic the case of common seasonal components, where the seasonal factor loadings are 

either positive (0.9 for variable 3) or negative (-0.8 and -0.7 for variables 4 and 5, 

respectively). 

The common non-seasonal factor, ft, and the individual components, uit, are generated 

as first order autoregressive processes. Since these components are assumed to be non-

seasonal, they are generated with positive autoregressive parameters to insure that they do not 

generate distortions in the variable at the high part of the spectrum. Also, if these components 

had been generated with relatively high negative autoregressive parameters, standard methods 

of univariate seasonal adjustments, such as TRAMO-SEATS or X11, would have considered 

the variance contribution of these components as seasonal and would have extracted it from 

the generated time series. 

According to Table 1, in simulations S1, S2, and S3 we replicate situations where the 

economic indicators share a strong persistent non-seasonal common component 

(autoregressive parameter of 0.9). However, in simulations S4, S5 and S6 the persistence of 

the factor is weak (autoregressive parameter of 0.2) while it is moderate in simulations S7, S8 

and S9 (autoregressive parameter of 0.5). In addition, these potential empirical cases are 

combined with weak idiosyncratic components (autoregressive parameters between 0.1 and 

0.4) in simulations labelled S1, S4 and S7 and strong idiosyncratic components 

(autoregressive parameters between 0.6 and 0.9) in simulations labelled S2 S5 and S8. To 

cover all combinations, the idiosyncratic components are allowed to exhibit mixed persistence 

(autoregressive parameters between 0.2 and 0.9) in simulations S3, S6 and S9. 

For each of these 18 cases, we generate a total of M=1000 sets of time series of length 

T=120 observations.11 We use them to mimic three different empirical forecasting scenarios. 

The first scenario, called EId, mimics the case in which an analyst fits a structural dynamic 

                                                
9 As mentioned before, for identification purposes, the seasonal component does not affect the first variable. 
10 In line with our empirical results, we set jiji

,  22  . In particular, we set 
2

i
 around 0.1. 

11 The length of the generated time series is 120 since it would refer to 30 years of quarterly observations. 
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factor model to the non seasonally adjusted data, whose seasonal components are treated as 

idiosyncratic. The second scenario, called ECo, refers to a similar case but where the seasonal 

component is common to the last four time series. The third scenario, called EsaTS, mimics 

the case in which the analyst uses seasonally adjusted data before estimating the standard 

dynamic factor model, i.e., the traditional approach. In our analysis, the seasonal components 

are extracted from the generated time series using TRAMO-SEATS. 

In each replication, m, we estimate the two structural factor models and the factor 

model that uses seasonally adjusted data, and we examine the performance of these models in 

Tables 2 and 3. In each of these tables, the figures in brackets analyze the ability of the 

models to infer the factor while the rest of the figures refer to the accuracy of the models to 

infer the time series. In Table 2, we examine the in-sample fit of the models by computing the 

averaged squared difference across the T observations between the generated and the 

estimated time series (Mean Squared Errors), which are also averaged across the M 

replications. In Table 3, we compare the out-of-sample forecasting accuracy by computing the 

errors in forecasting (one-step-ahead) the generated target series. For each m-th replication, 

the one-step-ahead forecasts are obtained by estimating the models with data from t=1 to t=T-

1, and by computing the forecasts for T. Then, the Mean Squared Errors are computed as the 

averages of the squared errors across the M replications. 

The main results of the Monte Carlo experiment are derived from the figures reported 

in Tables 2 and 3. First, there are two main potential sources of seasonal misspecification in 

structural dynamic factor models: when the data are generated with idiosyncratic seasons but 

the model incorrectly assumes common seasons and when the data are generated with 

common seasons but the model uses the erroneous assumption that the seasons are 

idiosyncratic. The former source of misspecification can be evaluated by using the figures 

reported in the second column of the panels labelled as M1. The MSEs achieved by the 

dynamic factor models that erroneously assume common seasons when they have been 

generated as idiosyncratic dramatically increase and become one or two orders of magnitude 

greater than the MSEs of dynamic factor models that correctly account for the idiosyncratic 

seasons. This result holds whether or not the idiosyncratic seasons are modelled within the 

model or extracted from the model before estimating. The latter source of misspecification, 

when data are generated with common seasons but the model erroneously assumes that the 

seasons are idiosyncratic, can be evaluated by using the figures reported in the first column of 

the panels labelled M2. According to the magnitude of the figures reported in these columns, 

the second source of misspecification seems to be much less damaging than the first. When 

the common seasons are erroneously fitted as idiosyncratic, the MSEs of the misspecified 

model are much closer to those of the correct specification.  
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Second, when the seasonal component is generated idiosyncratically across the time 

series, the traditional approach of dynamic factor models that use seasonally adjusted data 

unequivocally achieves the best performance. The figures reported in the third column of the 

tables show that this strategy outperforms the structural factor model that assumes 

idiosyncratic seasons. The potential explanation is that the structural factor model may suffer 

from an identification problem since it is hard to identify separately the variances of the 

individual components from those of the seasonal components when they are idiosyncratic. 

Another explanation would be that the greater number of parameters to be estimated within 

the structural approach generates larger uncertainty and noise in the estimation.  

Third, according to the fifth columns of the tables, the structural model that correctly 

treats the seasonal components as common when they are actually generated as common 

usually exhibits the best performance. In the case of common seasons, the structural model 

exhibits a more parsimonious representation than in the case of idiosyncratic seasonal 

components, which makes it easier to identify the common seasonal factor. Interestingly, 

when comparing the fifth columns of the tables with the sixth columns of the tables, it is 

worth emphasizing that the accuracy of the structural factor model is similar to the accuracy 

of the standard factor model that uses seasonally adjusted data, which in many cases exhibits 

the lowest MSEs. 

Fourth, the persistence of the idiosyncratic and the common components increases the 

size of the differences across specifications but does not alter the nature of the results. 

Regardless of whether the seasonal components are common or idiosyncratic, the traditional 

factor model achieves relatively better forecasting performance in the case of high 

persistence, which motivates the use of this approach in case of doubts about the nature of the 

seasonal components. This may happen because the potential misspecifications of the 

structural factor models last longer in the case of highly persistent dynamics than in the case 

of less persistent data generating processes. 

Fifth, the conclusions obtained by analysing the MSEs achieved by the models on 

inferring the factor and those achieved by the models on fitting the indicators are of the same 

nature, i.e., good factor estimation implies good fitting of the data. In addition, the results of 

the out-of-sample analysis (Table 3) are qualitatively similar to those of the in-sample 

performance, although a little weaker. The intuition is that there is more noise in the out-of-

sample analysis, which generates higher uncertainty across the models and makes it difficult 

to extract conclusions from the analysis. 

Summing up, these results agree with the general strategy followed by analysts that 

apply dynamic factor models to time series that exhibit common, idiosyncratic, and seasonal 

components. This traditional approach consists, prior to fitting the factor model, of removing 
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the seasonal components either by using the official seasonally adjusted version of the 

indicators or by using the outcomes of automatic procedures of seasonal adjustment, such as 

the TRAMO-SEATS. When seasonality is idiosyncratic, this strategy leads to the best results. 

When the seasonality is common across series, it leads to very good results, which are 

comparable to the results of estimating the structural factor model associated with the data 

generating process, but with the advantage that this strategy eliminates the potential damage 

of using structural factor models that assume common seasonality when it is actually 

idiosyncratic.  

 

4. Empirical analysis 

 

4.1. In-sample analysis 

 

The five quarterly indicators used in the empirical analysis, which are plotted in quarterly 

frequency in Figure 1, are the University of Michigan consumer sentiment index, new 

passenger car and truck sales, median usual weekly earnings in constant dollars, Industrial 

Production, and employees on nonagricultural payrolls from 1978.1 to 2011.1.12 According to 

our preliminary analysis of unit roots, we find that all of them contain unit roots; therefore all 

variables are used in growth rates. 

The University of Michigan consumer sentiment index is a consumer confidence index 

published by the University of Michigan and Thomson Reuters. The index is normalized to 

have a value of 100 in December 1964 and it is based on at least 500 telephone interviews 

which are conducted each month in a United States sample to assess near-time consumer 

attitudes on the business climate, personal finance, and spending. The index does not contain 

seasonality. New passenger car and truck sales were obtained from the Department of 

Commerce’s Bureau of Economic Analysis (BEA), the median usual weekly earnings and 

nonagricultural payrolls were obtained from the Bureau of Labor Statistics, and Industrial 

Production was downloaded from the Federal Reserve. 

The economic indicators, which are plotted in Figure 1, exhibit a key advantage for 

our study: they are available as both non seasonally adjusted and seasonally adjusted. In 

addition, the selection of these indicators follows the line suggested by the influential paper of 

Stock and Watson (1991). We start the analysis with a set of indicators that includes an 

indicator from the supply side of the economy (Industrial Production), an indicator from the 

demand side (car and truck sales), an indicator from the income side (weekly earnings), and 

                                                
12 The analysis with monthly data would have achieved qualitatively similar results. 
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an indicator of the labor market (employees on nonagricultural payrolls), with the restriction 

that they had to be released seasonally and non-seasonally adjusted.13 Then, we enlarge initial 

set of indicators with the University of Michigan consumer sentiment in order to incorporate a 

non-seasonal series which agrees with the evolution of the business cycle. 

Table 4 displays the maximum likelihood estimates of structural dynamic factor 

models that account for seasonal adjustments and factor models that use seasonally adjusted 

data where the seasonal components are extracted before estimation. Among the structural 

dynamic factor models, we distinguish the case of models that assume idiosyncratic seasonal 

patterns (results labeled EId) from the case in which the models assume that season is 

common (results labeled ECo). Among the traditional dynamic factor models, we distinguish 

the case of models that use the officially published seasonally adjusted series (results labeled 

Esa) from the case of models that use indicators whose seasonal component is extracted from 

the series by using TRAMO-SEATS (results labeled EsaTS). The choice of model 

specifications is always based on the Schwarz criterion. 

There are several noteworthy features from the estimates reported in Table 4. First, the 

estimated parameters obtained from traditional dynamic factor models based on official 

seasonally adjusted series are similar to those obtained from dynamic factor models that use 

the seasonally adjusted outcomes of TRAMO-SEATS. Accordingly, the results from these 

two specifications are expected to be very similar.  

Second, the estimated common factor is very persistent since the estimates for its first 

order autocorrelation range from 0.73 to 0.89. Accordingly, when we compare the empirical 

results with those obtained in the Monte Carlo experiment, we focus on cases S1, S2 and S3 

of Tables 2 and 3. In addition, Figure 2 shows that independently of the model used to extract 

the factor, the common factor can be interpreted as an indicator of the broad business cycle 

conditions. According to the figure, all the factors cohere strongly with the NBER 

chronology, plunging during NBER recessions. However, the common factor extracted from 

the structural factor model that assumes common seasons is too smooth, reflecting that part of 

the common business dynamics component remains embedded in the seasonal common 

component. 

Third, the persistence of the individual components of the first four variables is very 

low since the autoregressive parameters are small and negative. Hence, the individual 

components contain only a limited amount of information about the behavior of the 

corresponding series at the business cycle frequencies apart from the information already 

                                                
13 This is why we substitute manufacturing and trade sales, originally used in Stock and Watson (1991) for car 
and truck sales. The same applies to the substitution of real personal income less transfers by weekly earnings.  
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contained in the common factor. In this sense, it seems that model S1 is the most relevant 

theoretical framework with which the empirical results are comparable.  

Fourth, Figure 3, which displays the official non seasonally adjusted series and their 

respective seasonally adjusted versions, shows that when new passenger car and truck sales 

and median weekly earnings are seasonally adjusted with the structural model that assumes a 

common season, the seasonally adjusted versions still contain seasonal components. This 

agrees with the view that the seasonal component is idiosyncratic. Therefore, M1 

(idiosyncratic seasons) seems to be the theoretical framework which is closest to the empirical 

analysis and the results from the Monte Carlo experiment labeled S1 are the most appropriate. 

 

4.2. Out-of-sample analysis 

 

In this section, we develop an out-of-sample forecasting analysis. For this purpose, we 

assume that the time series of interest which we want to forecast with structural and 

traditional dynamic factor models are the official seasonally adjusted versions of the series.14  

The first forecast is obtained by estimating the models with data from t=1 to t=, and by 

computing the forecast +1. Then, the models are re-estimated with data from t=1 to t=+1, 

and the forecast is obtained for +2. This process is repeated until =T-1, which implies a 

total of T- forecasts. Therefore, the one-period-ahead forecasts were computed recursively 

and the analysis was conducted to simulate real-time forecasting.  

The first simulated out-of-sample forecast was made in 2003.4. To construct these 

forecasts, the parameters and the unobserved components for all the models were estimated 

using only data available from 1978.1 through 2003.4. Thus, all parameters and unobserved 

components were re-estimated with data from 1978.1 through 2003.4, and forecasts from 

these models were then computed for 2004.1. Following this recursive forecasting procedure, 

the latest simulated out-of-sample forecasts were made in 2010.4 for 2011.1.15 The analysis 

ends up with 25 quarterly out-of-sample forecasts for each variable. 

For each time series, the averaged differences between the one-step-ahead forecast and 

the targeted variables are computed. To compare the results across time series easily, the 

figures reported in the top panel of Table 5 show these MSEs divided by the in-sample 

variance of each time series. EId and ECo show the results of forecasting with structural 

                                                
14 The official seasonally adjusted time series are quite similar to the seasonally adjusted outcomes of TRAMO-
SEATS. Accordingly, if the latter were the series of interest, the results would be qualitatively similar to those 
presented in the paper.  
15 Each quarter, we updated the database as if all the variables had been observed in that quarter. Therefore, we 
did not develop a real-time analysis since data revisions or publication delays are not treated. For a careful 
analysis of these real-time forecasting problems, see Camacho, Perez-Quiros and Poncela (2012).  
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factor models that assume idiosyncratic and common seasonal components, respectively. 

Finally, Esa shows the results of forecasting with the traditional factor model, where the 

forecast are computed from the official seasonally adjusted versions of the business cycle 

indicators. The bottom panel of Table 5 shows the p-values of the Diebold and Mariano 

(1995) tests of the null hypothesis of the same accuracy between the pairwise comparisons. 

The figures reported in the table suggest some conclusions that are in line with the 

findings obtained in the Monte Carlo analysis: regardless of the data generating process, the 

forecasts computed from the standard dynamic factor model that uses seasonally adjusted 

series are at least of comparable performance with any other forecasts. Therefore, cleaning up 

the economic indicators from seasonality either by using the seasonally adjusted series or by 

using automatic univariate procedures before using the variables in the dynamic factor model 

seems to be a reasonably strategy to follow. 

  

5. Conclusion 

 

Despite the efforts of recent studies to evaluate the empirical short-term forecasting 

performance of dynamic factor models, it still remains an open question whether it is better to 

use seasonally adjusted indicators before estimating a standard dynamic factor model or to 

account for the seasonal components of raw data within a structural factor model. The first 

strategy implicitly assumes that the seasonal components are idiosyncratic and the latter 

strategy could lead to unnecessary complexity, especially for practitioners that are not familiar 

with seasonal processes.  

We use Monte Carlo experiments to analyze the extent to which these two alternatives 

exhibit relative forecasting performance gains. Our simulation results suggest that when the 

data are generated under the assumption that the seasonal components are idiosyncratic the 

standard dynamic factor model that uses seasonally adjusted indicators exhibits the best 

forecasting performance. Interestingly, when the seasonal components are common to all the 

time series, the forecasting deterioration of a standard dynamic factor model that uses 

seasonally adjusted indicators with respect to a structural dynamic factor model is usually 

negligible in our experiment. Notably, the former improves on the latter in some cases. 

In empirical applications, it is difficult to decide a priori if the seasonality is common 

or idiosyncratic across series. Given that the deterioration of the in-sample fitting and out-of-

sample forecasting performance of the standard dynamic factor model that uses seasonally 

adjusted indicators is very small, while the performance of the structural common seasonal 
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component model is very poor in the case of idiosyncratic seasonal factors, we strongly 

recommend the use of seasonally adjusted series in factor models.  

We illustrate these results by using US data from 1978.1 to 2011.1 of the University of 

Michigan consumer sentiment index, new passenger car and truck sales, median usual weekly 

earnings, Industrial Production, and employees on nonagricultural payrolls share a common 

seasonal component. The forecasting performance of a standard dynamic factor model that 

uses the seasonally adjusted versions of these series is comparable to or even better than that 

of structural dynamic factor models that assume common or idiosyncratic seasonal 

components. 
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Appendix 

 

Since the empirical data are quarterly, the seasonal component of each time series, si, is the 

sum of two cyclical components, titiit sss 21  , which are evaluated at the seasonal 

frequencies, 21   , and  2 . According to (4), the dynamics of the first cyclical 

component is 
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Using 02cos   and 12sin   and rearranging terms, one can obtains 
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which implies that   titisL 11
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Similarly, the dynamics of the second cyclical component can be obtained from 
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which, using 1cos   and 0sin  , leads to 
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This expression implies that   titisL 221  , where titi 22    and   2
2 2

var
iti   . Let us 

additionally assume that 222
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Accordingly, the seasonal component of each time series can be expressed as 
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 Since the greatest polynomial of the two terms from the right-hand side is of power 

two, the resulting polynomial (the result of summation) is of power two as well 

                                           itit LLsLLL  232 11  .                                 (A7) 

To find the unknown coefficients   and  , we derive the spectra of right-hand sides of both 

expressions. The spectrum of (A6) is 

                  222 2cos2cos462cos22cos22
21 iii    ,               (A8) 

and the spectrum of (A7) is 

                            222 2cos2cos21
i

  .                               (A9) 

 Since the two spectra must represent the same dynamics, one can use the system of 

three equations with three unknowns   2222 16
ii    ,   22 24

ii    and 

22 22
ii    to derive an equation for the first parameter 0416124 234   . The 

real solutions of this equation are 3187.01   and 6813.12  , and using again the system of 

equations, it is easy to obtain that they correspond to values 1869.01   and 2745.52  . 

Using the first pair of real solutions to ensure invertibility, 22 3505.5
ii    . 
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Table 1. Parameters used in Monte Carlo simulations 

Fixed parameters for all simulations 

11  , 7.02  , 1.13  , 8.04  , 5.05 
 

12 f , 7.02
1  , 2

2 0.8  , 9.02
3  , 12

4  , 9.02
5   

Parameters that control idiosyncratic versus common seasons  

 M1 (idiosyncratic seasons) M2 (common seasons) 

 1.02

2
 , 09.02

3
 ,

4

2 0.08  , 1.02

5
  1.02

2
 , 9.03  , 8.04  , 7.05   

Parameters that control non-seasonal factor and individual components 
Not seasonal 
component 

S1 S2 S3 S4 S5 S6 S7 S8 S9 

Common strong strong strong weak weak weak mod mod. mod 

Idiosynchr. weak strong mixed weak strong mixed weak strong mixed 

 

a=0.9 
b1=0.3 
b2=0.2 
b3=0.4 
b4=0.1 
b5=0.3 

a=0.9 
b1=0.7 
b2=0.8 
b3=0.9 
b4=0.7 
b5=0.6 

a=0.9 
b1=0.9 
b2=0.2 
b3=0.5 
b4=0.9 
b5=0.3 

a=0.2 
b1=0.3 
b2=0.2 
b3=0.4 
b4=0.1 
b5=0.3 

a=0.2 
b1=0.7 
b2=0.8 
b3=0.9 
b4=0.7 
b5=0.6 

a=0.2 
b1=0.9 
b2=0.2 
b3=0.5 
b4=0.9 
b5=0.3 

a=0.5 
b1=0.3 
b2=0.2 
b3=0.4 
b4=0.1 
b5=0.3 

a=0.5 
b1=0.7 
b2=0.8 
b3=0.9 
b4=0.7 
b5=0.6 

a=0.5 
b1=0.9 
b2=0.2 
b3=0.5 
b4=0.9 
b5=0.3 

Notes. Parameters i  refer to the loading factors. Parameters 2
f  and 2

i  refer to the variance 

of noises of the common non-seasonal factor and the idiosyncratic components, respectively. 

Parameters 2

i
  refer to the variances of the noises of the cyclical components. Parameters a 

and bi refer to the autoregressive parameters of the common factor and the idiosyncratic 
components, respectively. 
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Table 2. In-sample Monte Carlo results  
 

Specification 
M1 (idiosyncratic seasons) M2 (common seasons) 

EId ECo EsaTS EId ECo EsaTS 

S1 

(0.2296) 
0.1658 
0.1862 
0.2085 
0.1857 

(0.3604) 
1.2640 
1.1408 
1.9162 
2.5292 

(0.2087) 
0.0755 
0.0687 
0.1023 
0.0606 

(0.2540) 
0.1972 
0.2745 
0.1651 
0.1895 

(0.2283) 
0.1078 
0.0877 
0.0737 
0.0561 

(0.2095) 
0.0783 
0.0742 
0.0837 
0.0610 

S2 

(0.5366) 
0.1325 
0.1643 
0.1566 
0.1644 

(1.3527) 
0.8465 
1.2420 
1.0715 
2.3105 

(0.5346) 
0.0582 
0.0610 
0.0610 
0.0522 

(0.5477) 
0.1638 
0.2257 
0.1199 
0.1480 

(0.5098) 
0.0874 
0.0709 
0.0572 
0.0441 

(0.5008) 
0.0572 
0.0654 
0.0679 
0.0404 

S3 

(0.3797) 
0.1606 
0.1565 
0.1395 
0.1757 

(0.8903) 
1.9786 
0.9464 
0.8384 
2.4502 

(0.3574) 
0.0768 
0.0728 
0.0541 
0.0715 

(0.4329) 
0.1995 
0.2707 
0.1202 
0.1906 

(0.3810) 
0.1022 
0.0819 
0.0655 
0.0530 

(0.3595) 
0.0786 
0.0723 
0.0550 
0.0608 

S4 

(0.2206) 
0.1651 
0.1798 
0.1872 
0.1756 

(0.3728) 
1.3549 
0.9566 
1.3925 
1.7659 

(0.2063) 
0.0987 
0.0935 
0.0843 
0.0792 

(0.2538) 
0.2250 
0.3020 
0.1791 
0.2132 

(0.2165) 
0.1140 
0.0954 
0.0770 
0.0593 

(0.2125) 
0.0785 
0.1010 
0.0763 
0.0606 

S5 

(0.3195) 
0.1323 
0.1533 
0.1479 
0.1549 

(0.5480) 
0.9188 
1.0317 
1.3982 
1.9859 

(0.3217) 
0.0724 
0.0888 
0.0737 
0.0679 

(0.3402) 
0.1732 
0.2401 
0.1353 
0.1578 

(0.3116) 
0.0919 
0.0735 
0.0613 
0.0476 

(0.3188) 
0.0632 
0.1162 
0.0720 
0.0493 

S6 

(0.2638) 
0.1698 
0.1795 
0.1452 
0.1739 

(0.4559) 
2.7783 
0.9881 
1.0195 
2.1565 

(0.2585) 
0.0870 
0.0915 
0.0681 
0.0763 

(0.3081) 
0.2077 
0.3428 
0.1246 
0.1928 

(0.2688) 
0.1033 
0.0803 
0.0638 
0.0508 

(0.2743) 
0.0850 
0.1034 
0.0726 
0.0536 

S7 

(0.2234) 
0.1557 
0.1769 
0.2020 
0.1676 

(0.3855) 
1.1952 
0.9532 
1.3583 
2.2314 

(0.2082) 
0.0847 
0.0856 
0.0939 
0.0646 

(0.2569) 
0.2100 
0.2989 
0.1739 
0.2000 

(0.2237) 
0.1113 
0.0892 
0.0761 
0.0580 

(0.2117) 
0.0780 
0.0863 
0.0868 
0.0572 

S8 

(0.3871) 
0.1268 
0.1540 
0.1553 
0.1484 

(0.7016) 
1.0032 
0.8299 
1.0842 
2.2465 

(0.3890) 
0.0646 
0.0829 
0.0613 
0.0619 

(0.4052) 
0.1787 
0.2796 
0.1384 
0.1792 

(0.3752) 
0.0957 
0.0791 
0.0648 
0.0499 

(0.3728) 
0.0602 
0.0841 
0.0649 
0.0544 

S9 

(0.3034) 
0.1574 
0.1631 
0.1434 
0.1649 

(0.5282) 
1.5334 
1.0800 
0.7315 
2.4018 

(0.2967) 
0.0846 
0.0835 
0.0606 
0.0651 

(0.3385) 
0.1995 
0.2605 
0.1347 
0.1871 

(0.2981) 
0.0984 
0.0804 
0.0618 
0.0527 

(0.2919) 
0.0840 
0.1031 
0.0602 
0.0494 

Notes. For each specification, figures in parentheses refer to the MSE of the common factor while 
other figures refer to the MSE of series 2 to 5. Columns labelled as M1 and M2 refer to data generated 
processes with idiosyncratic and common seasonal components, respectively. Expressions S1 to S9 
refer to data generated processes of different inertia of common non-seasonal and idiosyncratic 
components (see Table 1). EId, Eco, and EsaTS refer to models with idiosyncratic seasons, common 
season, and models whose indicators are seasonally adjusted before estimation, respectively. Lowest 
MSE are highlighted in bold. 
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Table 3. One-period-ahead Monte Carlo results 
 

Specification 
M1 (idiosyncratic seasons) M2 (common seasons) 

EId ECo EsaTS EId Eco EsaTS 

S1 

(1.0285) 
1.5254 
1.2167 
1.8004 
1.8063 
0.8723 

(1.0503) 
1.4827 
1.7344 
2.1443 
3.3232 
3.0359 

(0.9642) 
1.4808 
1.1598 
1.6510 
1.7004 
0.8076 

(1.1727) 
1.5445 
1.4283 
2.1070 
1.7021 
1.1927 

(1.1613) 
1.5255 
1.4134 
2.0468 
1.6783 
1.1757 

(1.0922) 
1.4798 
1.3639 
1.9764 
1.6890 
1.1542 

S2 

(1.2248) 
1.5306 
1.2562 
1.8043 
1.6693 
0.9098 

(1.5648) 
1.5540 
1.6171 
2.6477 
2.3276 
2.5761 

(1.2389) 
1.5369 
1.1302 
1.6586 
1.5508 
0.8107 

(1.1352) 
1.4860 
1.3734 
2.0683 
1.5971 
0.9647 

(1.1701) 
1.5084 
1.3964 
2.0672 
1.5932 
0.9978 

(1.1272) 
1.4912 
1.2922 
1.9311 
1.4974 
0.9166 

S3 

(1.2080) 
1.3881 
1.3166 
1.7298 
1.6600 
1.2535 

(1.3256) 
1.3936 
2.2820 
2.4210 
2.0486 
2.9884 

(1.2284) 
1.3891 
1.3198 
1.6846 
1.5618 
1.2181 

(1.1558) 
1.3771 
1.4314 
1.9949 
1.5561 
1.1653 

(1.1470) 
1.3769 
1.4161 
1.9485 
1.4850 
1.1540 

(1.0478) 
1.3642 
1.3549 
1.8915 
1.4651 
1.1352 

S4 

(1.2884) 
1.6961 
1.7101 
2.0945 
2.2071 
1.1072 

(1.2876) 
1.6875 
2.2406 
2.5689 
2.8995 
2.2254 

(1.2759) 
1.7138 
1.6815 
2.0391 
2.1785 
1.0603 

(0.9254) 
1.6563 
1.5435 
1.8608 
1.2118 
0.9766 

(0.9111) 
1.6504 
1.5193 
1.8252 
1.1892 
0.9563 

(0.9245) 
1.6702 
1.5253 
1.8511 
1.2022 
0.9945 

S5 

(1.2997) 
1.7973 
1.6701 
2.0773 
2.2389 
1.1109 

(1.3141) 
1.8342 
2.0850 
2.6325 
2.5183 
2.3670 

(1.2848) 
1.8561 
1.5649 
1.8878 
2.1263 
1.0210 

(1.2145) 
1.9969 
1.4003 
2.2085 
1.8022 
0.9992 

(1.2072) 
1.9997 
1.3980 
2.2895 
1.7638 
0.9936 

(1.1946) 
2.0275 
1.3467 
2.1773 
1.7103 
0.9863 

S6 

(0.9422) 
1.6985 
1.4558 
2.2430 
1.5354 
0.9894 

(0.9261) 
1.8446 
3.8554 
2.3240 
1.8670 
2.3433 

(0.9373) 
1.7299 
1.4418 
2.1780 
1.4567 
0.9595 

(1.3150) 
1.9390 
1.1852 
2.2602 
2.1693 
1.2148 

(1.3121) 
1.9317 
1.1689 
2.1738 
2.1397 
1.2166 

(1.3100) 
1.9398 
1.1408 
2.1207 
1.9854 
1.1832 

S7 

(1.1757) 
1.7445 
1.4815 
1.9694 
1.8813 
1.1827 

(1.1415) 
1.7174 
1.7508 
2.2988 
2.3477 
3.4174 

(1.1543) 
1.7223 
1.4684 
1.9355 
1.8673 
1.1476 

(0.9638) 
1.4785 
1.3954 
1.8642 
1.5606 
1.1355 

(0.9707) 
1.4723 
1.3932 
1.8119 
1.5399 
1.1150 

(0.9451) 
1.4678 
1.3522 
1.7568 
1.5147 
1.0858 

S8 

(1.1216) 
1.6801 
1.4992 
2.2177 
1.8517 
1.1678 

(1.2348) 
1.7609 
1.9186 
2.7736 
2.6887 
3.6573 

(1.0847) 
1.6934 
1.4574 
2.0637 
1.7671 
1.0929 

(1.0076) 
1.3680 
1.4477 
1.9445 
1.4601 
1.1591 

(1.0292) 
1.3734 
1.4198 
1.8643 
1.4248 
1.1255 

(1.0194) 
1.3883 
1.3177 
1.8388 
1.4279 
1.1115 

S9 

(1.1583) 
1.6988 
1.4258 
1.9802 
1.9018 
1.1540 

(1.3051) 
1.7243 
1.8413 
2.6016 
2.4207 
3.3826 

(1.1521) 
1.7017 
1.4141 
1.9365 
1.7362 
1.1225 

(0.9554) 
1.5994 
1.1158 
1.5288 
1.7502 
0.8697 

(0.9874) 
1.5965 
1.1262 
1.5639 
1.7330 
0.8510 

(0.9770) 
1.6121 
1.0907 
1.4619 
1.6686 
0.8492 

Notes. See notes of Table 2. 
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Table 4. Maximum likelihood estimaes 
 Estimated models 

 EId Eco Esa EsaTS 

2 1.70* 4.04 1.71* 1.76* 

3 -0.12 -0.12 -0.12 -0.11 

4 1.26** 4.12 1.28** 1.33* 

5 0.28** 2.09 0.26* 0.27* 

a 0.73** 0.89** 0.79** 0.78** 

b1 -0.06 -0.03 -0.06 -0.06 
b2 -0.36** -0.14 -0.39** -0.33** 

b3 -0.29** -0.78** -0.21** -0.21** 
b4 -0.14 0.34 -0.03 -0.16 
b5 0.89** 0.35* 0.91** 0.91** 
f 0.78** 0.13 0.63* 0.62* 

1 6.15** 6.25** 6.15** 6.16** 

2 5.73** 10.80** 5.93** 5.54** 

3 0.84** 1.47** 0.80** 0.78** 

4 0.37** 0.92** 0.40** 0.54** 

5 0.18** 0.01 0.16 0.17 

2
  1.90** 0.01 - - 

3
  0.13** - - - 

4
  0.28** - - - 

5
  0.01   - - - 

3 - -25.48** - - 

4 - -3.55** - - 

5 - 16.51** - - 
Notes. See notes of Table 2. Esa refers to a dynamic factor model that uses the official seasonally 
adjusted series. The estimated model in the case of Eid is displayed in (10) and (11) and in the case of 
Eco in (8) and (9). 
** - statistically significant at 5% significance level 
* - statistically significant at 10% significance level 
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Table 5. Empirical forecasting analysis 
 Cars Wages IPI Employ 

MSE 

EId 
Eco 
Esa 

1.17 
1.15 
1.09 

0.84 
2.77 
0.83 

0.99 
1.09 
1.04 

0.41 
0.37 
0.44 

p-values of DM test 

EId vs ECo 
EId vs Esa 
ECo vs Esa 

0.87 
0.15 
0.51 

0.002 
0.489 
0.002 

0.77 
0.38 
0.85 

0.08 
0.43 
0.12 

Notes. In the top panel, EId, Eco, and Esa refer to models with idiosyncratic seasons, common 
season, and models whose indicators are the official seasonally adjusted, respectively. To compare the 
results across time series easily, the figures show the MSE divided by the in-sample standard 
deviations of each time series. In the bottom panel, the table reports the p-values of the Diebold-
Mariano test of the null of no different accuracy. 
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Notes: Straight lines refer to raw data while dotted lines refer to seasonally adjusted data. Shaded areas
correspond to the NBER recessions.
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Figure 1. Economic indicators: 1978.1-2011.1

University of Michigan consumer sentiment index

300

310

320

330

340

350

78.1 83.2 88.3 93.4 99.1 04.2 09.3

40

50

60

70

80

90

100

110

78.1 83.2 88.3 93.4 99.1 04.2 09.3

New passenger car and truck sales Median usual weekly earnings

Industrial Production

80000

88000

96000

104000

112000

120000

128000

136000

78.1 83.2 88.3 93.4 99.1 04.2 09.3

Nonagricultural payrolls

500

1000

1500

2000

78.1 83.2 88.3 93.4 99.1 04.2 09.3



25

Notes: EId, Eco, refer to structural factor models with idiosyncratic and common seasons. Esa and
EsaTS refer to factor models whose indicators the official seasonally adjusted series and whose seasonal
component is removed by using TRAMO-Seats. Shaded areas correspond to the NBER recessions.

Figure 2. Not seasonal common factor
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Figure 3. Seasonally adjusted series
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Figure 4. Out-of-sample forecasting errors

Notes: See notes of Figures 2 and 3. The closer to zero are the series the better performance of the
forecasting model.
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