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propose two simple models where individuals help each other finding a job. In 
the first one, job information flows between individuals having a link with each 
other and we show that an equilibrium with a clustering of workers with the 
same status is likely to emerge since, in the long run, employed workers tend 
to be friends with employed workers. In the second model, individuals interact 
with both strong and weak ties and decide how much time they spend with 
each of them. As in Granovetter, this model stresses the strength of weak ties 
in finding a job because they involve a secondary ring of acquaintances who 
have contacts with networks outside ego's network and therefore offer new 
sources of information on job opportunities. We then discuss some policy 
implications showing how these models can explain why ethnic minorities tend 
to experience higher unemployment rate than workers from the majority 
group. 
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1 Introduction

A large body of research, first in sociology, then in physics, and more recently in economics,

has studied the importance of social networks in different activities. For example, the decision

of an agent whether to buy or not a new product, attend a meeting, commit a crime,

find a job is often influenced by the choices of his or her friends and acquaintances (be

they social or professional). The emerging empirical evidence on these issues motivates the

theoretical study of network effects. For example, job offers can be obtained from direct, and

indirect, acquaintances through word-of-mouth communication. Also, risk-sharing devices

and cooperation usually rely on family and friendship ties. Spread of diseases, such as AIDS

infection, also strongly depends on the geometry of social contacts. If the web of connections

is dense, we can expect higher infection rates.1

In the present paper, we focus on the role of social networks in the labor market. Indeed,

networks of personal contacts mediate employment opportunities, which flow through word-

of-mouth and, in many cases, constitute a valid alternative source of employment information

to more formal methods. Such methods have the advantage that they are relatively less costly

and may provide more reliable information about jobs compared to other methods. The

empirical evidence reveals that around 50 percent of individuals obtain or hear about jobs

through friends and family (Granovetter, 1973, 1974; Corcoran et al., 1980; Holzer, 1988;

Montgomery, 1991; Gregg and Wadsworth, 1996; Addison and Portugal, 2002; Ioannides

and Loury, 2004; Wahba and Zenou, 2005; Ioannides and Topa, 2010; Pellizzari, 2010; Topa,

2011). For example, the recent study by Bayer et al. (2008) documents that people who live

close to each other, that is, in the same census block, are more likely to work together than

those in nearby blocks.

We investigate the role of social networks in the labor market by presenting two different

approaches, which both have a dynamic perspective. We first present the model of Calvó-

Armengol and Jackson (2004) who explicitly model social networks as graphs.2 The authors

study the evolution over time of employment statuses of  workers connected by a network

of relationships. Individuals exchange job information only with their strong ties (as defined

by their direct friends) while weak ties (as defined by friends of friends) will indirectly help

them by providing job information to their strong ties. They are able to determine how the

network of relationships influences these outcomes. It is shown that, in steady-state, there

1There is a growing literature on networks. See, in particular, Goyal (2007), Jackson (2008), de Martí

and Zenou (2011), Ioannides (2012) and Jackson and Zenou (2013) for overviews.
2See also Boorman (1975), Calvó-Armengol (2004), Calvó-Armengol and Zenou (2005), Fontaine (2008)

and Cahuc and Fontaine (2009).
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is a positive correlation in employment status between two path-connected workers. This

result is not trivial since, in the short run, the correlation is negative (see Boorman, 1975;

Calvó-Armengol, 2004; Calvó-Armengol and Zenou, 2005). Indeed, in a static model, if an

employed worker is directly linked to two unemployed workers, then if she is aware of a job,

she will share this job information with her two unemployed friends. These two individuals,

who are path-connected (path of length two), are thus in competition with each other and

only one of them (randomly chosen) will obtain the job and be employed while the other will

remain unemployed. So their employment status will be negatively correlated. This leads

to homophily and clustering and thus the quality of the network is the main determinant of

individual’s outcomes.

We then present the model of Zenou (2011, 2012).3 Individuals belong to mutually

exclusive two-person groups, referred to as dyads and two individuals belonging to the same

dyad hold a strong tie to each other. Individuals can also meet weak ties outside of the dyad.

Building on Granovetter (1973, 1974, 1983)’s idea that weak ties are superior to strong ties

for providing support in getting a job, this model develops a social interaction model where

workers can obtain a job through either their strong or weak ties. In this model, it is better

to meet weak ties because a strong tie does not help in the state where all best friends are

unemployed. But a weak tie can help leaving unemployment in any state because that person

might be employed. So there is an asymmetry that is key to the model and that explains

why some workers (for example, ethnic minorities) may be stuck in poverty traps having

little contact with weak ties (for example, the majority group) that can help them escape

unemployment.

The paper unfolds as follows. In the next section, we provide some evidence on the

importance of social networks in the labor market in France and in the UK. In Section 3,

we expose the model of Calvó-Armengol and Jackson (2004) while, in Section 4, the one of

Zenou (2011, 2012). Finally, Section 5 concludes and discuss some policy implications.

2 Evidence on social networks in the labor market in

France and in the UK

We first present some evidence for France using the TeO (Trajectoire et Origine) survey.

This survey was performed between September 2009 and February 2009 by researchers from

3See also Calvó-Armengol et al. (2007) and Patacchini and Zenou (2008) for the same type of models

but for criminal activities.
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INED and INSEE and the final sample comprises 15,862 individuals between 17 and 60 years

old. Employed individuals were asked about the main job search method used in finding their

current jobs while those currently unemployed were also asked about the job search method

they were using to find a job, but they were allowed to list more than one job search method,

i.e. respondent reports yes or no to a list of job search methods.

Table 1 shows that one fourth (25.4%) of all employed workers obtained their current

jobs through friends and relatives. It also shows that the main search methods used by

the unemployed are “friends and relatives” (79.7%). This is accordance with other studies.

Compared to the U.S., approximately 50% of all workers currently employed found their jobs

through friends and relatives (Montgomerry, 1991). Holzer (1987, 1988) found that, among

the young unemployed, 80% are using “friends and relatives”. Among employed men, 35%

obtained their jobs through friends and relatives compared to 21% for women, and 57% of

young employed workers (15-19 year old) have obtained their current jobs through social

networks.

[  1 ]

If we differentiate by nationality, Table 2 shows that French unemployed workers tend

to use more their social networks than non-French workers. Interestingly, in Table 3, we see

that the most successful workers who find their jobs through their social networks are the

non-French Europeans while non-European immigrants who use a lot their social networks

have a lower chance of finding with this method as compared to direct applications.

[  2 and 3 ]

If we look at the UK (Tables 4 and 5; see Battu et al., 2011) the picture is slightly

different. These tables utilizes data drawn from twelve consecutive waves of the Quarterly

Labour Force Survey (QLFS) — the first wave is the December 1998 to February 1999 wave

while the last wave is the September 2001 to November 2001 wave. Each wave covers around

60,000 households incorporating around 150,000 individuals. Only males of working age

(aged 16 to 65) are used in these tables.

Table 4 shows the primary job search methods used of unemployed individuals. By far

the two most commonly used methods are institutional and adverts, with less than 10%

of the unemployed having friends and family as their main job search method (personal

networks). This general ranking has been found elsewhere (Gregg and Wadsworth, 1996)

and the relative unimportance of personal networks in the UK has also been found by Fritjers

et al. (2005). There are also important differences across different ethnic groups. Friends and

family are used more heavily by Indians, Pakistanis, Bangladeshis and ‘Others’ compared to
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Whites and Blacks. 14.2% of the Pakistani/Bangladeshi group have friends and family as

their primary job search method. Blacks (Black-Caribbean and Black-African) are the least

likely to use personal networks (9.6% of them use personal networks) and are the most likely

to resort to the institutional method. The Pakistani/Bangladeshi ethnic group are also less

likely to use adverts compared to the other ethnic groups.

[  4 ]

Table 5 shows what job search method was successful – not necessarily what they were using

as their primary job search method. The job search methods that generated the greatest

success for the newly employed were in order of importance institutional, personal networks

and adverts. Direct applications were only deemed successful for around 15% of respondents.

Nearly 30% of respondents were successful using personal networks. From Table 5 it is clear

that although Indians, Pakistanis, Bangladeshis and ‘Others’ used personal networks the

most (Table 4), there is little evidence that they benefited from this method more so than

whites. This is consistent with the French evidence displayed in Table 3.

[  5 ]

3 Social Interactions and the Labor Market: A first

model

Wewould like to propose a first theoretical framework based on the paper by Calvó-Armengol

and Jackson (2004).

3.1 Some notations and definitions from graph theory4

Denote by  the number of individuals in a given social network g, with  =  + ( and

 are respectively the unemployment and the employment levels in the network). Therefore

 = {1     } is a set of individuals connected in some network relationship. A network
is a list of unordered pairs of players { }. These links are represented by a graph g,
where  = 1 if  is friend with  (denoted by ) and  = 0 otherwise (unweighted

graphs/networks). In our framework, links are taken to be reciprocal, so that  = 

(undirected graphs/networks). By convention,  = 0. The set of ’s direct contacts is:

(g) = { 6=  |  = 1}, which is of size (g).
4For a more complete overview of these definitions, see Wasserman and Faust (1994) and Jackson (2008).
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One of the key features of networks/graphs is that not only direct but also indirect links

that matter.

Definition 1 A path of length  from  to  in the network g is a sequence h0 1  i of
players such that 0 = ,  = ,  6= +1, and +1 = 1, for all 0 ≤  ≤  − 1, that is,
players  and +1 are directly linked in g. If such a path exists, then individuals  and  are

path-connected.

In words, a path between two individuals  and  is an ordered set of agents ( 1   )

of  , where an agent can appear several times, such that  6= . We say that a path belongs

to the network g if 112  6= 0.

Definition 2 An individual  holds a strong tie with an individual  if  = 1. An indi-

vidual  holds a weak tie with an individual  if individuals  and  are path-connected. The

length  of this (weak) tie is defined by the length of the path between individuals  and .

3.2 The model

We now described the model of Calvó-Armengol and Jackson (2004). Time evolves in discrete

periods indexed by . The vector  describes the employment status of the workers at time

. If individual  is employed at the end of period , then  = 1 and if  is unemployed then

 = 0.

A period  begins with some agents being employed and others not, as described by the

vector s−1 = (1−1  −1) that describes the status of all workers from the last period.

Next, information about job openings arrives. In particular, any given individual hears

about a job opening with probability  that is between 0 and 1. This job arrival process is

independent across individuals. If the individual is unemployed, then she will take the job.

However, if the individual is already employed then she will pass the information along to

a friend, picked at random among her unemployed friends. As stated above, the graph or

network g summarizes the links of all agents, where  = 1 indicates that  and  know each

other (strong tie), and share their knowledge about job information, while  = 0 indicates

that they do not know each other.

Observe that if an employed worker hears about a job but all her friends (i.e. direct

links) are already employed, then the job is lost. We focus here on a model where wages are

exogenous and identical for all workers. So there is no room in this model for an employed

worker to exploit a job offer in order to increase her current wage.
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Finally, the last thing that happens in a period is that some agents lose their jobs. This

happens randomly according to an exogenous breakup rate, , which is between 0 and 1. We

are able to write the probability P of the joint event that individual  learns about a job

and this job ends up in individual ’s hands. It is equal to:

P(s) =

⎧⎪⎨⎪⎩
 if  = 0 and  = 


P

:=0
 if  = 1,  = 0, and  = 1

0 otherwise

(1)

where the vector s describes the employment status of all the individuals at the beginning

of the period. In (1),  is the probability of obtaining a job information without using

friends and relatives. Three cases may then arise. If individuals  and  are unemployed

( =  = 0), then the probability that  will obtain a job is just  since individual  will

never transmit any information to . If individual  is already employed and her friend 

is not ( = 1,  = 0), then individual  transmits this job information to all her direct

unemployed neighbors, who total number is
P

:=0
. We assume that all unemployed

neighbors are treated on equal footing, meaning that the employed worker who has the job

information does not favor any of her direct neighbors. As a result, the probability that an

unemployed worker  is selected among the
P

:=0
 unemployed direct neighbors of an

employed worker  is given by: 
P

:=0
. Finally, if individual  is employed, then she

does not need any job information, at least in the current period.

3.3 Impact of strong ties on employment probabilities

The first result obtained by Calvó-Armengol and Jackson (2004) is not surprising and has

also been showed in a static framework (see Calvó-Armengol, 2004, and Calvó-Armengol and

Zenou, 2005).

Proposition 1 The higher (g), the number of strong ties individual  has, the higher is

her individual probability of finding a job.

Indeed, if an individual has more strong ties, then she is more likely to hear on average

about more jobs through her friends and relatives but her chance of finding a job directly does

not increase since  is not affected by the size of the network. This result is quite intuitive

since, when the number of direct connections increases, the source of information about

jobs is larger and people find it easier to obtain a job through their friends and relatives.

Observe that the individual probability of finding a job through strong ties for individual 
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is obviously not given by (1) since P(s) is the probability that only one individual, , who

hold a strong tie with , and who is aware of some job, will transmit this information to

individual . To determine the individual probability of obtaining a job for , one has to do

the calculation for all the direct friends of . See, for example, Calvó-Armengol (2004).

3.4 Impact of weak ties on employment probabilities

We would now like to study the impact of weak ties (as defined by Definition 2) on the

individual probability of finding a job. Calvó-Armengol and Jackson (2004) show that, in

steady-state, there is a positive correlation in employment status between two path-connected

workers. As we will see, this result is not at all easy to obtain since, in the short run, the

correlation is negative. Indeed, in a static model, if an employed worker is directed linked

to two unemployed workers, then if she is aware of a job, she will share this job information

with her two unemployed friends (see (1)). These two persons, who are path-connected (path

of length two) are thus in competition and one (randomly chosen) will obtain the job and

be employed while the other will stayed unemployed. So their employment statuses will be

negatively correlated (see Calvó-Armengol, 2004, and Calvó-Armengol and Zenou, 2005).

Let us now give the intuition why this negative correlation result does not hold in a

dynamic labor-market model. Consider the star-shaped network described in Figure 1 with

three individuals, i.e.  = 3 and 12 = 23 = 1. Suppose the employment status of these

three workers from the end of the last period is s−1 = (0 1 0), where “0” means unemployed

and “1” employed. In the figure, a black node represents an employed worker (individual

2), while unemployed workers (1 and 3) are represented by white nodes. Conditional on this

state s−1, the employment states 1 and 3 are negatively correlated. As stated above, this

is due to the fact that individuals 1 and 3 are “competitors” for any job information that is

first heard by individual 2.

1

2

3

Figure 1: Employment correlations in a star-shaped network

Despite this negative (conditional) correlation in the short run, individual 1 can benefit

from individual 3’s presence in the longer run. Indeed, individual 3’s presence helps improve

individual 2’s employment status. Also, when individual 3 is employed, individual 1 is more
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likely to hear about any job that individual 2 hears about. These two aspects counter the

local (conditional) negative correlation, and help induce a positive correlation between the

employment status of individuals 1 and 3.

In what follows, we describe how we obtain this long-run positive correlation. Consider

again the network described in Figure 1 but without imposing any employment status to

workers. In that case, there are eight possible employment states: 000 100 010 001 110 101

011 111, where for example 000 means that individuals 1 2, and 3 are unemployed. As a

result, the state of the economy  evolves following a Markov processM ( ) where  is the

job-arrival rate that takes place in the first half of each period, while  is the job-destruction

rate that takes place in the second half of each period. We gather the Markov transitions

into a matrix P = Pr{+1 =  |  = }, where   ∈ {000 100 010 001 110 101 011 111},
i.e., rows correspond to + 1 while columns correspond to  (the columns sum up to one as

in all Markov matrices).

As highlighted above, an important issue in this case is the short-run negative correla-

tion versus the long-run strictly positive correlation. To sort out the short and longer run

effects, we divide  and  both by some larger and larger factor, so that we are looking at

arbitrarily short time periods. We call this the “sub-division” of periods. More precisely,

instead of analyzing the Markov process M ( ), we can analyze the associated Markov

process M (  ), that we name the −period subdivision of M ( ), with steady

state distribution  . We show that there exists some  0 such that, for all  ≥  0, the em-

ployment statuses of any path-connected agents are positively correlated under  . Consider

M (  ). For this Markov process, at every period, every shock (be it a job arrival

 or a job breakdown  ) is very unlikely when  is high enough. Having two or more

shocks in every such period is thus much less unlikely. Instead of analyzingM (  ),

we analyze an approximated Markov process M∗ (  ) where we only keep track of

one-shock transitions, and disregard transitions involving two or more shocks. We denote

by ∗ the corresponding steady-state distribution. The higher  , the closer are the transi-

tions of the approximated Markov processM∗ (  ) to that of the true Markov process

M (  ), and so the closer is ∗ to  .

Calvó-Armengol and Jackson (2004) show that, with a high enough −period subdivi-
sion, for  individuals and any social network structure, we have:

Proposition 2 Under fine enough subdivisions of periods, the unique steady-state long-run

distribution on employment is such that the employment statuses of any path-connected

agents are positively correlated.
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The proposition shows that, despite the short-run conditional negative correlation be-

tween the employment of competitors for jobs and information, in the longer run any in-

terconnected workers’ employment is positively correlated. This implies that there is a

clustering of agents by employment status, and employed workers tend to be connected with

employed workers, and vice versa. The intuition is clear: conditional on knowing that some

set of agents are employed, it is more likely that their neighbors will end up receiving in-

formation about jobs, and so on. The benefits from having other agents in the network

outweigh the local negative correlation effects, if we take a long-run perspective.

Proposition 3 The longer the length of two-path connected individuals (i.e weak ties), the

lower is the correlation in employment statuses between these two individuals.

Indeed, the correlation between two agents’ employment is (weakly) decreasing in the

number of links that each an agent has, and the correlation between agents’ employment is

higher for direct compared to indirect connections. The decrease as a function of the number

of links is due to the decreased importance of any single link if an agent has many links. The

difference between direct and indirect connections in terms of correlation is due to the fact

that direct connections provide information, while indirect connections only help by indirect

provision of information that keeps friends, friends of friends, etc., employed. In other words,

the longer the path in the social network between two individuals, the weaker is the effect

of job transmission.

3.5 Clustering and homophily

The model of Calvó-Armengol and Jackson (2004) shows that there is a clustering of workers

with the same employment status in equilibrium since, in the long run (i.e. steady state),

employed workers mostly tend to be friends with employed workers. This is because weak

ties (friends of friends of any length) indirectly help individuals by providing job information

to their strong ties, which, in turn, help them become employed.

To illustrate this issue, let us consider a network with four workers, i.e.  = 4. Figure 2

depicts the value of unemployment probabilities of worker 1, and the correlations between

workers 1 and 2, and between workers 1 and 3, in the long-run steady state for  = 010 and

 = 0015.
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Figure 2: Employment correlations as a function of network structure

These results are calculated using numerical simulations repeated for a sufficiently long

period of time. When there is no social network so that no information is exchanged between

workers, the unemployment rate of each agent is just equal to its steady-state value, i.e.

(+ ) = 013. Thus, the probability of being unemployed for each worker is 13.2 percent,

given that they cannot rely on other workers to obtain information about jobs and the only

chance they can have of obtaining a job is by direct methods. Imagine now that one link

is added in this network so that workers 1 and 2 are directly linked to each other. Steady-

state unemployment decreases substantially for workers 1 and 2, from 13.2 percent to 8.3

percent. When more links are added, the unemployment rate for each worker decreases even

more from 13.2 percent when there are no links to 5 percent when the social network is

complete. This table also shows the positive correlation between employment statuses of

different workers already mentioned before.
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3.6 The case of dyads

To better understand the model, consider the simplest possible network, i.e. a dyad so that

 = 2, and 12 = 21 = 1. Dyads, which consist of paired individuals, can be in three

different states:5

() both members are employed −we denote the number of such dyads by 2;

() one member is employed and the other is not (1);

() both members are unemployed (0).

There are thus three states, up to relabelling: (0 0) (0 1) and (1 1) corresponding to

dyads 0, 1 and 2. We order them in increasing order for the partial coordinate-wise order.

The total population is normalized to 1.

We here assume that time is continuous. This simplifies a lot the analysis because, in the

continuous time Markov process, the probability of a two-state change is zero (small order)

during a small interval of time  and +. This means, in particular, that both members of

a dyad cannot change their status at the same time. For example, two unemployed workers

cannot find a job at the same time, i.e. during  and  + , the probability assigned to a

transition from a 0−dyad to a 2−dyad is zero. Similarly, two employed workers (2−dyad)
cannot both become unemployed, i.e. switch to a 0−dyad during  and +. This is similar
to the model above with the −period subdivision ofM ( ) when  was high enough.

As above, the state of the economy  evolves following a Markov processM ( ) where

 is the job arrival rate and  is the job-destruction rate. We gather the Markov transitions

into a matrix  = Pr{+1 =  |  = }, where   ∈ {(0 0)  (0 1)  (1 1)}. Thus 0() is
the fraction of the population of size 1 which is in state (0 0) in period  and thus 0() is

the total number of members of the population in state (0 0) in period . Similarly, 2()

is the fraction of the population of size 1 which is in state (1 1) in period  and 2() is the

total number of members of the population in state (1 1) in period . Finally, 1() is the

fraction of the population of size 1 which is in state (0 1) in period  and 1() is the total

number of members of the population in state (0 1) in period .

In steady state, the population normalization means that

2∗0 + 2
∗
1 + 2

∗
2 = 1 (2)

5The inner ordering of dyad members does not matter.
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and the employment and unemployment rates are:(
∗ = 2∗2 + ∗1
∗ = 2∗0 + ∗1

(3)

It is readily checked that the net flow of dyads from each state between  and +  is given

by: ⎧⎪⎪⎨⎪⎪⎩
•
2() = 21()− 22()
•
1() = 20()− ( + 2) 1() + 22()
•
0() = 1()− 20()

Indeed, between a small interval of time  and + , the variation of dyads composed of

two employed workers is equal to the number of 1−dyads in which the unemployed worker
has found a job minus the number of 2−dyads in which one of the two employed workers
has lost her job. What is crucial here is that workers can find a job either directly (at rate

) or through their dyad friend if she is employed and has heard about a job opportunity

(at rate ). All the other equations have a similar interpretation. These dynamic equations

reflect the flows across dyads. Graphically,

1d0d 2d

 2

2 2

Figure 3: Flows in the labor market in Calvó-Armengol and Jackson (2004)

In steady state,
•
2() =

•
1() =

•
0() = 0 so that (using (2)):

∗0 =
2

2
¡
22 + 2 + 2

¢ (4)

∗1 =


22 + 2 + 2
(5)

∗2 =
2

22 + 2 + 2
(6)

and thus the employment probability converges to

∗(dyad) = 2∗2 + ∗1 =
22 + 

22 + 2 + 2
(7)
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Let us better understand this result. Denote by  = (1 2) the state of the dyad and

observe that ∗0 corresponds to {1 = 0 2 = 0}, ∗2 to {1 = 1 2 = 1} and ∗1 to either

{1 = 0 2 = 1} or {1 = 1 2 = 0}. The latter implies that in steady state the fraction
of people who will be in state {1 = 0 2 = 1} is ∗12 = 

2(22+2+2)
, and the fraction

of people who will be in state {1 = 1 2 = 0} is ∗12 = 

2(22+2+2)
. As a result, the

steady-state joint distribution is given by:

2 = 0 2 = 1

1 = 0
2

2(22+2+2)


2(22+2+2)

1 = 1


2(22+2+2)
2

22+2+2

(8)

The marginal probability to be employed is either to belong to a 1−dyad or a 2−dyad and
is thus equal to



2
¡
22 + 2 + 2

¢ + 

2
¡
22 + 2 + 2

¢ + 22

22 + 2 + 2
=

22 + 

22 + 2 + 2

which is (7).

Let us now calculate the employment rate of isolated workers (i.e. not linked by a

network). We easily obtained:

∗(isolated) =


+ 

As a result,

∗(dyad)  ∗(isolated)

The probability of being employed is therefore higher for a worker in a dyad than for an

isolated agent, reflecting the fact that an agent may hear about a job opportunity from the

other agent.

Let us now calculate the correlation in employment status between the two individuals

in a dyad. We have:

 (1 = 1 2 = 1) =
 (1 = 1 2 = 1)p

  (1 = 1)  (2 = 1)
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where

 (1 = 1 2 = 1) = E (1 = 1 2 = 1)− [E (1 = 1)] [E (2 = 1)]

= 2∗2 − (∗)2 =
22

22 + 2 + 2
−

¡
22 + 

¢2¡
22 + 2 + 2

¢2
=

22¡
22 + 2 + 2

¢2

  (1 = 1) = E (1 = 1)− [E (1 = 1)]2 = 22 + 

22 + 2 + 2
−
µ

22 + 

22 + 2 + 2

¶2
=

 (2+ ) (+ )¡
22 + 2 + 2

¢2 =  (2 = 1) = E (2 = 1)− [E(2 = 1)]2

Thus

 (1 = 1 2 = 1) =


(2+ ) (+ )
 0

The employment status of two employed individuals is positively correlated : if one agent

is employed, the probability that the other agent is employed is positive since they help each

other finding a job. Furthermore, when  = 0, i.e. no destruction rate, the correlation is

equal to zero since, as soon as   0, everybody will end up employed independently of

her partner in the dyad. The same intuition applies to  = 0 where everybody will end

up unemployed. Observe, finally, that the correlation  (1 = 1 2 = 1) increases with 

and decreases with  if and only if 22  2. Indeed, if  is larger than , i.e. people

hear more about jobs than jobs are destroyed, then when the destruction rate  increases,

individuals tend to be more often unemployed and thus help each other more to find a job

since  is relatively high. As a result, their correlation employment status increases. The

same reasoning applies for a decrease in .

4 Social Interactions and the Labor Market: A second

model

Let us now described the model by Zenou (2011, 2012) where the network is simplified since

we only consider dyads. We can, however, study other aspects of the labor market.
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4.1 The model

Consider again a population of individuals of size one. Time is continuous and individuals

live for ever. As in Section 3.6, we assume that individuals belong to mutually exclusive

two-person groups, referred to as dyads. We say that two individuals belonging to the same

dyad hold a strong tie to each other. We assume that dyad members do not change over

time. A strong tie is created once and for ever and can never be broken. Thus, we can think

of strong ties as links between members of the same family, or between very close friends.

We assume repeated random pairwise meetings over time. Matching can take place between

dyad partners or not. At time , each individual can meet a weak tie with probability ()

(thus 1 − () is the probability of meeting her strong-tie partner at time ).6 We assume

these probabilities to be constant and exogenous, not to vary over time and thus, they can

be written as  and 1 − . Compared to the previous model, the definition of weak and

strong ties is different. Here it is really the intensity of the relationship that defines weak and

strong ties, given that weak ties change over time while strong ties don’t.7 In the previous

model, strong and weak ties did not change over time; they were defined by the closeness

of the relationship (length of the links) in the network. In his seminal papers, Granovetter

(1973, 1974, 1983) defines weak ties in terms of lack of overlap in personal networks between

any two agents, i.e. weak ties refer to a network of acquaintances who are less likely to be

socially involved with one another. Formally, two agents A and B have a weak tie if there is

little or no overlap between their respective personal networks. Vice versa, the tie is strong

if most of A’s contacts also appear in B’s network.

To summarize, we refer to matchings inside the dyad partnership as strong ties, and to

matchings outside the dyad partnership as weak ties or random encounters. Within each

matched pair, information is exchanged, as explained below.

As in Section 3.6, individuals can be in either of two different states: employed (state

1) or unemployed (state 0) and there are therefore three different states: both members

are employed (dyad 2), one member is employed and the other is not (dyad 1) and both

members are unemployed (dyad 0).

Let us now describe how job is transmitted. Each job offer is taken to arrive only to

employed workers, who can then direct it to one of their contacts (through either strong

6If each individual has one unit of time to spend with her friends, then () can also be interpreted as

the percentage of time spent with weak ties.
7Observe that strong ties and weak ties are assumed to be substitutes, i.e. the more someone spends time

with weak ties, the less he has time to spend with her strong tie.
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or weak ties).8 This is the main difference with Section 3.6 where both workers could hear

about a job. Here it is only the person who is employed that can hear about a job and

then transmit it to her dyad partner. To be more precise, employed workers hear of job

vacancies at the exogenous rate  while they lose their job at the exogenous rate . All jobs

and all workers are identical (unskilled labor) so that all employed workers obtain the same

wage. Therefore, employed workers, who hear about a job, pass this information on to their

current matched partner, who can be a strong or a weak tie. Thus, information about jobs is

essentially obtained through social networks. This information transmission protocol defines

a Markov process. The state variable is the relative size of each type of dyad.

It is readily checked that the net flow of dyads from each state between  and  +  is

given by: ⎧⎪⎪⎨⎪⎪⎩
•
2() = (())1()− 22()
•
1() = 2(())0()− [ + (())] 1() + 22()
•
0() = 1()− 2(())0()

(9)

where (()) ≡ [1−  +  ()] and (()) ≡  () and where the employment rate ()

is given by (3).

Let us explain in details these equations. Take the first one. Then, during a small

interval of time, the variation of dyads composed of two employed workers (
•
2()) is equal to

the number of 1−dyads in which the unemployed worker has found a job (through either
her strong tie with probability (1− ) or her weak tie with probability ()) minus the

number of 2−dyads in which one of the two employed workers has lost her job. In the
second equation, the variation of dyads composed of one employed and one unemployed

worker (
•
1()) is equal to the number of 0−dyads in which one of the unemployed workers

has found a job (only through her weak tie with probability (()) since her strong tie

is unemployed and cannot therefore transmit any job information) minus the number of

1−dyads in which either the employed worker has lost her job (with probability ) or the

unemployed worker has found a job with the help of her strong or weak tie (with probability

(())) plus the number of 2−dyads in which one the two employed has lost her job.
Finally, in the last equation, the variation of dyads composed of two unemployed workers

(
•
0()) is equal to the number of 1−dyads in which the employed worker has lost her job
minus the number of 0−dyads in which one of the unemployed workers has found a job

8See also Montgomery (1991) who considers a different model of information transmission in social net-

works where workers do not pass along information about job opportunities, but rather refer other workers

to their employers.
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(only through her weak tie, with probability (())). These dynamic equations reflect the

flows across dyads. Graphically,

1d0d
2

d

 2

 e2   e1

Figure 4: Flows in the labor market

4.2 Steady-state equilibrium and comparative statics analysis

In steady state,
•
2() =

•
1() =

•
0() = 0 so that, using (2) and (3), we have the following

result.

Proposition 4 If






 +
p
 (4− 3)
2

(10)

there exists a steady-state equilibrium I where 0  ∗  1 is defined by

∗ =

p
 [+ 4 (1− )]− 2 + 2 − 

2
(11)

and 0  ∗0  12 by

∗0 =
2

2 + 
p
 [+ 4 (1− )]

(12)

Also, the other dyads are given by:

∗1 =
2∗


∗0 (13)

∗2 =
2 (1−  + ∗) ∗

2
∗0 (14)

Let us study the impact of social interactions (captured by ) on the different endogenous

variables. We have the following important result.
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Proposition 5 Assume





r


6
(15)

Then, increasing the percentage of weak ties  decreases the number of 0−dyads and in-
creases the employment rate ∗ in the economy, i.e.

∗0


 0 
∗


 0

The effects of  on ∗1 and on ∗2 are, however, ambiguous.

We show here that by increasing the probability of meeting new workers (i.e. weak ties),

the steady-state employment rate increases. This is not a trivial result, since, by increasing

, we have different and opposite effects on the job formation/destruction process. On the

one hand, we increase the probability of getting out of unemployed dyads, while, on the

other hand, we potentially give up the information of an employed partner in favor of a link

with an unemployed one. This result is non trivial since strong and weak ties are substitutes.

In this model, it is indeed better to meet weak ties because a strong tie does you no good

in state 0 since your best friends are all unemployed. But a weak tie can do you good in

any state because that person might be employed. So there is an asymmetry that is key to

the model and that can explain why some workers may be stuck in poverty traps (i.e. 0

dyads) having little contact with weak ties that can help them leaving the 0 dyad. This

result formally demonstrates the Granovetter’s informal idea of the strength of weak ties in

finding a job.

Let us be more specific about this result. Here, individuals belong to mutually exclusive

groups, the dyads, and weak tie interactions spread information across dyads. The parameter

 measures the proportion of social interaction that occurs outside the dyad, the inter-dyad

interactions. When  is high, the social cohesion between employed and unemployed workers

is high and thus they are in close contact with each other. In this context, increasing 

induces more transitions from unemployment to employment and thus ∗, the employment

rate in the economy, increases. This is true if (15) holds.9 This condition (15) also guarantees

that (10) holds, i.e. that an interior steady-state equilibrium exists (see Proposition 4).

Condition (15) states that the job-destruction rate  has to be sufficiently low while the

job-contact rate  and social interactions  have to be sufficiently large. As a result, we are

in a “reasonable” economy where jobs are not destroyed too fast and jobs are created at the

sufficient high rate.

9Even if (15) does not hold, it can still be true since (15) is a sufficient condition.
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4.3 Choosing social interactions

We would like now to extend the model so that  is chosen by individuals. We assume that

there is some cost of interacting with weak ties. Let  denotes the marginal cost of these

interactions. The expected utility is given by:

 () = ∗() + [1− ∗()] −  

where ∗() is defined by (11) and  and  are the wage and the unemployment benefits.

Each individual optimally chooses  that maximizes  (). The first-order condition yields:

 ()


=

∗()


( − )−  = 0 (16)

We have the following result:

Proposition 6 Assume (15). Then there exists a unique interior ∗ ∈ ]0 1[ that maximizes
 (). Higher wages or lower unemployment benefits or lower interaction costs will increase

the interactions with weak ties, i.e.

∗


 0

∗


 0

∗


 0

Furthermore, an increase in , the job-destruction rate or an increase in , the job-information

rate induces workers to spend more time with their weak ties, i.e.,

∗


 0

∗


 0

There is clear trade-off between the benefits of interacting with weak ties and the costs

associated with it (see (16)). Indeed, workers want to interact with weak ties because it

increases their probability of being employed (or, equivalently, the time they spend employed

during their lifetime), i.e.
∗()


 0. Concerning the wage  and the unemployment benefit

, a higher  or  increases the value of employment and, since ∗() and  are positively

related, workers will interact more with weak ties. Quite naturally, increasing the cost 

of social interactions reduces the time spent with weak ties. Furthermore, when  or 

increases, workers spend more time with their weak ties because the cross effect of  or 

on employment is positive, i.e. ∗2


 0 and ∗2


 0. Indeed, when  or  increases, the

positive effect of weak ties  on employment ∗ is even stronger and thus workers rely more

on their weak ties. This is an interesting result since it shows that, in downturn periods

where jobs are destroyed at a faster rate, workers tend to spend more time with their weak

ties because they know they will help them exit unemployment. In an economy where the

flow of job information is faster, the same results occur.
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5 Discussion

In this article, we have proposed two different models explaining why social networks matter

in the labor market. We would like now to discuss some policy implications of these models,

in particular for the ethnic minorities, using the tables presented in Section 2. We have seen

in these tables that ethnic minorities tend to use a lot (especially in France) their social

networks to search for a job but that their success is relatively limited and varies from one

group to another. In fact, the first model (Calvó-Armengol and Jackson, 2004) can provide

a first explanation rationale for why ethnic minorities, who tend to have friends who are of

the same ethnicity (see, for example, Sigelman et al., 1996; Cutler et al., 1999; McPherson

et al., 2001; Jackson, 2008; Currarini et al., 2010), have difficulties in finding a job. We have

seen that information flows between individuals having a link with each other and that an

equilibrium with a clustering of workers with the same status is likely to emerge since, in

the long run (i.e. steady state), employed workers tend to be friends with employed workers

(Section 3.5). In this context, if because of some initial condition some ethnic minority

workers are unemployed, then in steady-state they will still be unemployed because both

their strong and weak ties will also be unemployed. In other words, since employment

statuses between direct and indirect friends of the same network are correlated, then, like a

disease, unemployment will spread among all individuals belonging to this network.

The second model (Section 4) can offer another explanation of employment differences

between the majority and the minority group. Imagine, for example, that ethnic minority

workers are discriminated against in the labor market and, because of that, tend to interact

mostly with their (ethnic minority) strong ties.10 In that case, they will have very little

interaction with weak ties, especially whites and will end up experiencing high unemployment

rate. This is because weak ties are an important source of job information and when ethnic

minorities miss it, they end up having a higher unemployment rate than whites. This is

a vicious circle since ethnic minorities experience a higher unemployment rate and mostly

rely on other ethnic minority workers who also experience a high unemployment rate, etc.

Since jobs are mainly found through social networks via employed friends, ethnic minorities

are stuck in a “bad” labor market situation. As a result, when they found themselves in

a 0−dyad, they have nearly no chance of leaving it since the only way out is to meet an
employed weak tie since their strong tie is also unemployed. As underscored by Granovetter

(1973, 1974, 1983), in a close network where everyone knows each other, information is shared

10Other explanations could be that they interact with individuals having the same ethnicity because of

preferences (Selod and Zenou, 2006; Battu et al., 2007) or because they are physically separated from the

majority group (Brueckner and Zenou, 2003).
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and so potential sources of information are quickly shaken down so that the network quickly

becomes redundant in terms of access to new information. In contrast Granovetter stresses

the strength of weak ties involving a secondary ring of acquaintances who have contacts

with networks outside ego’s network and therefore offer new sources of information on job

opportunities. To summarize, when the time spent with weak ties is low, the social cohesion

between employed and unemployed workers is also low and thus they are not in close contact

with each other. Therefore, little interaction with weak ties induces more transitions from

employment to unemployment and thus the unemployment rate increases.

The main difference between these two approaches is as follows. In the first one, individ-

uals exchange job information only with their strong ties (as defined by their direct friends)

while weak ties (as defined by friends of friends) will indirectly help them by providing job

information to their strong ties. This leads to homophily and clustering and thus the quality

of the network is the main determinant of individual’s outcomes, especially for ethnic minori-

ties. In the second approach, individuals exchange information with both their strong and

weak ties but spend only a relative small fraction of time with each of them. If for some rea-

sons (discrimination, racial preferences), ethnic minorities mainly interact with their strong

ties who belong themselves to the minority group, then they may get stuck in a situation

where they are all unemployed. The two approaches are complementary. In Calvó-Armengol

and Jackson (2004), if because of some initial condition some black workers are unemployed,

then in steady-state they will still be unemployed because both their strong and weak ties

will also be unemployed. In Zenou (2011, 2012), it is discrimination and segregation that

make ethnic minorities only interacting with strong ties, who are themselves likely to be

unemployed.

These results are consistent with the view that ethnic minorities’ success or failure in

the labor market is influenced by the characteristics of the social networks in their local

neighborhoods. Ethnic minorities living with large numbers of employed neighbors of the

same ethnicity are more likely to have jobs than ethnic minorities residing in areas with

fewer employed neighbors. This latter finding is consistent with earlier findings on Swedish

(Edin et al., 2003), Danish (Damm, 2009) and U.S. immigration (Andersson et al., 2009)

and draws at least partially on the notion that enclaves enable immigrants to form social

networks that effectively make them act as intermediaries in getting jobs.
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Table 1: The main job search method used by the unemployed and search method used for finding a job for the employed in France 
 Direct 

approach 
Adverts Institutional 

ANPE 
Personal 
networks 

Interim Others Total (N) 

Employed  
 
 
Unemployed 

36.4 
 
 

68.3 

6.8 
 
 

68.7 

5.3 
 
 

76.6 

25.4 
 
 

79.7 

6.2 
 
 

43.6 

16.2 
 
 

38.6 

13,274 
 
 

2,588 
        
All figures, except those in the final column, are percentages 
Source: Enquête TeO (Ined/Insee) 
 
 
 
 
Table 2: The main job search method used by the unemployed by nationality in France 
 Direct 

approach 
Adverts Institutional 

ANPE 
Personal 
networks 

Interim Others Total (N) 

French  
 
 
European 
 
Africa and 
Maghreb 
 
 

70.8 
 
 

62.8 
 
 

64.7 

69.3 
 
 

69.5 
 
 

67.2 

78.3 
 
 

67.7 
 
 

74.7 

81.6 
 
 

74.2 
 
 

74.3 

43.9 
 
 

31.1 
 
 

46.7 

40.7 
 
 

47.1 
 
 

24.3 

323 
 
 

133 
 
 

582 

        
All figures, except those in the final column, are percentages 
Source: Enquête TeO (Ined/Insee) 
 
 
 



 
Table 3: The job search method that generated success for the newly-employed at the time of the survey in France 
 Direct 

approach 
Adverts Institutional 

ANPE 
Personal 
networks 

Interim Others Total (N) 

French  
 
 
European 
 
Africa and 
Maghreb 
 
 

37.2 
 
 

28.6 
 
 

35.5 

6.9 
 
 

6.4 
 
 

5.8 

5.1 
 
 

4.0 
 
 

6.9 

24.3 
 
 

41.9 
 
 

26.0 

5.7 
 
 

4.6 
 
 

11.3 

16.8 
 
 

9.7 
 
 

12.0 

2,528 
 
 

1,135 
 
 

1,984 

        
All figures, except those in the final column, are percentages 
Source: Enquête TeO (Ined/Insee) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4: The main job search method used by the unemployed at the time of the survey in the UK 
 Direct 

approach 
Adverts Institutional Personal 

networks 
Total (N) 

White 11.0 33.4 44.8 10.8 10,764 
Black 6.7 32.3 51.4 9.6 418 
Indian 11.9 32.9 42.9 12.3 252 
Pakistani/Bangladeshi 12.5 24.0 49.3 14.2 408 
Other 11.4 31.6 42.9 14.1 361 
Total 11.0 33.0 45.0 11.0  
Total (N) 1,339 4,021 5,496 1,347 12,203 
All figures, except those in the final row and the final column, are percentages 
Source: Quarterly Labour Force Survey 
 
 
 
Table 5: The job search method that generated success for the newly-employed at the time of the survey in the UK 
 Direct 

approach 
Adverts Institutional Personal 

networks 
Total (N) 

White 14.6 23.6 32.8 29.0 16,466 
Black 12.5 29.0 38.0 20.5 297 
Indian 14.9 23.2 37.1 24.6 289 
Pakistani/Bangladeshi 17.8 18.9 30.5 32.8 259 
Other 19.3 18.0 34.4 28.4 384 
Total 14.8 23.5 32.9 28.8  
Total (N) 2,611 4,163 5,828 5,093 17,695 
All figures, except those in the final row and the final column, are percentages 
Source: Quarterly Labour Force Survey 
 


