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Multivariate Choice and Identification of Social Interactions 

In this paper, we investigate the impact of peers on own outcomes where all 
agents embedded in a network choose more than one activity. We develop a 
simple network model that illustrates these issues. We differentiate between 
the ‘seemingly unrelated’ simultaneous equations model where people are 
influenced only by others within the same activity, the ‘triangular’ simultaneous 
equations model, where there is some asymmetry in the peers’ cross effects, 
and the ‘square’ simultaneous equations model, where all possible cross-
choice effects are taken into account. We develop the conditions under which 
each model is identified, showing that the general ‘square’ simultaneous 
equations model with both simultaneity effect and cross-choice peer effect 
cannot be identified without any exclusion restrictions. We then study the 
impact of peer effects on education and screen activities and show that the 
estimated within- and cross-choice peer effects both have non-trivial impacts 
on adolescent behavior. We find, in particular, that, keeping peers’ grades and 
screen activities fixed, watching more TV could be beneficial to a student’s 
grade. 
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1 Introduction

Peer decisions and/or peer characteristics have been shown to be important in predicting different

outcomes of individuals, ranging from education and crime to labor market (Ioannides and Loury,

2004; Sacerdote, 2011; Patacchini and Zenou, 2012). Most of this literature has, however, considered

the effect of peers on one specific choice. For example, Calvó-Armengol et al. (2009) show that peers’

grades affect own grades. Fletcher (2012) finds that a 10% increase in the proportion of classmates

who drink increases the likelihood an individual drinks by five percentage points. Cutler and Glaeser

(2010) find evidence for peer effects in smoking, etc. In reality, individuals make a multitude of

choices, many of which of dependent on each other. As a result, peers can have multiple and

sometimes opposite influences on their friends. For example, if a person’s friends smoke, drink but

perform well at school, how do these impact this person’s choice across the three activities? This

joint decision problem is what we study in the current paper. Our purpose is to help understand

the impact of making more than one choice at a time; in particular, we discuss decision making

with more than one choice in the context of peer influences and social networks. To the best of our

knowledge, this is the first paper that analyzes this issue, at least from an econometric viewpoint.

To be more precise, our purpose in this paper is twofold. One, we show a set of methods for

identification of peer influences in contexts of multiple decisions. Two, we show the empirical salience

of these methods for education. In the empirics below, as well as many others that we explored,

including more than a single decision changed the significance and magnitude of estimated peer

effects. In some cases, the changes are qualitatively very important, including changing intuition

about how peer effects in education operate in high school environments. Our conclusion from this

finding is that empirical peer effects research should be carefully constructed to ensure that results

reflect the full gamut of choices that individuals make.

Even with the large gains made to date in understanding how interactions influence individual

decisions, a relatively large gap remains. To our knowledge, the existing literature on peer effects

has entirely focused on a single decision by each individual. In analyzing the decision to study, we

ignore the related and complex decisions to smoke, drink, play sports or commit crimes. While

evaluating decisions in isolation makes the challenging empirics of social networks more tractable,

it requires a host of unstated, and largely implausible, exclusion restrictions. Few people make

important decisions about their life completely in isolation of other factors; however, this is precisely
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the assumption maintained by the literature.

The inclusion of more than one choice in a individual optimization problem introduces at least

two complexities. The first is a standard simultaneity problem well known in the study of economics.

Studying more means less time for sports and perhaps induces one to eat more, smoke less, etc. These

generate a complementarity (or substitutability) of the decisions themselves, independent of social

influences. Playing sports, studying, participating in other extracurriculars, and spending time with

family all require large time commitments, which at some point reaches the maximum available time

in a day. In this sense, these activities are substitutes. The presence of substitutability may mean

that a student who plays three sports, and has friends who study much more than he/she does,

will respond differently to the social influence of studying than another student that does not play

sports. That is, he/she will either choose not to respond to the studying influence or will reduce

his/her sports commitment. Estimation the studying decision in isolation of the sports decision

means that we may incorrectly attribute his/her low responsiveness to the studying influence as the

lack of social influence rather than the presence of other activities.

The second feature relates to the interdependence of social spillovers themselves and the link

between the social effects of one action on the decision about the other action. For example, the

decision to study is partially influenced by other’s choices to study. The same fact is true about the

decision to participate in sports. However, it also appears reasonable that the social influence of a

student’s peers on studying will also impact his/her decision to play sports. An encouragement to

study more, whether tacit or direct, can lead to an influence on the decision to play sports. After

having a successful study session, the student may go home and need to decide whether to play soccer

for the spring. The social influence from the same group of friends can be quite distinct on separate

decisions. This distinct influence is the channel from the social influence of friends playing soccer on

studying and vice-versa. The other channel here is the determination in equilibrium of each of the

two social influences. The relevance of social influence on studying can be quite different if students

are also considering soccer at the same time, potentially reinforcing both effects, minimizing both

or trading off between the two.

The current literature focuses on some single decision and the influence of peers on that decision

(Ballester et al., 2006; Bramoullé and Kranton, 2007; Bramoullé et al., 2012). The spillover occurs

as an optimization process in which agents enjoy utility by choosing similarly to their peers. Other

actions, other groups, and other influences are assumed to be exogenous to this decision making
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process. Expanding to a set of two choices, in these models, individuals’ optimization process would

involve forming expectations in isolation over each activity. Deciding whether to study more assumes

that the choices and the peer decisions relating to sports are already known. Similarly, in deciding

whether to join the tennis team, the amount of studying and the choices of friends over studying are

given. We relax this strong assumption. If others also choose activities jointly, the expectations that

a student forms over peers’ studying will depend on peers’ sports decisions as well. Thus, in addition

to the complementarity / substitutability associated with multiple decisions, there are transmission

channels between choices that pass through the social process as well.

This paper will provide a structural model that helps to illustrate multivariate choice in a social

interaction setting. As is normal in peer effects contexts, we begin from the view that individuals

enjoy utility as a function of the actions of others. Next, we allow agents to choose more than one

activity. The model will allow for these activities to have an arbitrarily degree of complementarity

or substitutability. As well, the model is general enough to handle arbitrary combinations of choices;

that is, we make no assumption of the orderings of choice bundles. Indeed, this generality is essential;

combining sets of choices in a social interactions context into bundles dramatically restricts the set

of possible actions available to individuals. It is easy to construct examples of preference reversals

in the bundled goods setting that comply with standard choice axioms in the general setting here.

We develop the general theoretical model in Section 2.1.

Section 3 begins our investigation of identification. Parallel to the economic drivers of the model

are three identification issues. First, we have the same reflection problem (Manski 1993) that emerges

from the coexistence of endogenous and contextual effects as in most social interactions studies.1

Second, the social spillovers across choices adds a new level of difficulty. Finally, the simultaneity

problem requires treatment as in many models. Here the social impacts make that problem more

complex to solve. To better understand the layers of complexity added by these identification issues,

we consider three models with increasing degrees of interdependence in decision making.

The first model we consider is the ‘seemingly unrelated’ simultaneous equations model, where an

individual’s decision on an activity only depends on decisions of the peers on the same activity (the

endogenous effect) and their characteristics (the contextual effect). The second model we consider is

the ‘triangular’ system of simultaneous equations model, where we introduce a one-way cross-choice

1One reason social networks matter in social interactions analysis is because they facilitate identification by break-

ing the reflection problem. This was originally recognized in Cohen-Cole (2006) and is systematically explored in

Bramoullé et al. (2009).
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peer effect besides the endogenous and contextual effects such that an individual’s decision on an

activity can be affected by the peers’ decision on related activities. Finally, we consider the ‘square’

system of simultaneous equations model with the simultaneity effect and two-way cross-choice peer

effect so that an individual’s decision on an activity can be affected by his/her own decision on related

activities and the peers’ decision on related activities. We allow the decision errors of an individual

to be correlated across related activities in all three models. We show that the general ‘square’

simultaneous equations model with both simultaneity effect and cross-choice peer effect cannot be

identified without any exclusion restrictions. To better understand this result, we consider three

specifications of the ‘square’ model. In the first one, only cross-choice peer effects are considered.

In the second one, only simultaneity effects are taken into account. The last specification is the

general ‘square’ model where both simultaneity and cross-choice peer effects are considered. We

show that the two first specifications can be identified without any exclusion restriction on the

exogenous variables. In other words, it is the co-existence of those two effects that cause the non-

identification of the general ‘square’ model. This is an interesting and somewhat surprising result

since, usually, a simultaneous equations model with only simultaneity effect needs IV (that is an

exclusion restrictions on the coefficients of exogenous variables) for identification. Here we show

that, for a network model, this is not the case. All these identification issues are fully studied in

Section 3.

Section 4 proceeds with the empirical implementation of our models. In Section 4.1, we describe

our data. We use the widely known Add-Health data for adolescents in the United States. We then

test the different models for two activities: education (i.e. grades) and time spent watching TV or

videos or playing video games and expose the empirical results. We find, in particular, that, keeping

peers’ grades and screen activities fixed, watching more TV could be beneficial to a student’s grade.

We conclude in Section 5.

In Appendix A, we list the matrices whose rank conditions are used for the identification of

the ‘square’ model. In Appendix B, we present a more general econometric network model with 

choices and give details of the generalized spatial 2SLS and 3SLS estimators. Appendix C collects

all the proofs for the identification results in Section 3. In Appendix D, we discuss the identification

and estimation of the network model with network-specific fixed effects.
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2 Theoretical Model

2.1 A general model

There is finite set of agents  = {1  } connected by a network  ≡  . We keep track of

social connections in a network  through its adjacency matrix G = [∗ ], where 
∗
 = 

P
=1 

with  = 1 if  and  are friends and  = 0 otherwise.2 We set  = 0. Observe that G is a

row-normalized matrix such that each row of G sums to one. An example is given in Figure 1 for a

tree network with four agents.

1 2

3

4

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1
3

0 1
3

1
3

0 1
2

0 1
2

0 1
2

1
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Figure 1: an example network and the corresponding adjacency matrix.

As stated in the Introduction, agents choose effort levels for more than one activity. We denote

by y = (1 · · ·  )0 the vector of effort levels for the th activity of agents in the network.

Choices are made from elements of some set of possible choices (effort levels), Ω. This set is both

individual- and network-specific. For every individual , we must track the choices of other agents

in the network.

We express the model with a linear quadratic utility function. Consider a structural model

where individual  in the network chooses  actions to maximize his/her utility. For the ease of

presentation, we focus on  = 2 without loss of generality. Let

(1 2) = ∗11 + ∗22 −
1

2
∗1

2
1 −

1

2
∗2

2
2 + ∗1212 (1)

+∗11
P

=1 
∗
11 + ∗22

P
=1 

∗
22 + ∗21

P
=1 

∗
12 + ∗12

P
=1 

∗
21 

where 1 and 2 are individual ’s efforts in activities 1 and 2. As in the standard linear-quadratic

utility model with one activity (Ballester et al., 2006), the first five terms of the utility function

correspond to the impact of own characteristics on own effort levels while the last four terms express

2For ease of presentation, we assume that the network is undirected and no agent is isolated so that


=1  6= 0
for all . The identification results of the paper hold for directed networks.
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the impact of direct peers on own efforts. Apart from the fact that there are two activities and

different level of heterogeneities, the main difference with the standard model is that there are new

cross-effects, which are expressed by the parameters ∗12, 
∗
21 and ∗12.

3 The standard cross-effects

between own and peer efforts for the same activity are

2(1 2)

11
= ∗

∗
11 and

2(1 2)

22
= ∗

∗
22 (2)

indicating strategic substitutability or complementarity depending on the signs of ∗11 and 
∗
22. The

new cross-effects are between own efforts for different activities, i.e.,

2(1 2)

12
=

2(1 2)

21
= ∗12 (3)

and between own and peer efforts for different activities, i.e.,

(1 2)

12
= ∗

∗
21 and

(1 2)

21
= ∗

∗
12 (4)

which also indicate strategic substitutability or complementarity depending on the signs of ∗21 and

∗12.

The first order conditions of utility maximization are given by:

(1 2)

1
= ∗1 − ∗11 + ∗122 + ∗11

P
=1 

∗
1 + ∗21

P
=1 

∗
2 = 0 (5)

(1 2)

2
= ∗2 − ∗22 + ∗121 + ∗22

P
=1 

∗
2 + ∗12

P
=1 

∗
1 = 0 (6)

From (5) and (6), we have the equilibrium best-reply functions as:

1 = 1 + 122 + 11
P

=1 
∗
1 + 21

P
=1 

∗
2  (7)

2 = 2 + 211 + 22
P

=1 
∗
2 + 12

P
=1 

∗
1  (8)

where 1 = ∗1
∗
1, 12 = ∗12

∗
1, 11 = ∗11

∗
1, 21 = ∗21

∗
1, 2 = ∗2

∗
2, 21 = ∗12

∗
2,

3Because, in the empirical part, we focus on the identification of peer effects for the row-normalized adjacency

matrix , our utility function also has this feature. In terms of economic interpretation, this means that it is the

average behavior of peers (local-average model) that matters for own effort and not the sum of their efforts (local-

aggregate model). In terms of utility function, an interpretation of the local-average model is that individuals conform

to the average behavior of their peers and that deviating from this social norm could be costly (Liu, Patacchini and

Zenou, 2012; Patacchini and Zenou, 2012).

7



22 = ∗22
∗
2, and 12 = ∗12

∗
2. In Appendix B, we give a condition (Assumption 1) for the

uniqueness of the equilibrium. This condition is analogous to the assumption that (I − G) is

invertible for the single activity network model (Ballester et al., 2006).

This theoretical model helps us understand agents’ behavior when making more than one choice.

First, this model helps analyze how a standard network model of social interactions can be gener-

alized. Second, it provides economic fundamentals for the empirical work below. This will be very

helpful when we will interpret our empirical results.

2.2 More specific models

Before moving to econometric analysis, we present a bit more on the behavioral foundation of the

specific models we study.

2.2.1 The ‘seemingly unrelated’ simultaneous equations model

Consider a model where ∗12 = ∗12 = ∗21 = 0. In that case, the utility function can be written as:

(1 2) = ∗11 + ∗22 −
1

2
∗1

2
1 −

1

2
∗2

2
2 + ∗11

P
=1 

∗
11 + ∗22

P
=1 

∗
22  (9)

This is a model where only the peer-effects (2) within the same activity matter while the cross-

effects (3) and (4) between the two activities are not taken into account.4 In that case, equilibrium

best-reply functions are equal to:

1 = 1 + 11
P

=1 
∗
1  (10)

2 = 2 + 22
P

=1 
∗
2  (11)

This is very close to the model of Ballester et al. (2006) where people are influenced only by

others within the same activity. Suppose 1 is the time spent studying and 2 is the time spent

watching TV for individual . Then, keeping 1 (say, family size, parental education, etc.) fixed,

individual  will spend more time studying (1) if his/her friends also spend more time studying

(if 11  0). Similarly, keeping 2 fixed, individual  will spend more time watching TV (2) if

his/her friends also watch more TV (if 22  0). In this formulation, it is assumed that individual

 choice on studying time is independent of her choice on TV time or the time that individual 0

4This is a model that has been considered from a theoretical viewpoint by Belhaj and Deroïan (2012) for the

specific case when 1 + 2 = 1, ∀, ∗11  0 and ∗22  0.
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friends watch, and vice versa. This form of the model is conformable to the assumption that TV

time choices are exogenous to the studying decision, but this is clearly a very strong assumption.

2.2.2 The ‘triangular’ simultaneous equations model

Let us now consider a utility function for which ∗12 = ∗12 = 0. We have:

(1 2) = ∗11 + ∗22 −
1

2
∗1

2
1 −

1

2
∗2

2
2

+∗11
P

=1 
∗
11 + ∗22

P
=1 

∗
22 + ∗21

P
=1 

∗
12 

In this formulation, we still have peer effects between own efforts for different activities, i.e. (2), but

we have an asymmetry for the cross effects between own and peer efforts for different activities. In

other words, it is assumed that
2(12)

12
=

2(12)

21
=

(12)

21
= 0. In this case, the best-reply

functions are equal to:

1 = 1 + 11
P

=1 
∗
1 + 21

P
=1 

∗
2  (12)

2 = 2 + 22
P

=1 
∗
2  (13)

If we keep the same interpretation as above, keeping 1 fixed, the more time his/her friends spend

studying (if 11  0) and the less time his/her friends spend watching TV (if 21  0), then the

more time individual  will spend studying (1). On the other hand, keeping 2 fixed, the more

his/her friends watch TV (if 22  0) the more individual  will watch TV (2). In this formulation,

it is assumed that the time spent doing homework is influenced by how much time one’s friends are

watching TV while the reverse is not true, i.e. the time spent watching TV is not directly affected

by how much time one’s friends spend doing homework.

2.2.3 The ‘square’ simultaneous equations model

For the ‘square’ system of simultaneous equations, we consider three specifications.

First, we consider a utility function for which ∗12 = 0, so that (1) becomes

(1 2) = ∗11 + ∗22 −
1

2
∗1

2
1 −

1

2
∗2

2
2

+∗11
P

=1 
∗
11 + ∗22

P
=1 

∗
22 + ∗21

P
=1 

∗
12 + ∗12

P
=1 

∗
21 
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In this case, the best-reply functions are

1 = 1 + 11
P

=1 
∗
1 + 21

P
=1 

∗
2  (14)

2 = 2 + 22
P

=1 
∗
2 + 12

P
=1 

∗
1  (15)

For this specification, we assume how much time individual  will spend studying or watching TV

would depend on how much time his/her friends spend studying and watching TV. However, this

specification does not allow individual ’s choice in one activity to be directly affected by his own

choice in a related activity.

For the second specification, we let ∗12 = ∗21 = 0 in the utility function (1) so that

(1 2) = ∗11 + ∗22 −
1

2
∗1

2
1 −

1

2
∗2

2
2 + ∗1212

+∗11
P

=1 
∗
11 + ∗22

P
=1 

∗
22 

In this case, the best-reply functions are

1 = 1 + 122 + 11
P

=1 
∗
1  (16)

2 = 2 + 211 + 22
P

=1 
∗
2  (17)

Suppose, as above, that 1 is the time spent studying and 2 is the time spent watching TV for

individual . Then, for this specification, how much time individual  will spend studying would

depend on how much time he/she spends watching TV and how much time his/her friends spend

studying. Similarly, how much time individual  will spend watching TV would depend on how much

time he/she spends studying and how much time his/her friends spend watching TV. However, this

specification assumes that how much time individual  will spend studying is not affected by how

much time his/her friends spend watching TV, and vice versa.

Finally, we consider the most general model where we don’t impose any restriction on the pa-

rameters. In that case, we end up with the utility function (1), where the equilibrium best-reply

functions are given by (7) and (8). This is clearly the most interesting case since all activities in-

fluence each other. In other words, my time spent studying is affected by how much time I spend

watching TV and by how much time my friends spend studying and watching TV. Similarly, my
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time spent watching TV is also affected by how much time I spend studying and by how much time

my friends spend studying and watching TV.

2.3 Model Identification Challenges

As with most models in the peer effects literature, a host of identification issues emerge. Here, we

are concerned both with the reflection problem for each choice that is endemic in peer effect research

as well as with the complexities that emerge in estimating two or more equations simultaneously.

Our specification of the econometric model follow closely from the equilibrium best response

functions (7) and (8) for the general theoretical model. Indeed, denote x = (1 · · ·  )0 a
1 ×  vector of observable individual-specific characteristics,

P
=1 

∗
x , a 1 ×  vector of ob-

servable network-specific characteristics (i.e. contextual effects), , a random individual-specific

characteristics associated with , and , a network-specific fixed effect. Let c and γ be two ×1
vectors of parameters. Then,  in (7) and (8) can be written as

 = xc +
P

=1 
∗
xγ +  + 

for  = 1 2. The econometric simultaneous equations model corresponding to (7) and (8) is then

given by:

1 = 122 + 11
P

=1 
∗
1 + 21

P
=1 

∗
2 + xc1 +

P
=1 

∗
xγ1 + 1 + 1 (18)

2 = 211 + 22
P

=1 
∗
2 + 12

P
=1 

∗
1 + xc2 +

P
=1 

∗
xγ2 + 2 + 2 (19)

Our interest is to identify and estimate the various effects in the model, which are:5

• Endogenous effect and contextual effect

The endogenous effect, where an individual’s choice may depend on his/her peers’ choices on

the same activity, is captured by the coefficients 11 and 22. The contextual effect, wherein an

individual’s choice may depend on his/her peers’ exogenous characteristics, is captured by γ1 and

γ2. The reflection problem (Manski, 1993) is well known and emerges from the coexistence of those

two effects. In Manski’s linear-in-means model, individuals are affected by all individuals belonging

to their group and by nobody outside the group, and thus simultaneity in behavior of individuals in

5For very complete overviews of identification problems in peer effects and how to solve them, see Durlauf and

Ioannides (2010), Blume et al. (2011) and Ioannides (2012),
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the same group introduces a perfect collinearity between the endogenous effect and the contextual

effect. Hence, those two effects cannot be separately identified in the linear-in-means model.

Among the many methods to resolve this problem, one can use the complexity of social networks

to identify the peer effect. In a social network, the assumption is that individuals are no longer

impacted evenly by the full population in the sample; instead, they are influenced by their friends

or connections. Bramoullé et al. (2009) have studied this phenomenon and they have shown that

one can identify the endogenous and contextual effects if intransitivities exist in a network so that

IGG2 are linearly independent. Intuitively, if individuals  and  are friends and  and  are

friends, it does not necessarily imply that  and  are also friends. Because of these intransitivities,

the characteristics of an individual’s indirect friends are not collinear with his/her own characteristics

and the characteristics of his/her direct friends. Therefore, the characteristics of an individual’s

indirect friends can be used as instruments to identify the endogenous effect from the contextual

effect.

The ‘seemingly unrelated’ simultaneous equations model only considers the endogenous effect

and the contextual effect for each choice. Although we allow the choices for related activities to be

correlated through unobservables (i.e. the error terms of simultaneous equations), the identification

condition will be shown in Section 3 to be exactly the same as that in Bramoullé et al. (2009). While

this does not yet address the core issue we study, it relaxes the assumption in baseline models in the

literature that choices such as studying and smoking are uncorrelated. This has no impact on the

Bramoullé et al. (2009) identification conditions as they simply use the mean of the reduced-form

equation, which is unaffected by the cross-equation correlation in the error terms.

• Cross-choice peer effect

Of course, choices are not just correlated, but also linked in important ways. A central component

of our paper is that peers’ choices may impact an individual’s decisions on related activities (e.g.

more smoking by friends may lead to less or more studying by an individual). We model this through

the cross-choice peer effect. The coefficients 21 and 12 precisely describe how the choices of peers

over other activities influences an individual’s decisions about a given activity.

We illustrate the additional layer of complication in identification that emerges with these terms.

We do so by considering a ‘triangular’ model, with a one-way cross-choice peer effect besides endoge-

nous and contextual effects. This intermediate step to the full system, but the limited ‘triangular’
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system is useful in understanding the mechanisms at work.

We will show below that to identify the cross-choice peer effect in the ‘triangular’ model, we need

to further exploit the set of exclusion restrictions from the intransitivities that exist in a natural

network of friendships. In Section 3.3, we formally show that the ‘triangular’ model can be identified

when IGG2G3 are linearly independent.

This can be understood in two ways. One, in a simple sense, we need to identify one additional

structural parameter. To do so, we need an additional exclusion restriction of some type. We

draw then again on the fact that the social network has a larger number of intransitivities. Every

intransitivity is in fact an available exclusion; most social networks will have a very large number

of them. Using the G2 matrix is a simple and intuitive one as it a characterization of the second

degree links in the network. G3 shows the third degree links.

Two, intuitively, we can consider a classroom example where we need to understand how the

smoking choices of students in a classroom influence smoking decisions, how studying decisions

influence studying and how smoking decisions of peers influences studying. The first two are the

case well known in the literature and can be identified using the intransitivities in the G matrix, as

represented in the G2 matrix. However, notice that if we again use the G2 matrix to identify the

influence of smoking decisions on studying, we would be unable to distinguish between the influence

of smoking on smoking from the influence of smoking on studying. In precisely the same way that

the reflection problem prevents identification in a linear model, we cannot separate the influence of

smoking on the two decisions without an additional exclusion restriction. We use the G3 matrix as

this exclusion restriction.

Furthermore, we show in Section 3.4 that a more complicated ‘square’ model with endogenous,

contextual and two-way cross-choice peer effects can also be identified through the exclusion restric-

tions due to the intransitivity of friendship.

• Simultaneity effect

The standard economic simultaneity effect can be seen in the 12 and 21 coefficients of our

general simultaneous equations model. Thus, increasing 2 has an incremental impact on the

choice of 1, and vice versa. In the absence of social influence, the simultaneity problem is a well

known problem for the identification of a simultaneous equations model. The usual remedy for this

identification problem is to impose exclusion restrictions on the coefficients of exogenous variables
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x.

For the ‘square’ simultaneous equations model, we show in Section 3.4 that for the specification

with only simultaneity effect (besides endogenous and contextual effects), the model can be identified

through the intransitivities in the network structure. However, for the general ‘square’ model with

both simultaneity and cross-choice peer effects, the intransitivities in the network structure would

not be enough to identify the various social interaction effects. Hence, to achieve identification, we

need to impose some exclusion restrictions on x.

• Network correlated effect

The structure of the general simultaneous equations model is flexible enough to allow us to

incorporate two types of correlated effects.

First, the individuals in the same network may behave similarly as they have similar unobserved

individual characteristics and they face similar institutional environment. We call this type of

correlated effect the network correlated effect. The network correlated effect is captured in our

general simultaneous equations model by introducing a network-specific fixed effect .

Network fixed effects can be interpreted as originating from a two-step link formation model,

where individuals self-select into different networks in a first step with selection bias due to specific

network characteristics and, then, in a second step, link formation takes place within networks based

on observable individual characteristics only. Therefore, network fixed effects serve as a (partial)

remedy for the bias that originates from the possible sorting of individuals into networks. To estimate

the simultaneous equations model with network fixed effects, we use a within group estimator that

eliminates the network fixed effects by subtracting the network average from the individual-level

variables. The details of the estimator and identification results are presented in Appendix D.

• Cross-choice correlated effect

Second, the decisions of the same individual on related activities may be correlated. We call

this type of correlated effect the cross-choice correlated effect. The cross-choice correlated effect

is introduced by allowing the error terms ’s to be correlated across equations. As our identi-

fication results are based on the mean of reduce-form equations, they will not be affected by the

across-equation correlation in the error term. However, for estimation efficiency, it is important to

consider the correlation structure of error terms. Following Kelejian and Prucha (2004), we adopt
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a generalized spatial 3SLS (GS3SLS) estimator for the estimation of our model. The details of the

estimator are given in Appendix B.3.

3 Identification of Econometric Model

3.1 General setup

Consider a data set containing  agents, partitioned into ̄ networks such that each network has

 agents ( = 1 · · ·  ̄) and P̄
=1  = .6 Links between agents are captured by an  × 

zero-diagonal row-normalized adjacency matrix G = [
∗
] defined as in the previous section.

The equilibrium best response functions (18) and (19) can be rewritten in matrix form as7

y1 = 11Gy1 + 12y2 + 21Gy2 +Xc1 +GXγ1 + ²1 (20)

y2 = 22Gy2 + 21y1 + 12Gy1 +Xc2 +GXγ2 + ²2 (21)

In this model, for  = 1 2, y = (1 · · ·   )0 is an ×1 vector of cross sectional observations
on the th decision. X = (x01 · · · x0)0 is an  ×  matrix of exogenous variables. ² =

(1 · · ·  )0 is an  × 1 vector of disturbances. We assume (²1 ²2) = V Σ
12, where

V  = [] is an  × 2 matrix of I.I.D. innovations with zero mean and unit variance and

Σ =

⎡⎢⎣ 21 12

12 22

⎤⎥⎦
is a positive semi-definite symmetric matrix. Thus, we allow the error terms of decisions made by

the same agent to be correlated, which is captured by 12.

For all ̄ networks in the sample, we have, for  = 1 2, y = (y
0
1 · · · y0̄)0, ² = (²01 · · ·  ²0̄)0,

X = (X 0
1 · · · X 0

̄)
0, and G = diag{G}̄=1. Then,

y1 = 11Gy1 + 12y2 + 21Gy2 +Xc1 +GXγ1 + ²1 (22)

y2 = 22Gy2 + 21y1 + 12Gy1 +Xc2 +GXγ2 + ²2 (23)

As (²1 ²2) = V Σ12, where V is an  × 2 matrix of I.I.D. innovations with zero mean and
6For simplicity, we assume no agent is isolated.
7For ease of presentation, we focus on the model without the network fixed effect . The identification results for

the model with network fixed effects are collected in Appendix D.
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unit variance, E(²²0) = Σ ⊗ I for ² = (²01 ²
0
2)
0. Let Z1 = [Gy1y2Gy2XGX], Z2 =

[Gy2y1Gy1XGX], and Q denote the IV matrix based on GX and their functions.8 Then,

the model is identified if the following condition is satisfied.

Identification Assumption lim→∞ 1

Q0E(Z) is a finite matrix which has full column rank

for  = 1 2.

This identification assumption implies the rank condition that E(Z) has full column rank and that

Q has a rank at least as high as E(Z), for large enough . In the rest of this section, we provide

some sufficient conditions for the identification assumption to hold.

This simultaneous equation model not only incorporates the endogenous effect (through 11 and

22) and the contextual effect (through γ1 and γ2) as in a standard single equation network model,

but also includes the simultaneity effect (through 12 and 21), wherein an individual’s decision

depends on his/her decisions on related activities, the cross-choice peer effect (through 21 and 12),

wherein an individual’s decision depends on his/her peers’ decisions on related activities, and the

cross-choice correlated effect through the correlation in ²1 and ²2. The general model structure

will allow us to illustrate how the various effects operate on a empirical basis, and to show the

identification requirements for each effect.

In the following subsections, we articulate methods to identify three different versions of the

general simultaneous equations model that amount to increasing degrees of interdependence in de-

cision making. As we discussed in the previous Section, in terms of the parameters of the utility

function (1), the models are, namely, (i) the ‘seemingly unrelated’ regression (SUR) case where

∗12 = ∗12 = ∗21 = 0, (ii) the ‘triangular’ case where ∗12 = ∗12 = 0; and (iii) the “square” case

where we do not impose any restrictions on the parameters in (7) and (8). Without loss of gener-

ality, henceforth we assume  = 1 so that there is a unique exogenous variable in the model as in

Bramoullé et al. (2009).

3.2 The ‘seemingly unrelated’ simultaneous equations

First, we consider the model under the restrictions ∗12 = ∗12 = ∗21 = 0. In terms of parameters in

(18) and (19), we have the restrictions 12 = 21 = 12 = 21 = 0, such that the econometric model

8 In this paper, we assume  are nonstochastic. This assumption can be easily relaxed and the results will be

conditional on .
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(22) and (23) reduces to (see (10) and (11)):

y1 = 11Gy1 +Xc1 +GXγ1 + ²1 (24)

y2 = 22Gy2 +Xc2 +GXγ2 + ²2 (25)

In this case, an individual’s decision is still allowed to be correlated with his/her other decisions

through the error term.

Without loss of generality, we focus on the identification of equation (24). The identification

condition for (25) can be analogously derived. Let Z1 = [Gy1XGX]. For the identification

assumption to hold, E(Z1) needs to have full column rank. In the following proposition, we give a

sufficient condition for this rank condition.9

Proposition 1 Suppose γ1 + 11c1 6= 0. Then E(Z1) of (24) has full column rank if and only if

IGG2 are linearly independent.

If γ1+11c1 = 0, then E(Gy) = GXc1. In this case, model (24) can not be identified because the

matrix E(Z1) = [E(Gy)XGX] does not have full column rank. This corresponds to the case where

the endogenous effect and exogenous effect exactly cancel out. Lee et al. (2010) have shown, when

γ1+11c1 = 0, the reduced form of (24) becomes a simple regression model with neither endogenous

nor contextual effects. Interdependence across individuals goes through unobservables (correlated

disturbances) instead of observables. A special case of γ1+11c1 = 0 would be c1 = γ1 = 0. In this

case, E(Gy) = 0, and the model cannot be identified as there is no relevant exogenous covariate in

the model that can be used as an instrument for the endogenous effect.

If γ1 + 11c1 6= 0, Bramoullé et al. (2009) have shown that the single-equation network model
can be identified if intransitivities exist in a network so that IGG2 are linearly independent. In

this case, G2X is not perfectly collinear with X and GX and thus can be used as an instrument

for the endogenous effect. For the SUR model, although the error term of (24) is allowed to be

correlated with the error term of (25), the identification condition for (24) is the same as that for

the single-equation network model given by Bramoullé et al. (2009). The presence of two equations

with correlate errors does not inhibit identification. This is because the identification condition given

by Bramoullé et al. (2009) is based on the mean of the reduced form equation, which is not affected

by the correlation structure of the error terms.

9All proofs can be found in Appendix C.
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3.3 The ‘triangular’ system of simultaneous equations

Next, we will consider the model under the restrictions ∗12 = ∗12 = 0. In terms of parameters in

(18) and (19), we have the restrictions 12 = 21 = 12 = 0. This shuts down the simultaneity

effect and one direction of the cross-choice peer effect. It retains the endogenous and contextual

effects associated with each choice and retains the need to solve for the cross-choice peer effect in

one direction. In this case, the model becomes (see (12) and (13)):

y1 = 11Gy1 + 21Gy2 +Xc1 +GXγ1 + ²1 (26)

y2 = 22Gy2 +Xc2 +GXγ2 + ²2 (27)

From Proposition 1, the unknown parameters in equation (27) can be identified if γ2+22c2 6= 0 and
IGG2 are linearly independent. We can next consider the identification condition for equation

(26). Let Z1 = [Gy1Gy2XGX]. For the identification of equation (26), we need to find a

sufficient condition for E(Z1) to have full column rank.

Proposition 2 Suppose γ2 + 22c2 6= 0 and

(11 − 22)(γ1 + 11c1) + 21(γ2 + 11c2) 6= 0 (28)

Then E(Z1) of model (26) has full column rank if and only if IGG2G3 are linearly independent.

A special case of (28) is of particular interest. If 21 = 0 and 11 = 22 so that the data

generating process (DGP) is a pair of ‘seemingly unrelated’ simultaneous equations with identical

endogenous effects, then, according to (28), (26) cannot be identified. Indeed, if 21 = 0 in the DGP,

E(Z1) = [GE(y1)GE(y2)XGX], where

GE(y1) = GXc1 + (I − 11G)
−1G2X(11c1 + γ1)

GE(y2) = GXc2 + (I − 22G)
−1G2X(22c2 + γ2)

Thus, when 11 = 22, E(Z1) does not have full column rank and the ‘triangular’ model cannot be

identified. On the other hand, if 11 6= 22, 11c1 + γ1 6= 0, and 22c2 + γ2 6= 0, the ‘triangular’

model can be identified if IGG2G3 are linearly independent.
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(a) (b) (c) (d)

Figure 2: networks where the SUR model can be identified but the ‘triangular’ model cannot.

By comparing Proposition 2 with Proposition 1, we can see that the identification of the cross-

choice peer effect in the ‘triangular’ model has higher requirement in terms of intransitivities than

the SUR model. Suppose  and  are friends,  and  are friends and  and  are friends. Then,

the identification of the SUR model requires that  is not a friend of  and the identification of the

‘triangular’ model requires that  is not a friend of  and  is not a friend of  or . Figure 2 lists

a few examples where the SUR model can be identified but the ‘triangular’ model cannot. It is

easy to check that for all four networks in Figure 2, IGG2 are linearly independent. However,

for networks (a) and (c), G3 = G; for network (b), G3 = −1
4
I + 1

4
G +G2; and for network (d),

G3 = −1
8
I + 3

8
G + 3

4
G2. Therefore, it follows by Propositions 1 and 2 that, for the networks in

Figure 2, the SUR model can be identified but the ‘triangular’ model cannot.

To understand why this does not work for networks such as (a) and (c), we refer to network (a).

In this star network, the center individual’s friends have no other friends. The periphery individuals

have some second-degree connections, but no one has a third degree connection. As a result, we

cannot draw on the fact that our friends’ friends may have indirect influences on our behavior.

3.4 The ‘square’ system of simultaneous equations

To better understand the identification challenges brought by the simultaneity effect and the cross-

choice peer effect, we consider three specifications of the ‘square’ model. In the first case we only

include the cross-choice peer effect and in the second case we only include the simultaneity effect.

The third case incorporates both simultaneity and cross-choice peer effects.
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3.4.1 The ‘square’ model with cross-choice peer effects

First, we will consider the model under the restrictions ∗12 = 0. In terms of parameters in (18) and

(19), we have the restrictions 12 = 21 = 0. Thus, the model becomes (see (14) and (15)):

y1 = 11Gy1 + 21Gy2 +Xc1 +GXγ1 + ²1 (29)

y2 = 22Gy2 + 12Gy1 +Xc2 +GXγ2 + ²2 (30)

The following proposition gives a sufficient condition for the identification of (29). The sufficient

condition for the identification of (30) can be analogously derived. Let Z1 = [Gy1Gy2XGX]

and 0 1 2 3 be generic constant terms that may be different for different uses.

Proposition 3 If either (i) IGG2G3G4 are linearly independent and A1 given by (35) has full

rank, or (ii) IGG2G3 are linearly independent, G4 = 0I + 1G+ 2G
2 + 3G

3 and A∗1 given

by (36) has full rank, then E(Z1) of model (29) has full column rank.

Similarly to the ‘triangular’ model with a one-way cross-choice effect, Proposition 3 shows that

the two-way cross-choice peer effect in a ‘square’ model can be identified through intransitivities

that exist in a network.

3.4.2 The ‘square’ model with simultaneity effects

Next, we will consider the model under the restrictions ∗12 = ∗21 = 0 or 12 = 21 = 0 in terms of

parameters in (18) and (19). In this case, the econometric models for the best response functions

(see (16) and (17)) are:

y1 = 11Gy1 + 12y2 +Xc1 +GXγ1 + ²1 (31)

y2 = 22Gy2 + 21y1 +Xc2 +GXγ2 + ²2 (32)

The following proposition gives a sufficient condition for the identification of (31). The sufficient

condition for the identification of (32) can be analogously derived. Let Z1 = [Gy1y2XGX].

Proposition 4 If either (i) IGG2G3G4 are linearly independent and A2 given by (37) has full

rank, or (ii) IGG2G3 are linearly independent, G4 = 0I + 1G+ 2G
2 + 3G

3 and A∗2 given

by (38) has full rank, then E(Z1) of model (31) has full column rank.
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Without social interaction effects, the simultaneity problem is a well known problem for the

identification of a simultaneous equations model. The usual remedy for this identification problem

is to impose exclusion restrictions on the coefficients of exogenous variables X. Proposition 4 shows

that, in the absence of cross-choice peer effects, the simultaneity effect in a simultaneous equations

network model can be identified without imposing exclusion restrictions on X.

3.4.3 The general ‘square’ model

Finally, we consider the identification of the model with both simultaneity and cross-choice peer

effects. The following proposition show that, without imposing any exclusion restrictions, equations

(22) and (23) cannot be identified.

Proposition 5 The system of simultaneous equations (22) and (23) cannot be identified.

Proposition 5 shows that, for a simultaneous equations model with both simultaneity and cross-

choice peer effects, exploiting the exclusion restrictions from the intransitivities that exist in a natural

network is not sufficient for the identification. One possibility to achieve identification is to impose

exclusion restrictions on exogenous variables in the model. To clarify ideas, we consider the following

model

y1 = 11Gy1 + 12y2 + 21Gy2 +X1c1 +GX1γ1 + ²1 (33)

y2 = 22Gy2 + 21y1 + 12Gy1 +X2c2 +GX2γ2 + ²2 (34)

where X1 and X2 are column vectors and X1 6= X2. The following proposition gives a sufficient

condition for the identification of (33). The sufficient condition for the identification of (34) can be

analogously derived. Let Z1 = [Gy1y2Gy2X1GX1].

Proposition 6 If (i) IGG2G3G4 are linearly independent and A3 given by (39) has full rank,

(ii) IGG2G3 are linearly independent, G4 = 0I + 1G + 2G
2 + 3G

3 and A∗3 given by (40)

has full rank, or (iii) IGG2 are linearly independent, G3 = 0I + 1G+ 2G
2 and A∗∗3 given by

(41) has full rank, then E(Z1) of (33) has full column rank.

Note that a sufficient condition for A3 in (39) to have a full rank is that 2 2 are not both zeros,

21 + 1112 6= 0 and 1− 1221 6= 0.
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4 Empirical applications

4.1 Data

We use for this analysis a unique and now widely used data set provided by National Longitudinal

Survey of Adolescent Health (AddHealth). The AddHealth data set provides detailed information on

a large number of high school students including self-reported friendship networks.10 This database

was designed to study the impact of the social environment on adolescent behavior. The program

collected national representative information on 7th-12th graders in both public and private school

settings.

The survey was conducted in 1994-1995 and was designed to capture information on friends,

family, school and neighborhood influences on students behaviors, including academic performance,

social decisions, extracurriculars, dangerous behaviors and more. Every student attending schools on

the sampling day was provided with a questionnaire that covered topics on demographics, behavioral

characteristics, education, family background and critically for our purposes, friendships. This in-

school survey sample included more than 90,000 students. A follow-up, more focused study covered a

subset of the total sample with approximately 20,000 students. This more detailed survey included

an in-home questionnaire as well as a supplemental survey with more sensitive questions. Our

empirical study focus on the 20,000 students in the in-home survey study.

As illustrated above, we will mainly focus here on two activities: education (i.e. GPA) and screen

activities. The former (GPA) is the average of the student most recent grades in English, science,

math and history. The latter is the response to the question: “During the past week, how many

times did you watch television or videos, or play video games?”, coded as 0 if not at all, 1 if one or

two times, 2 if three or four times, and 3 if five times or more.

The adjacency matrix G = [∗ ], where 
∗
 = 

P
=1  , is constructed based on the friend-

nomination information of the AddHealth data. In the questionnaire, students were asked to identify

their best friends from a school roster, and then list up to five boys and five girls from this list. We

assume friendship is reciprocal. Thus, for students  and  ( 6= ),  = 1 if either  nominates 

or  nominates  as a friend and  = 0 otherwise. After removing students with no friends, the

10This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman,

and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and

Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald R.

Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add

Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524

(addhealth@unc.edu). No direct support was received from grant P01-HD31921 for this analysis.
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sample consists of 9,065 students distributed over 1,964 networks, with network size ranging from 2

to 1505. Because the strength of peer effect may vary with network size (see Calvó-Armengol et al.,

2009), we exclude networks at the extremes of the network size distribution and focus our analysis

on moderate-sized networks with network size between 10 and 200. Our selected sample consists of

1,806 students distributed over 56 networks, with network size ranging between 10 and 145. The

mean and the standard deviation of network size are 32.25 and 34.23. Furthermore, in our sample,

the average number of friends of a student is 3.18 with the standard deviation 2.35.

A detailed data description is available in Table 1.

[Insert Table 1 here]

4.2 The seemingly unrelated regression (SUR) case

First, we model a student’s GPA and screen activities using the seemingly unrelated equations (24)

and (25) with network-specific fixed effect.11 To avoid the ‘incidental parameter’ problem induced by

the network fixed effect dummy variables, we perform a within transformation to get rid of network

dummy variables by subtracting the network average from the individual-level variables. Then, we

estimate the model using Kelejian and Prucha’s (2004) generalized spatial 2SLS (GS2SLS) with

the IV matrix Q = [XGXG2X]. The GS2SLS approach estimates the simultaneous equations

model equation by equation. It is not efficient as it does not take into account the cross-equation

correlation in the error term. To utilize the full system information, we also consider the generalized

spatial 3SLS (GS3SLS) estimator, which jointly estimate the simultaneous equations (24) and (25).

The GS3SLS estimator can be considered as a generalized least squares version of the GS2SLS

estimator, which take the cross-equation correlation of the disturbances into account. The details

of the estimators are given in Appendix B.3.

Table 2 reports the estimation results. For both GS2SLS and GS3SLS estimators, the well

documented impact of peer GPA is observed to be quite strong. In other words, the higher is the

average grades of an individual’s friends, the higher is his/her own grade. Ceteris paribus, a student’s

GPA increases by 0.7 if the average peer GPA increases by 1 point. This result is in line with most

papers showing positive peer effects in education (see, e.g. Calvó-Armengol, et al., 2009; DiGiorgi

et al., 2012; Bifulco, et al., 2011). Interestingly, in this model, the time friends spend watching

11The details on the specification and identification of the simultaneous equations model with network fixed effects

are given in Appendix D.
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TV (or any screen activity) has a positive but not statistically significant impact of own time spent

watching TV. This is again in line with the few empirical studies on this topic (Liu et al., 2012).

[Insert Table 2 here]

4.3 The triangular case

Table 3 shows the results of the two possible triangular cases. Triangular model 1 assumes a student’s

GPA is affected by the average screen activities of the peers but not vice versa. That is, in equations

(26) and (27), y1 corresponds to GPA and y2 to screen activities. Triangular model 2 assumes a

student’s screen activities is affected by the average GPA of the peers but not vice versa. That is,

in equations (26) and (27), y1 corresponds to screen activities and y2 to GPA. For the triangular

models, we only report the generalized spatial estimator (GS3SLS) to save space. We notice that,

for both triangular models, the estimation results of (27) are in line with those in the SUR case.

Therefore, we focus on the estimation results of (26).

First, for triangular model 1 (y1 = GPA), the estimates of 11 and 21 in (26) are both significant

with a positive sign for the former and a negative sign for the later. This indicates that the higher

the average GPA of a student’s friends the higher is the grade of this student, but the more his/her

friends spend time in screen activities the lower is his/her grades. A plausible explanation for the

negative cross-choice peer effect (21) is that, after accounting for the direct peer influence from

studying, the more time my friends spend watching TV, the less time they spend doing homework,

which leads me to spend less doing my homework too, which, in turn, decreases my grades. The

endogenous peer effect and the cross-choice peer effect work in the opposite directions, but we can

see that the first effect is higher in magnitude (and more significant) than the second one so that

the total effect of peers on own education may still be positive.

For triangular model 2 (y1 = screen activities), the GS3SLS estimates of 11 and 21 in (26)

are both positive but not significant, indicating there is no statistically significant evidence that a

student’s screen activities depends on how much time his/her friends spend on screen activities or

studying. Take video games as an example. There is, obviously, a social aspect, but there is also an

addictive one. Thus, if a teenager is obsessed with video games, then the addiction itself might be

the most important component to the decision and the role of social influence less salient. Therefore,
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it would be more difficult to find evidence of peer effect in such activities.

[Insert Table 3 here]

4.4 The square case

We consider three specifications of the square model. Square model 1 given by (29) and (30) only

includes the cross-choice peer effect. Square model 2 given by (31) and (32) only includes the

simultaneity effect. Square model 3 given by (33) and (34) is the most general one with both

simultaneity and cross-choice peer effects. Table 4 reports the GS3SLS estimation results for square

models 1 and 2. Table 5 displays the results for the GS2SLS and GS3SLS estimation of square model

3.

The square case introduce a number of new requirements for identification. Most importantly,

square model 3 requires the introduction of two instruments (or exclusion restrictions), one for each

decision. We instrument the GPA of a student (1) with his/her parental education and the time

spent in screen activities of a student (2) by a variable that measures whether the respondent’s

parents let the student make his/her own decision on how much TV to watch (the variable “TV

watching decision” in Table 1). Our first exclusion is that parental education has an impact on the

student’s GPA, but does not have a direct impact on the student’s screen activities. Our second

exclusion is that the variable “TV watching decision” has an impact on the time spent in screen

activities but that the latter has no direct impact on GPA. We believe that both exclusions are

reasonable and very intuitive. Furthermore, from the estimation results of the square models reported

in Tables 4 and 5, we can see that parental education has a significantly positive impact on GPA

and “TV watching decision” has a significantly positive impact on screen activities, which indicating

the suggested instruments are both relevant. We also conduct overidentification restrictions (OIR)

test for both equations, which provide empirical evidence that the suggested instruments are both

valid.

For the estimation results, we focus on the case of GS3SLS, which is the more efficient estimator

taking into account the cross-equation correlation in the disturbances. For the estimation of square

model 1, the results are largely consistent with those found in the triangular model, which highlight

the positive peer effects in education and the negative cross-choice peer effect in watching TV on

own education. Interestingly, from the estimation of square model 2, the simultaneity effect is found
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to be positive and statistically significant for both activities. These results are confirmed from the

estimation of the more general square model 3. Furthermore, estimation of square model 3 also

shows positive peer effect in screen activities and negative cross-choice peer effect in GPA on screen

activities. These results indicate, keeping peers’ GPA and screen activities fixed and controlling for

a wide range of other correlates, watching more TV could be beneficial to a student’s grade. On

the other hand, a student will watch more TV if his/her friends watch more TV or if his/her own

GPA improves. But a student will watch less TV as his/her friends get better grades. A plausible

explanation for the negative cross-choice peer effect and the positive simultaneity effect is that a

student watches less TV if he/she feels pressure from peers’ better academic performance, but a

student may want to reward him/herself with some entertainment if his/her own grades improves.

[Insert Tables 4 and 5 here]

5 Conclusion

In this paper, we investigate the impact of peers on own outcomes where all agents embedded

in a network choose more than one activity. We develop a simple network model that illustrates

these issues. We differentiate between the ‘seemingly unrelated’ simultaneous equations model where

people are influenced only by others within the same activity, the ‘triangular’ system of simultaneous

equations model, where there is some asymmetry in the peers’ cross effects, and the ‘square’ system

of simultaneous equations model, where all possible cross-effects are taken into account. We develop

the conditions under which each model is identified, showing that the standard network conditions

for one activity are not enough for the last model to be identified. We then study the impact of peer

effects on education and watching TV (and playing video games) and show that the estimation of

two group-level effects has a non-trivial impact on adolescent behavior.

We believe that the methodology developed in this paper is important because, in real-world

situations, individuals choose more than one activity. This also has important policy implications

because some activities reinforce each other (when they are complements, like for example smoking

and drinking) while other counter each other (when they are substitutes, like for example drinking

and education). We have shown that education and screen activities have a non-trivial relationship

and that, in some cases, watching TV could be good for education. In terms of policy implications,

this implies that the planner will have more than one instrument available. Consider, for example,
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peer effects in crime (Patacchini and Zenou, 2012). Most policies aiming at reducing crime will either

punish more or, in the context of criminal networks, target some “key players”, who once removed

generates the highest possible reduction in crime (Liu et al., 2012). Imagine, now, that using our

methodology, one founds that crime and education are substitutes (which should be the case) and

can quantify the impact of peers on each activity and see how much their offset each other. Then,

the planner can identify a key player based on a two-dimensional scale so that it is the criminal who

once removed reduces the most total crime and reduces the most total grades in a network. In other

words, a planner can implement a policy that impacts on both crime and education by providing

incentives to reduce crime and increase education. This is what we plan to investigate in the future.
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APPENDIX

A Rank Conditions for Identification

In this appendix we list the matrices whose rank conditions are used for the identification of the ‘square’ model.

For the ‘square’ model with cross-choice peer effects, identification requires A1 or A
∗
1 to have full rank (see Proposition 3).

A1 = [1 ] (35)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

1 2 −(211 + 22) 1

1 − (11 + 22)1 + 212 2 + 121 − 2112 211 + 21122 − 1221 −(211 + 22)⎡⎢⎣ 11221 − 11212

−(11 + 22)1 + 212

⎤⎥⎦ 121 − 2112 − 11121 + 2112 −11(1122 − 1221) 211 + 21122 − 1221

11(221 − 212) −11(121 − 112) 0 −11(1122 − 1221)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


A∗1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

111 + 0151 112 + 0152 113 + 0153 114 + 0154

121 + 1151 122 + 1152 123 + 1153 124 + 1154

131 + 2151 132 + 2152 133 + 2153 134 + 2154

141 + 3151 142 + 3152 143 + 3153 144 + 3154

⎤⎥⎥⎥⎥⎥⎥⎥⎦
 (36)

For the ‘square’ model with simultaneity effects, identification requires A2 or A
∗
2 to have full rank (see Proposition 4).
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A2 = [2 ] (37)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 211 + 2 1− 1221 0

1 + 122

⎡⎢⎣ 211 + 2

−11211 − 2112

⎤⎥⎦
⎡⎢⎣ −(11 + 22)

−11(1− 1221)

⎤⎥⎦ 1− 1221

⎡⎢⎣ 1 + 122

−(11 + 22)1 − 11122

⎤⎥⎦ −11(211 + 22 − 112) 11(11 + 222)

⎡⎢⎣ −(11 + 22)

−11(1− 1221)]

⎤⎥⎦
11221 − (11 + 22)1 − 11122 2112 −21122 11(11 + 222)

11221 0 0 −21122

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



A∗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

211 + 0251 212 + 0252 213 + 0253 214 + 0254

221 + 1251 222 + 1252 223 + 1253 224 + 1254

231 + 2251 232 + 2252 233 + 2253 234 + 2254

241 + 3251 242 + 3252 243 + 3253 244 + 3254

⎤⎥⎥⎥⎥⎥⎥⎥⎦
 (38)

For the general ‘square’ model, identification requires A3, A
∗
3 or A

∗∗
3 to have full rank (see Proposition 6).

A3 = [B
0C0]0 (39)
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where

B = [ ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 211 0 1− 1221 0

11 22 211 24 1− 1221

1 − (11 + 22)1 32 33 34 35

11221 − (11 + 22)1 −11121 43 44 45

11221 0 −11121 0 −11(1122 − 1221)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


22 = 211 + (12 − 1121)1

24 = −(211 + 22 + 1212 + 2121 − 111221)

32 = (12 − 1121)1 − 11121

33 = 211 + (12 − 1121)1

34 = 211 + 21122 − 1221 + 111212 + 112121

35 = −[11 + 22 + 1212 + 2121 + 11(1− 1221)]

43 = (12 − 1121)1 − 11121

44 = −11(1122 − 1221)

45 = 211 + 21122 − 1221 + 111212 + 112121
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and

C = [ ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0

122 2 − 2112 2 0 0

(21 − 1112)2 + 122 2112 − 2112 2 − 2112 0 0

(21 − 1112)2 − 11212 2112 2112 − 2112 0 0

−11212 0 2112 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


A∗3 = [B
∗0C∗0]0 (40)

where

B∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11 + 051 12 + 052 13 + 053 14 + 054 15 + 055

21 + 151 22 + 152 23 + 153 24 + 154 25 + 155

31 + 251 32 + 252 33 + 253 34 + 254 35 + 255

41 + 351 42 + 352 43 + 353 44 + 354 45 + 355

⎤⎥⎥⎥⎥⎥⎥⎥⎦


and

C∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11 + 051 12 + 052 13 + 053 0 0

21 + 151 22 + 152 23 + 153 0 0

31 + 251 32 + 252 33 + 253 0 0

41 + 351 42 + 352 43 + 353 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦


A∗∗3 = [B∗∗0C∗∗0]0 (41)
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where

B∗∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 + 041 + 0251 12 + 042 + 0252 13 + 043 + 0253 14 + 044 + 0254 15 + 045 + 0255⎡⎢⎣ 21 + 141

+(0 + 12)51

⎤⎥⎦
⎡⎢⎣ 22 + 142

+(0 + 12)52

⎤⎥⎦
⎡⎢⎣ 23 + 143

+(0 + 12)53

⎤⎥⎦
⎡⎢⎣ 24 + 144

+(0 + 12)54

⎤⎥⎦
⎡⎢⎣ 25 + 145

+(0 + 12)55

⎤⎥⎦
⎡⎢⎣ 31 + 241

+(1 + 22)51

⎤⎥⎦
⎡⎢⎣ 32 + 242

+(1 + 22)52

⎤⎥⎦
⎡⎢⎣ 33 + 243

+(1 + 22)53

⎤⎥⎦
⎡⎢⎣ 34 + 244

+(1 + 22)54

⎤⎥⎦
⎡⎢⎣ 35 + 245

+(1 + 22)55

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


and

C∗∗ =

⎡⎢⎢⎢⎢⎣
11 + 041 + 0251 12 + 042 + 0252 13 + 043 + 0253 0 0

21 + 141 + (0 + 12)51 22 + 142 + (0 + 12)52 23 + 143 + (0 + 12)53 0 0

31 + 241 + (1 + 22)51 32 + 242 + (1 + 22)52 33 + 243 + (1 + 22)53 0 0

⎤⎥⎥⎥⎥⎦ 
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B A General Multivariate Choice Network Model

B.1 Multivariate choice network model without group fixed effects

Consider a general social interaction model with  agents each facing  decisions. The  agents are

partitioned into ̄ networks such that each network has  agents ( = 1 · · ·  ̄) and
P̄

=1  = .

Following Kelejian and Prucha (2004), for the th network, the equilibrium decisions are captured

by the following simultaneous equation model with  equations,

Y  = Y B +XC + Ȳ Λ+ X̄Γ+E (42)

In this model, Y  = (y1 · · · y), where y is an  × 1 vector of cross sectional observations
on the th decision. X is an × matrix of exogenous variables. Ȳ  = GY  and X̄ = GX,

where G is an  ×  adjacency matrix of known constants. E = (²1 · · ·  ²) = V Σ
12,

where V  = [] is an  × matrix of I.I.D. innovations with zero mean and unit variance and

Σ is a positive semi-definite symmetric  ×  matrix. Finally, B, C, Λ, Γ are correspondingly

defined parameter matrices of dimension ×,  ×, ×,  ×, respectively.

For all ̄ networks, it follows from (42) that

Y = Y B +XC + Ȳ Λ+ X̄Γ+E (43)

where Y = (Y 0
1 · · · Y 0

̄)
0, X = (X 0

1 · · · X 0
̄)
0, Ȳ = (Ȳ

0
1 · · ·  Ȳ 0

̄)
0, X̄ = (X̄

0
1 · · ·  X̄ 0

̄)
0, and E =

(E0
1 · · · E0

̄)
0. Let G = diag{G}̄=1, then Ȳ = GY and X̄ = GX. Let y = vec(Y ), x = vec(X),

and ² = vec(E).12 As vec(Ȳ Λ) = vec(GY Λ) = (Λ0 ⊗G)y, vec(X̄Γ) = vec(GXΓ) = (Γ0 ⊗G)x,
vec(Y B) = (B0 ⊗ I)y and vec(XC) = (C0 ⊗ I)x, it follows from (43) that

y = B∗y +C∗x+ ² (44)

where B∗ = (B0 ⊗ I +Λ0 ⊗G) and C∗ = (C 0 ⊗ I + Γ0 ⊗G).
Let V = (V 0

1 · · · V 0
̄)
0. Note that ² = vec(E) = vec(VΣ12) = (Σ12 ⊗ I)vec(V ). Hence

12For an × matrix  = [ ], the vectorization of  is given by

vec() = (11 · · ·  1 12 · · ·  2 · · ·  1 · · ·  )0
Note that if , ,  are conformable matrices, then vec() = (0 ⊗)vec(), where ⊗ denotes the Kronecker

product.
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E(²) = 0 and E(²²0) = (Σ12 ⊗ I)(Σ12 ⊗ I) = Σ ⊗ I. Thus, this specification allows for the
innovations corresponding to the same agent to be correlated across decisions.

For the model (44) to have a unique equilibrium, we need the following assumption.

Assumption 1. (I −B∗) is nonsingular.
From (44), we have

(I −B∗)y = C∗x+ ²

If (I −B∗) is nonsingular, the reduced form equation is

y = (I −B∗)−1C∗x+ (I −B∗)−1². (45)

Finally, we impose exclusion restrictions on (43). Let b, c, λ and γ be the vectors of nonzero

elements of the th columns of B, C, Λ, and Γ. Let Y , X, Ȳ  and X̄ be the corresponding

matrices of Y , X, Ȳ and X̄ that appear in the th equation. Then,

y = Zδ + ²,

where y = (y
0
1 · · · y0̄)0, Z = (Y X Ȳ  X̄), ² = (²

0
1 · · ·  ²0̄)0, and δ = (b cλγ).

Let Q denote the (nonstochastic) IV matrix. Then, the model is identified if the following condition

is satisfied.

Assumption 2. lim→∞ 1

Q0E(Z) is a finite matrix which has full column rank,  = 1 · · · .

This identification assumption implies the rank condition that E(Z) has full column rank and

that Q has a rank at least as high as E(Z), for large enough . This identification assumption also

requires Q to be correlated with Z in the limit as  goes to infinity.

B.2 Multivariate choice network model with group fixed effects

Now, we allow for unobserved correlation among observations in a network by adding a group-specific

effect into the model such that

Y  = a ⊗ l + Y B +XC + Ȳ Λ+ X̄Γ+E (46)

where a = (1 · · ·  ). We allow the group-specific effect  to depend on X and G

by treating  as an unknown parameter (as in a fixed-effect panel data model). To avoid the
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“incidental parameters” problem, we transform model (46) to eliminate the group fixed effect .

First, we consider the transformation with the projection matrix J = I − 1

l l

0

. As

Jl = 0, premultiplying (46) by J gives

JY  = JY B + JXC + JȲ Λ+ JX̄Γ+ JE

For all ̄ networks, we have

JY = JY B + JXC + JȲ Λ+ JX̄Γ+ JE (47)

where J = diag{J}̄=1.
For an essentially equivalent but more effective transformation, we consider the orthonormal

matrix of J given by [F  l
√
], where the columns of F  are eigenvectors of J corresponding to

the eigenvalue one. Note that F 0l = 0, F
0
F  = I−1 and F F

0
 = J. Therefore, premultiplying

(46) by F 0
 leads to a transformed model without the incidental parameters,

F 0
Y  = F

0
Y B + F 0

XC + F
0
Ȳ Λ+ F

0
X̄Γ+ F

0
E

For all ̄ networks, we have

F 0Y = F 0Y B + F 0XC + F 0Ȳ Λ+ F 0X̄Γ+ F 0E (48)

where F = diag{F }̄=1.
In order to achieve identification, we impose some exclusion restrictions on (48). Let b, c, λ

and γ be the vectors of nonzero elements of the th columns of B, C, Λ, and Γ. Let Y , X, Ȳ 

and X̄ be the corresponding matrices of Y , X, Ȳ and X̄ that appear in the th equation. Then,

y∗ = Z
∗
δ + ²

∗
 (49)

where y∗ = F
0y, Z

∗
 = F

0Z = F
0(Y X Ȳ  X̄), ²

∗
 = F

0², and δ = (b cλγ).
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B.3 GS2SLS and GS3SLS estimation

The transformed model (49) can be estimated by the generalized spatial 2SLS (GS2SLS) estimator in

Kelejian and Prucha (2004). Let Q be the IV matrix and Q∗ = F 0Q. Then, the GS2SLS estimator

for δ is given by

δ̂2 = (Ẑ
∗0
 Z
∗
)
−1Ẑ

∗0
 y
∗


where Ẑ
∗
 = P

∗Z∗ and P
∗ = Q∗(Q∗0Q∗)−1Q∗0. With J = diag{J}̄=1, the GS2SLS estimator for

δ can be rewritten as

δ̂2 = (Z
∗0
 P
∗Z∗)

−1Z∗0 P
∗y∗ = (Z

0
PZ)

−1Z0Py

where P = JQ(Q0JQ)−1Q0J .

The GS2SLS estimator is not efficient as it does not take into account the cross equation cor-

relation in the innovation vector. To utilize the full system information, Kelejian and Prucha

(2004) have proposed a generalized spatial 3SLS (GS3SLS) estimator. Let y∗ = (y∗01  · · · y∗0)0,
Z∗ = diag{Z∗}=1, ²∗ = (²∗01  · · ·  ²∗0)0, and δ = (δ01 · · ·  δ0)0. Then, for the system of  equa-

tions,

y∗ = Z∗δ + ²∗ (50)

Let Z = diag{Z}=1, Z∗ = diag{Z∗}=1 = (I⊗F 0)Z, and Ẑ
∗
= diag{Ẑ∗}=1 = (I⊗P ∗)Z∗.

As E(²∗²∗0) = (I⊗F 0)E(²²0)(I⊗F ) = (I⊗F 0)(Σ⊗I)(I⊗F ) = Σ⊗I−̄, the (infeasible)
GS3SLS is given by

δ̃3 = [Ẑ
∗0
(Σ−1 ⊗ I−̄)Z∗]−1Ẑ∗0(Σ−1 ⊗ I−̄)y∗

= [Z∗0(Σ−1 ⊗P ∗)Z∗]−1Z∗0(Σ−1 ⊗P ∗)y∗

= [Z0(Σ−1 ⊗P )Z]−1Z0(Σ−1 ⊗P )y

To estimate Σ, let ²̂∗ = Jy−JZδ̂2. Then, Σ can be estimated by Σ̂ with its ( )th element

being ̂ = ²̂
∗0
 ²̂
∗
 (− ̄) for   = 1 · · · . Hence, the feasible GS3SLS is given by

δ̂3 = [Z
0(Σ̂
−1 ⊗P )Z]−1Z0(Σ̂−1 ⊗P )y
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It follows by Kelejian and Prucha (2004) that the small sample distribution of δ̂3 can be approx-

imated as δ̂3 ∼ (δ [Z0(Σ̂
−1 ⊗P )Z]−1)

C Proofs of Identification Results

In the following proofs, without loss of generality, let  = 1 so that X becomes a vector.

Proof of Proposition 1. The proof follows similar arguments as in the proof of Proposition 1 of

Bramoullé et al. (2009).

Proof of Proposition 2. E(Z1) = [GE(y1)GE(y2)XGX] has full column rank if and only if

GE(y1)1 +GE(y2)2 +X3 +GX4 = 0 (51)

implies 1 = 2 = 3 = 4 = 0. From (26), (I − 11G)E(y1) = 21GE(y2) +X1 +GX1. It

follows that,

(I − 11G)[GE(y1)1 +GE(y2)2 +X3 +GX4]

= (21G
2E(y2) +GX1 +G

2X1)1 + (I − 11G)[GE(y2)2 +X3 +GX4]

= [2G+ (211 − 112)G
2]E(y2) + [X3 +GX(11 − 113 + 4) +G

2X(11 − 114)]

As (I − 22G)E(y2) =X2 +GX2 from (27), we have

(I − 22G)[2G+ (211 − 112)G
2]E(y2)

= [2G+ (211 − 112)G
2](X2 +GX2)

= GX22 +G
2X[(2 − 112)2 + 2121] +G

3X(2121 − 1122)

and

(I − 22G)[X3 +GX(11 − 113 + 4) +G
2X(11 − 114)]

= X3 +GX[11 − (11 + 22)3 + 4]

+G2X[(1 − 122)1 + 11223 − (11 + 22)4]−G3X(2211 − 22114)

As (I − 11G) and (I − 22G) are nonsingular and IGG2G3 are linearly independent, (51)
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implies 3 = 0 and

11 + 22 + 4 = 0 (52)

(1 − 221 + 212)1 + (2 − 112)2 − (11 + 22)4 = 0 (53)

(212 − 221)1 − 1122 + 11224 = 0 (54)

From (52), 4 = −(11 + 22). Substitution into (53) and (54) gives

(1 + 212 + 111)1 + (2 + 222)2 = 0 (55)

(212 − 221 − 11221)1 − 11(2 + 222)2 = 0 (56)

Case 1: If 11 = 0, from (56), (212 − 221)1 = 0. If 212 − 221 6= 0, then 1 = 0, which

in turn implies 2 = 4 = 0.

Case 2: If 11 6= 0, then 11×(55)+(56) gives

[(11 − 22)(1 + 111) + 21(2 + 112)]1 = 0

If (11 − 22)(1 + 111) + 21(2 + 112) 6= 0, then 1 = 0, which in turn implies 2 = 4 = 0

Proof of Proposition 3. Identification requires that E(Z1) = [GE(y1)GE(y2)XGX] has a

full column rank for large enough , or, equivalently,

GE(y1)1 +GE(y2)2 +X3 +GX4 = 0 (57)

implies 1 = 2 = 3 = 4 = 0. From (29) and (30), we have

(I − 11G)E(y1) = 21GE(y2) +X1 +GX1 (58)

(I − 22G)E(y2) = 12GE(y1) +X2 +GX2 (59)
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Premultiplying of (59) by (I − 11G) gives

(I − 11G)(I − 22G)E(y2)

= 12G(I − 11G)E(y1) + (I − 11G)(X2 +GX2)

= 12G[21GE(y2) +X1 +GX1] + (I − 11G)(X2 +GX2)

= 1221G
2E(y2) +X2 +GX(2 + 121 − 112) +G

2X(121 − 112)

where the second equality follows by (58). Rearranging terms, we have

[I − (11 + 22)G+ (1122 − 1221)G
2]E(y2) (60)

= X2 +GX(2 + 121 − 112) +G
2X(121 − 112)

Premultiplying of (57) by (I − 11G), It follows by (58) that

GE(y2)2+G
2E(y2)(211−112)+X3+GX(11−113+4)+G2X(11−114) = 0 (61)

Premultiplying of (61) by [I− (11+22)G+(1122−1221)G2] and rearranging terms, it follows

by (60) that

X1 +GX2 +G
2X3 +G

3X4 +G
4X5 = 0 (62)

where

1 = 3

2 = 11 + 22 − (211 + 22)3 + 4

3 = [1 − (11 + 22)1 + 212]1 + (2 + 121 − 2112)2

+(211 + 21122 − 1221)3 − (211 + 22)4

4 = [11221 − 11212 − (11 + 22)1 + 212]1 + (121 − 2112 − 11121 + 2112)2

−11(1122 − 1221)3 + (
2
11 + 21122 − 1221)4

5 = 11(221 − 212)1 − 11(121 − 112)2 − 11(1122 − 1221)4
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If IGG2G3G4 are linearly independent, then 1 = 2 = 3 = 4 = 5 = 0. In this case,

1 = 2 = 3 = 4 = 0 if the rank of A2 given by (35) is 4. On the other hand, if IGG2G3

are linearly independent and G4 = 0I + 1G + 2G
2 + 3G

3, we have 1 + 05 = 2 + 15 =

3 + 25 = 4 + 35 = 0. Then, 1 = 2 = 3 = 4 = 0 if the rank of A
∗
1 given by (36) is 4.

Proof of Proposition 4. Identification requires that E(Z1) = [GE(y1)E(y2)XGX] has a full

column rank for large enough , or, equivalently,

GE(y1)1 +E(y2)2 +X3 +GX4 = 0 (63)

implies 1 = 2 = 3 = 4 = 0. From (31) and (32), we have

(I − 11G)E(y1) = 12E(y2) +X1 +GX1 (64)

(I − 22G)E(y2) = 21E(y1) +X2 +GX2 (65)

Premultiplying of (65) by (I − 11G) gives

(I − 11G)(I − 22G)E(y2)

= 21(I − 11G)E(y1) + (I − 11G)(X2 +GX2)

= 21[12E(y2) +X1 +GX1] + (I − 11G)(X2 +GX2)

= 1221E(y2) +X(211 + 2) +GX(211 + 2 − 112)−G2X112

where the second equality follows by (64). Rearranging terms, we have

[(1−2112)I−(11+22)G+1122G2]E(y2) =X(211+2)+GX(211+2−112)−G2X112

(66)

Premultiplying of (63) by (I − 11G), It follows by (64) that

E(y2)2+GE(y2)(121−112)+X3+GX(11−113+4)+G
2X(11−114) = 0 (67)

Premultiplying of (67) by [(1−2112)I−(11+22)G+1122G2] and rearranging terms, it follows
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by (66) that

X1 +GX2 +G
2X3 +G

3X4 +G
4X5 = 0

where

1 = (211 + 2)2 + (1− 1221)3

2 = (1 + 122)1 + (211 + 2 − 11211 − 2112)2

−[11 + 22 + 11(1− 1221)]3 + (1− 1221)4

3 = [1 + 122 − (11 + 22)1 − 11122]1 − 11(211 + 22 − 112)2

+11(11 + 222)3 − [11 + 22 + 11(1− 1221)]4

4 = [11221 − (11 + 22)1 − 11122]1 + 21122 − 211223 + 11(11 + 222)4

5 = 112211 − 211224

If IGG2G3G4 are linearly independent, then 1 = 2 = 3 = 4 = 5 = 0. In this case,

1 = 2 = 3 = 4 = 0 if the rank of A2 given by (37) is 4. On the other hand, if IGG2G3

are linearly independent and G4 = 0I + 1G + 2G
2 + 3G

3, we have 1 + 05 = 2 + 15 =

3 + 25 = 4 + 35 = 0. Then, 1 = 2 = 3 = 4 = 0 if the rank of A
∗
2 given by (38) is 4.

Proof of Propositions 5 and 6. Identification requires that E(Z1) = [GE(y1)E(y2)GE(y2)X1GX1]

has a full column rank for large enough , or, equivalently,

GE(y1)1 +E(y2)2 +GE(y2)3 +X14 +GX15 = 0 (68)

implies 1 = 2 = 3 = 4 = 5 = 0. From (33) and (34), we have

(I − 11G)E(y1) = (12I + 21G)E(y2) +X11 +GX11 (69)

(I − 22G)E(y2) = (21I + 12G)E(y1) +X22 +GX22 (70)
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Premultiplying of (70) by (I − 11G) gives

(I − 11G)(I − 22G)E(y2)

= (21I + 12G)(I − 11G)E(y1) + (I − 11G)(X22 +GX22)

= (21I + 12G)[(12I + 21G)E(y2) +X11 +GX11] + (I − 11G)(X22 +GX22)

= (21I + 12G)(12I + 21G)E(y2)

+X1211 +GX1(211 + 121) +G
2X1121 +X22 +GX2(2 − 112)−G2X2112

where the second equality follows by (69). Rearranging terms, we have

[(I − 11G)(I − 22G)− (21I + 12G)(12I + 21G)]E(y2) (71)

= X1211 +GX1(211 + 121) +G
2X1121 +X22 +GX2(2 − 112)−G2X2112

Premultiplying of (68) by (I − 11G), It follows by (69) that

G[(12I+21G)E(y2)+X11+GX11]1+(I−11G)[E(y2)2+GE(y2)3+X14+GX15] = 0

(72)

Premultiplying of (72) by [(I − 11G)(I − 22G)− (21I + 12G)(12I + 21G)] and rearranging

terms, it follows by (71) that

X11 +GX12 +G
2X13 +G

3X14 +G
4X15 (73)

+X21 +GX22 +G
2X23 +G

3X24 +G
4X25 = 0
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where

1 = 2112 + (1− 1221)4

2 = 11 + (211 + 121 − 11211)2 + 2113

−(211 + 22 + 1212 + 2121 − 111221)4 + (1− 1221)5

3 = [1 − (11 + 22)1]1 + (121 − 11211 − 11121)2

+(211 + 121 − 11211)3 + (
2
11 + 21122 − 1221 + 111212 + 112121)4

−[11 + 22 + 1212 + 2121 + 11(1− 1221)]5

4 = [11221 − (11 + 22)1]1 − 111212 + (121 − 11211 − 11121)3

−11(1122 − 1221)4 + (
2
11 + 21122 − 1221 + 111212 + 112121)5

5 = 112211 − 111213 − 11(1122 − 1221)5

and

1 = 22

2 = 1221 + (2 − 2112)2 + 23

3 = (212 + 122 − 11122)1 + (
2
112 − 2112)2 + (2 − 2112)3

4 = (212 − 11212 − 11122)1 + 21122 + (
2
112 − 2112)3

5 = −112121 + 21123

If X1 =X2, then linear independence of IGG2G3G4 implies 1+ 1 = 2+ 2 = 3+ 3 =

4 + 4 = 5 + 5 = 0, which in turn implies 1 = (1121 + 12)2(1221 − 1), 3 = (2121 +
22)2(1221−1), 4 = (211+ 2)2(1221−1), and 5 = (211+2)2(1221−1). Thus,
the model fails to be identified.

If X1 6=X2 we consider three cases:

Case 1, if IGG2G3G4 are linearly independent, then 1 = 2 = 3 = 4 = 5 = 0 and

1 = 2 = 3 = 4 = 5 = 0 In this case, 1 = 2 = 3 = 4 = 0 if the rank of A3 given by (39) is 5.

Case 2, if IGG2G3 are linearly independent and G4 = 0I + 1G+ 2G
2 + 3G

3, then

1 + 05 = 2 + 15 = 3 + 25 = 4 + 35 = 0
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and

1 + 05 = 2 + 15 = 3 + 25 = 4 + 35 = 0

In this case, 1 = 2 = 3 = 4 = 0 if the rank of A
∗
3 given by (40) is 5

Case 3, if IGG2 are linearly independent and G3 = 0I + 1G+ 2G
2, then

1 + 04 + 025 = 2 + 14 + (0 + 12)5 = 3 + 24 + (1 + 22)5 = 0

and

1 + 04 + 025 = 2 + 14 + (0 + 12)5 = 3 + 24 + (1 + 22)5 = 0

In this case, 1 = 2 = 3 = 4 = 0 if the rank of A
∗∗
3 given by (41) is 5.

D Econometric Model with Group Fixed Effects

Now, we can generalize the model by introducing a group-specific effect  ( = 1 2) so that (20)

and (21) becomes

y1 = 11Gy1 + 12y2 + 21Gy2 +Xc1 +GXγ1 + 1l + ²1 (74)

y2 = 22Gy2 + 21y1 + 12Gy1 +Xc2 +GXγ2 + 2l + ²2 (75)

We allow the group-specific effect  to depend on X and G by treating  as an unknown

parameter (as in a fixed-effect panel data model). To avoid the “incidental parameters” problem,

we transform the model to eliminate the group fixed effect  and then discuss the identification

of the transformed model.

To eliminate the group fixed effect , we consider the transformation with the projection

matrix J = I − 1

l l

0

. As Jl = 0, premultiplying of (74) and (75) by J gives

Jy1 = 11JGy1 + 12Jy2 + 21JGy2 + JXc1 + JGXγ1 + J²1

Jy2 = 22JGy2 + 21Jy1 + 12JGy1 + JXc2 + JGXγ2 + J²2
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For all ̄ networks, we have

Jy1 = 11JGy1 + 12Jy2 + 21JGy2 + JXc1 + JGXγ1 + J²1 (76)

Jy2 = 22JGy2 + 21Jy1 + 12JGy1 + JXc2 + JGXγ2 + J²2 (77)

D.1 The ‘seemingly unrelated’ simultaneous equations

First, we consider the model under the restrictions 12 = 21 = 12 = 21 = 0, such that (76) and

(77) reduce to

Jy1 = 11JGy1 + JXc1 + JGXγ1 + J²1 (78)

Jy2 = 22JGy2 + JXc2 + JGXγ2 + J²2 (79)

Now, consider the identification of (78). From identification assumption, to achieve identification,

we need E(JZ1) = J [GE(y1)XGX] to have full column rank.

Proposition 7 If γ1 + 11c1 6= 0 and IGG
2
G

3
 are linearly independent for some , then

E(JZ1) of (78) has full column rank.

Proof. E(JZ1) has full column rank if and only if

J[GE(y1)1 +X2 +GX3] = 0 (80)

implies 1 = 2 = 3 = 0 for some . As Gl = l  it is easy to see JG = JGJ,

J(I − 11G)
−1 = J (I − 11G)

−1J and JG(I − 11G)
−1l = 0 by Lemma C.1 of Lee et

al. (2010). Thus, substitution of the mean of the reduced form E(y1) = (I − 11G)
−1(1l +

X1 +GX1) into (80) gives

J[G(I − 11G)
−1(1l +X1 +GX1)1 +X2 +GX3] = 0

J(I − 11G)
−1J[X2 +GX(11 − 112 + 3) +G

2
X(11 − 113)] = 0

which implies X0+GX1+G
2
X2 = l for 0 = 2, 1 = 11−112+ 3, 2 = 11−

113, and some scalar . As Gl = l , multiplying by G leaves X0 +GX1 +G
2
X2
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unchanged. Thus,

X0 +GX1 +G
2
X2 = GX0 +G

2
X1 +G

3
X2 (81)

As IGG
2
G

3
 are linearly independent, (81) implies 0 = 1 = 2 = 0, which in turn implies

1 = 2 = 3 = 0 by the same argument as in the proof of Proposition 1. Hence, E(JZ1) has full

column rank.

Proposition 7 gives a condition for identification based on the variation of reference groups (i.e. an

individual’s direct friends) across individuals within a network. When this condition is violated, for

example, all networks are complete (i.e. everybody is linked with everybody else in the network) so

that IGG
2
G

3
 are linearly dependent, identification may still be possible based on the variation

across networks. For instance, Lee (2007) shows that identification can be achieved when there

are variations in the network sizes. The following proposition gives a more general identification

condition.13

Proposition 8 Suppose γ1 + 11c1 6= 0. Then E(JZ1) of (78) has full column rank if and only if
J JGJG2 are linearly independent.

D.2 The ‘triangular’ system of simultaneous equations

Next, we consider the identification of

Jy1 = 11JGy1 + 21JGy2 + JXc1 + JGXγ1 + J²1 (82)

Jy2 = 22JGy2 + JXc2 + JGXγ2 + J²2 (83)

Similar to the ‘triangular’ model without group fixed effect, a sufficient identification condition is

given by the following proposition.

Proposition 9 Suppose γ2 + 22c2 6= 0 and (11 − 22)(γ1 + 11c1) + 21(γ2 + 11c2) 6= 0. Then
E(JZ1) of model (82) has full column rank if and only if J JGJG2JG3 are linearly independent,

D.3 The ‘square’ system of simultaneous equations

For the ‘square’ system, we consider three specifications.

13Proofs of Propositions 8-12 follow similar arguments as in the proofs of corresponding propositions for the models

without group fixed effects.
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First, we consider the ‘square’ model with cross-choice peer effects:

Jy1 = 11JGy1 + 21JGy2 + JXc1 + JGXγ1 + J²1 (84)

Jy2 = 22JGy2 + 12JGy1 + JXc2 + JGXγ2 + J²2 (85)

The following proposition gives a sufficient condition for the identification of (84). The sufficient

condition for the identification of (85) can be analogously derived. Let Z1 = [Gy1Gy2XGX].

Proposition 10 If either (i) J JGJG2JG3JG4 are linearly independent and A1 given by (35)

has full rank, or (ii) J JGJG2JG3 are linearly independent, JG4 = 0J + 1JG + 2JG
2 +

3JG
3 and A∗1 given by (36) has full rank, then E(JZ1) of model (84) has full column rank.

Next, we will consider the model with simultaneity effects

Jy1 = 11JGy1 + 12Jy2 + JXc1 + JGXγ1 + J²1 (86)

Jy2 = 22JGy2 + 21Jy1 + JXc2 + JGXγ2 + J²2 (87)

The following proposition gives a sufficient condition for the identification of (86). Let Z1 =

[Gy1y2XGX].

Proposition 11 If either (i) J JGJG2JG3JG4 are linearly independent and A2 given by (37)

has full rank, or (ii) J JGJG2JG3 are linearly independent, JG4 = 0J + 1JG + 2JG
2 +

3JG
3 and A∗2 given by (38) has full rank, then E(JZ1) of model (86) has full column rank.

Finally, for the general ‘square’ system with both simultaneity and cross-choice peer effects, we

impose exclusion restrictions on the exogenous regressors to achieve identification. To clarify ideas,

we consider the following model

Jy1 = 11JGy1 + 12Jy2 + 21JGy2 + JX1c1 + JGX1γ1 + J²1 (88)

Jy2 = 22JGy2 + 21Jy1 + 12JGy1 + JX2c2 + JGX2γ2 + J²2 (89)

where X1 and X2 are vectors and X1 6=X2. The following proposition gives a sufficient condition

for the identification of (88).
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Proposition 12 If (i) J JGJG2JG3JG4 are linearly independent and A3 given by (39) has

full rank, (ii) J JGJG2JG3 are linearly independent, JG4 = 0J + 1JG + 2JG
2 + 3JG

3

and A∗3 given by (40) has full rank, or (iii) J JGJG2 are linearly independent, JG3 = 0J +

1JG+ 2JG
2 and A∗∗3 given by (41) has full rank, then E(JZ1) of (88) has full column rank.
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Table 1: Description of Data 

   Label  Variable Definition  Mean  SD 
Y  GPA  Average of most recent grades in English, science, math and history. 

 
2.75 0.85

   TV  Response to the question: "During the past week, how many times did 
you watch television or videos, or play video games?" coded as 0 if not at 
all, 1 if 1 or 2 times, 2 if 3 or 4 times, 3 if 5 or more times. 

2.39 0.88

X  Female  Dummy variable taking value one if the respondent is female. 
 

0.50 0.50

   Black  Dummy variable taking value one if the respondent is black. 
 

0.22 0.41

   Other races  Dummy variable taking value one if the respondent is neither white nor 
black. 
 

0.06 0.24

   Grade  Grade of the student in the current year, coded as 1 if in grade 7, 2 if in 
grade 8, etc. 
 

3.02 1.67

   Physical development  Response to the question: "How advanced is your physical development 
compared to other boys/girls your age?" coded as 1 if I look younger than 
most, 2 if I look younger than some, 3 if I look about average, 4 if I look 
older than some, 5 if I look older than most. 
 

3.29 1.17

   Teacher troubles  Response to the question: "how often did you have trouble getting along 
with your teachers?" coded as 0 if never, 1 if just a few times, 2 if about 
once a week, 3 if almost everyday, 4 if everyday. 
 

0.92 0.96

  Family size  Number of people living in the household. 
 

2.96 2.18

   Married parents  Dummy variable taking value one if the child leaves in a family with both 
parents who are married. 
 

0.51 0.50

   Parental education  Schooling level of the (biological or non‐biological) parent who is living 
with the child, distinguishing between "never went to school", "not 

3.23 1.07



graduate from high school", "high school graduate", "graduated from 
college or a university", "professional training beyond a four‐year 
college", coded as 1 to 5. If both parents are in the household the 
education of the father is considered. It is coded as zero if no parent lives 
with child or the reported level is "unknown". 
 

   Parent occupation manager  Parent occupation dummies. Closest description of the job of (biological 
or non‐biological) parent that is living with the child is manager. If both 
parents are in the household, the occupation of the father is considered. 
"none" is the reference group. 
 

0.11 0.31

   Parent occupation professional/technical  " 
 

0.20 0.40

   Parent occupation office or sales worker  " 
 

0.11 0.31

   Parent occupation manual  " 
 

0.30 0.46

   Parent occupation military or security  " 
 

0.03 0.16

   Parent occupation farm or fishery  " 
 

0.02 0.15

   Parent occupation other  " 
 

0.14 0.35

   Parental care  Dummy variable taking value one if both parents care very much about 
him/her. 
 

0.39 0.49

   Neighborhood quality  Interviewer response to the question "How well kept is the building in 
which the respondent lives", coded as 4= very poorly kept (needs major 
repairs), 3= poorly kept (needs minor repairs), 2= fairly well kept (needs 
cosmetic work), 1= very well kept. 
 

1.67 1.19

   TV watching decision  Dummy variable taking value one if the respondent's parents let him/her 
make own decisions about how much television to watch. 

0.80 0.40

 



Table 2: Estimation of the Seemingly Unrelated Regression Model 

   GS2SLS  GS3SLS 
   GPA  TV  GPA  TV 

Gn*GPA    0.6972***       0.6955***    
    (0.1949)      (0.1949)    
Gn*TV    0.3290    0.3359 
       (0.2545)      (0.2545) 
Female    0.1346***   ‐0.1131***    0.1347***   ‐0.1132*** 
    (0.0401)   (0.0427)   (0.0401)   (0.0427) 
Black    0.1130    0.0930    0.1128    0.0933 
    (0.1035)   (0.1099)   (0.1035)   (0.1099) 
Other races    0.0186    0.0377    0.0187    0.0385 
    (0.0925)   (0.1032)   (0.0925)   (0.1032) 
Grade    0.1116***   ‐0.0262    0.1115***   ‐0.0263 
    (0.0266)   (0.0247)   (0.0266)   (0.0247) 
Physical development    0.0342**   ‐0.0307*    0.0341**   ‐0.0306* 
    (0.0165)   (0.0183)   (0.0165)   (0.0183) 
Teacher troubles   ‐0.0691***    0.0419*   ‐0.0691***    0.0419* 
    (0.0206)   (0.0218)   (0.0206)   (0.0218) 
Family size   ‐0.0173    0.0189   ‐0.0173    0.0189 
    (0.0128)   (0.0134)   (0.0128)   (0.0134) 
Married parents    0.0669   ‐0.0543    0.0669   ‐0.0545 
    (0.0712)   (0.0765)   (0.0712)   (0.0765) 
Parental education    0.0590**    0.0005    0.0591**    0.0003 
    (0.0256)   (0.0251)   (0.0256)   (0.0251) 
Parental care    0.0608    0.1036    0.0609    0.1040 
    (0.0636)   (0.0694)   (0.0636)   (0.0694) 
Neighborhood quality   ‐0.0238   ‐0.0115   ‐0.0239   ‐0.0116 
    (0.0170)   (0.0183)   (0.0170)   (0.0183) 
TV watching decision    0.0044    0.1885***    0.0045    0.1885*** 
    (0.0494)   (0.0523)   (0.0494)   (0.0523) 
Parental occupation dummies  yes  yes 
Contextual effects  yes  yes 
Network fixed effects  yes  yes 
Note: Standard errors in parentheses. Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 

 

 

  



Table 3: GS3SLS Estimation of the ‘Triangular’ Model 

   Triangular Model 1  Triangular Model 2 
   GPA  TV  GPA  TV 

Gn*GPA    0.7536***       0.6972***    0.1311 
    (0.2058)      (0.1949)   (0.2104) 
Gn*TV   ‐0.4705*    0.3290    0.3274 
    (0.2516)   (0.2545)      (0.2567) 
Female    0.1431***   ‐0.1131***   0.1346***   ‐0.1174*** 
    (0.0423)   (0.0427)   (0.0401)   (0.0432) 
Black    0.0963    0.0930    0.1130    0.1037 
    (0.1089)   (0.1099)   (0.1035)   (0.1112) 
Other races   ‐0.0434    0.0377    0.0186    0.0300 
    (0.1024)   (0.1032)   (0.0925)   (0.1046) 
Grade    0.1198***   ‐0.0262    0.1116***   ‐0.0171 
    (0.0282)   (0.0247)   (0.0266)   (0.0288) 
Physical development    0.0240   ‐0.0307*    0.0342**   ‐0.0288 
    (0.0181)   (0.0183)   (0.0165)   (0.0185) 
Teacher troubles   ‐0.0664***    0.0419*   ‐0.0691***    0.0439** 
    (0.0216)   (0.0218)   (0.0206)   (0.0221) 
Family size   ‐0.0156    0.0189   ‐0.0173    0.0170 
    (0.0135)   (0.0134)   (0.0128)   (0.0137) 
Married parents    0.0817   ‐0.0543    0.0669   ‐0.0556 
    (0.0750)   (0.0765)   (0.0712)   (0.0766) 
Parental education    0.0651***    0.0005    0.0590**   ‐0.0071 
    (0.0271)   (0.0251)   (0.0256)   (0.0277) 
Parental care    0.0334    0.1036    0.0608    0.1012 
    (0.0683)   (0.0694)   (0.0636)   (0.0697) 
Neighborhood quality   ‐0.0163   ‐0.0115   ‐0.0238   ‐0.0096 
    (0.0182)   (0.0183)   (0.0170)   (0.0186) 
TV watching decision    0.0016    0.1885***    0.0044    0.1841*** 
    (0.0518)   (0.0523)   (0.0494)   (0.0529) 
Parental occupation dummies  yes  yes 
Contextual effects  yes  yes 
Network fixed effects  yes  yes 
Note: Standard errors in parentheses. Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 

 

 

 

 



Table 4: GS3SLS Estimation of ‘Square’ Models 1 and 2 

   Square Model 1  Square Model 2 
   GPA  TV  GPA  TV 

Gn*GPA    0.7471***    0.1332    0.5240***    
    (0.2060)   (0.2104)   (0.1889)    
Gn*TV   ‐0.4695*    0.3079    0.2592 
    (0.2516)   (0.2569)      (0.2594) 
GPA       0.5693*** 
       (0.1981) 
TV       0.4811***    
          (0.1694)    
Female    0.1433***   ‐0.1170***    0.1912***   ‐0.2013*** 
    (0.0423)   (0.0432)   (0.0445)   (0.0559) 
Black    0.0958    0.1030    0.0611    0.0583 
    (0.1089)   (0.1112)   (0.1055)   (0.1167) 
Other races   ‐0.0429    0.0274    0.0301   ‐0.0044 
    (0.1024)   (0.1046)   (0.0934)   (0.1087) 
Grade    0.1194***   ‐0.0168    0.1108***   ‐0.0616** 
    (0.0282)   (0.0288)   (0.0267)   (0.0293) 
Physical development    0.0239   ‐0.0292    0.0501***   ‐0.0459*** 
    (0.0181)   (0.0185)   (0.0177)   (0.0195) 
Teacher troubles   ‐0.0665***    0.0440**   ‐0.0925***    0.0876*** 
    (0.0216)   (0.0221)   (0.0221)   (0.0278) 
Family size   ‐0.0155    0.0171   ‐0.0248*    0.0234 
    (0.0135)   (0.0137)   (0.0133)   (0.0143) 
Married parents    0.0817   ‐0.0550    0.0897   ‐0.0942 
    (0.0750)   (0.0766)   (0.0722)   (0.0829) 
Parental education    0.0655***   ‐0.0069    0.0657***   ‐0.0549 
    (0.0271)   (0.0277)   (0.0257)   (0.0340) 
Parental care    0.0336    0.1001    0.0230    0.0580 
    (0.0683)   (0.0697)   (0.0657)   (0.0741) 
Neighborhood quality   ‐0.0164   ‐0.0093   ‐0.0230    0.0086 
    (0.0182)   (0.0186)   (0.0171)   (0.0201) 
TV watching decision    0.0019    0.1839***   ‐0.0801    0.1723*** 
    (0.0518)   (0.0529)   (0.0587)   (0.0558) 
Parental occupation dummies  yes  yes 
Contextual effects  yes  yes 
Network fixed effects  yes  yes 
Note: Standard errors in parentheses. Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 
 

  



Table 5: Estimation of ‘Square’ Model 3 

   GS2SLS  GS3SLS 
   GPA  TV  GPA  TV 

Gn*GPA    0.7294***   ‐0.1676    0.7172***   ‐0.4968* 
    (0.2068)   (0.2993)   (0.1987)   (0.2810) 
Gn*TV   ‐0.4817*    0.4186   ‐0.5565**    0.5427* 
    (0.2507)   (0.2841)   (0.2492)   (0.2793) 
GPA    0.3388    0.6736*** 
    (0.2370)   (0.2151) 
TV    0.1914       0.4927***    
    (0.1630)      (0.1484)    
Female    0.1640***   ‐0.1629***    0.1968***   ‐0.2068*** 
    (0.0469)   (0.0551)   (0.0463)   (0.0535) 
Black    0.0785    0.0614    0.0519    0.0190 
    (0.1119)   (0.1201)   (0.1115)   (0.1194) 
Other races   ‐0.0402    0.0432   ‐0.0477    0.0570 
    (0.1036)   (0.1107)   (0.1035)   (0.1104) 
Grade    0.1235***   ‐0.0598    0.1295***   ‐0.1048*** 
    (0.0283)   (0.0436)   (0.0281)   (0.0414) 
Physical development    0.0301   ‐0.0387*    0.0382**   ‐0.0474*** 
    (0.0186)   (0.0205)   (0.0185)   (0.0203) 
Teacher troubles   ‐0.0750***    0.0663***   ‐0.0890***    0.0884*** 
    (0.0233)   (0.0277)   (0.0230)   (0.0270) 
Family size   ‐0.0192    0.0230   ‐0.0251*    0.0298** 
    (0.0139)   (0.0151)   (0.0138)   (0.0149) 
Married parents    0.0906   ‐0.0821    0.1100   ‐0.1096 
    (0.0767)   (0.0828)   (0.0766)   (0.0824) 
Parental education    0.0636***       0.0426*    
    (0.0271)      (0.0244)    
Parental care    0.0161    0.0882   ‐0.0160    0.0774 
    (0.0713)   (0.0738)   (0.0710)   (0.0737) 
Neighborhood quality   ‐0.0153   ‐0.0021   ‐0.0134    0.0037 
    (0.0185)   (0.0199)   (0.0185)   (0.0198) 
TV watching decision    0.1801***    0.1332*** 
       (0.0555)      (0.0501) 
Parental occupation dummies  yes  yes 
Contextual effects  yes  yes 
Network fixed effects  yes  yes 
Overidentification test p‐value   0.803   0.280       
Note: Standard errors in parentheses. Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 
 


