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Student Networks and Long-Run Educational Outcomes: The 
Strength of Strong Ties* 

The aim of this paper is to investigate and understand the effect of high-school 
friends on years of schooling. We develop a simple network model where 
students first choose their friends and then decide how much effort they put in 
education. The empirical salience of the model is tested using the four waves 
of the AddHealth data by looking at the impact of school peers nominated in 
the first two waves in 1994-1995 and in 1995-1996 on the educational 
outcome of teenagers reported in the fourth wave in 2007-2008 (when adult). 
We find that there are strong and persistent peer effects in education but 
peers tend to be influential only when they are strong ties (friends in both 
wave I and II) and not when they are weak ties (friend in one wave only). We 
also find that this is not true in the short run since both weak and strong ties 
tend to influence current grades. 
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1 Introduction

The influence of peers on education outcomes has been widely recognized both in economics

and sociology (Sacerdote, 2011). The extremely difficult task is to disentangle neighborhood

effects from peer effects and there is no consensus on the importance of peer effects on own

achievement in this literature (see the recent literature surveys by Durlauf, 2004, Ioannides

and Topa, 2010, and Ioannides, 2011). The constraints imposed by the available disaggre-

gated data force many studies to analyze peer effects in education at a quite aggregate and

arbitrary level, such as at the high school (Evans et al., 1992), the census tract (Brooks-Gun

et al., 1993), and the ZIP code (Datcher, 1982; Corcoran et al., 1992) where individuals

reside. Besides, the mechanisms by which the peer effects affect education is unclear. In this

paper, we focus on the long-run effects of high-school peers on years of schooling and try to

pin down the mechanisms behind these effects.

To be more precise, we develop a simple network model where students first choose

their friends and then decide how much effort they put in education. This model helps

us understand how students make friends and how peers affect each other in the long run.

Indeed, individuals create friendship relationships when they are at school anticipating the

impact of their friendship choices on their future educational outcomes. The key factors

that affect this relationship are the costs of having friends, the strength of interactions in the

network, and the characteristics of each individual involved in the friendship relationship.

From an empirical point of view, very little is known about the effect of school peers

on the long-run outcomes of teenagers. This is primarily due to the absence of information

on peers together with long-run outcomes of individuals in most of the existing data. Our

analysis is made possible by using an unique dataset of friendship networks in the United

States, the Addhealth data, which allows us to test the peer effect aspect of the model, i.e.

how friends in school affect future educational outcomes. For that, we use the four waves of

the AddHealth data by looking at the impact of school friends nominated in the first two

waves in 1994-1995 and in 1995-1996 on own educational outcome (when adult) reported

in the fourth wave in 2007-2008 (measured by the number of completed years of full time

education). We exploit four unique features of the AddHealth data: (i) the nomination-

based friendship information, which allows us to reconstruct the precise geometry of social

contacts, (ii) the directed nature of the nominations to measure precisely peer groups, (iii)

the nomination order, which enables us to consider heterogenous influences within peer

groups, (iv) the longitudinal dimension, which provides a temporal interval between friends’

nomination and educational outcomes.
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To the best of our knowledge, this is the first paper that exploits this comprehensive set

of information to assess peer effects in education in this long-run perspective.

We find that there are strong and persistent peer effects in education. In other words,

the “quality” of friends (in terms of future educational achievement) from high school has

a positive and significant impact on own future education level. In terms of magnitude,

we find that a standard deviation increase in peers’ aggregate years of education (roughly

two more high-school graduate friends) translates into roughly a 10 percent increase of a

standard deviation in the individual’s education attainment (roughly 3.5 more months of

education). This is a strong effect, especially given our long list of controls and the fact

that friendship networks might have changed over time. It is even stronger when the peer

influence is allowed to be heterogenous according to the order of nomination. The influence

of peers at school seems to be carried over time. We also analyze if the peer effect results

are stronger for friends in earlier grades than in later ones. For that, we split our sample

between students who were in grades 7-9 and those who were in grades 10-12. We find that

peer effects are stronger for the latter than for the former. In other words, peers later in

high school seem to matter more than peers earlier in high school. This is primarily due to

two factors: peers in the last years of high school are the interacting friends when the choice

to go to college is made and/or they are peers carried on from early years at school with

whom friendship ties are stronger.

To better understand these mechanisms, we investigate the role of weak and strong ties in

educational decisions. We define a strong-tie relationship between two students if they have

nominated each other in both waves (i.e. in Wave I in 1994-95 and in Wave II in 1995-96) and

a weak-tie relationship if they have nominated each other in one wave only. We then try to

disentangle the decision proximity effect and the strength of interaction effect by exploiting

variation in peer nominations between Waves I and II. Is it really the timing of friendship

formation that is the crucial factor for educational outcome in the future (decision proximity

effect) or is it rather the frequency of social interactions underlying common choices (strength

of interaction effect)? We find that the education decision of weak ties have no significant

effect on individual education outcomes, regardless on whether peers are interacting in lower

or higher grades. On the contrary, we find that strong ties’ educational choice have a positive

and significant effect on own educational outcome and that this is effect is stronger when

the network is weighted by the order of nomination. Using the theoretical model above, we

can explain why strong ties matter more than weak ties. In the model, in order to keep the

same friendship relationship for two periods (strong ties) rather than one period, it has to be

that the costs of having friends are relatively low and the characteristics of each individual
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involved in the friendship relationship are relatively close.

A further explanation of why peers nominated in different time periods have a different

long-run effect could be the fact that students value differently peer characteristics in friend-

ship decision making over time. Do students select peers differently between the first and

the second wave or is it really that distinct types of peers (weak versus strong ties) matter

differently? We provide evidence showing that there are no differences between peers in

Wave I and II in terms of observable characteristics and that link formation is not different

between the different waves.

We also look at the long versus short-run effects of peers on education. While in the long

run, only strong ties matter, we find that, in the short run, both weak and strong ties are

important in determining a student’s performance at school. The magnitude of these effects

is comparable: for weighted networks, a standard deviation increase in aggregate GPA of

peers translates respectively into a 3.3 (for peers only in wave I), a 4.4 (for peers only in

wave II) and a 3.2 (for peers in both waves) percent increase of a standard deviation in

the individual’s GPA. This means that peer effects for GPAs are substantially homogenous

among different type of ties. Taken our analysis as a whole, our results then seem to suggest

that, in the short run, all peers matter for education (i.e. grades) while, in the long run,

only strong ties matter for future educational choices.

In the last part of the paper, we test the robustness of our results with respect to mis-

specification of network topology or relevant peers. For that, we provide a falsification check

using simulated data by randomly deleting some friendship links and randomly creating new

links, keeping total number of links the same in each network. We find that peer effects

remain statistically significant up to a percentage of randomly replaced (interchangeable)

links of about 20 percent. This implies that even if we do not observe or imprecisely observe

a portion of each individual’s social network, our results on the existence of peer effects hold.

The rest of the paper unfolds as follows. In the next section, we discuss the related

literature and explain our contribution. The theoretical model is developed in Section 3.

Our data are described in Section 4, while the estimation and identification strategy are

discussed in Section 5. The empirical results of the impact of peer effects on educational

outcomes are provided in Section 6. Section 7 investigates the economic mechanisms behind

our peer-effect results. In Section 8, we perform some robustness checks by looking at what

happens to the peer-effect results if links are mis-specified. Finally, Section 9 concludes and

discusses some policy implications.
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2 Related literature

Theory of network formation and education outcomes There are some early

theoretical contributions of peer effect models in education (De Bartolome, 1990; Benabou,

1993) but very few papers are using a network approach. Calvó-Armengol et al. (2009)

is the first model with an explicit network that looks at the impact of peers on education

outcomes. Here we add a first stage by looking at both network formation and educational

outcomes. It is well-known that this issue is very complicated (Jackson and Zenou, 2013)

because of coordination problems and, in fact, very difficult to solve. While we can solve

the second stage for any network, we can only provide examples solving the whole two-stage

problem. They will, however, help us interpret our empirical results.

Empirical aspects of education with social interactions There is an important

literature on peer effects in education (for a survey, see Sacerdote, 2011). Different empiri-

cal strategies have been used to identify these effects ranging from an instrumental variable

approach (see e.g. Evans et al., 1992; Cutler and Glaeser, 1997; Card and Rothstein, 2007;

Weinberg, 2004) to specific social experiments or quasi-experimental data (e.g. Katz et al.,

2001; Sacerdote, 2001; Zimmerman 2003). Based on recent papers (Bramoullé et al., 2009;

Calvó-Armengol et al., 2009; Lin 2010; Liu et al. 2012; Patacchini and Zenou, 2012), we

consider the identification of peer effects in social networks where they can be separately

identified from contextual effects using the variations in the reference groups across individ-

uals (see also De Giorgi et al. 2010). In particular, Lin (2010) and Liu et al. (2012) present

a network model specification and an empirical strategy that is closely related to the one

presented in this paper. Using data from the first wave of the AddHealth data, these studies

provide an assessment of peer effects in student academic performance (GPA) and in crime,

respectively. Even though we adopt a relative similar empirical strategy,1 we do not focus

on the same issues since we look at long-term effects of peers on education and distinguish

between weak and strong ties.

Long-run effects on educational outcomes There are very few studies looking at

the long-run effects of education. There is a literature that looks at the long-run effects of

education interventions on outcomes. For example, Angrist and Krueger (1991) examine

the long-term effects of compulsory schooling laws on adult educational attainment. Others

have shown evidence for the effect of childhood investments on post-secondary attainment

1See Section 5 to see the differences.
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(Krueger and Whitmore, 2001; Dynarski et al., 2011). The main research question of this

literature (whether the effects of certain educational interventions can persist beyond test

scores and lead to long-term enhancements to human capital) is quite different to ours since

we are interested in the impact of peers on long-run education outcomes.

Using the Wisconsin Longitudinal Study of Social and Psychological Factors in Aspi-

ration and Attainment (WLS), Zax and Rees (2002) where the first to analyze the role

of friendships in school on future earnings. Their paper is, however, quite different from

ours since they do not have a theoretical model driving the empirical analysis and do not

tackle the issue of endogenous sorting of individuals into groups. They also do not provide

the mechanisms behind their result. Using the British National Child Development Study

(NCDS), Patacchini and Zenou (2011) investigate the effects of neighborhood quality (in

terms of education) when a child is thirteen on his/her educational outcomes when he/she

is adult. Similarly, Gould et al. (2011), using Israeli data, estimate the effect of the early

childhood environment on a large array of social and economic outcomes lasting almost 60

years. In both studies, peer effects are measured by the neighborhood where people live

and not by friendship nominations. Finally, Bifulco et al. (2011), using the AddHealth data,

study the effect of school composition (percentage of minorities and college educated mothers

among the students in one’s school cohort) on high-school graduation and post-secondary

outcomes. Our research question is different as we mostly focus on the mechanisms behind

our results.

Weak and strong ties in education There is a large literature on the role of weak

ties in the labor market. Granovetter (1973, 1974, 1983) put forward the idea that weak ties

are superior to strong ties for providing support in getting a job.2 This is because, in a close

network where everyone knows each other, information is shared and so potential sources

of information are quickly shaken down so that the network quickly becomes redundant in

terms of access to new information. In contrast Granovetter stresses the strength of weak ties

involving a secondary ring of acquaintances who have contacts with networks outside ego’s

network and therefore offer new sources of information on job opportunities. The existing

empirical evidence lends some support to Granovetter’s ideas. Yakubovich (2005) uses a large

scale survey of hires made in 1998 in a major Russian metropolitan area and finds that a

2In his seminal papers, Granovetter (1973, 1974, 1983) defines weak ties in terms of lack of overlap in

personal networks between any two agents, i.e. weak ties refer to a network of acquaintances who are less

likely to be socially involved with one another. Formally, two agents A and B have a weak tie if there is

little or no overlap between their respective personal networks. Vice versa, the tie is strong if most of A’s

contacts also appear in B’s network.
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worker is more likely to find a job through weak ties than through strong ones. These results

come from a within-agent fixed effect analysis, so are independent of workers’ individual

characteristics. Using data from a survey of male workers from the Albany NY area in 1975,

Lin et al. (1981) find similar results. Lai et al. (1998) and Marsden and Hurlbert (1988)

also find that weak ties facilitate the reach to a contact person with higher occupational

status, who in turn leads to better jobs, on average.3 To the best of our knowledge, there is

no study on the impact of weak or strong ties on educational outcomes. Our study is one

of the first and, compared to the literature on the labor market, we find the opposite result.

Indeed, we show that strong rather than weak ties matter in education outcomes (years of

schooling).

This paper’s contributions To sum-up, compared to the literature, we have the

following main contributions:

()We provide a theoretical model where both friendship formation and educational effort

and attainment are modeled.

()We look at long-run outcomes, in the effect of high-school friends on years of schooling.

This has been considered in other settings (Bifulco et al., 2011) but not for endogenous peer

effects.

() We explore more specialized networks than have been previously considered in the

literature (i.e., that the first person listed may be a better friend than the second, etc.) by

assigning different weights to reported friends.

()We examine the role of strong ties versus weak ties on long-run effects of education.

()We look at both the short-term and long-term effects of peers on education and show

the different roles of weak and strong ties.

() We provide a falsification test that examines whether the set of relevant peers of

each student is mis-measured.

3 Theoretical framework

Consider a population of  individuals. The timing is as follows. In the first stage (time ),

friendship relationships between the  agents are made and a network connecting them is

formed. Then, in the second stage (time + 1), educational choices are made.

3See Topa (2011) for an overview and Patacchini and Zenou (2008) who find evidence of the strength of

weak ties in crime.
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3.1 Second-stage: Educational choices

Let us solve the second stage of this model. As stated above, in the first stage, a network4 is

formed with  agents. It is a network of peer effects, where the network reflects the collection

of active bilateral influences.

The network  = {1     } is a finite set of agents. We keep track of social connec-
tions by a matrix G = {}, where  = 1 if  and  are direct friends, and  = 0,

otherwise. Friendship are reciprocal so that  = . We also set  = 0. Observe that

we index the network variables by  since links are made in the first stage (time ). For the

sake of the presentation, we focus on un-weighted and undirected networks so that G is

a (0 1) symmetric matrix. All our results hold for non-symmetric and weighted networks

but, for the ease of the presentation, we focus on symmetric and unweighted networks in the

theoretical model.

Preferences Individuals decide how much effort to exert in education (e.g. how many

years to study). As stated above, this decision is made in the second stage and thus all

variables corresponding to this choice will be indexed by  + 1. We denote by +1 the

educational effort level of individual  (i.e. years of schooling) and by y+1 = (1+1  +1)
0

the population effort profile. Each agent  selects an effort +1 ≥ 0, and obtains a payoff
(y+1 ) that depends on the effort profile y+1 and on the underlying network  (formed

at time ), in the following way:

(y+1 ) = (+1 +  + +1) +1 − 1
2
2+1 + 

X
=1

 +1+1 (1)

where   0. Two key aspects characterize the utility function (y+1 ) of individual

. There is the idiosyncratic exogenous part (+1 +  + +1) +1 − 1
2
2+1 and the

endogenous peer effect aspect 
P

=1  +1+1. In (1),  denotes the unobservable

network characteristics and +1 is an error term, meaning that there is some uncertainty in

the benefit part of the utility function. There is also an ex ante idiosyncratic heterogeneity,

+1, which is assumed to be deterministic, perfectly observable by all individuals in the

network and corresponds to the observable characteristics of individual  (like e.g. sex, race,

parental education, etc.) and to the observable average characteristics of individual ’s best

4See Goyal (2007), Jackson (2008), Jackson and Zenou (2013) for an overview on the theory of social

networks.
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friends, i.e. average level of parental education of ’s friends, etc. (contextual effects).5 To

be more precise, +1 can be written as:

+1 =

X
=1



+1 +

1



X
=1

X
=1

 

+1 (2)

where +1 is a set of  variables accounting for observable differences in individual char-

acteristics of individual ,   are parameters and  =
P

=1  is the total number of

friends individual  has. The benefits from the utility are given by (+1 +  + +1) +1

and are increasing in own educational effort +1. In this first part, there is also a cost of

providing educational effort, 1
2
2+1, which is also increasing in effort +1. The second part

of the utility function is: 
P

=1  +1+1, which reflects the influence of friends’ be-

havior on own action. The peer effect component is also heterogeneous, and this endogenous

heterogeneity reflects the different locations of individuals in the friendship network and the

resulting effort levels.

To summarize, when individual  exerts some effort in education, the benefits of the

activity depends on individual characteristics +1, some network characteristics  and

on some random element +1, which is specific to individual . In other words, +1 is

the observable part (by the econometrician) of ’s characteristics while +1 captures the

unobservable characteristics of individual . Note that the utility (1) is concave in own

decisions, and displays decreasing marginal returns in own effort levels. In sum,

+1(y+1 ) = (+1 +  + +1) +1| {z }
Benefits from own effort

−1
2
2+1| {z }

Costs

+ 

X
=1

 +1+1| {z }
Benefits from friends’ effort

Nash equilibrium We now characterize the Nash equilibrium of the game where agents

choose their effort level +1 ≥ 0 simultaneously. At equilibrium, each agent maximizes her
utility (1). The corresponding first-order conditions are:

+1(y+1 )

+1
= +1 +  + +1 − +1 + 

X
=1

 +1 = 0

Therefore, we obtain the following best-reply function for each  = 1  :

+1 = 

X
=1

 +1 + +1 +  + +1 (3)

5Observe that +1 is indexed by both  and  + 1 because some characteristics (like e.g. sex, race,

parental education, etc.) do not change over time while others (like age) do.
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where +1 is given by (2). Denote by 1(G) the spectral radius of G. We have:
6

Proposition 1 If 1(G)  1, the peer effect game with payoffs (1) has a unique Nash

equilibrium in pure strategies given by (3)

We can calculate the equilibrium utility of the Nash equilibrium. Denote by I the identity

matrix.

Definition 1 Given a vector α ∈ R
+, and  ≥ 0 such that 1(G)  1, we define the

Katz-Bonacich vector of α-weighted centrality of parameter  in network  as:

b ( ) = (I− G)
−1
α =

+∞X
=0

Gα (4)

The th row of vector b ( ) is denoted by  ( ). Denote +1 = +1 +  +

+1. Using the results of Ballester et al. (2006) and Calvo-Armengol et al. (2009), it is

straightforward to show that the equilibrium educational effort given by (3) is

y∗+1 = b+1 ( ) (5)

so that each individual  provide equilibrium effort

∗+1 = +1 ( )

3.2 First-stage: Friendship choices

In the empirical analysis, using data from adolescent friendships in the US, we will mainly

test the second stage of this game, especially equation (3), and thus determine how strong

are peer effects in educational choices by estimating the magnitude of . In other words, we

will take  as given and estimate . However, in order to better understand our results,

we would like to develop the first stage of the model and to explain how students make

friendship relationships.

To determine the friendship choices, we need to calculate the equilibrium utility. The

optimal effort of each student  is given by (3). If we plug in (3) into (1), we easily obtain:

(y
∗
+1 ) = (+1 +  + +1) 

∗
+1 −

1

2
∗2+1 + 

X
=1

 
∗
+1

∗
+1

=
1

2

¡
∗+1

¢2
=
1

2

£
+1 ( )

¤2
6All proofs of the theory can be found in Appendix 1.
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Each individual  has to pay a cost  when creating a link. We assume that when a link is

formed both students agreed (i.e. mutual consent) and both pay a cost. For example, if a

link is created between  and , then both  and  have to better off than not creating this

link and  will pay  and  will pay . We follow here Jackson and Wolinsky (1996) as it is

the standard way of creating links. As a result, in the first stage the utility is

 ( ) =
1

2

£
+1 ( )

¤2 − 

X
=1

 (6)

Network stability In games played on a network, individuals payoffs depend on the

network structure. In our case, this dependency is established in expression (6), that encom-

passes both the benefits and costs attributed to an individual given his/her position in the

network of relationships. Any equilibrium notion introduces some stability requirements.

The notion of pairwise-stability, introduced by Jackson and Wolinsky (1996), provides a

widely used solution concept in networked environments. Let us now define this concept.

Definition 2 A network  is pairwise stable if and only if:

() for all  ∈ , ( ) ≥ ( −  ) and ( ) ≥ ( −  )

() for all  ∈ , if ( )   ( +  ) then ( )   ( +  ).

In words, a network is pairwise-stable if () no player gains by cutting an existing link,

and () no two players not yet connected both gain by creating a direct link with each other.

Pairwise-stability thus only checks for one-link deviations.7 It requires that any mutually

beneficial link be formed at equilibrium but does not allow for multi-link severance. We

will use throughout this equilibrium concept. Thus, network  is an equilibrium network

whenever it is pairwise stable.

Two-stage equilibrium As it is well-known (Jackson and Wolinsky, 1996), it is ex-

tremely difficult to characterize all the pairwise stable equilibria of a network formation

game with  players where all agents simultaneously decide their link creation and deletion

choices. This is why for example some recent papers have used a dynamic network for-

mation model where only one person at a time decide to create or delete a link (see, e.g.

Ehrhardt et al., 2006; König et al., 2012). Because here we have a network of friendship

7This weak equilibrium concept is often interpreted as a necessary conditions for stronger stability con-

cepts.
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that we observe at only one (or two) points in time, we will allow all individuals to create

and delete simultaneously as in Jackson and Wolinsky (1996). As stated above, we are not

able to characterize all equilibria, so we would like to provide a simple example to show how

the two-stage equilibrium is calculated. This will help us for the intuition of the empirical

results.

Consider the following network at time 

A B

C

Figure 1: Pairwise stable star-shaped network

Its adjacency matrix G is given by (individual  corresponds to the first row,  to the

second row,  to the third row):

G =

⎛⎜⎝ 0 1 1

1 0 0

1 0 0

⎞⎟⎠
The largest eigenvalue is

√
2, and thus the condition for a unique Nash-equilibrium is

1(G)  1, i.e.

 
1√
2
= 0707 (7)

Ex ante heterogeneity is given by the vector αT+1 =
³
+1 +1 +1

´
. The

vector of weighted Bonacich centrality is then equal to:8

b+1 ( ) =
1¡

1− 22¢
⎛⎜⎝ +1 + +1 + +1

+1 +
¡
1− 2

¢
+1 + 2 +1

+1 + 2 +1 +
¡
1− 2

¢
+1

⎞⎟⎠
8Observe that (7) guarantees that 1− 22  0.
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This gives the following equilibrium utilities

u() =
1

2
¡
1− 22¢2

⎛⎜⎝ (+1 + +1 + +1)
2£

+1 +
¡
1− 2

¢
+1 + 2 +1

¤2£
+1 + 2 +1 +

¡
1− 2

¢
+1

¤2
⎞⎟⎠−

⎛⎜⎝ 2





⎞⎟⎠
Given utility (6), the following proposition gives under which condition the network described

in Figure 1 is a pairwise stable equilibrium.

Proposition 2 Assume that  =  =  =  and +1 = +1 = +1 = 1. Then,

if   05, the condition that guarantees that the star-shaped network displayed in Figure 1

is pairwise stable is:


¡
2− 42 − 

¢
(1 + )

2

2
¡
1− − 22¢2 ¡1− 22¢2   


¡
2 + 5− 43¢
2
¡
1− 22¢2 (8)

Even in the simple star-shaped network described in Figure 1, it is quite cumbersome

to determine the conditions under which this network is pairwise stable (see the proof of

Proposition 2 in Appendix 1 where we also give the general conditions for any ,  and 

and any +1, +1 and +1). It is because each individual, when deciding to forming

a new link or deleting an existing one, has to anticipate the impact on the educational efforts

of all individuals in the network (i.e. their weighted Bonacich centralities).

If we consider the general model with any ,  and  and any +1, +1 and

+1, the conditions for this star-shaped network to be pairwise stable are given in the

proof of Proposition 2 in Appendix 1 and are (18), (20) and (21).

4 Data description

As stated above, we will like to test the second stage of this game, i.e., Proposition 1,

especially equation (3), and thus determine how strong are peer effects in educational choices

by estimating the magnitude of . In other words, we will take  as given and estimate .

Our analysis is made possible by the use of a unique database on friendship networks

from the National Longitudinal Survey of Adolescent Health (AddHealth).9

9This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and

designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North

Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National

Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies
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The AddHealth survey has been designed to study the impact of the social environment

(i.e. friends, family, neighborhood and school) on adolescents’ behavior in the United States

by collecting data on students in grades 7-12 from a nationally representative sample of

roughly 130 private and public schools in years 1994-95 (wave I). Every pupil attending the

sampled schools on the interview day is asked to compile a questionnaire (in-school data)

containing questions on respondents’ demographic and behavioral characteristics, education,

family background and friendship. This sample contains information on roughly 90,000

students. A subset of adolescents selected from the rosters of the sampled schools, about

20,000 individuals, is then asked to compile a longer questionnaire containing more sensitive

individual and household information (in-home and parental data). Those subjects are

interviewed again in 1995—96 (wave II), in 2001—2 (wave III), and again in 2007-2008 (wave

IV).10

From a network perspective, the most interesting aspect of the AddHealth data is the

friendship information, which is based upon actual friends nominations. Indeed, pupils were

asked to identify their best friends from a school roster (up to five males and five females).11

This information is collected at wave I and one year after, i.e. at wave II. As a result, one

can reconstruct the whole geometric structure of the friendship networks and their evolution

at least in the short run. Such a detailed information on social interaction patterns allows

us to measure the peer group more precisely than in previous studies by knowing exactly

who nominates whom in a network (i.e. who interacts with whom in a social group) and

by distinguishing between strong ties and weak ties. Indeed, we say that two students have

a strong-tie relationship if they have nominated each other in both waves (i.e. in Wave

I in 1994-95 and in Wave II in 1995-96). On the contrary, two students have a weak-tie

relationship if they have nominated each other in one wave only).

We also exploit the nomination order to weight differently the influence of each peer

within peer groups, i.e. we consider heterogenous peer effects. To the best of our knowledge

this information has not been used before. More specifically, we exploit the directed nature

of the nominations data and we denote a link from  to  as  = 1 if  has nominated 

and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in

the original design. Information on how to obtain the Add Health data files is available on the Add Health

website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for

this analysis.
10The AddHealth website describes survey design and data in details.

http://www.cpc.unc.edu/projects/addhealth
11The limit in the number of nominations is not binding (even by gender). Less than 0.1% of the students

in our sample show a list of ten best friends, both in wave I and wave II.
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as his/her friend in network ,12 and  = 0, otherwise.
13 We then weight each individual

contact using a function, which is linearly decreasing with the corresponding order in the

nomination list and also accounts for the total number of nominations made by the individual.

Each non-zero entry  of the adjacency matrix G is:

 = 1− (− 1)


(9)

where  denotes the order of nomination given by individual  to friend  in his/her nomi-

nation list while  =
P

=1  is the total number of nominations made by individual .

By doing so, we allow for the fact that each individual can be affected differently by different

peers within his/her peer group. For example, imagine that individual 1 has nominated three

friends (i.e.  = 3), say first friend 2, then 4 and then 3. In that case,  = 1 for individual

2,  = 2 for individual 4 and  = 3 for individual 3. We will have the following weights:

12 = 1, 14 = 23 and 13 = 13 and thus, in the first row of the adjacency matrix

G (for individual 1), there will be a 0 for individuals that 1 has not nominated and a 1,

23 and 13 for individuals 2, 4 and 3, respectively.

In order to verify that the order of nomination makes sense, in Figure 2, we display

the percentage of deleted links from Wave I to Wave II by order of nomination. We see

that, among all the first-nominated friends (“first nomination”), less than 40 percent of

these friendship links are severed between Wave I and Wave II while, for individuals who

have been nominated fifth (“fifth nomination”), this number is 77 percent. More generally,

there is an increasing relationship between the percentage of deleted links and the order of

nomination, indicating that the lower is the friend’s ranking in terms of nomination, the

weaker is the relationship between the two individuals and the more likely this relationship

will not last more than one wave. This confirms that the order of nomination is not random

and that weak-tie relationships are more likely to be severed between the two waves than

strong ties.

[  2 ]

By matching the identification numbers of the friendship nominations to respondents’

identification numbers, one can also obtain information on the characteristics of nominated

friends. In addition, the longitudinal structure of the survey provides information on both

respondents and friends during the adulthood. In particular, the questionnaire of wave

12In the data, we have different networks. This is why we need to index all variables by .
13As highlighted by Wasserman and Faust (1994), centrality indices for directional relationships generally

focus on choices made.
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IV contains detailed information on the highest education qualification achieved. We mea-

sure education attainment in completed years of full time education.14 Social contacts (i.e.

friendship nominations) are, instead, collected in Wave I (and II).

Our final sample of in-home Wave I students (and friends) that are followed over time

and have non-missing information on our target variables both in Waves I, II and IV consists

of 1,749 individuals distributed over 183 networks. This large reduction in sample size with

respect to the original sample is mainly due to the network construction procedure, roughly

20 percent of the students do not nominate any friends and another 20 percent cannot be

correctly linked. In addition, we exclude networks composed by 2-3 individuals, those with

more than 400 members and individuals who are not followed in Wave IV.15 The mean and

the standard deviation of network size are roughly 9.5 and 15, respectively.16

Table 1 gives the definition of the variables used in our study17 as well as their descriptive

statistics. Among the individuals selected in our sample, 53 percent are female and 19 percent

are blacks. The average parental education is high-school graduate. Roughly 10 percent have

parents working in a managerial occupation, another 10 percent in the office or sales sector,

20 percent in a professional/technical occupation, and roughly 30 percent have parents in

manual occupations. More than 70 percent of our individuals come from household with

two married parents and from an household of about four people on average. At Wave IV,

42 percent of our adolescents are now married and nearly half of them (43 percent) have at

least a son or a daughter. The mean intensity in religion practice slightly decreases during

the transition from adolescence to adulthood. On average, during their teenage years, our

individuals felt that adults care about them and had a good a good relationship teachers.

Roughly, 30 percent of our adolescents were highly performing individuals at school, i.e. had

14More precisely the Wave IV questionnaire asks the highest education qualification achieved (distinguish-

ing between 8th grade or less, high school, vocational/technical training, bachelor’s degree, graduate school,

master’s degree, graduate training beyond a master’s degree, doctoral degree, post baccalaureate professional

education). Those with high school and above qualification are also asked to report the exact year when the

highest qualification was achieved. Such an information allows us to construct a reliable measure of each

individual’s completed years of education.
15We do not consider networks at the extremes of the network size distribution (i.e. composed by 2-3

individuals or by more than 400) because peer effects can show extreme values (too high or too low) in these

edge networks.
16On average, these adolescents declare having 2.49 friends with a standard deviation of 1.78.
17Information at the school level, such as school quality and teacher/pupil ratio is also available but we

don’t use it since our sample of networks are within schools and we use fixed network effects in our estimation

strategy.
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the highest mark in mathematics.

[  1 ]

Before we start our empirical analysis, we would like to look at simple correlations between

the education attainment of an individual and the friends that s/he has nominated when s/he

was adolescent at school in Wave I.18 Figure 3 documents this correlation by differentiating

between direct best friends ( = 1), friends of friends ( = 2), etc. In other words, the

length of the shortest path distance between two individuals is . We differentiate between

unweighted networks (i.e. when the order of nomination is not taken into account) and

weighted networks (i.e. when the order of nomination is taken into account). One clearly

sees that the correlation curve is decreasing with the length of distance in friendship and is

steeper when weights on the order of nomination of friends are included. This indicates that

direct friends’ educational outcomes have a higher correlation with own education outcome

than indirect friends’ educational outcome and that these relationships are stronger when

the order of nominations is taken into account. For example, it can be seen from Figure 3

that the correlation in education between an individual and his/her direct friend is twice as

high as the one between an individual and his/her indirect friend of length 8 (i.e.  = 8).

[  3 ]

5 Empirical analysis

5.1 Empirical model

Let  = {1     } be a finite set of agents in network  ( = 1  ), where  is the total
number of networks in the sample ( = 183 in our dataset),  is the number of individuals

in the th network, and  =
P̄

=1  be the total number of individuals ( = 1 749 in our

dataset). We keep track of social connections by a matrix G = {}, where  = 1 if 
and  are direct friends, and  = 0, otherwise. For  = 1 · · ·   and  = 1 · · ·  ̄, our
empirical model, which, using (2) and indexing by network , corresponds exactly to (3) in

the theoretical model, can be written as:

+1 = 
P
=1

+1 + 0+1 +
1



P
=1


0
+1 +  + +1 (10)

18Data from Wave II show a similar graph.
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where +1 is the highest education level reached by individual  at time +1 who belonged

to network  at time , where time  + 1 refers to wave IV in 2007-2008 while time  refers

to wave I in 1994-95. Similarly, +1 is the highest education level reached by individual 

at time + 1 who has been nominated as his/her friend by individual  at time  in network

. Furthermore, 0+1 = (
1
+1 · · ·  +1)0 indicates the  variables accounting for

observable differences in individual characteristics of individual  both at times  (e.g. self

esteem, mathematics score, quality of the neighborhood, etc.) and +1 (marital status, age,

children, etc.) of individual . Some characteristics are clearly the same at times  and +1,

such as race, parents’ education, gender, etc. Also  =
P

=1  is the total number of

friends individual  has in network  at time . Finally, ’s are i.i.d. innovations with zero

mean and variance 2 for all  and .

In the next two sections, to avoid too cumbersome notations, we omit the time index.

5.2 Identification strategy

The aim of our empirical analysis is twofold, (i) to assess the presence of long-run peer effects

in education and (ii) to differentiate between the impact of weak ties and strong ties. The

identification of peer effects ( in model (10)) raises, however, different challenges.

In linear-in-means models, simultaneity in behavior of interacting agents introduces a

perfect collinearity between the expected mean outcome of the group and its mean char-

acteristics. Therefore, it is difficult to differentiate between the effect of peers’ choice of

effort and peers’ characteristics that do impact on their effort choice (the so-called reflection

problem; see Manski, 1993). Basically, the reflection problem arises because, in the standard

approach, individuals interact in groups, that is individuals are affected by all individuals

belonging to the same group and by nobody outside the group. In other words, groups

completely overlap. In the case of social networks, instead, this is nearly never true since

the reference group has individual-level variation. Formally, as shown by Bramoullé et al.

(2009), social effects are identified (i.e. there is no reflection problem) if I, G and G
2
 are

linearly independent where I is the identity matrix and G2
 keeps track of indirect connec-

tions of length 2 in network . In other words, if  and  are friends and  and  are friends,

it does not necessarily imply that  and  are also friends. Denote X = (1 · · ·  )0
and Y = (1 · · ·   )0. Then, because of these intransitivities, G2

X G
3
X etc. are

not collinear with GX and they can therefore act as valid instruments. Take, for example,

individuals ,  and  in network  such that  = 1 and  = 1 but  = 0. In that case,

for individual , the characteristics of peers of peers G2
X (i.e. ) is a valid instrument

for peers’ behavior GY (i.e. ) since  affects  only indirectly through its effect
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on  (distance 2). The architecture of social networks implies that these attributes will

affect each individual outcome only through their effect on his/her friends’ outcomes. Even

in linear-in-means models, the Manski’s (1993) reflection problem is thus eluded.19 Peer

effects in social networks are thus identified and can be estimated using 2SLS or maximum

likelihood (Lee 2007; Calvó-Armengol et al., 2009; Lin, 2010).20

Although this setting allows us to solve the reflection problem, the estimation results

might still be flawed because of the presence of unobservable factors affecting both individual

and peer behaviors. It is indeed difficult to disentangle the endogenous peer effects from the

correlated effects, i.e. effects arising from the fact that individuals in the same network tend

to behave similarly because they face a common environment. If individuals are not randomly

assigned into networks, this problem might originate from the possible sorting of agents. If

the variables that drive this process of selection are not fully observable, potential correlations

between (unobserved) network-specific factors and the target regressors are major sources

of bias. A number of papers using network data have dealt with the estimation of peer

effects with correlated effects (e.g., Clark and Loheac 2007; Lee 2007; Calvó-Armengol et

al., 2009; Lin, 2010; Lee et al., 2010). This approach is based on the use of network fixed

effects and extends Lee (2003) 2SLS methodology. Network fixed effects can be interpreted

as originating from a two-step model of link formation where agents self-select into different

networks in a first step and, then, in a second step, link formation takes place within networks

based on observable individual characteristics only. An estimation procedure alike to a panel

within group estimator is thus able to control for these correlated effects. One can get rid

of the network fixed effects by subtracting the network average from the individual-level

variables.21 As detailed in the next section, this paper follows this approach.

Finally, one might question the presence of problematic unobservable factors that are

19These results are formally derived in Bramoullé et al. (2009) (see, in particular, their Proposition 3) and

used in Calvó-Armengol et al. (2009) and Lin (2010). Cohen-Cole (2006) presents a similar argument, i.e.

the use of out-group effects, to achieve the identification of the endogenous group effect in the linear-in-means

model (see also Weinberg et al., 2004; Laschever, 2009; De Giorgi et al., 2010).
20More technical results can be found in Liu and Lee (2010). Liu et al. (2011) explicitly study the case of

a non row-normalized adjacency matrix and provides the conditions on the parameters that guarantee the

identification of peer effects (similarly to the conditions derived by Bramoullé et al., 2009, who derive them

for the case of a row-normalized adjacency matrix).
21Bramoullé et al. (2009) also deal with this problem in the case of a row-normalized G matrix. In

their Proposition 5, they show that if the matrices I, G, G
2
 and G

3
 are linearly independent, then by

subtracting from the variables the network average (or the average over neighbors, i.e. direct friends), social

effects are again identified and one can disentangle endogenous effects from correlated effects. In our dataset

this condition of linear independence is always satisfied.
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not network-specific, but rather individual-specific. In this respect, the richness of the in-

formation provided by the AddHealth questionnaire on adolescents’ behavior allow us to

find proxies for typically unobserved individual characteristics that may be correlated with

our variable of interest. Specifically, to control for differences in leadership propensity across

adolescents, we include an indicator of self-esteem and an indicator of the level of physical de-

velopment compared to peers, and we use mathematics score as an indicator of ability. Also,

we attempt to capture differences in attitude towards education, parenting and more general

social influences by including indicators of the student’s school attachment, relationship with

teachers, parental care and social inclusion.

In addition, we present an IV approach that uses as instruments only variables lagged in

time to ensure that the instruments are not correlated with the contemporaneous error term.

Observe that any unobserved source of heterogeneity that can be captured at the network

level is already taken into account by the inclusion of network fixed effects.

5.3 Econometric methodology

Our econometric methodology follows closely Liu and Lee (2010). Let us expose this approach

and highlight the modification that is implemented in this paper.

Let Y = (1 · · ·  )0, X = (1 · · ·  )0, and ² = (1 · · ·  )0. Denote the
× sociomatrix byG = [], the row-normalized of G byG

∗
, and the -dimensional

vector of ones by l . Then model (10) can be written in matrix form as:

Y = GY +X
∗
 + l + ² (11)

where X∗ = (XG
∗
X) and  = (0 0)0.

For a sample with ̄ networks, stack up the data by defining Y = (Y0
1 · · · Y0

̄)
0,

X∗ = (X∗01  · · · X∗0̄ )0, ² = (²01 · · ·  ²0̄)0, G = D(G1 · · · G̄), ι = D(l1  · · ·  l̄) and
η = (η1 · · · η̄)0, where D(A1 · · · A) is a block diagonal matrix in which the diago-

nal blocks are  ×  matrices A’s. For the entire sample, the model is

Y = Z + ι · η + ² (12)

where Z = (GYX∗) and  = ( 0)0.

We treat  as a vector of unknown parameters. When the number of networks ̄ is large,

we have the incidental parameter problem. Let J = D(J1 · · · J̄), where J = I− 1

l0 l .

The network fixed effect can be eliminated by a transformation with J such that:

JY = JZ + J² (13)
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LetM = (I−G)−1. The equilibrium outcome vectorY in (12) is then given by the reduced

form equation:

Y =M(X∗ + ι · η) +M² (14)

It follows that GY = GMX∗ + GMιη + GM². GY is correlated with ² because

E[(GM²)0²] = 2tr(GM) 6= 0. Hence, in general, (13) cannot be consistently estimated

by OLS.22 If G is row-normalized such that G · l = l, where l is a -dimensional vector of
ones, the endogenous social interaction effect can be interpreted as an average effect. With a

row-normalized G, Lee et al. (2010) have proposed a partial-likelihood estimation approach

for the estimation based on the transformed model (13). However, for this empirical study,

we are interested in the aggregate endogenous effect instead of the average effect. Hence,

row-normalization is not appropriate. Furthermore, we are also interested in the centrality

of networks that are captured by the variation in row sums in the adjacency matrixG. Row-

normalization could eliminate such information. If G is not row-normalized as it is in this

empirical study, the (partial) likelihood function for (13) could not be derived, and alterna-

tive estimation approaches need to be considered. Liu and Lee (2010) use an instrumental

variable approach and propose different estimators based on different instrumental matri-

ces, denoted here by Q1 Q2 and Q3. They first consider the 2SLS estimator based on the

conventional instrumental matrix for the estimation of (13): Q1 = J(GX
∗X∗) (finite-IVs

2SLS). For the case that the adjacency matrix G is not row-normalized, Liu and Lee (2010)

then propose to use additional instruments (IVs) JGι and enlarge the instrumental matrix:

Q2 = (Q1JGι) (many-IVs 2SLS). The additional IVs of JGι are based on the row sums of

G (i.e. the outdegrees of a network) and thus use the information on centrality of a network.

They show that those additional IVs could help model identification when the conventional

IVs are weak and improve upon the estimation efficiency of the conventional 2SLS estimator

based on Q1. However, the number of such instruments depends on the number of networks.

If the number of networks grows with the sample size, so does the number of IVs. The 2SLS

could be asymptotic biased when the number of IVs increases too fast relative to the sample

size (see, e.g., Bekker, 1994; Bekker and van der Ploeg, 2005; Hansen et al., 2008). Liu and

Lee (2010) have shown that the proposed many-IV 2SLS estimator has a properly-centered

asymptotic normal distribution when the average group size needs to be large relative to

the number of networks in the sample. As detailed in Section 4, in this empirical study,

we have a number of small networks. Liu and Lee (2010) also propose a bias-correction

22Lee (2002) has shown that the OLS estimator can be consistent in the spatial scenario where each spatial

unit is influenced by many neighbors whose influences are uniformly small. However, in the current data,

the number of neighbors are limited, and hence that result does not apply.
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procedure based on the estimated leading-order many-IV bias: Q3 (bias-corrected 2SLS).

The bias-corrected many-IV 2SLS estimator is properly centered, asymptotically normally

distributed, and efficient when the average group size is sufficiently large. It is thus the more

appropriate estimator in our case study (see Liu and Lee, 2010, for a detailed derivation and

an analysis of the asymptotic properties of the different estimators).23

In this paper, we use these estimators and also implement a modification of this approach,

which takes advantage of the longitudinal structure of our data. The exact equivalent of (10)

can be written in matrix form as:

Y+1 = GY+1 +X
∗
1 +X

∗
+12 + ηl + ²+1

Our modification of the IV approach proposed by Liu and Lee (2010) consists in including

in the different instrumental matrices only values lagged in time (i.e. observed in wave

I). So, for instance the first instrumental matrix for the finite-IVs 2SLS will thus be: Q0
1 =

J(GX
∗
 X

∗
 ). Such a strategy should ensure that the instruments are not correlated with the

contemporaneous (wave IV) error term +1, thus strengthening our identification strategy.

6 Estimation results

Table 2 (columns 2 and 3) collects the estimation results of model (10) when using the

different estimators discussed in the previous section, without using the information on the

nomination order, i.e. all nominated friends receive the same weight equals to 1. The first

column shows the results when using the traditional set of instruments whereas, in the second

column, the instrumental set contains only variables lagged in time.

As explained above, for the estimation of , we pool all the networks together by con-

structing a block-diagonal network matrix with the adjacency matrices from each network

on the diagonal block. Hence we implicitly assume that the  in the empirical model is the

same for all networks. The difference between networks is controlled for by network fixed

effects. Indeed, the estimation of  for each network might be difficult (in terms of precision)

for the small networks. Furthermore, as stated above, it is a crucial empirical concern to

control for unobserved network heterogeneity by using network fixed effects.

Proposition 1 requires that  is in absolute value smaller than the inverse of the largest

eigenvalue of the block-diagonal network matrix G, i.e.   1(G). In our case, the

largest eigenvalue of G is 370 . Furthermore our theoretical model postulates that  ≥ 0.
23Liu and Lee (2010) also generalize this 2SLS approach to the GMM using additional quadratic moment

conditions.
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As a result, we can accept values within the range [0 0280). Table 2 shows, in the second

column, the results obtained when using our most extensive set of instruments and, in column

3, those produced when using as instruments only variables lagged in time. All our estimates

of  are within the acceptable parameter space [0 0280) and are all significant. Looking

across columns, it appears that the results are similar and only slightly higher in magnitude in

the third column. This finding (incidentally) validates the empirical identification strategies

used by Lin (2010) and Liu et al. (2012). Indeed, given the extensive set of controls available

in the AddHealth, the inclusion of network fixed effects, and, most importantly, because

friendship networks are quite small (see Section 4), the presence of uncaptured (troubling)

individual unobserved within network characteristics is very unlikely. If these factors were

at work, we should have found a substantial difference between the results in the second and

third column in Table 2, since the latter controls for such influences.

[  2 ]

Looking now within each column, as explained above, in our case study with relatively

small networks in the sample, the preferred estimator is the bias-corrected 2SLS one. Let

us thus focus on the bias-corrected estimator. First, the effect of friends’ education on

own education is always significant and positive, i.e., there are strong and persistent peer

effects in education. This shows that the “quality” of friends (in terms of future educational

achievement) from high school has a positive and significant impact on own future education

level, even though it might be that individuals who were close friends in 1994-1995 (Wave

I) might not be friends anymore in 2007-2008 (Wave IV). In terms of magnitude, we find

that a standard deviation increase in peers’ aggregate years of education (roughly two more

high-school graduate friends) translates into roughly a 10 percent increase of a standard

deviation in the individual’s education attainment (roughly 3.5 more months of education).

This is a strong effect, especially given our long list of controls and the fact that friendship

networks might have changed over time. The influence of peers at school seem to be carried

over time.

When the information on the nomination order is exploited (Table 2, last two columns),

thus allowing to weight differently best friends, the magnitude of the effects is higher. A stan-

dard deviation increase in peers’ education attainment translates into roughly a 15 percent

increase of a standard deviation in the individual’s education attainment (roughly 6 more

months of education).24 This confirms the role of the order of nomination in friendships, as

24WhenG is weighted the largest eigenvalue is 259. We can thus accept values within the range [0 0385).

All our estimates of  in Table 2 (last two columns) are within this parameter space.
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already highlighted in Figure 2.

7 The mechanisms of peer effects in long-run educa-

tional outcomes

In the previous section, we have seen that being friend in high school with individuals who

will obtain a college degree later in life has a positive impact on own education attainment.

The mechanisms behind this result is, however, not very clear. In the present section, we

would like to narrow down this mechanism by proposing different empirical tests.

7.1 Do peers later in high school matter more than peers earlier

in high school?

The strength of peer effects may depend on when students become friends with other stu-

dents. In this section, we would like to investigate if peers later in high school matter more

than peers earlier in high school. Indeed, earlier peers in a student’s career are important as

they affect attitutes towards education (which are formed in the early years of high school)

such as: how much students learn, how much human capital will be accumulated or how

much students value achievement. Later peers in a student’s career are important as they

are the interacting friends when student decide to go to college. To test the relative mag-

nitude of these effects, we split our sample between students who were in grades 7-9 and

those who were in grades 10-12 in Wave I and estimate model (10) on these two sub-samples

separately. Table 3 presents the empirical results for students in grades 7-9 in Wave I while

Table 4 displays the results for students in grades 10-12 in Wave I. We consider again un-

weighted networks (first two columns) and weighted networks (last two columns). We find

that the impact on educational outcomes is stronger between peers in higher grades (i.e. in

the last years of high school) than in lower grades. In terms of magnitude, a standard de-

viation increase in peers’ aggregate years of education for students in grade 10-12 translates

into roughly a 13.5 percent increase of a standard deviation in the individual’s education

attainment (roughly 5.7 more months of education).

[  3  4 ]

This result helps us understand better how we might expect peers to matter in the long

run. We have shown that peers later in high school might matter more than peers earlier
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in high school. This is primarily due to two factors: peers in the last years of high school

are the interacting friends when the choice to go to college is made and/or these are peers

carried on from early years at school with whom friendship ties are stronger.

To better understand these mechanisms, we investigate the role of weak and strong ties

in educational decisions and try to disentangle the decision proximity effect and the strength

of interaction effect. Indeed, is it really the timing of friendship formation that is the crucial

factor (decision proximity effect) or is it rather the frequency of interactions underlying

common choices (strength of interaction effect)? On the one hand, peers in the last years of

high school might be more relevant because they are the interacting friends when the choice

to go to college is made. On the other hand, it might also be that peers carried on from early

years at school with whom friendship ties are stronger that matter. And, how about the

influence of the peers met in earlier years and lost during the school years? They might still

be important if the choice to go to college derives from preferences and attitudes towards

education developed early on in the school years as a results of friends interactions. This is

what we want to investigate in the next section.

7.2 The role of strong ties

7.2.1 An empirical investigation

The structure of the Addhealth dataset allow us to shed some light on these issues by

distinguishing different types of peers. For this purpose, we use the information on the

nominations that is collected in Wave II. Indeed, one year after the first interview (Wave

I), (the same) students are asked again to nominate their best friends, with a similarly

structured questionnaire. We consider the students that were in grade 10-12 in Wave I and

collect their nominations in Wave II. Of course, we lose those who were in grade 12 in Wave

I, unless a grade is repeated. We define a strong-tie relationship between two students if

they have nominated each other in both waves (i.e. in Wave I in 1994-95 and in Wave II in

1995-96) and a weak-tie relationship if they have nominated each other in one wave only.

We split friendship links among teenagers in three categories: friendship links observed

only in Wave I (weak ties), friendship links observed only in Wave II (weak ties) and friend-

ship links observed in both waves (strong ties). By doing so, we can disentangle between the

decision proximity effect and the strength of interaction effect, mentioned above. Indeed,

contrary to strong ties, all weak ties have a low strength of interaction. However, the weak

ties who are only nominated in Wave II have a higher decision proximity than those only

nominated in Wave I. Tables 5-7 show the estimation results of model (10) when different
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types of peers are considered. We analyze weak ties where best friends have only been nomi-

nated inWave I and not inWave II (Table 5) for unweighted (first two columns) and weighted

networks (last two columns), weak ties where best friends have only been nominated in Wave

II and not in Wave I (Table 6) for unweighted (first two columns) and weighted networks

(last two columns) and strong ties (Table 7) for unweighted (first two columns) and weighted

networks (last two columns).

We find that weak ties’ educational choices have no significant impact on individual

education outcomes (years of schooling), regardless whether peers are interacting in lower or

higher grades. On the contrary, we find that strong ties’ educational choices have a positive

and significant effect on own educational outcome and that this effect is stronger when the

network is weighted by the order of nomination. In terms of magnitude, a standard deviation

increase in aggregate years of education of peers nominated both in Waves I and II (strong

ties) translates into roughly a 10 percent increase of a standard deviation in the individual’s

education attainment (roughly 4 more months of education).

This suggests that strong ties rather than weak ties matter for educational outcomes in

the long run. If we look at Figure 1, this also indicates that peers who are nominated first

or second are more likely to be friend in both waves and thus more likely to influence their

friends’ future choice of education. In other words, even though students tend to nominate

more than one or two friends (on average, our adolescents declare having 2.49 friends on

average with a standard deviation of 1.78; see Section 4), it is really the first or second

nominated friend who seems to influence individual’s educational choice.

[  5 6  7 ]

To better understand this result, Figure 4 provides a simple example. If we look at the

networks on the left-hand side of the figure, one can see that, between  (Wave I) and + 1

(Wave II), individual  has kept his/her friendship link with , severed his/her friendship

link with , and created a new friendship link with . According to our definitions, in-

dividual  holds a strong tie link with  while individuals  and  hold a weak tie link

with . The table on the right-hand side of the figure summarizes this by also highlighting

the role of the decision proximity versus the strength of interaction effect. This allows us to

differentiate between the two weak ties  and  who both have a low strength of interaction

with  (they only interact with  in one wave) but individual  (first column) has a low

decision proximity (since he/she is not anymore friend with  in Wave II) while individual

 (last column) has a high decision proximity (since he/she is friend with  in wave II). The

empirical results shown in Tables 5-7 show that what matters most for peer effects is the
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strength of interaction rather than decision proximity effect (see also the last row of Figure

4). Being a strong tie (which includes both effects) is crucial to understand the role of peer

effects in future educational attainment. A weak tie has no significant influence on his/her

peers even if she/he has been nominated as best friend in Wave II.

[  4 ]

We would like to better understand what does this mean from an economic viewpoint. If

the decision proximity effect was at work, then it would mean that peers matter more later

in the student’s career in shaping whether the student decides to go to college is worthwhile

in the end. This is not what we found. We found that it is the strength of interaction that

matters, indicating that peers matter in a student’s career because they affect how much

they learn, the human capital accumulation, how much they value achievement. It also

shapes social norms that accumulate over time, which affect years of schooling both directly

and indirectly. To summarize, we have found that education outcomes of students who have

been nominated by a given person in both Wave I (1994-1995) and Wave II (1995-1996) have

a positive impact on his/her education outcomes (years of schooling) made later in life as

reported in Wave IV (2007-2008). We do not know, however, if these students are still friends

with this given person in Wave IV since we do not have this information. We also found

that the education outcome of friends who have been nominated in one wave only (it does

not matter which one) have no significant impact on years of schooling of this individual.

One natural question is: what happens to our results if the peers groups are not measured

correctly? In Section 8, we perform a robustness check by manipulating the friendship links

in each network, showing that our results holds true even if we do not observe or imprecisely

observe a (non-negligible) portion of each individual’s social network.

7.2.2 A theoretical investigation

To better understand the importance of weak and strong ties, let us now propose a model

based on that of Section 3. In this section, for the specific networks described in Figure 4, we

would like to see under which condition a student keeps a friend between Wave I and Wave

II and when he/she doesn’t. The second stage (at time +1) for the educational outcome is

exactly as in Section 3.1. The first stage is divided in two sub-stages: Wave I (at time − 1)
and Wave II (at time ). We illustrate our model using the networks described in Figure 5,

which are the same networks displayed in Figure 4. We only focus on student  (red node).

In Wave I, this student  has two friends  and . In Wave II, we observe that this student

 has two friends  and .
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Figure 5: Strong and weak ties in link formation

Using our model, we would like to understand why, in Wave II, student  first severs

his/her link with , then creates a link with  and keeps his/her friendship link with .

Observe that we do not study under which conditions the networks described in Figure 5 are

pairwise stable (as in Section 3) but we only focus on the behavior of student . We have

the following result.

Proposition 3 Assume   0618. In Wave II, student  will first severe the link with ,

then creates a link with  and keeps his/her friendship link with  (Figure 5) if and only if

Γ1 (α)    min {Γ2 (α) Γ3 (α)} (15)

where

Γ1 (α) ≡ [(1− ) +  (1− ) +  + ]
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The results of this proposition are a little bit cumbersome and due to the fact that agents

anticipate educational outcomes in the future (at time +1). For this proposition to be true,

it has to be that the cost of forming a link for  is not too low so that he/she can sever the

link  but also not too high so that he/she can creates the link  and keeps the one with

. These conditions also depend on   , , which are the characteristics of all the

individuals and , the degree of interactions.

The key factors that affect these relationships are the costs of having friends, the strength

of interactions in the network, and the characteristics of each individual involved in the

friendship relationship. Individuals are more likely to severe a link with a friend (weak tie) if

the cost of maintaining this link is too high and/or the ’s are too different. On the contrary,

students are more likely to keep friendship relationships (strong ties) if the reverse is true.

7.3 Weak versus strong ties

Our results in the previous sections suggest that the distinction between strong ties and weak

ties is important for understanding long-run peer effects in education. In our analysis, we

identified strong and weak ties using variations in network topology between two points in

time, i.e. between Wave I and Wave II. We would now like to check if students select peers

differently between the first and the second wave or if it is really that distinct types of peers

(weak versus strong ties) matter differently. Table 8 investigates this issue but comparing

the observable characteristics of peers who only appear in Wave I, those who only appear

in Wave II and those who appear in both Waves. One can see that, in fact, there are no

differences between these peers in terms of observable characteristics.

[  8 ]

To further investigate this issue, we would like to test the fact that link formation is not

different between different waves. For that, we pool the data for Wave I ( = 1) and Wave

II ( = 2) and perform a Chow test based on the following regression:

 = +

X
=1

| − |+
X
=1

| − | ×  +   = 1 2 (16)

where, as in (10),  = 1 if there is a link between  and  belonging to network  at time

,  indicates the individual characteristic  of individual  in network  at time  and

 = 1 if a directed link  exists in Wave II, and zero otherwise. Here the variables that

explain  are distances in terms of characteristics between students  and . For instance
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two students might be friends because they both like to play football and watch TV. We

want to test whether these effects are stable between Wave I and Wave II. From an economic

viewpoint, not rejecting the null hypothesis of Chow test means that these effects, considered

as a whole, does not change significantly after one year. Table 9 (Chow test p value) shows

that, controlling for network fixed effects, we cannot reject the null hypothesis of  = 0,

∀ = 1     . We have also tested separately the stability of each effect. Table 9 (second

column) shows that most coefficients are not significant, meaning that the null hypothesis

 = 0 is not rejected so that there are no observable differences in link formation process

between Waves I and II.

[  9 ]

Observe that the aim of estimating (16) is not to test the model of Section 3.2 since its

prediction is that not only the characteristics of the two persons involved in the friendship

relationship matter but also the characteristics of all individuals of the network. Also the

costs of forming links are an important determination of link formation but we do not have

information about them. The aim of testing (16) is to show that the formation of a friendship

link is not significantly different between Wave I and Wave II.

7.4 Short-run versus long run effects

So far, we have found that students nominate other students as their best friends but only

their strong ties, i.e. students who are friends in both waves and who are more likely to

be nominated first or second, influence them in their educational choice. It is really the

intensity of the relationship that matters and only very close friends do impact on their

friends’ educational choices. Without looking at the difference between Waves I and II,

Calvó-Armengol et al. (2009), using Addhealth data for Wave I only, have studied the

current effect of peers on education. They show that peers do affect the current education

activity (i.e. grades) of students. This could indicate that, in the short run, all peers

affect current education (grades) of students while, in the long-run, only strong ties affect

educational attainment of students.

To investigate further this issue, we would like now to oppose the long-run effects with

short-run effects of peers on education by differentiating between strong ties and weak ties

effects on school performance. To the best of our knowledge, nobody has looked at the effect

of weak (Wave I or Wave II) and strong ties (Wave I and Wave II) on current educational

outcomes (grades in Wave II). Is it true that also in the short run, only strong ties have an

impact on current grades? For that, we estimate the short-run counterpart of equation (10):
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 = 
P
=1

 + 0 +
1



P
=1


0
 +  +  (17)

where  is now the grade of student  who belongs to network  at time  , and  refers

to wave II instead of +1, the highest education level reached by individual  at time

 + 1 (i.e. in Wave IV in 2007-2008) who belonged to network  at time  (i.e. in Wave

I in 1994-1995). The notation remain unchanged, which implies that we now deal with a

traditional peer effects model where all the individual and peer group characteristics are

contemporaneous (i.e. in Wave II in 1994-1995). As we did in our investigation on long run

effects, we exploit variations in link formation in Waves I and II to differentiate between

strong ties and weak ties. We will first estimate equation (17) for peers who are only friends

in Wave I, i.e.  = 1 in Wave I and  = 0 in Wave II, then for peers who are only

friends in Wave II, i.e.  = 0 in Wave I and  = 1 in Wave II, and finally for peers

who are friends in both Waves I and II, i.e.  = 1 in Wave I and  = 1 in Wave II.

The identification strategy remain unchanged with the difference that we cannot now use IV

variables lagged in time. The school performance is measured using the respondent’s scores

received in Wave II in several subjects, namely English or language arts, history or social

science, mathematics, and science. The scores are coded as 1=D or lower, 2=C, 3=B, 4=A.

For each individual, we calculate an index of school performance using a standard principal

component analysis. The final composite index (labeled as GPA index or grade point average

index) is the first principal component score. It captures a general performance at school

since it is positively and highly correlated to the scores in all subjects. Appendix 2 contains

further details on this procedure.

We estimated equation (17) considering friends only in Wave I, friends only in Wave II

and friends in both waves. The results are contained in Tables 10, 11 and 12, first column for

unweighted networks and second column for weighted (by the nomination order) networks.

[  10, 11 and 12 ]

As for our results for the long run effects, we find stronger effects for weighted networks,

suggesting that also, in the short run, friends nominated first or second seem to be more

influential. However, while in the long run, only strong ties matter, it appears that, in the

short run, both weak and strong ties are important in determining a student’s performance

at school. The magnitude of these effects is comparable: for weighted networks, a standard

deviation increase in aggregate GPA of peers translates respectively into a 3.3 (for peers only

in Wave I), a 4.4 (for peers only in Wave II) and a 3.2 (for peers in both waves) percent

increase of a standard deviation in the individual’s GPA. It means that peer effect for GPA is
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substantially homogenous among different type of ties (see Tables 10, 11 and 12). Taken our

analysis as a whole, our results suggest that, in the short run, all peers matter for education

(i.e. grades) while, in the long run, only strong ties matter for future educational choices

(i.e. years of schooling). In both cases, taking into account an heterogeneous effect of peers

according to their nomination order might be important in shaping the magnitude of the

peer effects.

8 Measurement errors in peer groups

We have shown that high-school friends have a long term impact on years of schooling if

they are strong ties (i.e. friends in both Waves I and II). Observe that we have a measure of

networks at two points in time (Waves I and II) and then an outcome measure in Wave IV

(10 years after). It is possible that those students form other friendships before completing

their schooling and that those extra peers are left out. This could explain why friends in

the last grades of high school matter more than those made earlier. In any case, it may

be that the set of relevant peers is mis-measured. Observe also that our identification and

estimation strategies depend on the correct specification of network links. In particular, our

identification strategy hinges upon non linearities in group membership, i.e. on the presence

of intransitive triads (see Section 5.2).

In this section, we test the robustness of our results with respect to misspecification of

network topology or relevant peers. So far, we have measured peer groups as precisely as

possibly by exploiting the direction of the nomination data. However, there can be, for

example, some “unobserved” network link that, if considered, would change the network

topology and break some intransitivities in network links. In this section, a falsification

check using simulated data will be performed. The general idea is as follows. Within the

same network, let us randomly delete some friendship links and randomly create new links

so that the total number of links stays the same. By doing so, we would like to see if our peer

effect results stay the same or are affected by these changes. This will allow us to answer the

following questions: Do our results change if some links are misspecified? To what extent?

How many links need to be misspecified before our results become insignificant?

A Numerical experiment

We use a simulation approach to randomly change a certain percentage  of links in

each network , one hundred times for each value of  starting from 0 to 1 with a pace of

0005. We thus draw one hundred network structures (samples) of size equal to the real one

( = 1 749) for each value of , twenty thousand network structures in total. The desired

32



replacement rate is assumed to be the same for all networks, i.e.  = .

The first empirical issue that we face in our procedure relates to the relationship between

the strength of peer effects and network density. Because peer effects varies with network

density (see, e.g. Calvó-Armengol et al., 2009), our numerical exercise needs to generate a

constant number of links after deletion.

Let , with cardinality , be the set of existing links in network  and , with cardinal-

ity , the set of non-existing links in the same network. The number of “possible changes”

in network  consistent with our constraint is  = min( ). In words, for each network

, we can exchange only a fraction of existing links with non existing links (and vice versa)

if we want to maintain constant the total number of links in our network  of a given size

(network density). The percentage of randomly replaced links  is thus calculated over the

possibly interchangeable links (excluding overlapping), rather than over the total number of

network links. Let  be the theoretical number of links to replace in network  when we

want to remove a percentage  of . It is:  =  × .

The second empirical issue here is that this theoretical portion of links that we want to

change may not correspond to a discrete number of links. For example, a replacement rate

of 20 percent in a network with 7 possibly interchangeable links would imply that 1.4 links

need to be changed. Do we swap one link (i.e. one existing into non existing and one non

existing into existing at random) or two links (i.e. two couples)?

We rigorously implement this decision rule as follows.

Let  ∈ (0 1) be our desired replacement rate in network  In order to obtain a number
of changes as close as possible to the desired one, the actual number of changes  is:

 =

(
bc if   

bc+ 1 if   

where bc denotes the largest integer smaller or equal than  (the floor of ),  =  −bc,
and  is a random extraction from a variable uniformly distributed on (0 1).

To illustrate this point, let us consider a simple example where the network is given in

Figure 6.
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A B

CD

Existing links

Non-existing links

Figure 6: A simple example illustrating the simulation exercises

In Figure 6, the undirected network composed of 4 nodes,  , and 4 links

{}. In this situation,  (the number of existing links in the network) is
equal to 4,  (the number of non-existing links. i.e. the non-existing links  and ) is

equal to 2 and therefore  = 2. Within the set of “possible changes”

{() () () () () () () ()}

we can make at most two changes. This means that we can extract randomly just two couples

out of eight. Now suppose that our desired replacement rate  is 0.3 (30 percent), yielding

to an actual replacement rate  = 06 ( =  = 03× 2). In that case,  = 06− b06c =
06− 0 = 06. We have:

 =

(
b06c = 0 if   06

b06c+ 1 = 1 if   06

At this stage, our algorithm draws . If   06, then  = 1 and we will replace one link

(i.e. we extract at random one couple), otherwise nothing will happen. Clearly, given that

0.6 is closer to 1 than to 0, the probability to extract   06 is higher than the probability

to extract   06, as it is desired.25

25This algorithm has been written in Matlab. The code is available upon request.
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Simulated evidence

Our link replacement procedure enables us to simulate different network structures (G

matrices in model (10)) that differ from the real one by a given (increasing) number of

misspecified links. As mentioned before, for each percentage of randomly replaced links, we

draw 100 network structures (samples) of size and network density equal to the real one. We

then estimate model (10) replacing the real G matrix with the simulated ones in turn, so

that in total we estimate model (10) twenty thousand times for each type of estimator (see

Section 5.3).

Figure 7 shows the results of our simulation experiment. The upper panel depicts the

estimates of peer effects (model (10)), whereas the lower panel shows the −statistics with
90 percent confidence bands. It appears that the higher the percentage of misspecified links,

the wider is the range of the peer-effect estimates and the more often the −statistics fail to
reject the hypothesis of no effects. This means that the more the peer effects are mis-specified

(in terms of links), the less effects they have on educational outcomes of their friends. This

gives us confidence that students do declare their best friends and do not make mistakes or

errors when nominating them. The crucial question now is what is the percentage of network

structure misspecification over which peer effects become insignificant.

[  7 ]

Figure 8 plots the averages of the estimates of peer effects for each replacement rate with 90

percent confidence bands. Standard errors have been calculated assuming drawing indepen-

dence and taking into account the variation between estimates for each replacement rate.26

We find that peer effects remain statistically significant up to a percentage of randomly

replaced (interchangeable) links of about 20 percent. This implies that even if we do not

observe or imprecisely observe a portion of each individual’s social network, our results on

the existence of peer effects hold. The portion of network topology that can be misspecified

is not extremely small.

[  8 ]

26Specifically, the standard error at each replacement rate, say  is computed as follows:

 =
p
 +

where  =
1


P
=1 

2
 ,  =

1


P
=1( − ̄)

2 , 2 is the estimated variance of the jth estimator at

the ith replacement rate,  is the jth estimate at the ith replacement rate and ̄ is the mean across the 

estimates. In this experiment  = 100.
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9 Concluding remarks and policy implications

This paper is about peer effects in education and we have tried to understand how peers

met at school impact on educational choices (years of schooling) made later on in life. We

have found that students who have a strong-tie relationship (i.e. who have been nominated

more than once) with a given person have a positive impact on his/her education outcomes

while those who have a weak-tie relationship (i.e. who have been nominated only once) do

not. This means that the strength of interactions between students matters in a student’s

career because it affects how much they learn, how much they value achievement, the human

capital accumulation, and how social norms are formed. We have also found that, in the

short run, any relationship (whether it is a weak or a strong one) matters in influencing

current grades.

The presence of peer effects provides opportunities for policies aiming at improving so-

cial welfare and increasing educational outcomes (Hoxby, 2000). If one wants to implement

an effective education policy, it needs to internalize peer effects. For instance, education

vouchers could lead to a more efficient human capital investment profile (see e.g., Epple and

Romano 1998; Nechyba 2000). Our results suggest that one should give vouchers to students

who generate most positive education spillovers. Using, for example, the AddHealth data,

where information on students’ grades and students’ strong-tie relationships (a good proxy

for positive spillovers) is provided, one could give vouchers to the students who generate the

highest positive externalities in education. Furthermore, policies such as school desegrega-

tion, busing, magnet schools, Moving to Opportunity programs27 could also be effective if

the government understands the magnitude and nature of peer effects in student outcomes.

In the present paper, we have shown that the strength of relationships matters in long-term

educational outcomes. This may be an indication of good social norms where students in-

fluence each other over a long-term period. Since adolescent friendships are often made in

school and, more precisely, in the classroom, one natural policy implication could be not

to change the composition of the classroom over time, as it is often the case in the United

States. Indeed, we believe that, in the last years of high school, it would not be efficient to

move students to another class because, in that case, his/her strong ties will also be removed

and it is unlikely that his/she is going to have strong-tie friends in the new environment.

On the contrary, in earlier grades, moving a student to another class could have positive

effects since this student has not yet formed strong-tie relationhsips and it is still possible

for him/her to create such relationship in the new environment. This, of course, would be

27See Lang (2007) for an overview of these policies in the U.S.
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efficient if peers have positive effects on each other. In the case of disruptive kids and nega-

tive peer effects, then the opposite should be done. This paper points toward the fact that

friends made at school over a long period of time have an important impact of the decision

to whether or not to go to college. This could be for the best but also for the worse.
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APPENDIX 1: Proofs for the theory

Proof of Proposition 1. Apply Theorem 1, part b, in Calvó-Armengol et al. (2009)

to our problem.

Proof of Proposition 2. Let us first consider the possible link creation. Because it is

a star-shaped network, it should be clear that there is only one link creation to check:

() Condition for which  does not want to form a link with :

To determine the benefit of forming the link , we need to calculate the new Nash

equilibrium and the new Bonacich centralities of all individuals. First, if the link  is

created, the adjacency matrix now becomes

G + =

⎛⎜⎝ 0 1 1

1 0 1

1 1 0

⎞⎟⎠
The largest eigenvalue is 2 and the condition is   05. The equilibrium utilities are now

given by

u ( +) =
1

2
¡
1− − 22¢2

⎛⎜⎝ [(1− )+1 + +1 + +1]
2

[+1 + (1− )+1 + +1]
2

[+1 + +1 + (1− )+1]
2

⎞⎟⎠−
⎛⎜⎝ 2

2

2

⎞⎟⎠
As a result,  will not want to form a link with  if:  ( +)   (), which is

equivalent to:

 
[+1 + (1− )+1 + +1]

2

2
¡
1− − 22¢2 −

£
+1 +

¡
1− 2

¢
+1 + 2+1

¤2
2
¡
1− 22¢2

If we assume that +1 = +1 = +1 = 1, then

 

¡
2− 42 − 

¢
(1 + )

2

2
¡
1− − 22¢2 ¡1− 22¢2 (18)

Because of mutual consent if  does not want to form a link with  then the link  will

not be created even if  wants to form this link. Thus, we don’t need to check the condition

for which  does not want to form a link with .

In terms of link deletions, because it is a star-shaped network, only two deviations need

to be checked:
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() Condition for which  does not want to severe a link with  (or ). If this link is

severed, the adjacency matrix now becomes

G − =

⎛⎜⎝ 0 0 1

0 0 1

1 0 0

⎞⎟⎠
The largest eigenvalue is 1 and the condition is   1. The equilibrium utilities are given

by:

u ( −) =
1

2

⎛⎜⎝ (+1 + +1)
2

¡
1− 2

¢2
2+1

(+1 + +1)
2

¡
1− 2

¢2
⎞⎟⎠−

⎛⎜⎝ 

0



⎞⎟⎠ (19)

As a result,  does not want to severe a link with  or  if:  ( −)   (),

which is equivalent

 
(+1 + +1 + +1)

2

2
¡
1− 22¢2 − (+1 + +1)

2

2
¡
1− 2

¢2
If we assume that +1 = +1 = +1 = 1, then

 
 (1 + )

2
¡
2 + − 42¢

2
¡
1− 22¢2 ¡1− 2

¢2 (20)

() Condition for which  (or ) does not want to severe a link with . The adjacency

matrix is as before and equal to G − . The largest eigenvalue is 1 and the condition

is   1. The equilibrium utilities are still given by (19). As a result,  does not want to

severe a link with  if:  ( −)   (), which is equivalent to:

 

£
+1 +

¡
1− 2

¢
+1 + 2+1

¤2
2
¡
1− 22¢2 − 2

2

If we assume that +1 = +1 = +1 = 1, then

 

¡
2 + 5− 43¢
2
¡
1− 22¢2 (21)

Observe that, for   05,


¡
2 + 5− 43¢
2
¡
1− 22¢2 

 (1 + )
2
¡
2 + − 42¢

2
¡
1− 22¢2 ¡1− 2

¢2
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Therefore, if  =  =  = , then, if   05, the condition that guarantees that this

network is pairwise stable is (which put together conditions (18), (20) and (21)):


¡
2− 42 − 

¢
(1 + )

2

2
¡
1− − 22¢2 ¡1− 22¢2   


¡
2 + 5− 43¢
2
¡
1− 22¢2

which is condition (8) in the proposition.

Proof of Proposition 3

In Wave II, the adjacency matrix of the network displayed on the right-hand side of

Figure 5

G =

⎛⎜⎜⎜⎝
0 1 1 0

1 0 0 0

1 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
whose largest eigenvalues is: 1+

√
5

2
= 1618. Let us calculate the Nash equilibrium utilities

of all agents for this network in Wave II. For   0618, we easily obtain the Bonacich

centralities of all players:

b ( ) =
1¡

1− 32 + 4
¢
⎛⎜⎜⎜⎝

¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2


¡
1− 2

¢
 +

¡
1− 22¢ + 2 + 3

 + 2 +
¡
1− 2

¢
 + 

¡
1− 2

¢


2 + 3 + 
¡
1− 2

¢
 +

¡
1− 22¢

⎞⎟⎟⎟⎠
The equilibrium utilities are thus given by

u () =
1

2
¡
1− 32 + 4

¢2
⎛⎜⎜⎜⎜⎝

£¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2

¤2£

¡
1− 2

¢
 +

¡
1− 22¢ + 2 + 3

¤2£
 + 2 +

¡
1− 2

¢
 + 

¡
1− 2

¢


¤2£
2 + 3 + 

¡
1− 2

¢
 +

¡
1− 22¢

¤2

⎞⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎝
2



2



⎞⎟⎟⎟⎠
(22)

() Let us calculate under which condition student  will not keep the link with  in

Wave II.

If player  keeps the link with , the adjacency matrix becomes:

G + =

⎛⎜⎜⎜⎝
0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

⎞⎟⎟⎟⎠
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and the equilibrium utilities:

u ( +) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[(1−)+(1−)++]2

(1−−32+3)2

[(1−)+(1−−22)+2+2]
2

(1−−32+3)2

[(1+)+(1+)2+(1−22)+(1+−2)]
2

(1−42−23+4)2

[(1+)+2(1+)+(1+−2)+(1−22)]
2

(1−42−23+4)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎝
3



2

2

⎞⎟⎟⎟⎠ (23)

As a result,  will not keep the link with  iff:  ( +)   (), i.e.,

[ (1− ) +  (1− ) +  + ]
2

2
¡
1− − 32 + 3

¢2 − 3



£¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 32 + 4

¢2 − 2

which is equivalent to:

 
[(1− ) +  (1− ) +  + ]

2

2
¡
1− − 32 + 3

¢2 −
£¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 32 + 4

¢2
(24)

() Let us calculate under which condition student  will create a link with  in Wave

II.

If student  does not create a link with  in Wave II , the adjacency matrix would be

given by:

G − =

⎛⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
whose largest eigenvalue is 1. Thus, given that   1, the equilibrium utilities are:

u ( −) =
1

2
¡
1− 2

¢2
⎛⎜⎜⎜⎝
( + )

2

( + )
2

( + )
2

( + )
2

⎞⎟⎟⎟⎠−
⎛⎜⎜⎜⎝









⎞⎟⎟⎟⎠
As a result,  will create the link with  in Wave II iff:  ()   ( −), i.e.£¡

1− 2
¢
 + 

¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 32 + 4

¢2 − 2 
( + )

2

2
¡
1− 2

¢2 − 
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which is equivalent to:

 

£¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 32 + 4

¢2 − ( + )
2

2
¡
1− 2

¢2 (25)

() Let us finally calculate under which condition student  will keep the link with 

in Wave II.

If student  deletes the link with , the adjacency matrix becomes:

G − =

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 0

1 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
whose largest eigenvalue is

√
2 = 1414. Thus, given that   1414, the equilibrium utilities

are given by: ⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠− 

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 0

1 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
−1⎛⎜⎜⎜⎝









⎞⎟⎟⎟⎠

u ( −) =
1

2
¡
1− 22¢2

⎛⎜⎜⎜⎜⎝
£¡
1− 2

¢
 +  + 2

¤2¡
1− 22¢2 2

( +  + )
2£

2 +  +
¡
1− 2

¢


¤2

⎞⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎝



0

2



⎞⎟⎟⎟⎠
As a result, student  will not delete a link with  if  ( −)   (), i.e.£¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 22¢2 −  

£¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 32 + 4

¢2 − 2

which is equivalent to:

 

£¡
1− 2

¢
 + 

¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 32 + 4

¢2 −
£¡
1− 2

¢
 +  + 2

¤2
2
¡
1− 22¢2 (26)

Therefore, conditions (24), (25) and (26) guarantee that, in Wave II, student  will severe

the link with , will create the link with  and will not delete the link with  (Figure 5).

These three conditions correspond to condition (15) in the proposition.
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APPENDIX 2: GPA and Principal Component Analysis

The school performance is measured using the respondent’s scores received in wave II

in several subjects: English or language arts, history or social science, mathematics, and

science. The scores are coded as 1=D or lower, 2=C, 3=B, 4=A. A student can have higher

grades in a subset of subjects depending on his/her preferences and abilities. Given that we

want to measure a general school performance, not a subject-specific one, we used the first

principal component score as final composite index (labeled as GPA index or grade point

average index). We apply a principal component analysis (PCA) to a matrix  in which

scores in each subject (columns) are registered for students (rows). PCA is a mathematical

procedure that uses an orthogonal transformation to convert a set of observations (student’s

scores) of possibly correlated variables (subjects) into a set of values of linearly uncorrelated

variables called principal components. This transformation is defined in such a way that the

first principal component has the largest possible variance (that is, accounts for as much of

the variability in the data as possible), and each succeeding component in turn has the highest

variance possible under the constraint that it must be orthogonal to (i.e., uncorrelated with)

the preceding components.

Let us explain more formally how these components are computed. So far, we have

defined  as a score matrix in which units are students (rows,  = 1  ) and variables are

subjects (columns,  = 1  ). The first elements to be defined are the covariance matrix

 = 0 and the metric matrix  , which is a ×  diagonal matrix whose generic element

is the inverse of subject ’ variance. Let us define the Inertia of a cloud of points (roughly

defining the variability in the data ) as

 =

X
=1

||||2

where  is the th row of , a 1×  row vector containing student  scores. Essentially, we

want to find a series of spaces that sequentially maximize the percentage of explained Inertia

under the constraint of being orthogonal to previous ones, sequentially solving the following

problem

max


    ⊥−1 (28)

where  is the explained inertia at the th step by the space  and−1 is its ortogonal

space, with
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 ≥  1 ≥ ·· ≥ ·· ≥  ≥ ·· ≥ ·· ≥   (29)

In our case, the first principal component explains 56 percent of total variance (see Figure

A1). It is the only component which is positively and highly correlated to all subjects.

Figure A1

This first component captures a general high performance at school while other com-

ponents capture the variability of scores among subjects (given the level of general perfor-

mance). Correlations between components and subjects are represented in Figure A2. For

example, in the North-West panel of Figure A2, subjects are points whose −coordinate
represents correlation between subject and first component while −coordinate represents
correlation between subject and second component. All subjects have roughly the same
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correlation (about 0.5) with the first component while only mathematics has a strong and

positive correlation with the second component, which discriminates between students who

are relatively more successful in this subject relatively to all other subjects (expecially his-

tory) given their general performance’s level.

Figure A2: Principal Component Analysis

Let us illustrate this last point with an example (see the North-West panel of Figure A2).

Student  (green point) has a generalized above-the-average profile in every subject and has

a high score for first principal component. This student is really excellent in mathematics

and has thus a high score also in the second principal component (which distinguishes a

propensity for mathematics). Student  is therefore in the first quadrant of the coordinate

plane formed by the first two principal components. Student  (red point) is a below-average

student and is particularly weak in mathematics but relatively good, for example, in history.

As a result, this student will lie on the third quadrant of the coordinate plane. By considering

the first component, we are able to isolate a global performance index at school and peer

effects on this outcome might thus be considered as a spillover in general effort at school,

excluding preferences or abilities in specific subjects.
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Table 1: Variables definition and summary statistics

Variable Description Average (Std.Dev.) Min - Max

Wave II (grade 7-12 )
Individual socio-demographic variables

Female Dummy variable taking value one if the respondent is female. 0.53 (0.50) 0 - 1
Black or African American Race dummies. “White” is the reference group 0.19 (0.39) 0 - 1
Other races // 0.10 (0.30) 0 - 1
Student grade Grade of student in the current year. 9.07 (1.65) 7 - 12

Religion practice

Response to the question: “In the past 12 months, how often did
you attend religious services?”, coded as 2= never, 3= less than
once a month, 4= once a month or more, but less than once a
week, 5= once a week or more. Coded as 1 if the previous is
skipped because of response “none” to the question: ”What is
your religion?”

3.79 (1.83) 1 - 5

Mathematics score A
Mathematics score dummies. Score in mathematics at the most
recent grading period. D is the reference category, coded (A, B,
C, D missing).

0.29 (0.45) 0 - 1

Mathematics score B // 0.34 (0.48) 0 - 1
Mathematics score C // 0.21 (0.41) 0 - 1
Mathematics score Missing // 0.05 (0.21) 0 - 1

Self esteem

Response to the question: “Compared with other people your
age, how intelligent are you”, coded as 1= moderately below
average, 2= slightly below average, 3= about average, 4= slightly
above average, 5= moderately above average, 6= extremely above
average.

4.00 (1.09) 1 - 6

GPA In the text 2.29 (1.49) 0 - 6.09

Physical development

Response to the question: “How advanced is your physical devel-
opment compared to other boys/girls your age”, coded as 1= I
look younger than most, 2= I look younger than some, 3= I look
about average, 4= I look older than some, 5= I look older than
most

3.31 (1.11) 1 - 5

Family background variables

Household size Number of people living in the household 3.40 (1.34) 1 - 11

Two married parent family
Dummy taking value one if the respondent lives in a household
with two parents (both biological and non biological) that are
married.

0.73 (0.44) 0 - 1

Parent education

Schooling level of the (biological or nonbiological) parent who
is living with the child, distinguishing between “never went to
school”, “not graduate from high school”,“high school gradu-
ate”,“graduated from college or a university”, “professional train-
ing beyond a four-year college”, coded as 1 to 5. We consider only
the education of the father if both parents are in the household.

3.25 (0.97) 1 - 5

Parent occupation manager

Parent occupation dummies. Closest description of the job of
(biological or nonbiological) parent that is living with the child
is manager. If both parents are in the household, the occupation
of the father is considered. “none” is the reference group

0.11 (0.31) 0 - 1

Parent occupation professional/technical // 0.21 (0.41) 0 - 1
Parent occupation office or sales worker // 0.10 (0.33) 0 - 1
Parent occupation manual // 0.30 (0.46) 0 - 1



Parent occupation other // 0.14 (0.35) 0 - 1
Protective factors

School attachment
Response to the question: ”You feel like you are part of your
school coded as 1= strongly agree, 2= agree, 3=neither agree
nor disagree, 4= disagree, 5= strongly disagree.

1.90 (0.90) 1 - 5

Relationship with teachers
Response to the question: ”How often have you had trouble get-
ting along with your teachers?” coded as 0= never, 1= just a few
times, 2= about once a week, 3= almost everyday, 4=everyday

0.91 (0.94) 0 - 4

Social inclusion
Response to the question: ”How much do you feel that adults care
about you, coded as 5= very much, 4= quite a bit, 3= somewhat,
2= very little, 1= not at all

4.47 (0.73) 1 - 5

Residential neighborhood variables

Residential building quality

Interviewer response to the question ”How well kept is the build-
ing in which the respondent lives”, coded as 4= very poorly kept
(needs major repairs), 3= poorly kept (needs minor repairs), 2=
fairly well kept (needs cosmetic work), 1= very well kept.

1.52 (0.80) 1 - 4

Wave IV (aged 25 - 31)
Years of education Years of education attained by the individual. 16.42 (3.21) 9 - 26
Years of education of peers Sum of years of education attained by respondent peers. 40.93 (29.48) 9 - 207
Children Dummy variable taking value one if the respondent has a child. 0.43 (0.50) 0 - 1
Married Variable taking value one if the respondent is married 0.42 (0.49) 0 - 1

Religion practice

Response to the question: ‘How often have you attended religioius
services in the past 12 months?”, coded as 0= never, 1= a few
times , 2= several times, 3= once a month, 4=2 or 3 times a
month, 5=once a week, 6=more than once a week.

1.75 (1.64) 0 - 5



Table 2: Long-run peer effects in education
Dep.Var. Years of Education

Unweighted Networks Weighted Networks
Total IV Lagged IV Total IV Lagged IV

2SLS finite IVs 0.0076* 0.0107* 0.0127* 0.0186**
(0.0045) (0.0062) (0.0071) (0.0095)

2SLS many Ivs 0.0067* 0.008** 0.0097* 0.0122**
(0.0039) (0.0041) (0.0058) (0.0062)

Bias-corrected Ivs 0.0077* 0.0092** 0.0113** 0.0142**
(0.0039) (0.0041) (0.0058) (0.0062)

Individual socio-demographic variables yes yes yes yes
Family Background Variables yes yes yes yes
Protective Factors yes yes yes yes
Contextual Effects yes yes yes yes
Network Fixed Effects yes yes yes yes
Observations 1749 1749 1749 1749

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table 3: Long-run peer effects in education, grades 7-9
Dep.Var. Years of Education

Unweighted Networks Weighted Networks
Total IV Lagged IV Total IV Lagged IV

2SLS finite IVs 0.01** 0.0175** 0.0121* 0.0183**
(0.0045) (0.0065 ) (0.007) (0.0094)

2SLS many Ivs 0.0104** 0.0123*** 0.013** 0.0152**
(0.004) (0.0043) (0.006) (0.0064)

Bias-corrected Ivs 0.0109** 0.013*** 0.0137** 0.016***
(0.004) (0.0043) (0.006) (0.0064)

Individual socio-demographic variables yes yes yes yes
Family Background Variables yes yes yes yes
Protective Factors yes yes yes yes
Contextual Effects yes yes yes yes
Network Fixed Effects yes yes yes yes
Observations 969 969 969 969

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 4: Long-run peer effects in education, grades 10-12
Dep.Var. Years of Education

Unweighted Networks Weighted Networks
Total IV Lagged IV Total IV Lagged IV

2SLS finite IVs 0.0179* 0.0171 0.0296** 0.031*
(0.0096) (0.0118) (0.0144) (0.0175)

2SLS many Ivs 0.0191* 0.0196** 0.031*** 0.0326***
(0.0082) (0.0088) (0.0119) (0.0128)

Bias-corrected Ivs 0.0211*** 0.0222*** 0.0343*** 0.0371***
(0.0082) (0.0088) (0.0119) (0.0128)

Individual socio-demographic variables yes yes yes yes
Family Background Variables yes yes yes yes
Protective Factors yes yes yes yes
Contextual Effects yes yes yes yes
Network Fixed Effects yes yes yes yes
Observations 615 615 615 615

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table 5: Long-run peer effects in education for weak ties, grades 10-12
(peers only in Wave I)

Dep.Var. Years of Education
Unweighted Networks Weighted Networks
Total IV Lagged IV Total IV Lagged IV

2SLS finite IVs -0.0022 -0.0056 0.0158 0.0169
(0.0141) (0.0243) (0.0221) (0.0336)

2SLS many Ivs 0.0063 0.0002 0.0228 0.0163
(0.0109) (0.0127) (0.0162) (0.0183)

Bias-corrected Ivs 0.0078 0.0035 0.0254 0.0213
(0.0109) (0.0126) (0.0162) (0.0183)

Individual socio-demographic variables yes yes yes yes
Family Background Variables yes yes yes yes
Protective Factors yes yes yes yes
Contextual Effects yes yes yes yes
Network Fixed Effects yes yes yes yes
Observations 408 408 408 408

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 6: Long-run peer effects in education for weak ties, grades 10-12
(peers only in Wave II)

Dep.Var. Years of Education
Unweighted Networks Weighted Networks
Total IV Lagged IV Total IV Lagged IV

2SLS finite IVs -0.0012 0.0082 0.0048 0.0123
(0.0151) (0.033) (0.0222) (0.0494)

2SLS many Ivs 0.0134 0.0154 0.0271 0.0411
(0.0121) (0.0141) (0.0175) (0.0248)

Bias-corrected Ivs 0.0136 0.0162 0.0273 0.0418
(0.0121) (0.0141) (0.0175) (0.0248)

Individual socio-demographic variables yes yes yes yes
Family Background Variables yes yes yes yes
Protective Factors yes yes yes yes
Contextual Effects yes yes yes yes
Network Fixed Effects yes yes yes yes
Observations 297 297 297 297

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table 7: Long-run peer effects in education for strong ties, grades 10-12
(peers in both Wave I and Wave II)

Dep.Var. Years of Education
Unweighted Networks Weighted Networks
Total IV Lagged IV Total IV Lagged IV

2SLS finite IVs 0.0193* 0.0394** 0.0285* 0.0906**
(0.01) (0.0214) (0.017) (0.045)

2SLS many Ivs 0.0175* 0.0385** 0.0261 0.0746***
(0.0098) (0.0158) (0.0167) (0.0304)

Bias-corrected Ivs 0.0172* 0.0377** 0.0253 0.0711***
(0.0098) (0.0157) (0.0167) (0.03)

Individual socio-demographic variables yes yes yes yes
Family Background Variables yes yes yes yes
Protective Factors yes yes yes yes
Contextual Effects yes yes yes yes
Network Fixed Effects yes yes yes yes
Observations 300 300 300 300

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table 8: Peer characteristics

Wave I Wave II Wave I and Wave II
mean std min max mean std min max mean std min max

Years of education 16.96 3.48 11.00 25.00 16.62 3.35 11.00 25.00 16.91 3.39 11.00 25.00
Female 0.48 0.50 0.00 1.00 0.43 0.50 0.00 1.00 0.47 0.50 0.00 1.00
Black or African American 0.06 0.24 0.00 1.00 0.01 0.12 0.00 1.00 0.04 0.20 0.00 1.00
Other races 0.09 0.29 0.00 1.00 0.06 0.23 0.00 1.00 0.05 0.23 0.00 1.00
Physical Development 3.32 1.04 1.00 5.00 3.35 0.95 1.00 5.00 3.39 0.98 1.00 5.00
Religion Practice 3.98 1.82 1.00 7.00 3.88 1.89 1.00 7.00 3.84 1.86 1.00 7.00
Household Size 3.34 1.37 1.00 10.00 3.32 1.34 1.00 10.00 3.47 1.38 1.00 10.00
Two married parents family 0.75 0.44 0.00 1.00 0.77 0.42 0.00 1.00 0.80 0.40 0.00 1.00
School Attachment 2.10 0.98 1.00 5.00 2.07 1.00 1.00 5.00 1.94 0.95 1.00 5.00
Relationship with teachers 0.89 0.92 0.00 4.00 0.83 0.86 0.00 4.00 0.77 0.81 0.00 4.00
Self esteem 3.97 1.09 1.00 6.00 3.94 1.01 1.00 6.00 3.98 1.10 1.00 6.00
Parent education 3.33 0.90 1.00 5.00 3.22 0.83 1.00 5.00 3.19 0.83 1.00 5.00
Social inclusion 4.28 0.77 1.00 5.00 4.33 0.73 1.00 5.00 4.38 0.73 1.00 5.00
Mathematics score A 0.24 0.42 0.00 1.00 0.21 0.41 0.00 1.00 0.25 0.43 0.00 1.00
Mathematics score B 0.28 0.45 0.00 1.00 0.32 0.47 0.00 1.00 0.31 0.46 0.00 1.00
Mathematics score C 0.25 0.43 0.00 1.00 0.24 0.43 0.00 1.00 0.24 0.43 0.00 1.00
Mathematics score missing 0.08 0.27 0.00 1.00 0.08 0.28 0.00 1.00 0.07 0.26 0.00 1.00
GPA 2.33 1.53 0.00 6.09 2.27 1.48 0.00 6.09 2.25 1.55 0.00 6.09
Residential uilding quality 1.56 0.78 1.00 4.00 1.59 0.79 1.00 4.00 1.52 0.79 1.00 4.00
Student grade 10.44 0.50 10.00 11.00 10.43 0.50 10.00 11.00 10.40 0.49 10.00 11.00
Children 0.48 0.50 0.00 1.00 0.48 0.50 0.00 1.00 0.45 0.50 0.00 1.00
Religion Practice (Wave 4) 1.44 1.62 0.00 5.00 1.32 1.56 0.00 5.00 1.46 1.66 0.00 5.00
Married 0.50 0.50 0.00 1.00 0.50 0.50 0.00 1.00 0.49 0.50 0.00 1.00
Notes: Differences between means are never statistical significant at conventional levels of significance



Table 9: Link formation
Model (16) OLS estimation results

VARIABLE γ Coefficient Std. error

Female 0.0025 (0.019)
Black or African American -0.0107 (0.044)
Other races -0.0265 (0.036)
Student grade -0.0226 (0.016)
Religion Practice 0.0032 (0.008)
Self esteem 0.0090 (0.009)
Mathematics score A -0.0063 (0.017)
Mathematics score B 0.0178 (0.018)
Mathematics score C 0.0122 (0.019)
Mathematics score missing -0.0030 (0.022)
School Attachment -0.0108 (0.010)
Physical Development -0.0060 (0.008)
Social inclusion -0.0102 (0.013)
Parent education -0.0073 (0.013)
Household Size 0.0125 (0.008)
Parent occupation professional/technical 0.0103 (0.024)
Parent occupation manual 0.0028 (0.023)
Parent occupation office or sales worker 0.0162 (0.027)
Parent occupation other 0.0460** (0.022)
Two married parents family -0.0026 (0.020)
Relationship with teachers -0.0106 (0.010)
Residential building quality 0.0085 (0.012)
Network fixed effects yes
Chow test p value 0.6083
Observations 6,932

Notes: Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1



Table 10: Short-run peer effects in education for weak ties, grades 10-12
(peers only in Wave I)

Dep.Var. GPA
Unweighted Networks Weighted Networks

Total IV Total IV

2SLS finite IVs 0.1525* 0.1256*
(0.0906) (0.0726)

2SLS many Ivs 0.0123 0.0498
(0.0295) (0.0401)

Bias-corrected Ivs 0.0121* 0.0199*
(0.0072) (0.0121)

Individual socio-demographic variables yes yes
Family Background Variables yes yes
Protective Factors yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 408 408

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 11: Short-run peer effects in education for weak ties, grades 10-12
(peers only in Wave II)

Dep.Var. GPA
Unweighted Networks Weighted Networks

Total IV Total IV

2SLS finite IVs 0.1189* 0.1725**
(0.0321) (0.0845)

2SLS many Ivs 0.0144 0.0152
(0.0351) (0.0351)

Bias-corrected Ivs 0.0215 0.0281*
(0.0231) (0.0161)

Individual socio-demographic variables yes yes
Family Background Variables yes yes
Protective Factors yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 297 297

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table 12: Short-run peer effects in education for strong ties, grades 10-12
(peers in both Wave I and Wave II)

Dep.Var. GPA
Unweighted Networks Weighted Networks

Total IV Total IV

2SLS finite IVs 0.0429 0.1324*
(0.0563) (0.0790)

2SLS many Ivs 0.0195 0.0253
(0.0171) (0.0273)

Bias-corrected Ivs 0.0173* 0.0243*
(0.0271) (0.0144)

Individual socio-demographic variables yes yes
Family Background Variables yes yes
Protective Factors yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 300 300

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1


