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ABSTRACT 

Optimal Combination of Survey Forecasts* 

We consider the problem of optimally combining individual forecasts of gross 
domestic product (GDP) and inflation from the 

Survey of Professional Forecasters (SPF) dataset for the Euro Area. Contrary 
to the common practice of using equal combination weights, we compute 
optimal weights which minimize the mean square forecast error (MSFE) in the 
case of point forecasts and maximize a logarithmic score in the case of 
density forecasts. We show that this is a viable strategy even when the 
number of forecasts to combine gets large, provided we constrain these 
weights to be positive and to sum to one. Indeed, this enforces a form of 
shrinkage on the weights which ensures good out-of-sample performance of 
the combined forecasts. 
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1 Introduction

The idea of linearly combining individual forecasts provided by different sources
in order to improve accuracy and reliability is quite an old one. There is a
vast literature on the subject, advocating the usefulness of forecast combina-
tion methods both from a theoretical point of view and on the basis of the
results of empirical studies. The forecasts to combine can be either judgemen-
tal, provided e.g. by individual forecasters participating to surveys, or else
provided by different quantitative models. In the present paper we focus on
survey data, and in particular on the ECB Survey of Professional Forecasters
(SPF) dataset. This survey has been conducted by the European Central Bank
(ECB) at a quarterly frequency since the inception of the European Monetary
Union (EMU). Survey participants are experts affiliated with financial and
non-financial European institutions. They are asked to provide point and den-
sity forecasts for GDP, inflation and unemployment at different horizons. A
detailed description of the survey is contained in the papers by Garcia (2003)
and Bowles, Friz, Genre, Kenny, Meyler and Rautanen (2007, 2010).

A simple and widely used combination method consists in simply averaging
all available forecasts of a given variable, attributing equal weights to the
individual predictions. However, the idea of determining optimal combination
weights that minimize some objective criterion or cost function seems more
appealing. When combining point forecasts, a natural target to minimize is
the mean square forecast error (MSFE), i.e. the variance of the combination
around the variable to be predicted. In practice, this minimization can be
performed over some available historical periods, so that the optimal weights
minimize an empirical least-squares criterion. In economics, this idea dates
back to Bates and Granger (1969) and Granger and Ramanathan (1984) and
has been the subject of a great variety of developments including the use of
different optimality criteria, of time-varying weights, of nonlinear combination
schemes, etc. For a review of the literature, we refer to the survey papers by
Clemen (1989) and by Timmermann (2006). More recently, a similar approach
has been advocated for density forecasts using combination weights minimizing
the so-called logarithmic score (Hall and Mitchell, 2007, Geweke and Amisano,
2011).

A closer look at this literature shows that, when dealing with applications,
only a rather small number of individual forecasts are considered for optimal
combination whereas optimality seems to be given up as soon as this number
becomes large. For example, the recent papers by Sloughter, Gneiting and
Raftery (2010) and by Geweke and Amisano (2011, 2012) deal with combi-
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nations of just a handful of individual forecasts. In other papers considering
larger combinations, the weights are taken as equal or are assigned on the sole
basis of the previous performance of each forecaster, ignoring their mutual
dependence and hence eliminating the need for optimization (two important
recent examples are the papers by Clark and McCracken (2010) for point fore-
casts and by Jore, Mitchell and Vahey (2010) for densities). This strategy
appears to be justified empirically by the fact that the resulting simple aver-
aging schemes tend to outperform more sophisticated ones. Such phenomenon
is usually referred to as the “forecasting combination puzzle” and has been
recently documented for our dataset by Genre, Kenny, Meyer and Timmer-
mann (2010), who show that the simple equal-weight averages constitute a
benchmark which is very hard to improve upon, at least for GDP growth
and unemployment rate. This explains why this practice still prevails today
among institutions such as ECB. Interestingly, a similar phenomenon has been
observed in portfolio optimization by DeMiguel, Garlappi and Uppal (2009),
a problem which shares with forecast combination the idea due to Markowitz
of exploiting diversification to decrease risk/variance.

In the present paper we show that there is no need to give up optimality
when going to a high-dimensional setting, i.e. when combining a large number
of forecasts. The reason why previous works either stick to small combinations
or rely for large datasets to simplified covariance modelling is most likely re-
lated to two fundamental difficulties: (i) the presence of finite-sample errors
and numerical instabilities in the estimation of the weights (see e.g. Smith
and Wallis, 2009); (ii) the need for solving the resulting high-dimensional op-
timization problem in an efficient computational way. Both for the cases of
point and density forecast combinations, we argue that the determination of
the optimal weights is stabilized by the constraint that they should be positive
and add up to one and we show that the computation of these optimal weights
is easily implementable using iterative algorithms that can handle efficiently a
large number of forecasts.

In Section 2, we deal with the combination of point forecasts, defining the
optimal weights as minimizers of the MSFE over some historical period, impos-
ing the constraints that these weights are positive (more precisely nonnegative)
and sum to one. Hence the optimal combination problem reduces to a (possi-
bly high-dimensional) constrained least-squares regression problem where the
complete covariance structure between forecasters is taken into account. We
show that the combined use of these two – rather natural – constraints on the
weights is essential for a proper formulation of the problem, in the sense that
it enforces an implicit shrinkage of the weights which makes their computation
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stable with respect to errors in the data. In fact the problem turns out to be
analogous to the determination of no-short Markowitz portfolios, i.e. portfo-
lios for which the weights are constrained to be nonnegative. As established by
Brodie, Daubechies, De Mol, Giannone and Loris (2009), such portfolios are a
special case of a larger family of sparse and stable portfolios derived through a
constrained “lasso” regression problem. We recall that in the so-called “lasso”
regression (Tibshirani, 1996), the least-squares objective function is modified
by adding a penalty term proportional to the sum of the absolute values of
the weights (i.e. to the L1-norm of the weight vector). This analogy allows to
borrow from the work by Brodie et al. (2009) the efficient algorithm proposed
in that paper to compute the optimal weights. Moreover, these considera-
tions imply that the weight vector solving our optimization problem is sparse,
i.e. that many of the weights are exactly zero. This fact naturally provides
a selection of ideally diversified forecasters to be optimally combined in order
to minimize the MSFE. Moreover, due to the constraints fixing its L1-norm
to be one and to the resulting nonlinear “shrinkage” provided by the lasso
technique, the optimal weight vector is expected to be stable with respect to
small fluctuations of the data even for large panels of forecasters, which is
not generally the case for ordinary least-squares estimates in high-dimensional
situations (for more details about this point, we refer to the paper by Brodie
et al. (2009)).

The idea of optimal combination can be extended to the case of density fore-
casts, but the similarity between two densities is usually measured by means
of the so-called Kullback-Leibler divergence or Kullback-Leibler Information
Criterion (KLIC), instead of the least-squares distance. Besides, in the case
of survey data, we miss a target density since only the realized value of the
variable to forecast, say, gross domestic product (GDP) or inflation, is avail-
able. Then, as proposed by Hall and Mitchell (2007), we show in Section 3
that the optimal weights can be obtained by maximizing a logarithmic score
function, under the constraints that they are nonnegative and sum to one,
which ensures that the combination of densities is still a proper density. To
compute such weights we derive a simple iterative algorithm which scales well
with the dimension of the panel, i.e. allows to handle large datasets.

Section 4 contains our empirical analysis. The SPF point and density
forecasts for GDP growth and inflation are optimally combined as described
above. They are compared with the equal-weight combinations used by the
ECB to summarize the results of each round of the survey. The evaluation is
performed by means of a real-time out-of-sample forecasting exercise.

Finally, Section 5 contains the conclusions of our work as well as some
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pointers to other potential applications of our combination framework.

2 Optimal combination of point forecasts

As in the paper by Granger and Ramanathan (1984), we address the problem
of determining the optimal combination weights for point forecasts as a least-
squares regression problem (hence using the full covariance structure between
forecasters) but, in addition, we impose the two constraints that the weights
should be nonnegative and sum to one, constraints which make the ordinary
least squares (OLS) estimation feasible and stable, as shown below.

We denote by yt+h the variable to be forecast at time t, assuming that the
desired forecast horizon is h, and we suppose to have at our disposal N fore-
casters, each providing at time t a forecast ŷi,t+h|t, based on the information
available at time t. We form with these individual forecasts ŷi,t+h|t, i = 1, . . . , N
the N×1-dimensional vector ŷt+h|t. We want to linearly combine these N fore-

casts by means of time-independent weights wi, i = 1, . . . , N with
∑N

i=1 wi = 1
and wi ≥ 0, which we put into the N × 1 vector w. The goal is to reduce
the forecast error et+h|t(w) = yt+h − w′ŷt+h|t achieved by the combination

w′ŷt+h|t ≡
∑N

i=1 wiŷi,t+h|t and to minimize it according to some criterion, which
we choose here to be the mean square forecast error (MSFE). Accordingly, the
optimal weight vector wOPT is defined as the vector such that

wOPT = argmin
w

E[(yt+h −w′ŷt+h|t)
2] ≡ E[e2

t+h|t(w)] (1)

subject to
N∑

i=1

wi = 1 and wi ≥ 0,

.
In empirical applications, the expectation has to be replaced by a sample

mean over some historical period for which both the forecasts and the real-
ization of the real variable are available. Hence the minimization problem
becomes:

ŵOPT = argmin
w

T−h∑
t=1

(yt+h −w′ŷt+h|t)
2 (2)

subject to
N∑

i=1

wi = 1 and wi ≥ 0,
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assuming that the variable yt is observed for t = 1, . . . , T . This optimal vector
of weights ŵOPT can then be computed and used to form the combined forecast
(ŵOPT)′ŷT+h|T of the variable yt at time t = T + h.

This problem bears strong similarity with the problem of determining
minimum-variance (i.e. without target-return constraint) no-short (i.e. with
nonnegative weights) portfolios, the vector of forecasts being replaced with a
vector of returns. Besides, let us remark that the above minimization problem
is equivalent to the following one

ŵOPT = argmin
w

[
T−h∑
t=1

(yt+h −w′ŷt+h|t)
2 + λ

N∑
i=1

|wi|

]
(3)

subject to
N∑

i=1

wi = 1 and wi ≥ 0,

where λ is a positive parameter. Indeed, under the two constraints on the
weights, the added term, which is simply the unit L1-norm of the weight vector
multiplied by λ, is just a constant. Hence the problem amounts to a so-called
“lasso” regression (Tibshirani, 1996) with two additional constraints. The
resulting optimization problem is convex and, contrary to OLS, well defined
even when N is larger than T . This lasso strategy was used in the paper by
Brodie et al. (2009) to construct a family of Markowitz-like portfolios which are
sparse, i.e. present few active positions (corresponding to the non-zero weights)
and also stable, i.e. with weight values not oversensitive to errors in the data.
Moreover, in that paper, it was shown that the no-short portfolios – being
special cases of the family obtained when omitting the positivity constraint
and appropriately tuning the parameter λ – are sparse, i.e. that many weights
are exactly zero, which in our case means that only a small number of forecasts
will be selected (active) to form the combined forecast. Let us remark that
the number of selected forecasters is here entirely determined by the data and
cannot be tuned by means of the value of λ as it is the case for the number of
active assets of the sparse portfolios when short positions (negative weights) are
allowed (for a theoretical discussion of this point, see Brodie et al., 2009). The
sparsity property of the solution of our optimization problem can be viewed
either as an advantage or as a drawback. This point will be discussed further
in Section 4, in connection with our empirical results.

From a computational point of view, the optimization problem (2) is a
quadratic program which could be solved by any appropriate algorithm. How-
ever, not all such solvers scale well with the dimension N nor do allow to
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determine the number of active forecasters since they do not distinguish be-
tween true zero or approximately zero values for the weights. Therefore we
have used the algorithm developed by Brodie et al. (2009) to compute the
sparse Markowitz portfolios. It is based on the LARS algorithm proposed by
Efron, Hastie, Johnstone and Tibshirani (2004) for lasso regression, but modi-
fied in order to enforce linear equality constraints. For a detailed description of
this constrained LARS algorithm, we refer the reader to the paper by Brodie
et al. (2009).

3 Optimal combination of density forecasts

A density forecast is an estimate of the future probability distribution of a
variable of interest. Compared to point forecasts, the literature on density
forecast combination is less abundant but bears testimony of the practical
relevance of the problem; see e.g. the reviews by Genest and Zidek (1986),
Tay and Wallis (2000) and Wallis (2011), as well as the papers by Diebold,
Tay and Wallis (1999) and Clements and Harvey (2007).

A natural and widely used measure of similarity between probability densi-
ties is the Kullback-Leibler Information Criterion (KLIC) adopted by Hall and
Mitchell (2007). Accordingly, the problem of optimal combination of density
forecasts can be formulated as follows. Let us denote by p̂(yt+h) the vector
of the N density forecasts p̂i(yt+h) of a given variable yt+h made by the indi-
vidual forecasters (i = 1, . . . , N) at time t over some horizon h, and write the
combined density as:

p̂(yt+h) = w′p̂(yt+h) ≡
N∑

i=1

wip̂i(yt+h), (4)

assuming, as in Section 2, that the weights are nonnegative and sum to one,
which ensures that the combined density is still a probability density.
The Kullback-Leibler divergence or Information Criterion between the true
density p(yt+h) and the combined density p̂(yt+h) is defined as:

KLIC =

∫
p(yt+h) ln

p(yt+h)

p̂(yt+h)
dyt+h = E[ln p(yt+h)− ln p̂(yt+h)]. (5)

A consistent estimate of (5) is given by its sample average. In the case of
survey forecasts, we miss the reference target density p(yt+h), but averaging
its logarithm over the sample yields a constant independent of the combination
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weights. Hence the problem of determining the optimal weights from empirical
data reduces to the maximization of the (concave) cost function:

Φ(w) =
1

T − h

T−h∑
t=1

ln p̂(yt+h) (6)

i.e. of the average logarithmic score of the combined density (4) over the
available sample t = 1, . . . , T − h (as proposed by Hall and Mitchell, 2007).

To compute the corresponding optimal combination weights, we devised
the following simple iterative algorithm. Let us define the (T −h)×N matrix
P̂ with nonnegative elements P̂ti = p̂i(yt+h). Then (6) can be rewritten as
Φ(w) = 1

T−h

∑T−h
t=1 ln(P̂w)t. We denote by ŵOPT the maximizer of Φ(w)

subject to the constraints, wi ≥ 0 and
∑N

i=1 wi = 1. To take into account the
constraint that the weights should sum to one, let us introduce a Lagrange
multiplier λ and maximize the following function:

Φλ(w) =
1

T − h

T−h∑
t=1

ln(P̂w)t − λ
N∑

i=1

wi. (7)

To perform the maximization problem, we introduce the following “surrogate”
cost function depending on a vector a of arbitrary weights:

Ψλ(w; a) =
1

T − h

T−h∑
t=1

N∑
i=1

P̂tiai∑N
l=1 P̂tlal

ln

(
wi

ai

N∑
l=1

P̂tlal

)
− λ

N∑
i=1

wi . (8)

This surrogate has the following properties:

• (i) Ψλ(a; a) = Φλ(a) for any a,

• (ii) Ψλ(w; a) ≤ Φλ(w) for any a and any w.

The first assertion is straightforward whereas the second follows immediately
from the inequality expressing the concavity of the logarithmic function

N∑
i=1

bti ln(xti) ≤ ln

(
N∑

i=1

btixti

)
(9)

with bti = P̂tiaiPN
l=1 P̂tlal

and xti = wi

ai

∑N
l=1 P̂tlal, noticing that

∑N
i=1 bti = 1 for all

t.
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We can then define the iterative algorithm as

w
(k+1)
λ = argmaxwΨλ(w;w

(k)
λ ) (10)

which yields a monotonic increase of Φλ, i.e. Φλ(w
(k+1)
λ ) ≥ Φλ(w

(k)
λ ), as follows

from the properties (i) and (ii). Indeed, Φλ(w
(k+1)
λ ) ≥ Ψλ(w

(k+1)
λ ;w

(k)
λ ) ≥

Ψλ(w
(k)
λ ;w

(k)
λ ) = Φλ(w

(k)
λ ).

Notice that the maximization of (8) is easy since the surrogate is separable: it
is the sum of N terms, each depending only on a single weight. Equating to
zero the derivatives of Ψλ(w;w

(k)
λ ) with respect to each weight, we find that its

maximizer is given by wλ,i = 1
λ

∑T
t=1 bti. To determine λ, we use the constraint

1 =
∑N

i=1 wλ,i = 1
λ

∑T−h
t=1

∑N
i=1 bti = T−h

λ
. Hence λ = T − h and the iterative

algorithm (10) becomes

w
(k+1)
i = w

(k)
i

1

T − h

T−h∑
t=1

P̂ti∑N
l=1 P̂tlw

(k)
l

(11)

replacing ai by w
(k)
i in the expression of bti.

The nonnegativity constraint for the weights is automatically satisfied at each
iteration provided that the algorithm is initialized with positive weights sum-
ming to one, e.g. with w

(0)
i = 1/N . Due to the monotonic increase of the cost

function, the iterates w(k) are expected to converge to the maximizer ŵOPT

of (6), subject to the two constraints wi ≥ 0 and
∑N

i=1 wi = 1. However, a
detailed analysis of the convergence properties of this algorithm is beyond the
scope of the present paper.
The algorithm can be terminated by means of an appropriate stopping crite-
rion, e.g. by stopping as soon as the components of two successive iterates do
not differ by more that some predefined accuracy tolerance.

A major advantage of the previous algorithm is that it is very simple to
implement and scales well with the cross-sectional dimension of the problem,
and hence is not limited to the combination of a small number of density
forecasts.

4 Empirical analysis

Since 1999 the European Central Bank (ECB) has conducted the Survey of
Professional Forecasters (SPF) which is a quarterly survey of expectations for
some of the Euro Area key macroeconomic variables: HICP (Harmonised Index
of Consumer Prices) inflation, real GDP growth rate and unemployment rate.
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For each variable and for different horizons, the forecasters are asked to report,
together with point forecasts, a probability distribution or density forecast, by
allocating probabilities to ranges of possible outcomes. Usually, the lower
bottom interval and the upper interval of the range are open bins, and the
interior bins have equal lengths of 0.5. The results of the survey are collected
in the second half of the first month of each quarter.

The survey has been conducted between 1999Q1 and 2001Q3 in the middle
month of each quarter, i.e. in February, May, August and November. Since
2001Q4 the survey has been shifted to the first month of the quarter, i.e. it
has been and is still currently conducted in January, April, July and October.
The questionnaire is sent to the panelists just after the Harmonized Index of
Consumer Prices (HICP) release, that is in the third week of the month before
the survey. Hence the forecasts are collected in the second half of the first
month of each quarter. A detailed description of the survey is provided in the
papers by Garcia (2003) and by Bowles et al. (2007, 2010). For background
information, including the sample questionnaire, see also the ECB website.1

The dataset is characterized by several missing data due to the entering and
exiting of forecasters in the panel. Since the implementation of the optimal
combination scheme requires a full panel without missing observations, we
pre-filter the data in order to create a balanced panel. First, we exclude those
forecasters with more than 25 missing survey rounds. Then, for each of the
63 remaining individual forecasters, the unreported point forecasts are filled
with the most recent forecast he provided. Missing observations in the first
survey round are replaced with the average opinion of the respondents.2 For
unreported density forecasts, a uniform density is taken as replacement.3

We focus on expectations about the year-on-year GDP growth and year-
on-year HICP inflation at an horizon of one year ahead of the latest available
data for the respective variables. For example, in the first survey in the first
quarter of 2008 (sent out after the official release of the December 2007 figure
for HICP inflation and of the 2007Q3 figure for GDP), the questionnaire asked
for the expected year-on-year inflation rate in December 2008 and the year-
on-year GDP growth in 2008Q3. In the second survey, the 2008Q2 SPF (sent

1http://www.ecb.int/stats/prices/indic/forecast/html/index.en.html
2As an alternative to this “naive” method, we could have balanced the dataset assuming

an autoregressive process of order one (AR(1)), as in Genre et al. (2010), or a principal com-
ponent method (PCM ) as proposed in Stock and Watson (2002). We have investigated the
sensitivity of the empirical results to the choice of the replacement technique and concluded
that they were not significantly affected by the filling method.

3When a response is missing, to each bin we assign the value 1/h, where h is the number
of bins provided in the questionnaire.

10



out after the release of the March 2008 HICP figure and of the 2007Q4 figure
for GDP), the questionnaire asked for the expected year-on-year inflation rate
in March 2009, and the year-on-year GDP growth in 2008Q4.

We carry out an analysis using 48 survey rounds, from 1999Q1 until 2010Q4.
For each quarter we estimate the weights using the most recent 5 years of data
as they were available at the time the questionnaire was sent out by the ECB
to the professional forecasters. Since data on GDP and inflation are subject to
revisions, we use the Euro Area real-time database (“RTDB”; see Giannone,
Henry, Lalik and Modugno, 2010) to match the survey data with the infor-
mation that was available to the forecasters at the time they submitted their
projections. Predictions are compared with the first official release published
on the ECB Monthly Bulletin.4

Figure 1 compares the outturn (red solid line) with the predictions obtained
by forecast combination. We report the 68% bands (shaded area) and the
median (line with blue stars). We also plot, as a green dotted line, the results
obtained for point forecasts with the corresponding combination scheme. The
first column corresponds to the year-on-year GDP growth and second column
to the year-on-year HICP inflation. The top panel refers to the forecasts
computed using the optimal combination weights defined above, whereas the
bottom panel refers to the naive combination reported by the European Central
Bank (ECB), where equal weights are attributed to all respondents in a given
round.

The accuracy of the point forecasts is evaluated by computing the mean
square forecast error. We report in Table 1 the MSFE for the optimal scheme
and, for the ECB scheme, the difference in MSFE with respect to the optimal
one.

For the differences in MSFE we report heteroscedasticity-and-autocorrelation
corrected (HAC) standard deviations. The implied t-statistics provides a valid
test for equal predictive accuracy since the optimal weights are computed using
a rolling scheme (see Giacomini and White, 2004).

Analyzing these results, we see that for inflation the optimal combination
is significantly more accurate than the equal-weight forecast combination used
by the ECB. For GDP, however, the optimal weights perform slightly worse

4The first questionnaire considered was sent out after the official release of the December
1998 figure for HICP inflation and of the 1998Q3 figure for GDP. The last questionnaire
considered was sent out after the official release of the March 2010 figure for HICP inflation
and of the 2009Q4 figure for GDP. Since we consider the forecasts one year ahead of the last
available data, the evaluation sample runs from 1999Q3 until 2010Q4 for GDP and from
December 1999 until December 2010 for inflation.
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than the ECB weights but the difference in forecast accuracy is not statistically
significant.

Finally, we observe that the optimal weight vector is quite sparse: the
number of active forecasters for GDP varies from 1 to 6 and for inflation from
2 to 5, which is quite small compared to the total number of forecasters. As
explained in Section 2, the two constraints on the weights enforce sparsity, i.e.
the presence of many zero weights, which amounts to selecting few forecasters.
Let us remark that the selected set of forecasters may nevertheless vary from
step to step in the rolling scheme, especially in the presence of high data
collinearity; such instability in the selection is a known drawback of lasso
regression (see e.g. the paper by De Mol, Giannone and Reichlin (2008)). As
for the number of assets selected in no-short portfolios, the number of active
forecasters cannot be tuned. A way around this limitation would be to allow
for negative weights (analogous to short positions in portfolios) and to use
a lasso regression scheme with a tunable parameter λ able to regulate the
sparsity of the weight vector, as done by Brodie et al. (2009).

Table 1: MSFE for point forecasts

OPT (ECB – OPT)
GDP 2.80 -0.04

(0.03)
Inflation 0.77 0.07

(0.01)

The first column displays the MSFE corresponding to the optimal combination. The second column displays
the difference in MSFE between the ECB and optimal combinations. The standard deviations for these
differences, corrected for autocorrelation and heteroscedasticity (HAC), are reported between brackets.

The accuracy of the density forecasts is evaluated by computing the av-
erage logarithmic score. Remember that the optimal weights maximize the
logarithmic score, but to facilitate the comparison with the case of point fore-
cast, we report in the first column of Table 2 the loss or “minus-log” score for
the optimal combination, i.e. minus the logarithmic score, so that the lower
the value the better the forecast performance.

In Table 2, we report in the first column the average minus-log score of the
optimal weighting scheme (OPT) and in the second column the average and
the HAC standard deviations of the differences between the minus-log scores
for the ECB and OPT schemes. The implied t-statistics provides a Likelihood
Ratio Test of equal predictive ability (see Amisano and Giacomini, 2007). We
see from Table 2 that the average minus-log score obtained via the optimal
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scheme outperforms the ECB combination method for both GDP growth and
HICP inflation but that the difference is significant only for inflation.

Table 2: Average minus-log score for density forecasts

OPT (ECB – OPT)
GDP 2.08 0.01

(0.02)
Inflation 1.93 0.24

(0.10)

The first column displays the average minus-log score for the optimal combination. The second column refers
to the ECB scheme in terms of difference with respect to the optimal scheme. The standard deviations for
these differences, corrected for autocorrelation and heteroscedasticity (HAC), are reported between brackets.

5 Conclusion

We have shown that optimal combinations of point and density forecasts is a
viable strategy even in a high-dimensional setting. The optimal point forecasts,
defined as to minimize the Mean Square Forecast Error, can be easily computed
from empirical data by a constrained least-squares regression which turns out
to be a special case of a lasso regression. For the density forecasts, the optimal
weights, defined as to maximize a logarithmic score deriving from the Kullback-
Leibler Information Criterion, can also be easily computed from empirical data
by means of a simple iterative algorithm.

When combining the survey data from SPF for the Euro Area, we observed
that the optimal combinations of more than 50 individual forecasts for inflation
and GDP growth performed well compared to the equal-weight combinations
used by the ECB. Nevertheless, we observed that these gains were rather mod-
est. A possible explanation is the high similarity of the predictions provided
by the different forecasters (see Elliot, 2011).

Although our focus in the paper was restricted to the combination of judge-
mental point and density forecasts using quadratic loss and logarithmic score,
respectively, these schemes can be seen as paradigms for other frameworks
such as model averaging and combination (as in Geweke and Amisano, 2011),
the use of time-varying weights (as in Billio, Casarin, Ravazzolo and van Dijk,
2011) or of alternative optimization criteria (as in Hansen, 2008). Let us re-
mark that such schemes have also been widely used in other disciplines than
economics as e.g. meteorology (Raftery, Gneiting, Balabdaoui and Polakowski,

13



2005). All these papers consider only a small number of models, and we be-
lieve that our results can widen the range of applicability of these more general
forecast combination schemes to the situation in which the number of models
involved gets large. Such considerations go however beyond the scope of the
present paper and are left for further research work.
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Figure 1: Density combination
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First column: GDP; second column: Inflation. First row: optimal combination; second row: ECB. The
blue star line is the median, the shaded area represents the 68%, and the true series is the red solid line.

The green dotted line refers to the corresponding optimal point forecasts.
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