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The Wealth-Consumption Ratio

May 30, 2012

Abstract

We derive new estimates of total wealth, the returns on total wealth, and the wealth

effect on consumption. We estimate the prices of aggregate risk from bond yields and stock

returns using a no-arbitrage model. Using these risk prices, we compute total wealth as the

price of a claim to aggregate consumption. We find that US households have a surprising

amount of total wealth, most of it human wealth. This wealth is much less risky than stock

market wealth. Events in long-term bond markets, not stock markets, drive most total

wealth fluctuations. The wealth effect on consumption is small and varies over time with

real interest rates.

1 Introduction

The total wealth portfolio plays a central role in modern asset pricing theory and macroeconomics.

Total wealth includes real estate, non-corporate businesses, other financial assets, durable con-

sumption goods, and human wealth. The objective of this paper is to measure the amount of

total wealth, the amount of human wealth, and the returns on each. The conventional approach

to approximating the return on total wealth is to use the return on an equity index. Our approach

is to measure total wealth as the present discounted value of a claim to aggregate consumption.

The discount factor we use is consistent with observed stock and bond prices. Our preference-free

estimation imposes only the household budget constraint and no-arbitrage conditions on traded

assets. According to our estimates, stock market wealth is only one percent of total wealth and all

non-human wealth only eight percent. Moreover, the returns on the vast majority of total wealth

differ markedly from equity returns; they are much lower on average and have low correlation

with equity returns. Thus, our results challenge the conventional approach.

Our main finding is that U.S. households have a surprising amount of total wealth, $3.5 million

per person in 2011 (in 2005 dollars). Of this, 92 percent is human wealth, the discounted value of

all future U.S. labor income. Our estimation imputes a value of $1 million to an average career

spanning 35 years. The high value of total wealth is reflected in a high average wealth-consumption
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ratio of 83, much higher than the average equity price-dividend ratio of 26. Equivalently, the total

wealth portfolio earns a much lower risk premium of 2.38 percent per year, compared to an equity

risk premium of 6.41 percent. Total wealth returns are only half as volatile as equity returns.

The lower variability in the wealth-consumption ratio indicates less predictability in total wealth

returns. Unlike stocks, most of the variation in future expected total wealth returns is variation in

future expected risk-free rates, and not variation in future expected excess returns. The correlation

between total wealth returns and stock returns is only 27 percent, while the correlation with 5-

year government bond returns is 94 percent. Thus, the destruction and creation of wealth in the

U.S. economy are largely disconnected from events in the stock market and are related to events

in the bond markets instead. Between 1979 and 1981 when real interest rates rose, $318,000 of

per capita wealth was destroyed. Afterwards, as real yields fell, real per capita wealth increased

steadily from $860,000 in 1981 to $3.5 million in 2011. Total U.S. household wealth was hardly

affected by the spectacular declines in the stock market in 1973-74, 2000-2001, and 2007-09. The

main message from these results is that equity is quite different from the total wealth portfolio.

A simple back-of-the-envelope Gordon growth model calculation helps explain the high wealth-

consumption ratio. The discount rate on the consumption claim is 3.51 percent per year (a

consumption risk premium of 2.38 percent plus a risk-free rate of 1.49 percent minus a Jensen

term of 0.37 percent) and its cash-flow growth rate is 2.31 percent. The Gordon growth formula

delivers the estimated mean wealth-consumption ratio: 83 = 1/(.0351− .0231).

Our methodology also produces new estimates of the marginal propensity to consume out of

wealth. We find that the U.S consumer spent only 0.76 cents out of the last dollar of wealth,

on average over our sample period. The marginal propensity to consume tracks interest rates: It

peaks in 1981 at 1.4 cents per dollar and bottoms out in 2010 at 0.6 cents per dollar. The 50

percent drop in the marginal propensity to consume out of wealth occurred because the newly

created wealth between 1981 and 2010 reflected almost exclusively lower discount rates rather than

higher future consumption growth. We estimate that all variation in the wealth-consumption ratio

is due to variation in discount rates.

In addition to the low volatility of aggregate consumption growth innovations, the reason that

total wealth resembles a real bond is that the value of a claim to aggregate risky consumption

is similar to that of a claim whose cash flows grow deterministically at the average consumption

growth rate. The latter occurs because innovations to current and future consumption growth

carry a small market price of risk according to our calculations. This is not a foregone conclusion

because the market prices of risk are estimated to be consistent with observed stock and bond

prices. The finding that current consumption growth innovations are assigned a small price is not

a complete surprise. That is the equity premium puzzle. But, we also know that traded asset

prices predict future consumption growth. This opens up the possibility that shocks to future

consumption demand a high risk compensation. A key finding of our work is that this channel
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is not strong enough to generate a consumption risk premium that resembles anything like the

equity risk premium. Discounting consumption at a low rate of return implies that the present

discounted value of the stream (total wealth) is high, arguably higher than commonly believed.

A key assumption in the paper is that stock and bond returns span all priced sources of

risk. We verify that our unspanned consumption growth innovations are essentially acyclical

and serially uncorrelated. In addition, we check whether the pricing of consumption innovations

that are not spanned by innovations to bond yields or stock returns can overturn our results.

Even if we allow for unspanned priced risk that delivers Sharpe ratios equal to four times the

observed Sharpe ratio on stocks, the consumption risk premium remains 2.5 percentage points

below the equity risk premium. In the Online Appendix, we show that our valuation procedure

is appropriate even in an economy with heterogeneous agents who face uninsurable labor income

risk, borrowing constraints, and limited asset market participation.

Connection to the Literature To derive our wealth estimates, we use a vector auto-regression

(VAR) model for the state variables as in Campbell (1991, 1993, 1996). We combine the estimated

state dynamics with a no-arbitrage model for the stochastic discount factor (SDF). As in Duffie

and Kan (1996), Dai and Singleton (2000), and Ang and Piazzesi (2003), the log SDF is affine in

innovations to the state vector while market prices of aggregate risk are affine in the same state

vector. We estimate the market prices of risk by matching salient features of nominal bond yields,

equity returns and price-dividend ratios, and expected returns on factor mimicking portfolios,

linear combinations of stock portfolios that have the highest correlations with consumption and

labor income growth. This approach is similar to that in Bekaert, Engstrom, and Xing (2009),

Bekaert, Engstrom, and Grenadier (2010), and Lettau and Wachter (2011) who use affine models

to match features of stocks and bonds. By using precisely-measured stock and bond price data,

our approach avoids using data on housing, durable, and private business wealth from the Flow

of Funds. These wealth variables are often measured at book values and with substantial error.

Our approach also avoids making arbitrary assumptions on the expected rate of return (dis-

count rate) of human wealth, which is unobserved. In earlier work, Campbell (1993), Jagannathan

and Wang (1996), Shiller (1995), and Lettau and Ludvigson (2001a, 2001b) all make particular,

and very different, assumptions on the expected rate of return on human wealth. In a precursor

paper, Lustig and Van Nieuwerburgh (2008) back out human wealth returns to match proper-

ties of consumption data. Bansal, Kiku, Shaliastovich, and Yaron (2012) emphasize the role of

macro-economic volatility in a related exercise. Using market prices of risk inferred from traded

assets, we obtain a new estimate of expected human wealth returns that fits none of the previously

proposed models. We estimate human wealth to be 92 percent of total wealth. This estimate is

consistent with Mayers (1972) who first pointed out that human capital forms a major part of the

aggregate capital stock in advanced economies, and with Jorgenson and Fraumeni (1989) who also
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calculate a 90 percent human wealth share. Our result is also consistent with the share of human

wealth obtained by Palacios (2011) in a calibrated version of his dynamic general equilibrium

production model.

Our results differ from earlier attempts to measure the wealth-consumption ratio and the

return to total wealth. Lettau and Ludvigson (2001a, 2001b) estimate cay, a measure of the

inverse wealth-consumption ratio. Their wealth-consumption ratio has a correlation of 24 percent

with our series. Alvarez and Jermann (2004) do not allow for time-varying risk premia and measure

total wealth returns as a linear combination of equity portfolio returns. They estimate a smaller

consumption risk premium of 0.2 percent, and hence a much higher average wealth-consumption

ratio.

Our paper connects to the literature that studies the valuation of an asset for which one only

observes the dividend growth and not the price. The retirement and social security literature

studies related questions when it values claims to future labor income (e.g., De Jong (2008),

Geanakoplos and Zeldes (2010), and Novy-Marx and Rauh (2011)).

Our paper also contributes to the large literature on measuring the propensity to consume out

of wealth. The seminal work of Modigliani (1971) suggests that a one dollar increase in wealth

leads to five cents increase in consumption. Similar estimates appear in textbooks, models used

by central banks, and in monetary and fiscal policy debates (see Poterba (2000) for a survey).

A wealth effect of five cents on the dollar implies a wealth-consumption ratio that is four times

lower than our estimates, or equivalently, a consumption risk premium as high as the equity risk

premium. Our first contribution to this literature is to propose a wealth effect on consumption

that is much smaller than previously thought. Second, we are the first to provide an estimate

consistent with the budget constraint and no-arbitrage restrictions.1 Third, we find that the

dynamics of this wealth effect relate to bond market rather than stock market dynamics. This

would explain the modest contraction in total wealth and aggregate consumption in response to

the large stock market wealth destruction of 1973-74 (e.g., Hall (2001)). Our results are consistent

with Bernanke and Gertler’s (2001) suggestion that inflation-targeting central banks should ignore

movements in asset values that do not influence aggregate demand. We find that traded assets

amount to a relatively small share of total wealth. As a result, their price fluctuations do not

affect much consumer spending, the largest component of aggregate demand.

Finally, our work contributes to the consumption-based asset pricing literature. It offers a new

set of moments to evaluate their empirical performance. Too often, such models are evaluated

on their implications for equity returns. But the models’ primitives are the preferences and the

dynamics of aggregate consumption growth. Moments of returns on the consumption claim are

the most primitive asset pricing moments and should be the most informative for testing these

1Ludvigson and Steindel (1999) and Lettau and Ludvigson (2004) start from the household budget constraint
but do not impose the absence of arbitrage, and assume a constant price-dividend ratio on human wealth.
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models. In contrast, the dividend growth dynamics of stocks can be altered without affecting

equilibrium allocations or prices of traded assets other than stocks; modeling them entails more

degrees of freedom. The NBER working paper version of this paper carries out a comparison of

two leading endowment economy models: the external habit model of Campbell and Cochrane

(1999) and the long-run risk model of Bansal and Yaron (2004). Our work also has implications

for production-based asset pricing models. As Kaltenbrunner and Lochstoer (2010) point out,

such models usually generate the prediction that the claim to dividends is less risky than the

claim to consumption. Our results indicate that this is counterfactual and suggest that stocks are

special. Modeling realistic dividend dynamics (by introducing labor income frictions, operational

leverage, or financial leverage) is necessary to reconcile the low consumption risk premium with

the high equity risk premium.

The rest of the paper is organized as follows. Section 2 describes our measurement approach

conceptually. Section 3 shows how we estimate the risk price parameters and Section 4 describes

the results from that estimation. Section 5 shows that our conclusions remain valid when there

is priced unspanned consumption risk. Section 6 investigates what features of the model are

responsible for which results and investigates an annual instead of a quarterly version of our

model. Section 7 compares the properties of the wealth consumption ratio in the long-run risk

and external habit models to the ones we estimate in the data. Finally, Section 8 concludes. An

Online Appendix describes our data, presents proofs, details the robustness checks, and shows

that our valuation approach remains valid in an incomplete markets model.

2 Measuring the Wealth-Consumption Ratio in the Data

Section 2.1 describes the framework for estimating the wealth-consumption ratio and the return

on total wealth. Section 2.2 presents two methodologies to compute the wealth-consumption

ratio. Section 2.3 links the wealth-consumption ratio to the cost of aggregate consumption risk

and the propensity to consume out of wealth.

2.1 Model

State Evolution Equation We assume that the N × 1 vector of state variables follows a

Gaussian first-order VAR:

zt = Ψzt−1 + Σ
1
2 εt, (1)

with εt ∼ i.i.d.N (0, I) and Ψ is a N × N matrix. The vector z is demeaned. The covariance

matrix of the innovations is Σ; the model is homoscedastic. We use a Cholesky decomposition

of the covariance matrix, Σ = Σ
1
2Σ

1
2
′, which has non-zero elements only on and below the diag-

onal. We discuss the elements of the state vector in detail below. Among other elements, the
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state zt contains real aggregate consumption growth, the nominal short-term interest rate, and

inflation. Denote consumption growth by ∆ct = µc + e′czt, where µc denotes the unconditional

mean consumption growth rate and the N × 1 vector ec is the column of a N ×N identity matrix

that corresponds to the position of ∆c in the state vector. Likewise, the nominal 1-quarter rate

is y$t (1) = y$0(1) + e′ynzt, where y$0(1) is the unconditional average and eyn the selector vector.

Similarly, πt = π0+e′πzt is the (log) inflation rate between t−1 and t. All lowercase letters denote

logs.

Stochastic Discount Factor We specify a stochastic discount factor (SDF) familiar from the

no-arbitrage term structure literature, following Ang and Piazzesi (2003). The nominal pricing

kernel M$
t+1 = exp(m$

t+1) is conditionally log-normal:

m$
t+1 = −y$t (1)−

1

2
Λ′

tΛt − Λ′
tεt+1. (2)

The real pricing kernel isMt+1 = exp(mt+1) = exp(m$
t+1+πt+1); it is also conditionally Gaussian.2

The innovations in the vector εt+1 are associated with a N × 1 market price of risk vector Λt of

the affine form:

Λt = Λ0 + Λ1zt,

The N × 1 vector Λ0 collects the average prices of risk while the N × N matrix Λ1 governs the

time variation in risk premia.

2.2 The Wealth-Consumption Ratio

We explore two methods to measure the wealth-consumption ratio. The first one uses consumption

strips and avoids any approximation while the second approach builds on the Campbell (1991)

approximation of log returns.

From Consumption Strips A consumption strip of maturity τ pays realized consumption at

period τ , and nothing in the other periods. Under a no-bubble constraint on total wealth, the

wealth-consumption ratio is the sum of the price-dividend ratios on consumption strips of all

horizons (Wachter 2005):

Wt

Ct

= ewct =
∞∑

τ=0

P c
t (τ), (3)

where P c
t (τ) denotes the price of a τ period consumption strip divided by the current consumption.

Appendix B proves that the log price-dividend ratio on consumption strips are affine in the state

2Note that the consumption-CAPM is a special case of this where mt+1 = log β−αµc−αηt+1 and ηt+1 denotes
the innovation to real consumption growth and α the coefficient of relative risk aversion.
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vector and shows how to compute them recursively.

If consumption growth were unpredictable and its innovations carried a zero risk price, then

consumption strips would be priced like real zero-coupon bonds.3 The consumption strips’

dividend-price ratios would equal yields on real bonds (with coupon adjusted for growth µc).

In this special case, all variation in the wealth-consumption ratio would be traced back to the

real yield curve.

From Total Wealth Returns Consumption strips allow for an exact definition of the wealth-

consumption ratio, but they call for the estimation of an infinite sum of bond prices. A second ap-

proximate method delivers both a more practical and elegant definition of the wealth-consumption

ratio. In our empirical work, we check that both methods deliver similar results.

In our exponential-Gaussian setting, the log wealth-consumption ratio is an affine function of

the state variables. To show this result, we start from the aggregate budget constraint:

Wt+1 = Rc
t+1(Wt − Ct). (4)

The beginning-of-period (or cum-dividend) total wealth Wt that is not spent on aggregate con-

sumption Ct earns a gross return Rc
t+1 and leads to beginning-of-next-period total wealth Wt+1.

The return on a claim to aggregate consumption, the total wealth return, can be written as

Rc
t+1 =

Wt+1

Wt − Ct

=
Ct+1

Ct

WCt+1

WCt − 1
.

We use the Campbell (1991) approximation of the log total wealth return rct = log(Rc
t) around

the long-run average log wealth-consumption ratio Ac
0 ≡ E[wt − ct].

4

rct+1 ≃ κc
0 +∆ct+1 + wct+1 − κc

1wct. (5)

The linearization constants κc
0 and κc

1 are non-linear functions of the unconditional mean wealth-

consumption ratio Ac
0:

κc
1 =

eA
c
0

eA
c
0 − 1

> 1 and κc
0 = − log

(
eA

c
0 − 1

)
+

eA
c
0

eA
c
0 − 1

Ac
0. (6)

Proposition 1. The log wealth-consumption ratio is approximately a linear function of the (de-

meaned) state vector zt

wct ≃ Ac
0 + Ac′

1 zt,

3First, if aggregate consumption growth is unpredictable, i.e., e′cΨ = 0, then innovations to future consumption

growth are not priced. Second, if prices of current consumption risk are zero, i.e., e′cΣ
1
2Λ1 = 0 and e′cΣ

1
2Λ0 = 0,

then innovations to current consumption are not priced.
4Throughout, variables with a subscript zero denote unconditional averages.
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where the mean log wealth-consumption ratio Ac
0 is a scalar and Ac

1 is the N × 1 vector which

jointly solve:

0 = κc
0 + (1− κc

1)A
c
0 + µc − y0(1) +

1

2
(ec + Ac

1)
′Σ(ec + Ac

1)− (ec + Ac
1)

′Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
(7)

0 = (ec + eπ + Ac
1)

′Ψ− κc
1A

c′
1 − e′yn − (ec + eπ + Ac

1)
′Σ

1
2Λ1. (8)

Appendix B proves the proposition. The proof conjectures an affine function for the log

wealth-consumption ratio, imposes the Euler equation for the log total wealth return, and solves

for the coefficients of the affine function as verification of the conjecture. The resulting expression

for wct is an approximation only because it relies on the log-linear approximation of returns in

equation (5). This log-linearization is the only approximation in our procedure. Once we estimate

the market prices of risk Λ0 and Λ1 below, equations (7) and (8) allow us to solve for the mean

log wealth-consumption ratio (Ac
0) and its dependence on the state (Ac

1).
5

Consumption Risk Premium Proposition 1 and the total wealth return definition in (5)

jointly imply the following log total wealth return:

rct+1 = rc0 + [(ec + Ac
1)

′Ψ− κc
1A

c′
1 ] zt + (e′c + Ac′

1 )Σ
1
2 εt+1, (9)

rc0 = κc
0 + (1− κc

1)A
c
0 + µc, (10)

where equation (10) defines the unconditional mean total wealth return rc0. The consumption

risk premium, the expected log return on total wealth in excess of the log real risk-free rate yt(1)

corrected for a Jensen term, follows from the Euler equation Et[Mt+1R
c
t+1] = 1:

Et

[
rc,et+1

]
≡ Et

[
rct+1 − yt(1)

]
+

1

2
Vt[r

c
t+1] = −Covt

[
rct+1, mt+1

]
(11)

= (ec + Ac
1)

′Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (ec + Ac

1)
′Σ

1
2Λ1zt,

The first term on the last line is the average consumption risk premium. This is a key object of

interest which measures how risky total wealth is. The second (mean-zero) term governs the time

variation in the consumption risk premium.

Growth Conditions Given the no-bubble constraint, there is an approximate link between

the coefficients in the affine expression of the wealth-consumption ratio and the coefficients of the

5Equations (7) and (8) form a system of N + 1 non-linear equations in N + 1 unknowns. It is a non-linear
system because of equation (6), but is well-behaved and can easily be solved numerically.
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strip price-dividend ratios P c
t (τ) = exp(Ac(τ) +Bc(τ)′zt):

exp(Ac
0) ≃

∞∑

τ=0

exp(Ac(τ)) and exp(Ac
1) ≃

∞∑

τ=0

exp(Bc(τ)). (12)

A necessary condition for this first sum to converge and hence produce a finite average wealth-

consumption ratio is that the consumption strip risk premia are positive and large enough in the

limit (as τ → ∞):

(ec +Bc(∞))′ Σ
1
2

(
Λ0 − Σ

1
2 eπ

)
> µc − y0(1) +

1

2
(ec +Bc(∞))′ Σ (ec +Bc(∞)) ,

We refer to this inequality as the growth condition. Because average real consumption growth

µc exceeds the average real short rate y0(1) in the data, the right-hand side of the inequality is

positive. When all the risk prices in Λ0 are zero, this condition is obviously violated. It implies a

lower bound for the consumption risk premium.

Human Wealth The same way we priced a claim to aggregate consumption, we price a claim

to aggregate labor income. Human wealth is the present value of the latter claim. We impose

that the conditional Euler equation for human wealth returns is satisfied and obtain a log price-

dividend ratio which is also approximately affine in the state: pdlt = Al
0 + Al

1zt. (See Proposition

2 in Online Appendix B.1.) By the same token, the conditional risk premium on the labor income

claim is affine in the state vector (see equation A.5 in Online Appendix B.1).

2.3 Cost of Consumption Risk and Consumption-Wealth Effects

The computation of the wealth-consumption ratio implies an estimate of the marginal welfare

cost of aggregate consumption growth risk, a central object of interest in this paper. Alvarez and

Jermann (2004) define the marginal cost of consumption uncertainty by how much consumption

the representative agent would be willing to give up at the margin in order to eliminate some

consumption uncertainty.6 Since our approach is preference-free, our marginal cost calculation

applies to the entire class of representative agent dynamic asset pricing models.

Eliminating exposure to aggregate consumption growth risk is achieved by selling a claim to

stochastically growing aggregate consumption and buying a claim to deterministically growing

aggregate consumption. Denote trend consumption by Ctr
t . The marginal cost of consumption

6The literature on the costs of consumption fluctuations starts with Lucas (1987) who defines the total cost of
aggregate consumption risk Ω as the fraction of consumption the consumer is willing to give up in order to get
rid of consumption uncertainty: U

(
(1 + Ω(α))Cactual

)
= U

(
(1− α)Ctrend + αCactual

)
, where α=0. Alvarez and

Jermann (2004) define the marginal cost of business cycles as the derivative of this cost evaluated at zero, i.e.,
Ω′(0). While the total cost can only be computed by specifying preferences, the marginal cost can be backed out
directly from traded assets prices.
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uncertainty, ̟t, is defined as the ratio of the price of a claim to trend consumption (without

cash-flow risk) to the price of a claim to consumption with cash-flow risk minus one:

̟t =
W tr

t

Wt

− 1 =
WCtr

t

WCt

Ctr
t

Ct

− 1 = ewctrt +ctrt +wct−ct − 1, (13)

where wctr denotes the log price-dividend ratio on the claim to trend consumption, a perpetuity

with cash-flows that grow deterministically at the average real consumption growth rate µc. The

latter is approximately affine in the state variables: wctrt ≃ Atr
0 + Atr′

1 zt (see Appendix B for a

derivation). The risk premium on a claim to trend consumption is not zero but it approximately

equals the risk premium on the real perpetuity:

Et

[
rtr,et+1

]
≡ Et

[
rtrt+1 − yt(1)

]
+

1

2
Vt[r

tr
t+1] ≃ Atr′

1 Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ Atr′

1 Σ
1
2Λ1zt (14)

The marginal cost of business cycles is zero, on average, when innovations to current and future

consumption growth jointly carry a zero price of risk so that wct ≈ wctrt . Even in the latter case,

the marginal cost of consumption fluctuations will fluctuate because realized consumption is at

times above and at times below trend.

Propensity to Consume out of Wealth A large literature studies households’ average and

marginal propensities to consume out of wealth. To the best of our knowledge, ours is the

first estimator of these propensities that is consistent with both the budget constraint and no-

arbitrage pricing of stock and bond prices. Specifically, the consumption-wealth ratio evaluated at

the sample average state vector, exp (−Ac
0), is a no-arbitrage estimate of the average propensity

to consume out of total wealth. We also obtain the marginal propensity to consume out of total

wealth: (1 + e′cA
c
1)

−1 exp (− (Ac
0 + Ac′

1 zt)).
7 The dynamics of the marginal cost of consumption

fluctuations vary directly with the consumption-wealth ratio.

3 Estimating the Market Prices of Risk

In order to recover the dynamics of the wealth-consumption ratio and of the return on wealth,

we need to estimate the market prices of risk Λ0 and Λ1. This section details our estimation

procedure. Section 3.1 describes the state vector. Section 3.2 lists the additional restrictions we

impose on our framework. Section 3.3 describes the estimation technique.

7In the literature, the marginal propensity to consume is the slope coefficient a1 in the following regression:
∆ct+1 = a0 + a1∆wt+1 + ǫt+1. From our estimates, we can back out the implied marginal propensity to consume
as follows: a−1

1 = ∂(∆wt+1)/∂(∆ct+1) = ∂(∆wct+1 + ∆ct+1)/∂(∆ct+1) = ∂(∆wct+1)/∂(∆ct+1) + 1 = e′cA
c
1 + 1.

We multiply a1 = (e′cA
c
1 + 1)−1 by the consumption-wealth ratio to get an expression of the marginal propensity

to consume out of wealth in levels (cents per dollars).
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To implement the model, we need to take a stance on what observables describe the aggregate

dynamics of the economy. The de minimis state vector contains the nominal short rate, realized

inflation, and the cash flow growth dynamics of the two cash flows this paper sets out to price:

consumption and labor income. In this section we lay out our benchmark model which contains

substantially richer state dynamics than contained in these four variables. The richness stems

from a desire to infer market prices of risk from a model that accurately prices bonds of various

maturities, the equity market, and that takes into account some cross-sectional variation across

stocks. Section 6 explores special cases of the benchmark model, with fewer state variables, in

order to understand what elements are crucial for our main findings.

3.1 Benchmark State Vector

Our benchmark state vector is:

zt = [CPt, y
$
t (1), πt, y

$
t (20)− y$t (1), pd

m
t , r

m
t , r

fmpc
t , rfmpy

t ,∆ct,∆lt]
′.

The first four elements represent the bond market variables in the state, the next four represent

the stock market variables, the last two variables represent the cash flows. The state contains

in order of appearance: the Cochrane and Piazzesi (2005) factor (CP ), the nominal short rate

(yield on a 3-month Treasury bill), realized inflation, the spread between the yield on a 5-year

Treasury note and a 3-month Treasury bill, the price-dividend ratio on the CRSP stock market,

the real return on the CRSP stock market, the real return on a factor mimicking portfolio for

consumption growth, the real return on a factor mimicking portfolio for labor income growth,

real per capita consumption growth, and real per capita labor income growth. We recall that

lower-case letters denote natural logarithms. This state vector is observed at quarterly frequency

from 1952.I until 2011.IV (240 observations). In a robustness check, we also consider annual data

from 1952 to 2011. Appendix A describes data sources and definitions in detail. The Cholesky

decomposition of the residual covariance matrix, Σ = Σ
1
2Σ

1
2
′, allows us to interpret the shock to

each state variable as the sum of the shocks to all the preceding state variables and an own shock

that is orthogonal to all previous shocks. Consumption and labor income growth are ordered

after the bond and stock variables because we use the prices of risk associated with the first eight

innovations to value the consumption and labor income claims.

The goal of our exercise is to price claims to aggregate consumption and labor income using as

much information as possible from traded assets. Thus, the choice of state variables is motivated

by a desire to capture all important dynamics of bond and stock prices. Many of the state

variables have a long tradition in finance as predictors of stock and bond returns.8

8For example, Ferson and Harvey (1991) study the yield spread, the short rate and consumption growth as
predictors of stocks while Cochrane and Piazzesi (2005) emphasize the importance of the CP factor to predict
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Expected Consumption Growth Equally important is a rich specification of the cash flows

we want to price, consumption and labor income growth. First, our state vector includes variables

like interest rates (Harvey (1988)), the price-dividend ratio, and the slope of the yield curve

(Ang, Piazzesi, and Wei (2006)) that have been shown to forecast future consumption growth.

The predictability of future consumption growth by stock and bond prices whose own shocks

carry non-zero prices of risk results in a risk premium to future consumption growth innovations

and thus to create a wedge between the risky and the trend consumption claims. Having richly

specified expected consumption growth dynamics alleviates the concern that the model misses

important (priced) shocks to expected consumption growth. Second, the modest correlation (29%)

of the aggregate stock market portfolio with consumption growth motivates us to use additional

information from the cross-section of stocks to learn more about contemporaneous shocks to

consumption and labor income claims. We use the 25 size- and value-portfolio returns to form

a consumption growth factor mimicking portfolio (fmp) and a labor income growth fmp. The

consumption (labor income) growth fmp has a 36% (36%) correlation with actual consumption.

Pricing these fmp well alleviates the concern that our model misses important shocks to current

consumption innovations.

Our state variables zt explain 29% of variation in ∆ct+1. The volatility of annualized ex-

pected consumption growth is 0.49%, more than one-third of the volatility of realized consumption

growth, while the first-order autocorrelation of expected consumption growth is 0.70 in quarterly

data. This shows non-trivial consumption growth predictability, in line with the literature. Fig-

ure 1 plots the (annualized) one-quarter-ahead expected consumption growth series implied by

our VAR. The shaded areas are NBER recessions. Expected consumption growth experiences

the largest declines during the Great Recession of 2007.IV-2009.II, the 1953.II-1954.II recession,

the 1957.III-1958.II recession, the 1973.IV-1975.I recession, the double-dip NBER recession from

1980.I to 1982.IV, and somewhat smaller declines during the less severe 1960.II-1961.I, 1990.III-

1991.I and 2001.I-2001.IV recessions. Hence, the innovations to expected consumption growth are

highly cyclical. That cyclical risk, alongside the long-run risk in expected consumption growth

implied by the VAR, should be priced in asset markets. Finally, most of the cyclical variation

in consumption growth is captured by traded asset returns. The correlation of unspanned (or-

thogonal) consumption growth with the NBER dummy is only -.01 and not statistically different

from zero. Moreover, these unspanned innovations are essentially uncorrelated over time; the

first-order autocorrelation is -0.05.

bond returns.
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Figure 1: Consumption Growth Predictability

The figure plots (annualized) expected consumption growth at quarterly frequency, as implied by the VAR model: Et [∆ct+1] =
µc + I′cΨzt, where zt is the N-dimensional state vector.

Pe
rce

nt p
er 

yea
r

Expected Consumption Growth

1960 1970 1980 1990 2000 2010
−2

−1

0

1

2

3

4

5

3.2 Restrictions

With ten state variables and time-varying prices of risk our model has many parameters. On the

one hand, the richness offers the possibility to accurately describe bond and equity prices without

having to resort to latent state variables. On the other hand, there is the risk of over-fitting the

data. To guard against this risk and to obtain stable estimates, we impose restrictions on our

benchmark estimation.

We start by imposing restrictions on the dynamics of the state variable, that is, in the com-

panion matrix Ψ. Only the bond market variables -first block of four- govern the dynamics of

the nominal term structure; Ψ11 below is a 4× 4 matrix of non-zero elements. For example, this

structure allows for the CP factor to predict future bond yields, or for the short-term yield and

inflation to move together. It also imposes that stock returns, the price-dividend ratio on stocks,

or the factor-mimicking portfolio returns do not predict future yields or bond returns; Ψ12 is a

4 × 4 matrix of zeroes. The second block of Ψ describes the dynamics of the log price-dividend

ratio and log return on the aggregate stock market, which we assume depends not only on their

own lags but also on the lagged bond market variables. The elements Ψ21 and Ψ22 are 2× 4 and

2× 2 matrices of non-zero elements. This allows for aggregate stock return predictability by the

short rate, the yield spread, inflation, the CP factor, the price dividend-ratio, and its own lag, all

of which have been shown in the empirical asset pricing literature. The fmp returns in the third

block have the same predictability structure as the aggregate stock return, so that Ψ31 and Ψ32

are 2 × 4 and 2 × 2 matrices of non-zero elements. In our benchmark model, consumption and

labor income growth do not predict future bond and stock market variables; Ψ14, Ψ24, and Ψ34
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are all matrices of zeroes. Finally, the VAR structure allows for rich cash flow dynamics: expected

consumption growth depends on the first nine state variables and expected labor income growth

depends on all lagged state variables; Ψ41, Ψ42, and Ψ43 are 2 × 4, 2 × 2, and 2 × 2 matrices of

non-zero elements, and Ψ44 is a 2× 2 matrix with one zero in the upper-right corner. In sum, our

benchmark Ψ matrix has the following block-diagonal structure:

Ψ =




Ψ11 0 0 0

Ψ21 Ψ22 0 0

Ψ31 Ψ32 0 0

Ψ41 Ψ42 Ψ43 Ψ44




.

Section 6 also explores various alternative restrictions on Ψ. These do not materially alter the dy-

namics of the estimated wealth-consumption ratio. We estimate Ψ by OLS, equation-by-equation,

and we form each innovation as follows zt+1(·)−Ψ(·, :)zt. We compute their (full rank) covariance

matrix Σ.

The zero restrictions on Ψ imply zero restrictions on the corresponding elements of the market

price of risk dynamics in Λ1. For example, the assumption that the stock return and the price-

dividend ratio on the stock market do not predict the bond variables implies that the market

prices of risk for the bond market shocks cannot fluctuate with the stock market return or the

price-dividend ratio. The entries of Λ1 in the first four rows and the fifth and sixth column must

be zero. Likewise, because the last four variables in the VAR do not affect expected stock and fmp

returns, the prices of stock market risk cannot depend on the last four state variables. Finally,

under our assumption that all sources of aggregate uncertainty are spanned by the innovations to

the traded assets (the first eight shocks), the part of the shocks to consumption growth and labor

income growth that is orthogonal to the bond and stock innovations is not priced. We relax this

assumption in section 5. Thus, Λ1,41, Λ1,42, Λ1,43, and Λ1,44 are zero matrices. This leads to the

following structure for Λ1:

Λ1 =




Λ1,11 0 0 0

Λ1,21 Λ1,22 0 0

Λ1,31 Λ1,32 0 0

0 0 0 0




,

We impose corresponding zero restrictions on the mean risk premia in the vector Λ0: Λ0 =

[Λ0,1, Λ0,2, Λ0,3 0]
′, where Λ0,1 is 4× 1, and Λ0,2 and Λ0,3 are 2× 1 vectors.

The matrix Λ1,11 contains the bond risk prices, Λ1,21 and Λ1,22 contain the aggregate stock

risk prices, and Λ1,31 and Λ1,32 the risk prices on the factor mimicking portfolios (fmp) of ag-

gregate consumption and labor income growth. While all zeroes in Ψ lead to zeroes in Λ1 in

the corresponding entries, the converse is not true. That is, not all entries of the matrices Λ1,11,
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Λ1,21, Λ1,22, Λ1,31, and Λ1,32 must be non-zero even though the corresponding elements of Ψ all

are non-zero. Whenever we have a choice of which market price of risk parameters to estimate,

we follow a simple rule: we associate non-zero risk prices with traded assets instead of non-traded

variables. In particular, we set the rows corresponding to the prices of CP risk, inflation risk,

and pdm risk equal to zero because these are not traded assets, while the rows corresponding to

the short rate, the yield spread, the stock market return and the fmp returns are non-zero. Our

final specification has five non-zero elements in Λ0 and twenty-six in Λ1 (two rows of four and

three rows of six). This specification is rich enough for the model to match the time-series of the

traded asset prices that are part of the state vector.

The structure we impose on Ψ and on the market prices of risk is not overly restrictive. A

Campbell-Shiller decomposition of the wealth-consumption ratio into an expected future con-

sumption growth component (∆cHt ) and an expected future total wealth returns component (rHt ),

detailed in Appendix B, delivers the following expressions:

∆cHt = e′cΨ(κc
1I −Ψ)−1zt and rHt = [(ec + Ac

1)
′Ψ− κc

1A
c′
1 ] (κ

c
1I −Ψ)−1zt.

Despite the restrictions on Ψ and Λt, both the cash flow component and the discount rate com-

ponent depend on all state variables. In the case of ∆cHt , this is because expected consumption

growth depends on all lagged stock and bond variables in the state. In the case of rHt , there is

additional dependence through Ac
1, which itself is a function of the first nine state variables. The

cash flow component does not directly depend on the risk prices (other than through κc
1) while

the discount rate component depends on all risk prices of stocks and bonds through Ac
1. This

flexibility implies that our model can theoretically accommodate a large consumption risk pre-

mium. This happens when the covariances between consumption growth and the other aggregate

shocks are large and/or when the unconditional risk prices in Λ0 are sufficiently large. In fact,

in our estimation, we choose Λ0 large enough to match the equity premium. A low estimate of

the consumption risk premium and hence a high wealth-consumption ratio are not a foregone

conclusion.

3.3 Estimation

We estimate Λ0 and Λ1 from the moments of bond yields and stock returns. We relegate a detailed

discussion of the estimation strategy to Appendix B. While all moments pin down all market price

of risk estimates jointly, it is useful to organize the discussion as if the estimation proceeded in

four steps. These steps can be interpreted as delivering good initial guesses from which to start

the final estimation.

The model delivers a nominal (and real) term structure where bond yields are affine functions
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of the state variables. In a first step, we estimate the risk prices in the bond market block Λ0,1 and

Λ1,11 by matching the time series for the short rate, the slope of the yield curve, and the CP risk

factor. Because of the block diagonal structure, we can estimate these risk prices separately. In a

second step, we estimate the risk prices in the stock market block Λ0,2, Λ1,21, and Λ1,22 jointly with

the bond risk prices, taking the estimates from the first step as starting values. Here, we impose

that the model delivers expected excess stock returns similar to the VAR. In a third step, we

estimate the fmp risk prices in the factor mimicking portfolio block Λ0,3, Λ1,31, and Λ1,32 taking as

given the bond and stock risk prices. Again, we impose that the risk premia on the fmp coincide

between the VAR and the SDF model. The stock and bond moments used in the first three

steps exactly identify the 5 elements of Λ0 and the 26 elements of Λ1. In other words, given the

structure of Ψ, they are all strictly necessary to match the levels and dynamics of bond yields

and stock returns.

For theoretical as well as for reasons of fit, we impose several additional constraints. We

obtain these constraints from matching additional nominal yields, imposing the present-value

relationship for stocks, imposing a human wealth share between zero and one, and imposing

the growth condition on the consumption claim. To avoid over-parametrization, we choose not

to let these constraints identify additional market price of risk parameters. We re-estimate all 5

parameters in Λ0 and all 26 parameters in Λ1 in a final fourth step where we impose the constraints,

starting from the third-step estimates. Our final estimates for the market prices of risk from the

last-stage estimation are listed at the end of Appendix B alongside the VAR parameter estimates.

Online Appendix B provides more detail on the over-identifying restrictions.

4 Estimation Results

We first verify that the model does an adequate job describing the quarterly dynamics of the

bond yields and of stock returns. We then study the variations in the total wealth and human

wealth. In the interest of space, we present auxiliary figures in the Online Appendix; they are

denoted by the letter “A.”

4.1 Model Fit for Bonds and Stocks

Our model fits the nominal term structure of interest rates reasonably well (see Figure A.1). We

match the 3-month yield exactly. For the 5-year yield, which is part of the state vector through the

yield spread, the average pricing error is -1 basis points (bp) per year. The annualized standard

deviation of the pricing error is only 33bp, and the root mean squared error (RMSE) is 33bp. For

the other four maturities, the mean annual pricing errors range from -7bp to +62bp, the volatility
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of the pricing errors range from 33 to 58bp, and the RMSE from 33 to 65bp.9 While these pricing

errors are somewhat higher than the ones produced by term-structure models, our model has no

latent state variables and only two term structure factors (two priced sources of risk which we

associate with the second and fourth shocks). It also captures the level and dynamics of long-term

bond yields well, a part of the term structure rarely investigated, but important for our purposes

of evaluation a long-duration consumption claim. On the dynamics, the annual volatility of the

nominal yield on the 5-year bond is 1.40% in the data and 1.35% in the model.

The model also does a good job capturing the bond risk premium dynamics. The model

produces a nice fit between the Cochrane-Piazzesi factor, a measure of the 1-year nominal bond

risk premium, in model and data (see right panel of Figure A.2). The annual mean pricing error is

-15bp and standard deviation of the pricing error is 70bp. The 5-year nominal bond risk premium,

defined as the difference between the 5-year yield and the average expected future short term yield

averaged over the next 5 years, is also matched closely by the model (left panel of Figure A.2).

The long-term and short-term bond risk premia have a correlation of 74%. Thus, our model

is able to capture the substantial variation in bond risk premia in the data. This is important

because the bond risk premium turns out to constitute a major part of the consumption risk

premium and of the marginal cost of consumption fluctuations.

The model also manages to capture the dynamics of stock returns quite well. The model

matches the equity risk premium that arises from the VAR structure (bottom panel of Figure

A.3). The average equity risk premium (including Jensen term) is 6.41% per annum in the data,

and 6.41% in the model. Its annual volatility is 3.31% in the data and 3.25% the model. The

model, in which the price-dividend ratio reflects the present discounted value of future dividends,

replicates the price-dividend ratio in the data quarter by quarter (top panel).

As in Ang, Bekaert, and Wei (2008), the long-term nominal risk premium on a 5-year bond is

the sum of a real rate risk premium (defined the same way for real bonds as for nominal bonds)

and the inflation risk premium. The right panel of Figure A.4 decomposes this long-term bond

risk premium (solid line) into a real rate risk premium (dashed line) and an inflation risk premium

(dotted line). The real rate risk premium becomes gradually more important at longer horizons.

The left panel of Figure A.4 decomposes the 5-year yield into the real 5-year yield (which itself

consists of the expected real short rate plus the real rate risk premium), expected inflation over

the next 5-years, and the 5-year inflation risk premium. The inflationary period in the late 1970s-

early 1980s was accompanied by high inflation expectations and an increase in the inflation risk

premium, but also by a substantial increase in the 5-year real yield.10 Separately identifying real

9Note that the largest errors occur on the 20-year yield, which is unavailable between 1986.IV and 1993.II. The
standard deviation and RMSE on the 10-year yield are only half as big as on the 20-year yield.

10Inflation expectations in our VAR model have a correlation of 76% with inflation expectations from the Survey
of Professional Forecasters (SPF) over the common sample 1981-2011. The 1-quarter ahead inflation forecast error
series for the SPF and the VAR have a correlation of 79%. Realized inflation fell sharply in the first quarter of
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rate risk and inflation risk based on nominal term structure data alone is challenging.11 We do

not have long enough data for real bond yields, but stocks are real assets that contain information

about the term structure of real rates. They can help with the identification. For example, high

long real yields in the late 1970s-early 1980s lower the price-dividend ratio on the stock market

stock, which indeed was low in the late 1970s-early 1980s (top panel of Figure A.3). High nominal

yields combined with high price-dividend ratios would have suggested low real yields instead.

Figure 2: Dynamics of the Real Term Structure of Interest Rates

The figure plots the observed and model-implied 5-, 7-, 10-, 20-, and 30-year real bond yields. Real yield data are constant maturity
yields on Treasury Inflation Indexed Securities from the Federal Reserve Bankk of St.-Louis (FRED II). We use the longest available
sample for each maturity.
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Average real yields range from 1.49% per year for 1-quarter real bonds to 2.87% per year

for 20-year real bonds. Despite the short history of Treasury Inflation Indexed Bonds, potential

liquidity issues early in the sample, and the dislocation in the TIPS market/rich pricing of nominal

Treasuries (Longstaff, Fleckenstein, and Lustig 2010), it is nevertheless informative to compare

model-implied real bond yields to observed real yields. Despite the fact that these real yields were

not used in estimation, Figure 2 shows that the fit over the common sample is reasonably good

both in terms of levels and dynamics.

Finally, the model matches the expected returns on the consumption and labor income growth

factor mimicking portfolios (fmp) very well (See Figure A.6). The annual risk premium on the

consumption growth fmp is 1.08% in the data and model, with volatilities of 1.59 and 1.54%.

Likewise, the risk premium on the labor income growth fmp is 3.48% in data and model, with

1981. Neither the professional forecasters nor the VAR anticipated this decline, leading to a high realized real
yield. The VAR expectations caught up more quickly than the SPF expectations, but by the end of 1981, both
inflation expectations were identical.

11Many standard term structure models have a likelihood function with two local maxima with respect to the
persistence parameters of expected inflation and the real rate.
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volatilities of 2.41 and 2.51%.

To summarize, Table 1 provides a detailed overview of the pricing errors on the assets used in

estimation. Panel A shows the pricing errors on the equity portfolios, Panels B and C the pricing

errors on nominal bonds. Panel A shows that the volatility and RMSE of the pricing errors on

the equity risk premium are about 15 bp per year; those on the factor mimicking portfolio returns

are 6 and 37 bp. Panel B shows the pricing errors on nominal bonds that were used in estimation.

The three month rate is matched perfectly since it is in the state vector and carries no risk price.

The pricing error on the 5-year bond is only 1 bp on average, with a standard deviation and

RMSE of about 33 bp. One- through four-year yields have RMSEs between 39bp and 46bp per

year. The seven-year bond has a RMSE of 35 bp, the ten-year bond one of 37 bp. The largest

pricing errors occur on bonds of 20- and 30-year maturity, around 65bp. One mitigating factor is

that these bonds have some missing data over our sample period, which makes the comparison of

yields in model and data somewhat harder to interpret. Another is that there may be liquidity

effects at the long end of the yield curve that are not captured by our model. Finally, the RMSE

on the CP factor is comparable to that on the 5-year yield once its annual frequency is taken into

account.12

We conclude that our pricing errors are low given that we jointly price bonds and stocks, use

no latent state variables, and include much longer maturity bonds than what is typically done in

the literature.

4.2 The Wealth-Consumption Ratio

With the estimates for Λ0 and Λ1 in hand, it is straightforward to use Proposition 1 and solve

for Ac
0 and Ac

1 from equations (7)-(8). Table 2 summarizes the key moments of the log wealth-

consumption ratio obtained in quarterly data in column 3. The numbers in parentheses are small

sample bootstrap standard errors, computed using the procedure described in Appendix B.9.

Comparison to Stocks We can directly compare the moments of the wealth-consumption ratio

with those of the price-dividend ratio on equity. The wc ratio has an annualized volatility of 19%

in the data, considerably lower than the 29% volatility of the pdm ratio. The wc ratio in the data

is a persistent process; its 1-quarter (4-quarter) serial correlation is .97 (.87). This is similar to

the .94 (.77) serial correlation of pdm. The annual volatility of changes in the wealth consumption

ratio is 4.51%, and because of the low volatility of aggregate consumption growth changes, this

translates into a volatility of the total wealth return on the same order of magnitude (4.59%).

The corresponding annual volatility of 9.2% is about half the 17.2% volatility of stock returns.

12The CP factor is constructed from annual returns while the yields are quarterly. To annualize the volatility of
yield pricing errors, we multiply the quarterly pricing errors by 2 =

√
4. To compare the two, the volatility and

RMSE of CP should be divided by a factor of two.
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Table 1: Pricing Errors

This table reports the pricing errors on the asset pricing moments used in the estimation, as well as some over-identifying restrictions.
The pricing error time series are computed as the difference between the predicted asset pricing moment by the model and the observed
asset pricing moment in the data. The table reports time-series averages (Mean), standard deviations (Stdev), and root-mean squared
errors (RMSE). Panel A reports pricing errors on the equity market portfolio, the consumption growth factor-mimicking portfolio
(fmpc), and the labor income growth factor-mimicking portfolio (fmpl). It also reports how well the model matches the price-
dividend ratio on the aggregate stock market. Panel B shows nominal bond yield pricing errors for the bond maturities that were used
in estimation. Panel C shows bond yield errors for bond maturities that were not used in estimation, as well as the Cochrane-Piazzesi
(CP ) ratio. All moments are annualized and are multiplied by 100, except for the price-dividend ratio which is annualized in levels.

Panel A: Equity Portfolio Returns and PD

Equity Mkt. fmpc fmpl pd ratio

Mean 0.0014 -0.0003 0.0004 -0.1134

Stdev 0.1517 0.0579 0.3662 0.1932

RMSE 0.1514 0.0578 0.3655 0.2237

Panel B: Nominal Bond Yields Used in Estimation

y$(1) y$(4) y$(12) y$(20) y$(40) y$(80)

Mean -0.0000 -0.0698 -0.0446 -0.0094 0.2026 0.6212

Stdev 0.0000 0.4649 0.3859 0.3325 0.3586 0.5761

RMSE 0.0000 0.4652 0.3857 0.3318 0.3719 0.6532

Panel C: CP and Nominal Bond Yields Not Used in Estimation

y$(8) y$(16) y$(28) y$(120) CP

Mean -0.0399 -0.0391 -0.0484 0.0316 -0.1531

Stdev 0.4258 0.3587 0.3537 0.6638 0.7006

RMSE 0.4254 0.3585 0.3535 0.6612 0.7157

The change in the wc ratio and the total wealth return have weak autocorrelation, suggesting

that total wealth returns are hard to forecast by their own lags. The correlation between the

(quarterly) total wealth return and consumption growth is mildly positive (.21).

How risky is total wealth compared to equity? According to our estimation, the consumption

risk premium (calculated from equation 11) is 60 bp per quarter or 2.38% per year. This results in

a mean wealth-consumption ratio of 5.81 in logs (Ac
0), or 83 in annual levels (exp{Ac

0 − log(4)}).
The consumption risk premium is only one-third as big as the equity risk premium of 6.41%.

Correspondingly, the wealth-consumption ratio is much higher than the price-dividend ratio on

equity: 83 versus 26. A simple back-of-the-envelope Gordon growth model calculation sheds light

on the mean of the wealth-consumption ratio. The discount rate on the consumption claim is

3.51% per year (a consumption risk premium of 2.38% plus a risk-free rate of 1.49% minus a

Jensen term of 0.37%) and its cash-flow growth rate is 2.31%: 83 = 1/(.0351 − .0231). The

standard errors on the moments of the wealth-consumption ratio and total wealth return are

sufficiently small so that the corresponding moments of the price-dividend ratio or stock returns

are outside the 95% confidence interval of the former. The main conclusion of our measurement

exercise is that total wealth is (economically and statistically) significantly less risky than equity.
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Table 2: Moments of the Wealth-Consumption Ratio

This table displays unconditional moments of the log wealth-consumption ratio wc, its first difference ∆wc, and the log total wealth
return rc. The table also reports the time-series average of the conditional consumption risk premium, E[Et[r

c,e
t ]], where rc,e denotes

the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen term. The last row denotes the share
of human wealth in total wealth. The first column reports moments from the long-run risk model (LRR model), simulated at quarterly
frequency. All reported moments are averages and standard deviations (in parentheses) across the 5,000 simulations of 220 quarters of
data. The second column reports the same moments for the external habit model (EH model). The last two columns report the data
at quarterly and annual frequencies respectively. The standard errors are obtained by bootstrap, as described in Appendix B.9.

Moments LRR Model EH model data data

quarterly quarterly quarterly annual

Std[wc] 2.35% 29.33% 18.57% 24.68%

(s.e.) (.43) (12.75) (4.30) (7.81)

AC(1)[wc] 0.91 0.93 0.97

(s.e.) (.03) (.03) (.03)

AC(4)[wc] 0.70 0.74 0.87 0.86

(s.e.) (.10) (.11) (.08) (.21)

Std[∆wc] 0.90% 9.46% 4.51% 12.13%

(s.e.) (.05) (2.17) (1.16) (3.33)

Std[∆c] 1.43% 0.75% 0.46% 1.24 %

(s.e.) (.08) (.04) (.03) (.14)

Corr[∆c,∆wc] -0.06 0.90 0.12 0.04

(s.e.) (.06) (.03) (.06) (.16)

Std[rc] 1.64% 10.26% 4.59% 12.34 %

(s.e.) (.09) (2.21) (1.16) (3.42)

Corr[rc,∆c] 0.84 0.91 0.21 0.15

(s.e.) (.02) (.03) (.07) (.15)

E[Et[r
c,e
t ]] 0.40% 2.67% 0.60% 2.34%

(s.e.) (.01) (1.16) (.16) (.88)

E[wc] 5.85 3.86 5.81 4.63

(s.e.) (.01) (.17) (.49) (.53)

2011 Wealth (in millions) 3.49 3.57

(s.e.) (0.27) (.52)

Human wealth share 0.92 0.92

(s.e.) (0.03) (.02)

Comparison to Claim to Trend Consumption The claim to trend consumption is the

second benchmark for the risky consumption claim. Table 3 reports the same moments as Table

2 but for a claim to deterministically growing consumption. We estimate a risk premium on the

trend claim of 64 bp per quarter or 2.58% per annum. The difference with the consumption

risk premium is 4bp per quarter and not statistically different from zero. Because the claims

to risky and to trend consumption differ only in terms of their consumption cash flow risk, the

small difference in risk premia shows that the market assigns essentially zero compensation to

current consumption innovations. This is the result of two offsetting forces. One the one hand,

quarterly consumption innovations are positively correlated to market equity and consumption-

fmp portfolio shocks, both of which carry a positive price of risk. This equity exposure adds to the
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consumption risk premium. On the other hand, quarterly consumption innovations hedge both

shocks to the level (second orthogonalized shock) and the slope (fourth orthogonalized shock)

of the term structure. Consumption innovations are positively correlated with level innovations,

which carry a negative risk price, and they are negatively correlated with slope shocks, which

carry a positive risk price. Both of these term structure exposures lower the consumption risk

premium. Put differently, the claim to trend consumption has a higher exposure to interest rate

shocks than the claim to risky consumption because of the interest rate hedging benefits of the

latter. Exposure to stock market risk (almost) offsets the lower bond market risk exposure so

that the two claims end up with nearly the same risk premium.

Table 3: Moments of a Claim to Trend Consumption

This table displays unconditional moments for the consumption perpetuity, the claim to deterministically growing aggregate consump-
tion. We report its log wealth-consumption ratio wctr, its first difference ∆wctr, and the log total wealth return rc,tr. The last panel
reports the time-series average of the conditional consumption risk premium, E[Et[r

c,tr,e
t ]], where rc,tr,e denotes the expected log

return on total wealth in excess of the risk-free rate and corrected for a Jensen term. We report the estimated moments in the data
at quarterly and annual frequencies respectively.

Moments data data

quarterly annual

Std[wctr] 21.32 25.79

AC(1)[wctr] 0.96 ×

AC(4)[wctr] 0.86 0.87

Std[∆wctr] 5.30 11.60

Corr[∆c,∆wctr] 0.06 0.01

Std[rc,tr] 5.31 11.67

Corr[rc,tr,∆c] 0.06 0.02

E[Et[r
c,tr,e
t ]] 0.64 2.05

E[wctr] 5.78 4.92

2011 Wealth (in millions) 3.97 6.05

Wealth Creation and Destruction Figure 3 plots the wealth-consumption ratio in levels,

alongside NBER recessions (shaded bars). Its dynamics are to a large extent inversely related

to the long real yield dynamics in Figure 2. For example, the 5-year real yield increases from

3.5% per annum in 1979.I to 6.9% in 1981.III while the wealth-consumption ratio falls from 68

to 49. This corresponds to a loss of $318,000 in real per capita wealth in 2005 dollars, where real

per capita wealth is the product of the wealth-consumption ratio and observed real per capita

consumption. Similarly, the low-frequency decline of the real yield in the twenty-five years after

1981 corresponds to a gradual rise in the wealth-consumption ratio. One striking way to see that

total wealth behaves differently from equity is to study it during periods of large stock market

declines. During the bear markets of 1973.III-1974.IV, 2000.I-2002.IV, and 2007.II-2009.I, the

change in US households’ real per capita stock market wealth (including mutual fund holdings)
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was -46%, -61%, and -65%, respectively. In contrast, real per capita total wealth changed by -12%,

+23%, and +11%, respectively.13 Over the full sample, the total wealth return has a correlation of

only 27% with the value-weighted real CRSP stock return, while it has a correlation of 94% with

realized one-quarter holding period returns on the 5-year nominal government bond.14 Likewise,

the quarterly consumption risk premium has a correlation of 55% with the quarterly equity risk

premium, lower than the 62% correlation with the quarterly nominal bond risk premium on a

5-year bond.

Figure 3: The Log Wealth-Consumption Ratio in the Data

The figure plots exp{wct− log(4)}, where wct is the quarterly log total wealth to total consumption ratio. The log wealth consumption
ratio is given by wct = Ac

0 + (Ac
1)

′zt. The coefficients Ac
0 and Ac

1 satisfy equations (7)-(8).
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To show more formally that the consumption claim behaves like a real bond, we compute

the discount rate that makes the current wealth-consumption ratio equal to the expected present

discounted value of future consumption growth. This is the solid line measured against the left

axis of Figure 4. Similarly, we calculate a time series for the discount rate on the dividend claim,

the dotted line measured against the right axis. For comparison, we plot the yield on a long-

term real bond (50-year) as the dashed line against the right axis. The correlation between the

consumption discount rate and the real yield is 99.95%, whereas the correlation of the dividend

discount rate and the real yield is only 46%. In addition, the consumption and dividend discount

13During the Great Recession, total per capita wealth is estimated to fall between 2008.II and 2008.IV. In
addition to this absolute decline, we argue below that total wealth fell substantially relative to trend wealth over
a multi-year period surrounding the Great Recession. Finally, we note that our model might understate the total
wealth destruction during the Great Recession if flight-to-safety effects made nominal Treasuries yields artificially
low.

14A similarly low correlation of 18% is found between total wealth returns and the Flow of Fund’s measure of
the growth rate in real per capita household net worth, a broad measure of financial wealth. The correlation of
the total wealth return with the Flow of Fund’s growth rate of real per capita housing wealth is 4%.
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rates only have a correlation of 48%, reinforcing our conclusion that the data suggest a large

divergence between the perceived riskiness of a claim to consumption and a claim to dividends in

securities markets.

Figure 4: Discount Rates on Consumption and Dividend Claim

The figure plots the discount rate on a claim to consumption (solid line, measured against the left axis, in percent per year), the
discount rate on a claim to dividend growth (dashed line, measured against the right axis, in percent per year), and the yield on
a real 50-year bond (dotted line, measured against the right axis, in percent per year). The discount rates are the rates that make
the price-dividend ratio equal to the expected present-discounted value of future cash flows, for either the consumption claim or the
dividend claim.
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A second way of showing that the consumption claim is bond-like is to study yields on con-

sumption strips. We decompose the yield on the period-τ strip in two components. The first

component is the yield on a security that pays a certain cash flow (1 + µc)
τ . The underlying

security is a real perpetuity with a cash flow which grows at a deterministic consumption growth

rate µc. The second component is the yield on a security that pays off Cτ/C0 − (1 + µc)
τ ; it

captures pure consumption cash flow risk. Appendix B.4 shows that the log price-dividend ratios

on the consumption strips are approximately affine in the state, and details how to compute the

yield on its two components. In our model, consumption strip yields are mostly comprised of a

compensation for variation in real rates (labeled “real bond yield -µc” in Figure A.5), not con-

sumption cash flow risk (labeled “yccr”). Other than at short horizons, the consumption cash

flow risk security has a yield that is approximately zero.

Predictability Properties Our analysis so far has focused on unconditional moments of the

total wealth return. The conditional moments of total wealth returns are also very different from

those of equity returns. The familiar Campbell and Shiller (1988) decomposition for the wealth-

consumption ratio shows that the wealth-consumption ratio fluctuates either because it predicts
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future consumption growth rates (∆cHt ) or because it predicts future total wealth returns (rHt ):

V [wct] = Cov
[
wct,∆cHt

]
+ Cov

[
wct,−rHt

]
= V

[
∆cHt

]
+ V

[
rHt

]
− 2Cov

[
rHt ,∆cHt

]
.

The second equality suggests an alternative decomposition into the variance of expected future

consumption growth, expected future returns, and their covariance. Finally, it is straightforward

to break up Cov
[
wct, r

H
t

]
into a piece that measures the predictability of future excess returns,

and a piece that measures the covariance of wct with future risk-free rates. Our no-arbitrage

methodology delivers analytical expressions for all variance and covariance terms (See Appendix

B).

We draw three main empirical conclusions. First, the mild variability of the wc ratio implies

only mild total wealth return predictability. This is in contrast with the high variability (and

predictability) of pdm. Second, 104.9% of the variability in wc is due to covariation with future

total wealth returns while the remaining -4.9% is due to covariation with future consumption

growth. Hence, the wealth-consumption ratio predicts future returns (discount rates), not future

consumption growth rates (cash flows). Using the second variance decomposition, the variability of

future returns is 111.5%, the variability of future consumption growth is 1.7% and their covariance

is -13.2% of the total variance of wc. This variance decomposition is similar to the one for equity.

Third, 74% of the 104.9% covariance with returns is due to covariance with future risk-free rates,

and the remaining 30.9% is due to covariance with future excess returns. The wealth-consumption

ratio therefore mostly predicts future variation in interest rates, not in risk premia. The exact

opposite holds for equity: the bulk of the predictability of the pdm ratio for future stock returns is

predictability of excess returns (51% out of 66.5%). In sum, the conditional asset pricing moments

also reveal interesting differences between equity and total wealth. Again, they point to the link

between the consumption claim return and interest rates.

4.3 Cost of Consumption Fluctuations and Wealth Effects

Figure 5 shows the cost of consumption fluctuations (̟) in our benchmark model. It breaks down

this cost into the ratio of the wealth-consumption ratios of the trend claim to that of the risky

consumption claim and the ratio of trend consumption to consumption (see equation 13). The

average cost of consumption fluctuations is slightly negative, consistent with the slightly lower

consumption risk premium arising from the hedging properties of consumption discussed above.

More interesting than the mean is the substantial amount of variation in the marginal cost.

At the end of the sample, the cost of consumption fluctuations skyrockets. This happens because

consumption is far below trend and because the ultra-low interest rates result in a much higher

trend wc ratio than risky wc ratio (recall the former’s greater interest rate sensitivity). In other
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words, total wealth falls far below trend during the Great Recession. Thus, relative to trend, our

model implies a large wealth destruction during the Great Recession.

Figure 5: Cost of Consumption Fluctuations

The figure plots the marginal cost of consumption fluctuations ̟t =
W tr

t

Wt
− 1 =

WCtr
t

WCt

Ctr
t

Ct
− 1 against the left axis (solid line). It also

plots the two ratio terms
WCtr

t

WCt
(dotted line) and

Ctr
t

Ct
(dashed line) that constitute ̟t.
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The average propensity to consume out of total wealth is 1.2 cents for every dollar of wealth

(= 1/83). The marginal propensity to consume out of (the last dollar increase in) total wealth is

0.75 cents. Our estimates for the marginal propensity are at the low end of the range of numbers

in the literature – see (Poterba 2000).15 In contrast, if the consumption claim was priced like

equity, the average propensity to consume would be much higher: 3.9 cents (1/26) out of every

dollar. Such a number is in the ballpark of the 5 cent estimate that is suggested by Modigliani

(1971) and a large literature that follows it.

There is considerable variation in the marginal propensity to consume. It peaks at 1.40

cents per dollar in 1981.IV, when real interest rates peak, and it bottoms out at 0.57 cents in

2010.IV, when real interest rates bottom out. The 50% decline in the propensity to consume

occurs despite the massive wealth creation over the 1981 to 2010 period. The logic of the budget

constraint imposes that the propensity to consume must drop when expected total wealth returns

drop. The latter are highly correlated with real interest rates which fall substantially over this

period. Our estimated decline is consistent with Ludvigson and Steindel (1999), who report a

large drop in the marginal propensity to consume out of stock market wealth after 1986.

Time-variation in the wealth-consumption ratio implies that the wealth effect decreases during

15In part this is because we consider total wealth, the infinite present discounted value of all future labor and
dividend income. If we were to limit ourselves to a 35-year “career” for labor income, the marginal propensity to
consume would be three times higher at 2.3 cents per last dollar of career human wealth.
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periods of abnormal total wealth creation, while it increases during periods of abnormal total

wealth destruction. Previously, Poterba (2000) and others had speculated that consumers may

respond more strongly to wealth destruction than creation. Moreover, macro-economists have long

been puzzled by the dramatic destruction of capital in 1973 and 1974, inferred from the stock

market’s steep decline (e.g., Hall (2001)). Our findings suggest these events in the stock market

only had a minor impact on total U.S. wealth, and are consistent with Hobijn and Jovanovic

(2001)’s account of this episode.

4.4 Human Wealth Returns

Our estimates indicate that the bulk of total wealth is human wealth. The human wealth share

fluctuates between 86 and 99%, with an average of 92% (see last row of Table 2). Interestingly,

Jorgenson and Fraumeni (1989) calculates a similar 90% human wealth share. The average price-

dividend ratios on human wealth is slightly above the one on total wealth (93 versus 83 in annual

levels). The risk premium on human wealth is very similar to the one for total wealth (2.31 versus

2.38% per year). The price-dividend ratios and risk premia on human wealth and total wealth

have a 99.87% (99.95%) correlation.

Existing approaches to measuring total wealth make ad hoc assumptions about expected

human wealth returns. The model of Campbell (1996) assumes that expected human wealth

returns are equal to expected returns on financial assets. This is a natural benchmark when

financial wealth is a claim to a constant fraction of aggregate consumption. Shiller (1995) models

a constant discount rate on human wealth. Jagannathan and Wang (1996) assume that expected

returns on human wealth equal the expected labor income growth rate; the resulting price-dividend

ratio on human wealth is constant. The construction of cay in Lettau and Ludvigson (2001a)

makes that same assumption. Our approach avoids having to make arbitrary assumptions on

unobserved human wealth returns.16

Our estimation results indicate that expected excess human wealth returns have an annual

volatility of 2.9%. This is substantially higher than the volatility of expected labor income growth

(0.6%), but lower than that of the expected excess returns on equity (3.3%). Lastly, average (real)

human wealth returns (3.8%) are much lower than (real) equity returns (7.9%), but higher than

(real) labor income growth (2.3%) and the (real) short rate (1.5%).

How much human wealth do our estimates imply? In real 2005 dollars, total per capita wealth

increased from $0.87 million to $3.49 million between 1952 and 2011. The thick solid line in the

left panel of Figure 6 shows the time series. Of this, $3.2 million was human wealth in 2011

(dashed line in left panel), while the remainder is non-human wealth (solid line in right panel).

16These models can be thought of as special case of ours, imposing additional restrictions on the market prices
of risk Λ0 and Λ1. Our work rejects these additional assumptions.
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To judge whether this is a reasonable number, we compute the fraction of human wealth that

accrues in the first 35 years.17 In 2011, this implies a human wealth value of $1.04 milllion per

capita (dashed line in the right panel). This amount is the price of a 35-year annuity with a cash

flow of $38,268 which grows at the average labor income growth rate of 2.31% and is discounted at

the average real rate of return on human wealth of 3.81%. This model-implied annual income of

$38,268 compares to U.S. per capital labor income of $24,337 at the end of 2011. Another reference

point for the “first 35 years” human wealth number is per capita residential home equity from

the Flow of Funds. In 2011, home equity is a factor 51 smaller than human wealth. Unlike the

massive destruction of home equity, human wealth has grown substantially over the last five years

and is the main driver behind the overall wealth accumulation.18

Figure 6: Real Per Capita Wealth Estimates

The left panel of the figure plots total wealth and human wealth as estimated from the data. The right panel plots their difference,
which we label non-human wealth. It also plots the present discounted value of the first 35 years of labor income.
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Finally, we compare non-human wealth, the difference between our estimates for total and

for human wealth, with the Flow of Funds series for household net worth. The latter is the

sum of equity, bonds, housing wealth, durable wealth, private business wealth, and pension and

life insurance wealth minus mortgage and credit card debt. Our non-human wealth series is on

average 3.3 times the Flow of Funds series. This ratio varies over time: it is 10.1 at the beginning

and 1.7 at the end of the sample, and it reaches a low of 0.46 in 1975. We chose not to use the

Flow of Funds net worth data in our estimation because many of the wealth categories are hard

17This fraction is the price of the first 140 quarterly labor income strips divided by the price of all labor income
strips. The labor income strip prices are computed just like the consumption strip prices. On average, 35% of
human wealth pertains to the first 35 years.

18The destruction of housing wealth has been linked to a reversal of a financial market liberalization in credit
markets by Favilukis, Ludvigson, and Van Nieuwerburgh (2011). This increased risk premia, more than offsetting
the large fall in real rates during the Great Recession.
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to measure accurately or are valued at book value (e.g., private business wealth). Arguably, only

the equity component for publicly traded companies is measured precisely, and this may explain

why the dynamics of the household net worth series are to a large extent driven by variation in

stock prices.19 It is reassuring that our non-human wealth measure exceeds the net worth series.

After all, our series measures the present discounted value of all future non-labor income. This

includes the value of growth options that will accrue to firms that have not been born yet, the

same way human wealth includes labor income from future generations.

Total stock market wealth of $32,900 per capita in 2011.III represents 0.94% (1.03%) of our

per capita total (human) wealth estimate of $3.5 ($3.2) million. To gauge the plausibility of these

numbers, consider that stock market wealth is 18.6% of total household net worth according to

the Flow of Funds. With a standard capital income share of 30% and no risk adjustment, this

would translate in a 5.3% share of equity in total wealth. Our numbers are lower because we find

that human wealth is substantially less risky than stock market wealth, requiring labor income

cash flows to be discounted substantially less than equity dividends.

5 Non-Traded Consumption Risk

So far we have assumed that all aggregate shocks are spanned by stock and bond prices. This

assumption is satisfied in all structural dynamic asset pricing models that we are aware of. Even

in incomplete markets models, asset prices will reflect changes in the income or wealth distribution

(e.g., Constantinides and Duffie (1996)).

In the absence of spanning, it is impossible to conclusively bound the wealth-consumption

ratio, except by writing down a fully specified general equilibrium model. However, it is possible to

put reasonable bounds on the non-traded consumption risk premium in our model. In particular,

we relax our assumption that traded assets span all aggregate shocks by freeing up the 9th element

of Λ0, the risk price of the non-traded consumption growth shock that is orthogonal to the eight

traded asset shocks. Table 4 reports the consumption risk premium (Column 2), the average

wealth-consumption ratio (Column 3), the maximum conditional Sharpe ratio (Column 4) and

the Sharpe ratio on a one-period ahead consumption strip (Column 5) for different values of

the price of non-traded consumption risk, governed by the 9th-element of Λ0 (Column 1). This

parameter does not affect the prices of any traded assets, so this exercise does not change any of

the model’s implications for observables.20

19Lettau and Ludvigson (2001a, 2001b) also use Flow of Funds data to measure household financial wealth.
Lettau and Ludvigson (2001a)’s measure −cay falls during the stock market crashes of 1974 and 2000-02. It has
a correlation of only 0.24 with our wealth-consumption measure.

20Freeing up Λ0(9) also affects the risk premium and price-dividend ratio on human wealth, in quantitatively
similar ways. We also experimented with freeing up the price of risk on the shock to labor income growth that is
orthogonal to all previous shocks, including the aggregate consumption growth shock. Increasing this Λ0(10) has
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The first line reports our benchmark case in which the non-traded consumption risk is not

priced. The consumption risk premium is 2.38% per annum, the maximum Sharpe ratio is 0.6 and

the conditional Sharpe ratio on the one-period ahead consumption strip is .06. Increasing Λ0(9)

increases the consumption risk premium, lowers the wealth-consumption ratio, and increases the

Sharpe ratio on the consumption strip. How far should we increase Λ0(9)? A first answer is to

bound the maximal Sharpe ratio (stdt[mt+1]). Cochrane and Saa-Requejo (2000) and Alvarez

and Jermann (2004) choose a “good deal” bound of one, which they argue is high because it is

twice the 0.5 Sharpe ratio on equities in the data.21 Since we work with quarterly log returns,

the Sharpe ratio on equities is only 0.19, and that same good deal bound of one is more than

twice as conservative. This bound is reached for Λ0(9) around 0.8, and implies a consumption

risk premium of 3.91% per annum and an average wealth-consumption ratio of 36. Even then,

the consumption risk premium is still 2.5% short of the equity premium, so that our conclusion

that total wealth has different risk-return characteristics than equity remains valid. In order to

match the equity premium by increasing the price of non-traded consumption risk, we would need

an increase in the maximum Sharpe ratio to twice the good-deal bound or ten times the Sharpe

ratio on equity. This does not seem reasonable for two reasons. First, such non-traded risk would

certainly differ across households and would beg the question of why no market exists to share this

risk. Second, a high risk premium on total consumption would imply a low wealth-consumption

ratio, which in turn would suggest an extremely high marginal cost of business cycles.

A second answer would be to evaluate the Sharpe ratios on the consumption strip return in

Column 5. When we set Λ0(9) to 0.1, this Sharpe ratio doubles compared to Λ0(9) = 0. I.e.,

the implied price of non-traded consumption cash flow risk is much higher than that of traded

consumption cash flow risk on a per unit of risk basis. Allowing the consumption strip to have the

same Sharpe ratio as equity (0.19), would imply a value for Λ0(9) around 0.10. At this value the

consumption risk premium is only about 0.2% per year higher than in our benchmark case. At

Λ0(9) = 0.8, the conditional Sharpe ratio on the consumption strip is 0.8, four times higher than

the Sharpe ratio on equity and 13 times higher than the Sharpe ratio on the traded consumption

strip.

Finally, Appendix C shows that our methodology for pricing aggregate consumption and labor

income claims remains valid if the data are generated from an economy inhabited by heterogeneous

agents who face idiosyncratic labor income risk which they cannot perfectly insure away and who

may face binding borrowing or asset market participation constraints.

no effect on the consumption risk premium and the wealth-consumption ratio. It only affects the risk premium
on human wealth. Quantitatively, the effects are similar to those presented in Table 4. The same is true when we
simultaneously increase Λ0(9) and Λ0(10).

21In related work, Bernardo and Ledoit (2000) bound the gain-loss ratio which summarizes the attractiveness
of a zero-price portfolio. It is equivalent to a restriction on admissible pricing kernels, precluding the existence of
arbitrage and approximate arbitrage opportunities.
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Table 4: Non-traded Consumption Risk

The first column reports the market price of risk Λ0(9) that is associated with the innovation to consumption growth that is orthogonal
to all innovations to the preceding stock and bond innovations. The second column reports the consumption risk premium. The third
column reports the average wealth/consumption ratio. The fourth column is the maximum Sharpe ratio computed as

√

Λ′

0Λ0. The

last column shows the conditional Sharpe ratio on a one-period ahead consumption strip:
(

e′cΣ
1/2Λ0

)

/
√

e′cΣ
1/2Σ1/2′ec.

Λ0(9) cons. risk premium E[WC] stdt(mt+1) SR on strips

0 2.38% 85 0.58 0.06

0.05 2.48% 78 0.58 0.10

0.10 2.57% 73 0.59 0.15

0.50 3.33% 46 0.77 0.52

0.80 3.91% 36 0.99 0.80

1.00 4.30% 31 1.16 0.98

1.50 5.29% 24 1.61 1.45

2.00 6.30% 19 2.08 1.91

3.00 8.35% 14 3.06 2.84

6 Robustness

6.1 Smaller Models

The results of our estimation exercise are robust to different specifications of the law of motion

for the state z. Appendix D considers five alternative models that have fewer state variables than

our benchmark exercise and lists the goodness of fit for each of these. The variations are selected

to give insight into what drives our main result. For brevity, we discuss only the main findings

here.

The simplest model (labeled Model 2 in the appendix) has a simplified term structure and

deliberately ignores any equity moments. Despite its simplicity, it generates a reasonably good

fit to the nominal bond yields, and even to the nominal bond risk premium. It implies a lower

consumption risk premium of 2.11% per year (compared to 2.38% in the benchmark) and thus a

higher mean wealth-consumption ratio of 113 (versus 83). The wealth-consumption ratios have

a correlation of 99% because the term structure fit of the simple model is comparable to that of

the benchmark model. The marginal cost of consumption fluctuations, which averages 36.2%, is

substantially higher than in the benchmark model (average of -2.4%), and the two have a time

series correlation of only 63%. The reason for the higher cost of consumption fluctuations is that

there is more consumption cash flow risk in this simple model. Instead of hedging it as in the

benchmark model, consumption cash flow risk adds interest rate exposure which increases the

consumption risk premium, ceteris paribus. The lower bond risk premium more than offsets the

higher consumption risk so that the overall consumption risk premium ends up lower than in the

benchmark. This model illustrates that the inverse relationship between real rates and the wealth
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consumption ratio as well as the low consumption risk premium and high wealth-consumption

ratio are generic features that arise even in a very simple model. But, because it does not

price stock-based moments (by construction), the question of whether the low consumption risk

premium is the result of ignoring important sources of risk when pricing the consumption claim.

To dispel this possibility, we consider both bond- and stock-based moments in our benchmark

model.

We consider another simple model (labeled Model 3) that prices aggregate equity moments

well but that has only a one-factor term structure. This model yields in a much worse fit for bond

yields, but a similar mean consumption risk premium of 2.24% and mean wealth-consumption

ratio of 96. The volatility of the WC ratio is lower at 14% and the time series correlation with the

WC ratio of the benchmark is 93.0%, the lowest among all alternative models we consider. The

consumption risk premium only has a correlation of 67% with that in the benchmark (68% with

Model 2), again the lowest among the alternatives. Clearly consumption risk premium dynamics

are substantially affected by giving up on a reasonably fitting term structure model.

Combining the two simple models results in a better fit (Model 4) but otherwise similar

results. When we add the CP factor to the state and the estimation (Model 5), results change

meaningfully. In particular, the hedging benefits of consumption cash flows can be traced back to

adding the CP factor. The addition of CP results in a large drop of the consumption risk premium

from 53% in Model 4 to -2% in Model 5, on average. The addition of CP also forces the model

to match the one-year bond risk premium more closely, at the expense of the long-term bond

risk premia and yields. The 20-year nominal bond yield in Model 5, for example, is 27bp higher

than that in Model 4 without CP, translating in a lower wealth-consumption ratio. The final

model is one without CP but with the factor mimicking portfolios. That model looks similar to

Model 4, except that there is more consumption cash flow risk priced and the cost of consumption

fluctuations is higher.

In sum, the wealth-consumption dynamics are very similar across models and are largely driven

by the similar dynamics of real yields. Insisting on matching the one-year bond risk premium

(the CP factor), leads to consumption that carries a much lower price of risk and results in higher

long-term mean yield estimates. These two effects result in a lower mean cost of consumption

fluctuations, and have offsetting effects on the mean wealth-consumption ratio. Without the CP

factor, our results would indicate a consumption risk premium that were lower still and a mean

wealth-consumption ratio that was higher still, further reinforcing our conclusions.

6.2 Simpler VAR Dynamics

A second set of robustness exercises explores changes to our benchmark results when we simplify

the VAR dynamics. Appendix D explores four different sets of additional zero restrictions on
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the matrix Ψ. In particular, we zero out either all non-significant elements of Ψ, only the non-

significant elements in the stock market block, only those in the fmp block, or only those in the

consumption and labor income block. The dynamics of the resulting wealth-consumption ratios

and consumption risk premia are extremely highly correlated (above 99%) across our benchmark

model and these four variations, in large part because expected consumption growth dynamics

and real yield dynamics are so highly correlated. The cost of consumption fluctuations also have

correlations across models above 90% with the benchmark model. The main difference is in the

average wealth-consumption ratio and risk premia across models rather than in the dynamics.

In the last model with the restricted consumption and labor growth dynamics, we have the

lowest mean wealth-consumption ratio among all models, at 62, and the highest consumption risk

premium at 2.94% per year. The latter remains well below the observed equity risk premium of

6.41% so that our main conclusions are unaffected.

6.3 Annual Estimation

We repeat our analysis at annual frequency. The annual exercise is useful because annual VAR

dynamics may be able to capture lower-frequency correlations between consumption growth and

traded asset prices than the quarterly results.22

The model structure and estimation procedure are identical, except that the short rate is

now the one-year constant maturity bond yield. We find that annual consumption growth has a

significantly positive covariance with stock returns (t-stat is 3.15), which contributes to a better

spanning of annual consumption growth risk by the traded assets than in the quarterly model.

Indeed, our state variables in zt explain 50% of variation in annual ∆ct+1, compared to 29% in

our benchmark quarterly exercise.

The main results from the annual estimation, which are listed in the last column of Table 2

are similar to those of the quarterly model. The consumption risk premium is nearly identical

at 2.34% (versus 2.38%). The mean wealth-consumption ratio is 103 compared to an annualized

number of 83 in the benchmark results. The dynamics of the wealth-consumption ratio still mirror

those of long-term real bond yields. Our main message that the consumption claim is much less

risky than equity remains unaffected. The human wealth share is 92%, just as in the quarterly

benchmark.

The main difference with the quarterly results is a much higher marginal cost of consumption

fluctuations. The latter is 34% on average in the annual model compared to the quarterly model

where we found a small negative cost. The high cost arises because the risk premium of the

trend consumption claim is substantially lower than that of the risky claim (2.05% versus 2.34%),

22While it would be interesting to go back to the Great Depression, the necessary bond yield data are not
available prior to 1953, so that the annual sample spans the same 1952-2011 period as our quarterly sample.
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leading to a much higher mean trend wealth-consumption ratio (see Table 3). The difference with

the quarterly results can be traced back to differences in annual versus quarterly consumption

dynamics. In annual data, consumption innovations have strong negative correlation with the

level (second orthogonal) shock and a less negative correlation with the slope (fourth orthogonal)

shock. Both exposures increase the consumption risk premium above that in the quarterly model.

Basically, consumption cash flow shocks no longer hedge interest rate risk but rather contribute

to the interest rate risk that is already present through the discount rate (the same risk the

consumption trend is also exposed to). Despite the mean differences, the dynamics of the cost

of consumption fluctuations are similar between annual and quarterly models. The annual series

also shows a large destruction of wealth relative to trend during the Great Recession. These

dynamics results from similar interest rate behavior and from similar deviations of consumption

from its trend.

7 Structural Models

We end the paper with a short comparison of our results to those implied by leading asset pricing

models.23 We focus on the long-run risk (LRR) model of Bansal and Yaron (2004) and the

external habit (EH) model of Campbell and Cochrane (1999), each of which has received an

enormous amount of attention in the modern asset pricing literature. Just like in the affine model

we estimated, the log wealth-consumption ratio is linear in the state variables in each of these two

models. We do not attempt to formally test the two models, only to point out their implications

for the wealth-consumption ratio.24 Interestingly, they have quite different implications for the

wealth-consumption ratio. We refer the reader to the NBER working paper version of our work

for a detailed derivation of the wealth-consumption ratios in these two models and a description

of our simulations. We present our main findings in Columns 1 and 2 of Table 2.

The LRR model produces a wc ratio that matches many features of the data. It is high on

average and not very volatile. For the standard calibration of the LRR model, the mean annual

wealth-consumption ratio is 87, very close to our estimate in the data (eA
c,LRR
0 −log(4)). The high

wc ratio corresponds to a low consumption risk premium of 1.6% per year. The volatility of the

wc ratio is low at 2.35% and so is the volatility of the change in the wealth-consumption ratio.

Both are somewhat lower than our estimates. The persistence of the model’s state variables

induces substantial persistence in the wc ratio: its auto-correlation coefficient is 0.91 (0.70) at the

1-quarter (4-quarter) horizon. The log total wealth return has a volatility of 1.64% per quarter

23A comprehensive discussion appears in the NBER working paper version of this paper.
24The LRR and EH models are not nested by our model. Their state displays heteroscedasticity, which trans-

lates into market prices of risk Λt that are affine in the square root of the state. Our model has conditionally
homoscedastic state dynamics and linear market prices of risk, but more shocks and therefore richer market price
of risk dynamics.
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in the LRR model. Low autocorrelation in ∆wc and ∆c generates low autocorrelation in total

wealth returns. Our main conclusion is that, just as in the data, total wealth is much less risky

than equity in the LRR model.

The benchmark EH model has almost the opposite implications for the wealth-consumption

ratio. First, the wc ratio is volatile in the EH model: it has a standard deviation of 29.3%, which

is 27 (11) percentage points higher than in the LRR model (in the data). The wealth-consumption

ratio inherits a high volatility and persistence from the surplus consumption ratio. The change in

the wc ratio has a volatility of 9.46%, much higher than that of consumption growth. The high

volatility of ∆wc ratio translates into a highly volatile total wealth return (10.26% per quarter).

As in the LRR model, the total wealth return is strongly positively correlated with consumption

growth. In the EH model this happens because most of the action in the total wealth return

comes from changes in the wc ratio. The latter are highly positively correlated with consumption

growth, in contrast with the LRR model. Most importantly, the consumption risk premium is

high because total wealth is risky; the quarterly consumption risk premium is 267 bp, which

translates into 10.7% per year. The high consumption risk premium implies a low annual mean

wealth-consumption ratio of 12. In the EH model, the properties of total wealth returns are

similar to those of equity returns. The equity risk premium is only 1.2 times higher than the

consumption risk premium and the volatility of the pdm ratio is only 1.2 times higher than the

volatility of the wc ratio. For comparison, in the LRR model, these ratios are 3.5 and 6 and

in the data they are 2.7 and 1.5, respectively. The EH model essentially equates the riskiness

of total wealth and equity, and as a result, it overstates the representative agent’s aversion to

consumption risk.

In contrast to the LRR model, the EH model asserts that all variability in returns arises

from variability in risk premia. Since there is no consumption growth predictability, 100% of the

variability of wc is variability of the discount rate component. The same is true for stocks. A key

strength of the EH model is its ability to generate a lot of variability in expected equity returns, all

of which comes from the discount rate channel. The flip side is that the same mechanism generates

too much variability in expected excess total wealth returns. Finally, the EH model implies that

almost all the covariance with future returns comes from covariance with future excess returns,

not future risk-free rates. In the total wealth data, there is evidence for substantial risk-free rate

predictability.

In sum, the two leading asset pricing models have very different implications for the wealth

consumption ratio, despite the fact that they both match unconditional equity return moments.

In the LRR model, as in the data, the consumption claim looks more like a bond, whereas in the

EH model it looks more like a stock. The properties of the wealth-consumption ratio could serve

as useful, indeed primitive, asset pricing moments that structural asset pricing models should aim

to match.
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8 Conclusion

We develop a new methodology for estimating the wealth-consumption ratio in the data, based on

no-arbitrage conditions that are familiar from the term structure literature. Our method combines

restrictions on stocks and bonds in a novel way, because we are pricing a claim that a priori has

bond-like and stock-like features. We find that a claim to aggregate consumption is much less

risky than a claim to aggregate dividends: the consumption risk premium is only one-third of the

equity risk premium. This suggests that the stand-in households’ portfolio is much less risky than

what one would conclude from studying the equity component of that portfolio. The consumption

claim looks much more like a real bond than like a stock.
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Online Appendix for “The Wealth-Consumption Ratio”
NOT FOR PUBLICATION

A Appendix: Data

Our data are quarterly and span the period 1952.I-2011.IV. They are compiled from the most recent data available.

In robustness analysis, we also consider data sampled at annual frequency for 1952-2011.

A.1 Macroeconomic Series

Labor income Labor income is computed from NIPA Table 2.1 as wage and salary disbursements (line 3) +

employer contributions for employee pension and insurance funds (line 7) + government social benefits to persons

(line 17) - contributions for government social insurance (line 24) + employer contributions for government social

insurance (line 8) - labor taxes. As in Lettau and Ludvigson (2001a), labor taxes are defined by imputing a share

of personal current taxes (line 25) to labor income, with the share calculated as the ratio of wage and salary

disbursements to the sum of wage and salary disbursements, proprietors’ income (line 9), and rental income of

persons with capital consumption adjustment (line 12), personal interest income (line 14) and personal dividend

income (line 15). The series is seasonally-adjusted at annual rates (SAAR), and we divide it by 4. Because net

worth of non-corporate business and owners’ equity in farm business is part of financial wealth, it cannot also be

part of human wealth. Consequently, labor income excludes proprietors’ income.

Consumption Non-housing consumption consists of non-housing, non-durable consumption and non-housing

durable consumption. Consumption data are taken from Table 2.3.5. from the Bureau of Economic Analysis’

National Income and Product Accounts (BEA, NIPA). Non-housing, non-durable consumption is measured as the

sum of non-durable goods (line 6) + services (line 13) - housing services (line14).

Non-housing durable consumption is unobserved and must be constructed. From the BEA, we observe durable

expenditures. The value of the durables (Flow of Funds, see below) at the end of two consecutive quarters and

the durable expenditures allows us to measure the implicit depreciation rate that entered in the Flow of Fund’s

calculation. We average that depreciation rate over the sample; it is δ=5.19% per quarter. We apply that

depreciation rate to the value of the durable stock at the beginning of the current period (= measured as the end

of the previous quarter) to get a time-series of this period’s durable consumption.

We use housing services consumption (BEA, NIPA, Table 2.3.5, line 14) as the dividend stream from housing

wealth. The BEA measures rent for renters and imputes a rent for owners. These series are SAAR, so we divide

them by 4 to get quarterly values.

Total consumption is the sum of non-housing non-durable, non-housing durable, and housing consumption.

Population and deflation Throughout, we use the disposable personal income deflator from the BEA

(Table 2.1, implied by lines 36 and 37) as well as the BEA’s population series (line 38).

A.2 Financial Series

Stock market return We use value-weighted quarterly returns (NYSE, AMEX, and NASDAQ) from CRSP

as our measure of the stock market return. In constructing the dividend-price ratio, we use the repurchase-yield
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adjustment advocated by Boudoukh, Michaely, Richardson, and Roberts (2007). We add the dividends over the

current and past three quarters in order to avoid seasonality in dividend data.

Additional cross-sectional stock returns In the formation of the factor mimicking portfolios, we use

the 25 size and value equity portfolio returns from Kenneth French. We form log real quarterly returns.

Bond yields We use the nominal yield on a 3-month Treasury bill from Fama (CRSP file) as our measure of

the risk-free rate. We also use the yield spread between a 5-year Treasury note and a 3-month Treasury bill as a

return predictor. The 5-year yield is obtained from the Fama-Bliss data (CRSP file). The same Fama-Bliss yields

of maturities 1-, 2-, 3-, 4-, and 5-years are used to form annual forward rates and to form 1-year excess returns in

the Cochrane-Piazzesi excess bond return regression.

In addition to the -month and 5-year bond yields which enter through the state variables, we use nominal bond

yields at 1-, 3-, 10-, and 20-year maturities as additional moments to match. For the 1- and 3-year maturities, we

use Fama-Bliss data. For the 10- and 20-year maturities, we use yield data from the Federal Reserve Bank of Saint

Louis (FRED II). For the latter, we construct the spread with the 5-year yield from FRED. The 10- and 20-year

yields we use in estimation are the sum of the 5-year Fama-Bliss yield and the 10-5 and 20-5 yield spread from

FRED. This is to adjust for any level differences in the 5-year yield between the two data sources. The 20-year

yield data are missing from 1987.I until 1993.III. The estimation can handle these missing observations because it

minimizes the sum of squared differences between model-implied and observed yields, where the sum is only taken

over available dates.

In order to plot the average yield curve in Figures A.8 and A.11, and only for this purpose, we also use the 7-5

year and the 30-5 year spread from FRED II. We add them to the 5-year yield from Fama-Bliss to form the 7-year

and 30-year yield series. Since the 7-year yield data are missing from 1953.4-1969.6, we use spline interpolation

(using the 1-, 2-, 5-, 10-, and 20-year yields) to fill in the missing data. The 30-year bond yield data are missing

from 1953.4-1977.1 and from 2002.3-2006.1. We use the 20-year yield in those periods as a proxy. In the period

where the 20-year yield is absent, we use the 30-year yield data in that period as a proxy. The resulting average

5-year yield is 5.83% per annum (straight from Fama-Bliss), the average 7-year yield is 6.00%, 10-year yield is

6.15%, 20-year is 6.36%, and the average 30-year yield is 6.32%.

Cochrane and Piazzesi’s (2005) factor Cochrane and Piazzesi (2005) show that a linear combination

of forward rates is a powerful predictor of one-year excess bond returns. Following their procedure, we construct

1- through 5-year forward rates from our quarterly nominal yield data, as well as one-year excess returns on 2-

through 5-year nominal bonds. We regress the average of the 2- through 5-year excess returns on a constant, the

one-year yield, and the 2- through 5-year forward rates. The regression coefficients display a tent-shaped function,

very similar to the one reported in Cochrane and Piazzesi (2005). The state variable CPt is the fitted value of this

regression.

Factor mimicking portfolios We regress real per capita consumption growth on a constant and the

returns on the 25 size and value portfolios (Fama and French 1992). We then form the fmp return series as the

product of the 25 estimated loadings and the 25 portfolio return time series. In the estimation, we impose that the

fmp weights sum to one and that none of the weights are greater than one in absolute value. We follow the same

procedure for the labor income growth fmp. The consumption (labor income) growth fmp has a 35.84% (36.01%)

correlation with consumption (labor income) growth. These two fmp returns have a mutual correlation of 71.35%.

The fmp returns are lower on average than the stock return (2.34% and 3.94% versus 6.47% per annum) and are

less volatile (7.07% and 14.53% versus 17.20% volatility per annum).
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B Appendix: No-Arbitrage Model

B.1 Proof of Proposition 1

Proof. To find Ac
0 and Ac

1, we need to solve the Euler equation for a claim to aggregate consumption. This Euler

equation can either be thought of as the Euler equation that uses the nominal log SDF m$
t+1 to price the nominal

total wealth return πt+1 + rct+1 or the real log SDF m$
t+1 + πt+1 to price the real return rct+1:

1 = Et[exp{m$
t+1 + πt+1 + rct+1}]

= Et[exp{−y$t (1)−
1

2
Λ′

tΛt − Λ′

tεt+1 + π0 + e′πzt+1 + µc + e′czt+1 +Ac
0 +Ac′

1 zt+1 + κc
0 − κc

1 (A
c
0 +Ac′

1 zt)}]

= exp{−y$0(1) + π0 − e′ynzt −
1

2
Λ′

tΛt + e′πΨzt + κc
0 + (1− κc

1)A
c
0 + µc − κc

1A
c′
1 zt + (e′c +Ac′

1 )Ψzt} ×

Et

[
exp{−Λ′

tεt+1 + (ec + eπ +Ac
1)

′Σ
1
2 εt+1}

]

First, note that because of log-normality of εt+1, the last line equals:

exp

{
1

2

(
Λ′

tΛt + (ec + eπ +Ac
1)

′Σ(ec + eπ +Ac
1)

′ − 2(ec + eπ +Ac
1)

′Σ
1
2Λt

)}

Substituting in for the expectation, as well as for the affine expression for Λt, we get

1 = exp{−y$0(1) + π0 − e′ynzt + κc
0 + (1 − κc

1)A
c
0 + µc − κc

1A
c′
1 zt + (ec + eπ +Ac

1)
′Ψzt} ×

exp{1
2
(ec + eπ +Ac

1)
′Σ(ec + eπ +Ac

1)− (ec + eπ +Ac
1)

′Σ
1
2 (Λ0 + Λ1zt)}

Taking logs on both sides, an collecting the constant terms and the terms in z, we obtain the following:

0 = {−y$0(1) + π0 + κc
0 + (1− κc

1)A
c
0 + µc +

1

2
(ec + eπ +Ac

1)
′Σ(ec + eπ +Ac

1)− (ec + eπ +Ac
1)

′Σ
1
2Λ0}+

{−e′yn − κc
1A

c′
1 + (ec + eπ +Ac

1)
′Ψ− (ec + eπ +Ac

1)
′Σ

1
2Λ1}zt

This equality needs to hold for all zt. This is a system of N + 1 equations in N + 1 unknowns:

0 = −y$0(1) + π0 + κc
0 + (1− κc

1)A
c
0 + µc +

1

2
(ec + eπ +Ac

1)
′Σ(ec + eπ +Ac

1)− (ec + eπ +Ac
1)

′Σ
1
2Λ0,(A.1)

0 = (ec + eπ +Ac
1)

′Ψ− κc
1A

c′
1 − e′yn − (ec + eπ +Ac

1)
′Σ

1
2Λ1. (A.2)

The real short yield yt(1), or risk-free rate, satisfies Et[exp{mt+1+yt(1)}] = 1. Solving out this Euler equation,

we get:

yt(1) = y$t (1)− Et[πt+1]−
1

2
e′πΣeπ + e′πΣ

1
2Λt

= y0(1) +
[
e′yn − e′πΨ+ e′πΣ

1
2Λ1

]
zt (A.3)

y0(1) ≡ y$0(1)− π0 −
1

2
e′πΣeπ + e′πΣ

1
2Λ0 (A.4)

The real short yield is the nominal short yield minus expected inflation minus a Jensen adjustment minus the

inflation risk premium. Using the expression (A.4) for y0(1) in equation (A.1) delivers equation (7) in the main

3



text.

Proposition 2. The log price-dividend ratio on human wealth is a linear function of the (demeaned) state vector

zt

pdlt = Al
0 +Al

1zt

where the following recursions pin down Al
0 and Al

1:

0 = κl
0 + (1 − κl

1)A
l
0 + µl − y0(1) +

1

2
(e′∆l +Al′

1 )Σ(e∆l +Al
1)− (e′∆l +Al′

1 )Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
,

0 =
(
e∆l + eπ +Al

1

)′
Ψ− κl

1A
l′
1 − e′yn − (e∆l + eπ +Al

1)
′Σ

1
2Λ1.

The proof is identical to the proof of Proposition 1, and obtains by replacing µc by µl and the selector vector

ec by e∆l. The linearization constants κl
0 and κl

1 relate to Al
0 through the analog of equation (6).

The conditional risk premium on the labor income claim is affine in the state vector and given by:

Et

[
rl,et+1

]
= (e∆l +Al

1)
′Σ

1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (e∆l +Al

1)
′Σ

1
2Λ1zt.

We use µl to denote unconditional labor income growth and e∆l selects labor income growth in the VAR.

B.2 Nominal and Real Term Structure

Proposition 3. Nominal bond yields are affine in the state vector:

y$t (τ) = −A$(τ)

τ
− B$(τ)′

τ
zt,

where the coefficients A$(τ) and B$(τ) satisfy the following recursions

A$(τ + 1) = −y$0(1) +A$(τ) +
1

2

(
B$(τ)

)′

Σ
(
B$(τ)

)
−
(
B$(τ)

)′

Σ
1
2Λ0, (A.5)

(
B$(τ + 1)

)′

=
(
B$(τ)

)′

Ψ− e′yn −
(
B$(τ)

)′

Σ
1
2Λ1, (A.6)

initialized at A$(0) = 0 and B$(0) = 0.

Proof. We conjecture that the t+ 1-price of a τ -period bond is exponentially affine in the state

log(P $
t+1(τ)) = A$(τ) +

(
B$(τ)

)′

zt+1

and solve for the coefficients A$(τ + 1) and B$(τ + 1) in the process of verifying this conjecture using the Euler

equation:

P $
t (τ + 1) = Et[exp{m$

t+1 + log
(
P $
t+1(τ)

)
}]

= Et[exp{−y$t (1)−
1

2
Λ′

tΛt − Λ′

tεt+1 +A$(τ) +
(
B$(τ)

)′

zt+1}]

= exp{−y$0(1)− e′ynzt −
1

2
Λ′

tΛt +A$(τ) +
(
B$(τ)

)′

Ψzt} ×

Et

[
exp{−Λ′

tεt+1 +
(
B$(τ)

)′

Σ
1
2 εt+1}

]

4



We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P $
t (τ + 1) = exp{−y$0(1)− e′ynzt +A$(τ) +

(
B$(τ)

)′

Ψzt +
1

2

(
B$(τ)

)′

Σ
(
B$(τ)

)
−
(
B$(τ)

)′

Σ
1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(
P $
t (τ + 1)

)
= A$(τ + 1) +

(
B$(τ + 1)

)′

zt,

where A$(τ + 1) satisfies (A.5) and B$(τ + 1) satisfies (A.6). The relationship between log bond prices and bond

yields is given by − log
(
P $
t (τ)

)
/τ = y$t (τ)

Real bond yields, yt(τ), denoted without the $ superscript, are affine as well with coefficients that follow similar

recursions:

A(τ + 1) = −y0(1) +A(τ) +
1

2
(B(τ))′ Σ (B(τ)) − (B(τ))′ Σ

1
2

(
Λ0 − Σ

1
2
′eπ

)
, (A.7)

(B(τ + 1))
′

= (eπ +B(τ))
′
Ψ− e′yn − (eπ +B(τ))

′
Σ

1
2Λ1. (A.8)

For τ = 1, we recover the expression for the risk-free rate in (A.3)-(A.4).

B.3 Dividend Strips

We define the return on equity conform the literature as Rm
t+1 =

Pm
t+1+Dm

t+1

Pm
t

, where Pm
t is the end-of-period price

on the equity market. A log-linearization delivers:

rmt+1 = κm
0 +∆dmt+1 + κm

1 pdmt+1 − pdmt . (A.9)

The unconditional mean stock return is rm0 = κm
0 + (κm

1 − 1)Am
0 + µm, where Am

0 = E[pdmt ] is the unconditional

average log price-dividend ratio on equity and µm = E[∆dmt ] is the unconditional mean dividend growth rate. The

linearization constants κm
0 and κm

1 are different from the other wealth concepts because the timing of the return

is different:

κm
1 =

eA
m
0

eA
m
0 + 1

< 1 and κm
0 = log

(
eA

m
0 + 1

)
− eA

m
0

eA
m
0 + 1

Am
0 . (A.10)

Even though these constants arise from a linearization, we define log dividend growth so that the return equation

holds exactly, given the CRSP series for {rmt , pdmt }. Our state vector z contains the (demeaned) return on the

stock market, rmt+1 − rm0 , and the (demeaned) log price-dividend ratio pdm − Am
0 . The definition of log equity

returns allows us to back out dividend growth:

∆dmt+1 = µm +
[
(erm − κm

1 epd)
′Ψ+ e′pd

]
zt + (erm − κm

1 epd)
′ Σ

1
2 εt+1

µm = rm0 − kappam0 +Am
0 (1− κm

1 )

Proposition 4. Log price-dividend ratios on dividend strips are affine in the state vector:

pdt (τ) = Am(τ) +Bm′(τ)zt,

5



where the coefficients Am(τ) and Bm(τ) follow recursions

Am(τ + 1) = Am(τ) + µm − y0(1) +
1

2
(erm − κm

1 epdm +Bc(τ))′ Σ (erm − κm
1 epdm +Bm(τ))

− (erm − κm
1 epdm +Bm(τ))

′
Σ

1
2

(
Λ0 − Σ

1
2 eπ

)
, (A.11)

Bm(τ + 1)′ = (erm − κm
1 epdm + eπ +Bm(τ))

′
Ψ+ e′pdm − e′yn − (erm − κm

1 epdm + eπ +Bm(τ))
′
Σ

1
2Λ1,(A.12)

initialized at Am(0) = 0 and Bm(0) = 0.

Proof. We conjecture that the log t + 1-price of a τ -period strip, scaled by the dividend in period t + 1, is affine

in the state

pdt+1(τ) = log
(
P d
t+1(τ)

)
= Am(τ) +Bm(τ)′zt+1

and solve for the coefficients Am(τ + 1) and Bm(τ + 1) in the process of verifying this conjecture using the Euler

equation:

P d
t (τ + 1) = Et[exp{m$

t+1 + πt+1 +∆dmt+1 + log
(
pmt+1(τ)

)
}]

= Et[exp{−y$t (1)−
1

2
Λ′

tΛt − Λ′

tεt+1 + π0 + e′πzt+1 +∆dmt+1 +Am(τ) +Bm(τ)′zt+1}]

= exp{−y$0(1)− e′ynzt −
1

2
Λ′

tΛt + π0 + e′πΨzt + µm +
[
(erm − κm

1 epd)
′Ψ+ e′pd

]
zt +Am(τ) +Bm(τ)′Ψzt} ×

Et

[
exp{−Λ′

tεt+1 + (erm − κm
1 epd + eπ +Bm(τ))′ Σ

1
2 εt+1

]

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P d
t (τ + 1) = exp{−y$0(1)− e′ynzt + π0 + µm +Am(τ) +

[
(erm − κm

1 epd + eπ +Bm(τ))
′
Ψ+ e′pd

]
zt +

1

2
(erm − κm

1 epd + eπ +Bm(τ))′ Σ (erm − κm
1 epd + eπ +Bm(τ)) − (erm − κm

1 epd + eπ +Bm(τ))′ Σ
1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pdt (τ + 1):

pdt (τ + 1) = Am(τ + 1) +Bm(τ + 1)′zt,

where

Am(τ + 1) = Am(τ) + µm − y$0(1) + π0 +
1

2
(erm − κm

1 epd + eπ +Bc(τ))
′
Σ (erm − κm

1 epd + eπ +Bm(τ))

− (erm − κm
1 epd + eπ +Bm(τ))

′
Σ

1
2Λ0,

Bm(τ + 1)′ = (erm − κm
1 epd + eπ +Bm(τ))

′
Ψ+ e′pd − e′yn − (erm − κm

1 epd + eπ +Bm(τ))
′
Σ

1
2Λ1

We recover the recursions in (A.11) and (A.12) after using equation (A.4).

B.4 Consumption Strips

Proposition 5. Log price-dividend ratios on consumption strips are affine in the state vector:

pct(τ) = Ac(τ) +Bc′(τ)zt,

6



where the coefficients Ac(τ) and Bc(τ) follow recursions:

Ac(τ + 1) = Ac(τ) + µc − y0(1) +
1

2
(ec +Bc(τ))′ Σ (ec +Bc(τ)) − (ec +Bc(τ))′ Σ

1
2

(
Λ0 − Σ

1
2 eπ

)
,

Bc(τ + 1)′ = (ec + eπ +Bc(τ))
′
Ψ− e′yn − (ec + eπ +Bc(τ))

′
Σ

1
2Λ1.

initialized at Ac(0) = 0 and Bc(0) = 0.

The proof is analogous to that of Proposition 4. The proposition implies that Bc(∞)′ = (ec + eπ +Bc(∞))
′
Ψ −

e′yn − (ec + eπ + Bc(∞))
′
Σ

1
2Λ1.

If we set µc to zero and eliminate ec from the above recursions, then they collapse to those that govern the

coefficients for the log price of real zero coupon bonds in equations (A.7) and (A.8).

We can decompose the yield on a τ -period consumption strip from Proposition 5, yct (τ) = −pct(τ)/τ , into the yield

on a τ -period real coupon bond, with coupon adjusted for deterministic consumption growth, plus the yield on

the consumption cash-flow risk security yccrt (τ):

yct (τ) = (yt(τ) − µc) + yccrt (τ).

The former can be thought of as the period-τ coupon yield on a real perpetuity with cash-flows that grow at a

deterministic rate µc, while the latter captures the cash-flow risk in the consumption claim. We have that yccrt (τ) =

−pccrt (τ)/τ . Since the log price-dividend ratio of the consumption strips and the log real bond prices are both affine,

so is the log price-dividend ratio of the consumption cash-flow risk security: log pccrt (τ) = Accr(τ) + Bccr(τ)zt. It

is easy to show that its coefficients follow the recursions:

Accr(τ + 1) = Accr(τ) +
1

2
(ec +Bccr(τ))

′
Σ (ec +Bccr(τ)) + (ec +Bccr(τ))

′
ΣB(τ)

− (ec +Bccr(τ))
′
Σ

1
2

(
Λ0 − Σ

1
2 eπ

)
,

Bccr(τ + 1)′ = (ec +Bccr(τ))
′
Ψ− (ec +Bccr(τ))

′
Σ

1
2Λ1.

B.5 Trend Consumption

Proposition 6. The log price-dividend ratio on a claim to trend consumption is approximately a linear function

of the (demeaned) state vector zt

wctrt ≃ Atr
0 +Atr′

1 zt,

where the mean Atr
0 is a scalar and Atr

1 is the N × 1 vector which jointly solve:

0 = κtr
0 + (1− κtr

1 )Atr
0 + µc − y0(1) +

1

2
(Atr

1 )′Σ(Atr
1 )− (Atr

1 )′Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
(A.13)

0 = (eπ +Ac
1)

′Ψ− κc
1A

tr′
1 − e′yn − (eπ +Atr

1 )′Σ
1
2Λ1. (A.14)

The linearization constants κtr
1 and κtr

2 are defined analogously to equation (6). The derivation is analogous

to that of the wealth-consumption ratio and results from setting ec = 0 in Proposition 1.
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B.6 Campbell-Shiller Variance Decomposition

By iterating forward on the total wealth return equation (5), we can link the log wealth-consumption ratio at time

t to expected future total wealth returns and consumption growth rates:

wct = κc
0

H∑

j=1

(κc
1)

−j +

H∑

j=1

(κc
1)

−j
∆ct+j −

H∑

j=1

(κc
1)

−j
rct+j + (κc

1)
−H

wct+H . (A.15)

Because this expression holds both ex-ante and ex-post, one is allowed to add the expectation sign on the right-

hand side. Imposing the transversality condition as H → ∞ kills the last term, and delivers the familiar Campbell

and Shiller (1988) decomposition for the price-dividend ratio of the consumption claim:

wct =
κc
0

κc
1 − 1

+ Et




∞∑

j=1

(κc
1)

−j
∆ct+j


− Et




∞∑

j=1

(κc
1)

−j
rt+j


 =

κc
0

κc
1 − 1

+ ∆cHt − rHt . (A.16)

where the second equality follows from the definitions

∆cHt ≡ Et




∞∑

j=1

(κc
1)

−j
∆ct+j


 = e′cΨ(κc

1I −Ψ)−1zt, (A.17)

rHt ≡ Et




∞∑

j=1

(κc
1)

−j rt+j


 = [(ec +Ac

1)
′Ψ− κc

1A
c′
1 ] (κ

c
1I −Ψ)−1zt, (A.18)

where I is the N × N identity matrix. The first equation for the cash-flow component ∆cHt follows from the

VAR dynamics, while the second equation for the discount rate component rHt follows from Proposition 1 and the

definition of the total wealth return equation (5).

Using expressions (A.18) and (A.17) and the log-linearity of the wealth-consumption ratio, we obtain analytical

expressions for the following variance and covariance terms:

V [wct] = Ac′
1 ΩA

c
1 (A.19)

Cov
[
wct,∆cHt

]
= Ac′

1 Ω(κ
c
1I −Ψ′)−1Ψ′ec (A.20)

Cov
[
wct,−rHt

]
= Ac′

1 Ω
[
Ac

1 − (κc
1I −Ψ)−1Ψ′e′c

]
(A.21)

V
[
∆cHt

]
= e′cΨ(κc

1I −Ψ)−1Ω(κc
1I −Ψ′)−1Ψ′ec (A.22)

V
[
rHt

]
= [(e′c +Ac′

1 )Ψ − κc
1A

c′
1 ] (κ

c
1I −Ψ)−1Ω(κc

1I −Ψ′)−1 [Ψ′(ec +Ac
1)− κc

1A
c
1] (A.23)

Cov
[
rHt ,∆cHt

]
= [(e′c +Ac′

1 )Ψ − κc
1A

c′
1 ] (κ

c
1I −Ψ)−1Ω(κc

1I −Ψ′)−1Ψ′ec (A.24)

where Ω = E[z′tzt] is the second moment matrix of the state zt.

B.7 Estimation

B.7.1 Block 1: Bonds

The first four elements in the state, the Cochrane-Piazzesi factor, the nominal 3-month T-bill yield, the inflation

rate, and the yield spread (5-year T-bond minus the 3-month T-bill yield), govern the term structure of interest

rates. In contrast to most of the term structure literature, all factors are observable. The price of a τ -period

8



nominal zero-coupon bond satisfies:

P $
t (τ) = Et

[
em

$
t+1+logP $

t+1(τ−1)
]
.

This defines a recursion with P $
t (0) = 1. The corresponding bond yield is y$t (τ) = − log(P $

t (τ))/τ . Bond yields in

this class of models are an affine function of the state: y$t (τ) = −A$(τ)
τ

− B$(τ)′

τ
zt. Appendix B.2 formally states

and proves this result and provides the recursions for A$(τ) and B$(τ) in equations (A.5) and (A.6). Given the

block-diagonal structure of Λ1 and Ψ, only the risk prices in Λ0,1 and Λ1,11 affect the yield loadings. That is why,

in a first step, we can estimate the bond block separately from the stock block. We do so by matching the time

series for the short rate, the slope of the yield curve and the CP risk factor.

First, we impose that the model prices the 1-quarter and the 20-quarter nominal bond correctly. The condition

A$(1) = −y$0(1) guarantees that the one-quarter nominal yield is priced correctly on average, and the condition

B$(1) = −eyn guarantees that the nominal short rate dynamics are identical to those in the data. The short rate

and the yield spread are in the state, which implies the following expression for the 20-quarter bond yields:

y$t (20) = y$0(20) + (e′yn + e′spr)zt.

Matching the 20-quarter yield implies two sets of parameter restrictions:

−1

20
A$(20) = y$0(20), (A.25)

−1

20

(
B$(20)

)′

= (eyn + espr)
′. (A.26)

Equation (A.25) imposes that the model matches the unconditional expectation of the 5-year nominal yield y$0(20).

This provides one restriction on Λ0; it identifies its second element. To match the dynamics of the 5-year yield,

we need to free up one row in the bond block of the risk price matrix Λ1,11; we choose to identify the second

row in Λ1,11. We impose the restrictions (A.25) and (A.26) by minimizing the summed square distance between

model-implied and actual yields.

Second, we match the time-series of the CP risk factor (CP0 + e′cpzt) in order to replicate the dynamics of

bond risk premia in the data. We follow the exact same procedure to construct the CP factor in the model as in

the data, using the model-implied yields to construct forward rates. By matching the mean of the factor in model

and data, we can identify one additional element of Λ0; we choose the fourth element. By matching the dynamics

of the CP factor, we can identify four more elements in Λ1,11, one in each of the first four columns; we identify

the fourth row in Λ1,11. We impose the restriction that the CP factor is equal in model and data by minimizing

their summed squared distance. We now have identified two elements (rows) in Λ0,1 (in Λ1,11). The first and third

elements (rows) in Λ0,1 (in Λ1,11) are zero.

B.7.2 Block 2: Stocks

In the second step, we turn to the estimation of the risk price parameters in Λ1,21 and Λ1,22. We do so by imposing

that the model prices excess stock returns correctly; we minimize the summed squared distance between VAR-

and SDF-implied excess returns:

EV AR
t [rm,e

t+1 ] = rm0 − y0(1) +
1

2
e′rmΣerm +

(
(erm + eπ)

′
Ψ− e′yn

)
zt,

ESDF
t [rm,e

t+1 ] = e′rmΣ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (erm + eπ)

′
Σ

1
2Λ1zt,
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where rm0 is the unconditional mean stock return and erm selects the stock return in the VAR. Matching the

unconditional equity risk premium in model and data identifies one additional element in Λ0; we choose the sixth

element (the second element of Λ0,2). Matching the risk premium dynamics allows us to identify the second row

in Λ1,21 (4 elements) and the second row in Λ1,22 (2 more elements). Choosing to identify the sixth element (row)

of Λ0 (Λ1) instead of the fifth row is an innocuous choice. But it is more natural to associate the prices of risk

with the traded stock return rather than with the non-traded price-dividend ratio. These six elements in Λ1,21

and Λ1,22 must all be non-zero because expected returns in the VAR depend on the first six state variables. The

first element of Λ0,2 and the first rows of Λ1,21 and Λ1,22 are zero.

B.7.3 Block 3: Factor Mimicking Portfolios

In addition, we impose that the risk premia on the fmp coincide between the VAR and the SDF model. As is the

case for the aggregate stock return, this implies one additional restriction on Λ0 and N additional restrictions on

Λ1:

EV AR
t [rfmp,e

t+1 ] = rfmp
0 − y0(1) +

1

2
e′fmpΣefmp +

(
(efmp + eπ)

′Ψ − e′yn
)
zt,

ESDF
t [rfmp,e

t+1 ] = e′fmpΣ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (efmp + eπ)

′Σ
1
2Λ1zt,

where rfmp
0 is the unconditional average fmp return. There are two sets of such restrictions, one set for the

consumption growth and one set for the labor income growth fmp. Matching average expected fmp returns and

their dynamics identifies both elements of Λ0,3. Matching the risk premium dynamics allows us to identify both

rows of in Λ1,31 (4 elements) and Λ1,32 (4 more elements).

B.7.4 Over-identifying Restrictions in Detail

Additional Nominal Yields We minimize the squared distance between the observed and model-implied

yields on nominal bonds of maturities 1, 3, 10, and 20 years. These additional restrictions help improve the model’s

ability to price distant cash-flows. This is important given that the dynamics of the wealth-consumption ratio will

turn out to be largely driven by the behavior of long yields. We impose several other restrictions that force the

term structure to be well-behaved at long horizons. None of these additional term structure constraints, however,

are binding at the optimum.25

Consumption and Dividend Strips While we imposed that expected excess equity returns coincide

between the VAR and the SDF model, we have not yet imposed that the return on stocks reflects cash flow risk in

the equity market. To do so, we require that the price-dividend ratio in the model, which is the expected present

discounted value of all future dividends, matches the price-dividend ratio in the data, period by period.26 Given

25We impose that the average nominal and real yields at maturities 200, 500, 1000, and 2500 quarters are
positive, that the average nominal yield is above the average real yield at these same maturities, and that the
nominal and real yield curves flatten out. The last constraint is imposed by penalizing the algorithm for choosing
a 500-200 quarter yield spread that is above 3% per year and a 2500-500 quarter yield spread that is above 2%
per year. Together, they guarantee that the infinite sums we have to compute are well-behaved.

26This constraint is not automatically satisfied from the definition of the stock return: rmt+1 = κm
0 + ∆dmt+1 +

κm
1 pdmt+1−pdmt . The VAR implies a model for expected return and the expected log price-dividend ratio dynamics,

which implies expected dividend growth dynamics through the definition of a return. These dynamics are different
from the ones that would arise if the VAR contained dividend growth and the price-dividend ratio instead. The
reason is that the state vector in the first case contains rt and pdmt , while in the second case it contains ∆dmt

10



a no-bubble-constraint for equities, the sum of the price-dividend ratios on dividend strips of all horizons equals

the price-dividend ratio (Wachter 2005):

Pm
t

Dm
t

= epd
m
t =

∞∑

τ=0

P d
t (τ), (A.27)

where P d
t (τ) denotes the price of a τ period dividend strip divided by the current dividend. Appendix B.3 formally

states and proves that the log price-dividend ratios on dividend strips is approximately affine in the state vector:

log
(
P d
t (τ)

)
= Am(τ) + Bm′(τ)zt. It also provides the recursions for Am(τ) and Bm(τ). See Bekaert, Engstrom,

and Grenadier (2010) for a similar result. Using (A.27) and the affine structure, we impose the restriction that

the price-dividend ratio in the model equals the one in the data by minimizing their summed squared distance.

Imposing this constraint not only affects the price of equity risk (the sixth row of Λt) but also the real term structure

of interest rates (the second and fourth rows of Λt). Real yields turn out to play a key role in the valuation of

real claims such as the claim to real dividends (equity) or the claim to real consumption (total wealth). As such,

the price-dividend ratio restriction turns out to be useful in sorting out the decomposition of the nominal term

structure into an inflation component and the real term structure.

We also impose the no-bubble constraint in equation (12) that the wealth-consumption ratio equals the sum

of the consumption strip price-dividend ratios.

Human Wealth Share We define the labor income share, list, as the ratio of aggregate labor income to

aggregate consumption. It is 0.826 on average in our sample. The human wealth share is the ratio of human

wealth to total wealth; it is a function of the labor income share and the price-dividend ratios on human and total

wealth: hwst = list
epd

l
t−1

ewct−1 . We impose on the estimation that hwst lies between 0 and 1 at each time t. At the

optimum, this constraint is satisfied.27

B.8 Point Estimates

Below, we report the point estimates for the VAR companion matrix Ψ, the Cholesky decomposition of the

covariance matrix Σ.5 (multiplied by 100), and the market price of risk parameters Λ0 and Λ1 for our benchmark

specification. We recall that the market price of risk parameter matrix Λ1 pre-multiplies the state zt, which has a

(non-standardized) covariance matrix Ω.

and pdmt . For the two models to have identical implications for expected returns and expected dividend growth,
one would need to include pdmt−1 as an additional state variable. We choose to include returns instead of dividend
growth rates because the resulting properties for expected returns and expected dividend growth rates are more
desirable. For example, the two series have a positive correlation of 20%, a number similar to what Lettau and
Ludvigson (2005) estimate. See Lettau and Van Nieuwerburgh (2008), Ang and Liu (2007), and Binsbergen and
Koijen (2010) for an extensive discussion of the present-value constraint.

27We impose that aggregate labor income grows at the same rate as aggregate consumption (µl = µc). We
rescale the level of consumption to end up with the same average labor income share (after imposing µl = µc) as
in the data (before rescaling).
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Ψ =




0.5429 0.7650 -0.3922 0.9475 0 0 0 0 0 0

-0.0605 0.9893 0.0751 0.4266 0 0 0 0 0 0

-0.0519 0.1669 0.7020 0.1496 0 0 0 0 0 0

0.0734 -0.0752 0.0094 0.4123 0 0 0 0 0 0

0.4109 -0.2856 -2.3795 -3.0151 0.9345 -0.0003 0 0 0 0

0.1036 0.3773 -2.0304 0.9121 -0.0434 0.0992 0 0 0 0

0.0006 0.4722 -1.1454 -0.1641 -0.0086 0.0728 0 0 0 0

0.2124 0.2100 -0.5441 -0.5424 0.0030 0.1258 0 0 0 0

-0.0048 0.1020 -0.0414 0.3583 0.0029 -0.0006 -0.0044 0.0071 0.3708 0

0.0456 -0.0441 -0.0940 -0.1228 0.0032 -0.0063 0.0322 -0.0162 0.5856 -0.1223




Σ.5 × 100 =




1.2067 0 0 0 0 0 0 0 0 0

-0.0452 0.2198 0 0 0 0 0 0 0 0

-0.0430 0.0468 0.3375 0 0 0 0 0 0 0

0.0368 -0.0947 0.0046 0.0989 0 0 0 0 0 0

1.2434 -0.4005 -0.5932 -0.5909 8.7028 0 0 0 0 0

0.8102 -0.2304 -0.6966 -0.6537 7.4960 3.6770 0 0 0 0

0.5170 -0.1007 0.1218 -0.2464 1.9769 0.7068 2.6517 0 0 0

1.0995 0.2947 0.5349 -0.4281 2.8884 1.2009 3.8412 5.0047 0 0

0.0401 0.0159 0.0038 -0.0269 0.0753 0.0735 0.0858 -0.0015 0.3568 0

0.1141 0.0122 -0.1086 -0.1010 0.0550 -0.0412 0.1328 0.2263 0.3423 0.7007




Λ′

0 =
[

0 -0.3176 0 0.1663 0 0.4447 -0.0132 0.1104 0 0
]

Λ1 =




0 0 0 0 0 0 0 0 0 0

33.5522 -152.4822 80.6774 -294.3807 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-30.2473 118.4352 -16.4773 167.8749 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-2.2141 1.1240 -34.9664 44.0152 -1.1080 2.7185 0 0 0 0

-3.4354 -6.0395 -7.3666 -2.7468 -0.0322 1.8921 0 0 0 0

1.4903 12.4732 10.2902 18.1533 0.4822 0.3419 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




We compute OLS standard errors for the elements of Ψ and report the coefficients with a t-stat greater than

1.98 in bold. Bootstrap standard errors on the market price of risk parameters are available upon request. They

are derived as part of the method explained in Appendix B.9.
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The implied point estimates for Ac
1 are given by:

Ac
1 =




-0.5191

-25.8220

1.8370

-26.0851

0.0854

-0.0067

-0.0070

0.0113

0.5866

0




while the implied point estimate for the constant is Ac
0 = 5.8082.

B.9 Bootstrap Standard Errors

We obtain standard errors on the moments of the estimated wealth-consumption ratio by bootstrap. More pre-

cisely, we conduct two bootstrap exercises leading to two sets of standard errors. In each exercise, we draw with

replacement from the VAR innovations εt. We draw row-by-row in order to preserve the cross-correlation structure

between the state innovations (Step 1). Given the point estimates for Ψ and Σ as well as the mean vector µ, we

recursively reconstruct the state vector (Step 2). We then re-estimate the mean vector, companion matrix, and

innovation covariance matrix (Step 3). With the new state vector and the new VAR parameters in hand, we

re-estimate the market price of risk parameters in Λ0 and Λ1 (Step 4). Just as in the main estimation, we use

2500 quarters to approximate the infinite-horizon sums in the strip price-dividend ratio calculations. We limit the

estimation in Step 4 to 500 function evaluations for computational reasons. In some of the bootstrap iterations,

the optimization in Step 4 does not find a feasible solution. This happens, for example when no parameter choices

keep the human wealth share less than hundred percent or the consumption or labor income claim finite. We

discard these bootstrap iterations. These new market price of risk parameters deliver a new wealth-consumption

ratio time series (Step 5). With the bootstrap time series for consumption growth and the wealth-consumption

ratio, we can form all the moments in Table 2. We repeat this procedure 1,000 times and report the standard

deviation across the bootstrap iterations. We conduct two variations on the above algorithm. Each bootstrap

exercise takes about 12 hours to compute on an 8-processor computer. The more conservative standard errors

from the second bootstrap exercise are the ones reported in Table 2.

In the first exercise, we only consider sampling uncertainty in the last four elements of the state: the two factor

mimicking portfolios, consumption growth, and labor income growth. We assume that all the other variables are

observed without error. The idea is that national account aggregates are measured much less precisely than

traded stocks and bonds. This procedure takes into account sampling uncertainty in consumption growth and its

correlations with yields and with the aggregate stock market. Given our goal of obtaining standard errors around

the moments of the wealth-consumption ratio, this seems like a natural first exercise. The second column of Table

A.1 reports the standard errors from this bootstrap exercise in parentheses. For completeness, it also reports the

mean across bootstrap iterations.

In a second estimation exercise, we also consider sampling uncertainty in the first six state variables (yields

and stock prices). Redrawing the yields that enter in the state space (the 1-quarter yield and the 20-1 quarter yield

spread) requires also redrawing the additional yields that are used in estimation (the 4-, 12-, 40-, and 80-quarter

13



Figure A.1: Dynamics of the Nominal Term Structure of Interest Rates

The figure plots the observed and model-implied 1-, 4-, 12-, 20-, 40-, and 80-quarter nominal bond yields. Note that the 20-year yield
is unavailable between 1986.IV and 1993.II.
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Figure A.2: Nominal Bond Risk Premia

The left panel plots the 5-year nominal bond risk premium on a 5-year nominal bond in model and data. It is defined as the difference
between the nominal 5-year yield and the expected future 1-quarter yield averaged over the next 5 years. It represents the return on
a strategy that buys and holds a 5-year bond until maturity and finances this purchase by rolling over a 1-quarter bond for 5 years.
The right panel plots the Cochrane-Piazzesi factor in model and data. It is a linear combination of the one-year nominal yield and 2-
through 5-year forward rates. This linear combination is a good predictor of the one-quarter bond risk premium.
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Figure A.3: The Stock Market

The figure plots the observed and model-implied price-dividend ratio and expected excess return on the overall stock market.
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Figure A.4: Decomposing the 5-Year Nominal Yield

The left panel decomposes the 5-year yield into the real 5-year yield, expected inflation over the next 5-years, and the inflation risk
premium. The right panel decomposes the average nominal bond risk premium into the average real rate risk premium and inflation
risk premium for maturities ranging from 1 to 120 quarters. The nominal (real) bond risk premium at maturity τ is defined as the
nominal (real) τ -quarter yield minus the average expected future nominal (real) 1-quarter yield over the next τ quarters. The τ -quarter
inflation risk premium, labeled as IRP, is the difference between the τ -quarter nominal and real risk premia.
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Figure A.5: Decomposing the Yield on a Consumption Strip

The figure decomposes the yield on a consumption strip of maturity τ , which goes from 1 to 1000 quarters, into a real bond yield
minus deterministic consumption growth on the one hand and the yield on a security that only carries the consumption cash flow risk
on the other hand. See B.4 for a detailed discussion of this decomposition.
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Figure A.6: Factor Mimicking Portfolios

The left panel plots the expected excess return on the consumption growth factor mimicking portfolio (FMPc). The right panel plots
the expected excess return on the labor income growth factor mimicking portfolio (FMPl).
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yields) and in the formation of the Cochrane-Piazzesi factor (the 4-, 8-, 12-, and 16- quarter yields). Otherwise,

the bootstrapped time-series for the yields in the state space would be disconnected from the other yields. For

this second exercise, we augment the VAR with the following yield spreads: 4-20, 8-20, 12-20, 16-20, 40-20, and

80-20 quarter yield spreads. We let these spreads depend on their own lag and on the lagged 1-quarter yield.

Additional dependence on the lagged 20-1 quarter yield makes little difference. In Step 1, we draw from the yield

spreads-augmented VAR innovations. This allows us to take into account the cross-dependencies between all the

yields in the yield curve. In addition to recursively rebuilding the state variables in Step 2, we also rebuild the

six yield spreads. With the bootstrapped yields, we reconstruct the forward rates, one-year excess bond returns,

re-estimate the excess bond return regression, and re-construct the Cochrane-Piazzesi factor. Steps 3 through 5

are the same as in the first exercise. One additional complication arises because the bootstrapped yields often

turn negative for one or more periods. Since negative nominal yields never happen in the data and make no

economic sense, we discard these bootstrap iterations. We redraw from the VAR innovations until we have 1,000

bootstrap samples with strictly positive yields at all maturities. This is akin to a rejection-sampling procedure.

One drawback is that there is an upward bias in the yield curve. The average one-quarter yield is 0.8% per annum

higher in the bootstrap sample than in the data. This translates in a small downward bias in the average wealth

consumption ratio: the average log wealth-consumption ratio is 0.17 lower in the bootstrap than in the data. The

third column of Table A.1 reports the standard errors from this bootstrap exercise in parentheses. As expected,

the standard errors from the second bootstrap exercise are somewhat bigger. However, their difference is small.
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Table A.1: Bootstrap Standard Errors

This table displays bootstrap standard errors on the unconditional moments of the log wealth-consumption ratio wc, its first difference
∆wc, and the log total wealth return rc. The last but one row reports the time-series average of the conditional consumption risk
premium, E[Et[r

c,e
t ]], where rc,e denotes the expected log return on total wealth in excess of the risk-free rate and corrected for a

Jensen term. The second and third columns report the results from two bootstrap exercises, described above. The table reports the
mean and standard deviation (in parentheses) across 1,000 bootstrap iterations.

Moments Bootstrap 1 Bootstrap 2

Std[wc] 16.26% 15.24%

(s.e.) (3.39) (4.30)

AC(1)[wc] .95 .93

(s.e.) (.00) (.03)

AC(4)[wc] .83 .74

(s.e.) (.01) (.08)

Std[∆wc] 4.86% 5.07%

(s.e.) (0.98) (1.16)

Std[∆c] .44% .44%

(s.e.) (.03) (.03)

Corr[∆c,∆wc] .02 .12

(s.e.) (.06) (.06)

Std[rc] 4.90% 5.16%

(s.e.) (2.21) (1.16)

Corr[rc,∆c] .12 .21

(s.e.) (.07) (.07)

E[Et[r
c,e
t ]] .46% 0.53%

(s.e.) (.11) (.16)

E[wc] 6.29 5.69

(s.e.) (.48) (.49)

2006 Wealth (in millions) 2.65 2.52

(s.e.) (0.32) (0.27)

hws 0.86 0.86

boot std (0.03) (0.03)
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C Appendix: Consumption and Labor Income Claims in

Incomplete Markets Models

An important question is whether our methodology for pricing aggregate consumption and labor income claims

remains valid if the data are generated from a world with heterogeneous agents who face idiosyncratic labor income

risk which they cannot perfectly insure away and who may face binding borrowing or asset market participation

constraints. We argue that our methodology remains valid in such environments, as long as households have access

to at least a savings account. We show here how to compute total and human wealth in such models. In order

to make this point as clearly as possible, we first consider an economy without aggregate risk, in which a risk-free

bond is the sole financial asset. We then generalize our result by adding aggregate uncertainty and more assets.

C.1 Model Without Aggregate Risk

The first economy we consider is a standard Bewley model. Agents are ex-ante identical, but ex-post heterogeneous

because they are hit by idiosyncratic labor income shocks. Incomplete markets prevents sharing this risk. We

consider an economy with a unit measure of households. Each household lives forever and maximizes its expected

utility:

E{
∞∑

t=0

βtu(ct)},

where c and β denote the household’s consumption and subjective time discount factor. Households receive

stochastic labor income ηt ∈ Γ. We assume that the endowment space is finite and Markovian. We denote by

π(η′|η) the transition matrix from state η to state η′. Π(η) denotes the stationary distribution of η. Since there

are many households, the law of large numbers applies and Π(η) corresponds to the fraction of households with

endowment y.

We abstract from aggregate uncertainty: the aggregate endowment η̄ is constant over time. If markets were

complete, households would be able to fully insure away their labor income risk, and their consumption would be

constant. Here, we assume that markets are incomplete. Households have only access to a savings account, with

interest rate r. They can also borrow, up to a limited amount b. The budget and borrowing constraints are:

a′ = η + (1 + r)a − c, (A.28)

a′ ≥ −b, (A.29)

where a and a′ correspond to the household’s wealth today and next period.

We focus on a stationary equilibrium where aggregate quantity and prices are constant over time. The agent is

characterized by a state vector (a, η). To solve for the steady-state of this economy, we first look at each household’s

Bellman equation given the interest rate r. We then solve for the equilibrium interest rate.

The Bellman equation is:

v(a, η) = Max{u(c) + β
∑

η′

π(η′|η)v(a′, η′)},

subject to the budget and borrowing constraints in equations A.28 and A.29. The borrowing constraint may bind.

Let µ denote the Lagrange multiplier on the borrowing constraint. The Bellman equation becomes:

v(a, η) = Max{u(η + (1 + r)a− a′) + β
∑

η′

π(η′|η)v(a′, η′) + µ(a′ + b)},
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The first-order and envelope conditions are thus:

u′(c) = β
∑

η′

π(η′|η)∂v(a
′, η′)

∂a′
+ µ,

∂v(a)

∂a
= u′(c)(1 + r),

µ(a′ + b) = 0

The Euler equation is:

u′(c) ≥ E{β(1 + r)u′(c′)},

with equality if a′ > −b. This means that, for a given η, if the household holds enough “cash in hand”, e.g if

η + (1 + r)a is high enough, then the household’s standard Euler equation is satisfied. On the other hand, if the

“cash in hand” is too low, a′ = −b, the Euler equation is not satisfied and the borrowing constraint depresses

current consumption.

Denote by Φ the joint cross-sectional distribution of assets and endowments: Φ(a, η). The interest rate r is

determined using the household’s equilibrium conditions derived above, along with market clearing conditions on

the bond and goods markets:

∫ ∫
c(a, η)Φ(da, dη) =

∫
ηΠ(dη),

∫ ∫
a′(a, η)Φ(da, dη) = 0.

Household’s consumption and savings choices determine next period’s distribution of assets and endowments Φ′:

the policy function a′(a, η) implies a law of motion for Φ. Let the transition function Q((a, η), (A,Γ)) describe the

probability and mass of households in state (a, η) now that will end up in (a′, η′) ∈ (A,Γ) next period. The law of

motion of Φ(a, η) is thus:

Φ′(A,Γ) =

∫ ∫
Q((a, η), (A,Γ)Φ(da, dη),

We focus on a stationary equilibrium so that Φ′(A,Γ) = Φ(A,Γ) for all (A,Γ). As a result, the equilibrium interest

rate r depends on the entire cross-sectional distribution of assets and endowments: r(Φ(A,Γ)). As we have seen, for

some agents, the Euler equation is not satisfied and they are borrowing-constrained. This information is encoded

in the aggregate state Φ and thus impacts the level of the risk-free rate. Borrowing constraints and heterogeneity

matter.

Nevertheless, we can still easily compute total and human wealth in this economy. The budget constraint

holds the key. Starting from at+1 = ηt + (1 + r)at − ct, we iterate in order to obtain:

at =

∞∑

n=1

(
1

1 + r
)n[ct+n − ηt+n].

To derive this result, we assume that the usual transversality condition (or no-Ponzi condition) holds: limn→∞( 1
1+r

)nat+n =

0. Note that in our stationary example, the interest rate is constant. Below, we can generalize our results to

economies where the aggregate state Φ and thus r evolve over time.

Taking expectations on both side of the inter-temporal budget constraint leads to the definition of total and

20



human wealth:

Total Wealth =

∞∑

n=1

Et[(
1

1 + r
)nct+n],

Human Wealth =

∞∑

n=1

Et[(
1

1 + r
)nηt+n].

Aggregate total wealth and aggregate human wealth are the sums of these objects across individuals.

Two important points should be noted. First, our definition of total wealth and human wealth derives from

each agent’s budget constraint so that wealth estimates are consistent with future consumption. Second, even if

some agents are borrowing constrained in this highly incomplete economy, the risk-free rate is the right way to

discount future labor income and consumption streams. Incompleteness gets reflected in the risk-free rate itself

(Krueger and Lustig 2009).

C.2 Models With Aggregate Risk

We now generalize this result to an economy with aggregate uncertainty and many assets. We continue to assume

that all agents have access to a savings account. Some agents can also participate in financial markets and

have access to more financial assets. As in our main estimation, we assume that financial markets span the

aggregate sources of risk: there is a full set of contingent claims whose payoffs span all aggregate states of the

world. Agents continue to face idiosyncratic labor income risk and incomplete markets, and potentially face both

borrowing and participation constraints. We show below that we can define total and human wealth, using the

same methodology as in the Bewley economy above. As before, we can easily value aggregate total and human

wealth, even if agents are heterogenous and face different constraints. The discount rate is no longer the risk-free

interest rate but rather the economy’s stochastic discount factor. This stochastic discount factor is the same one

that prices tradeable securities, such as stocks and bonds. Hence, market incompleteness and binding borrowing

or participation constraints do not invalidate our approach, they merely change that stochastic discount factor.

Environment Let zt ∈ Z be the aggregate state vector. We use zt to denote the history of aggregate state

realizations. Section 2.1 describes the dynamics of the aggregate state zt of this economy, including the dynamics

of aggregate consumption Ct(z
t) and aggregate labor income Lt(z

t).

We consider an economy that is populated by a continuum of heterogeneous agents, whose labor income is subject

to idiosyncratic shocks. The idiosyncratic shocks are denoted by ℓt ∈ L, and we use ℓt to denote the history of

these shocks. The household labor income process is given by:

ηt(ℓ
t, zt) = η̂t(ℓ

t, zt)Lt(z
t).

Let Φt(z
t) denote the distribution of household histories ℓt conditional on being in aggregate node zt. The labor

income shares η̂ aggregate to one: ∫
η̂t(ℓ

t, zt)dΦt(z
t) = 1.

Trading in securities markets A non-zero measure of these households can trade bonds and stocks in

securities markets that open every period. These households are in partition 1. We assume that the returns of

these securities span Z. In other words, the payoff space is RZ×t in each period t. Households in partition 2 can

only trade one-period riskless discount bonds (a cash account). We use Aj to denote the menu of traded assets
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for households in segment j ∈ {1, 2}. However, none of these households can insure directly against idiosyncratic

shocks ℓt to their labor income by selling a claim to their labor income or by trading contingent claims on these

idiosyncratic shocks.

Law of One Price We assume free portfolio formation, at least for some households, and the law of one

price. There exists a unique pricing kernel Πt in the payoff space. Since there is a non-zero measure of households

that trade assets that span zt, it only depends on the aggregate shocks zt. Formally, this pricing kernel is the

projection of any candidate pricing kernel on the space of traded payoffs Xt = RZ×t:

Πt

Πt−1
= proj(Mt|RZ×t).

We let Pt be the arbitrage-free price of an asset with payoffs {Di
t}:

P i
t = Et

∞∑

τ=t

Πτ

Πt

Di
τ . (A.30)

for any non-negative stochastic dividend process Di
t that is measurable w.r.t zt.

Household Problem We adopted the approach of Cuoco and He (2001): We let agents trade a full set

of Arrow securities (contingent on both aggregate and idiosyncratic shock histories), but impose measurability

restrictions on the positions in these securities.

After collecting their labor income and their payoffs from the Arrow securities, households buy consumption in

spot markets and take Arrow positions at+1(ℓ
t+1, zt+1) in the securities markets subject to a standard budget

constraint:

ct + Et

[
Πt+1

Πt

at(ℓ
t+1, zt+1)

]
+

∑

j∈Aj

P j
t s

j
t+1 ≤ θt,

where s denotes the shares in a security j that is in the trading set of that agent. In the second term on the

left-hand side, the expectations operator arises because we sum across all states of nature tomorrow and weight

the price of each of the corresponding Arrow securities by the probability of that state arising. Wealth evolves

according to:

θt+1 = at(ℓ
t+1, zt+1) + ηt+1 +

∑

j∈Aj

[
P j
t+1 +Dj

t+1

]
sjt ,

subject to a measurability constraint:

at(ℓ
t+1, zt+1) is measurable w.r.t. Aj

t (ℓ
t+1, zt+1), j ∈ {1, 2},

and subject to a generic borrowing or solvency constraint:

at(ℓ
t+1, zt+1) ≥ Bt(ℓ

t, zt).

These measurability constraints limit the dependence of total household financial wealth on (zt+1, ℓt+1). For

example, for those households in partition 2 that only trade a risk-free bond, A2
t (ℓ

t+1, zt+1) = (ℓt, zt), because

their net wealth can only depend on the history of aggregate and idiosyncratic states up until t. The households

in partition 1, who do trade in stock and bond markets, can have net wealth that additionally depends on the

aggregate state at time t+ 1: A1
t (ℓ

t+1, zt+1) = (ℓt, zt+1).
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Pricing of Household Human wealth In the absence of arbitrage opportunities, we can eliminate

trade in actual securities, and the budget constraint reduces to:

ct + Et

[
Πt+1

Πt

at(ℓ
t+1, zt+1)

]
≤ at−1(ℓ

t, zt) + ηt.

By forward substitution of at(ℓ
t+1, zt+1) in the budget constraint, and by imposing the transversality condition

on household net wealth:

lim
t→∞

Πtat(ℓ
t, zt) = 0,

it becomes apparent that the expression for financial wealth is :

at−1(ℓ
t, zt) = Et

[
∞∑

τ=t

Πτ

Πt

(cτ (ℓ
τ , zτ )− ητ (ℓ

τ , zτ))

]

= Et

[
∞∑

τ=t

Πτ

Πt

cτ (ℓ
τ , zτ )

]
− Et

[
∞∑

τ=t

Πτ

Πt

ητ (ℓ
τ , zτ )

]

The equation states that non-human wealth (on the left) equals the present discounted value of consumption

(total wealth) minus the present discounted value of labor income (human wealth). The value of a claim to c− y

is uniquely pinned down, because the object on the left hand side is traded financial wealth.

Pricing of Aggregate Human Wealth Let Φ0 denote the measure at time 0 over the history of

idiosyncratic shocks. The (shadow) price of a claim to aggregate labor income at time 0 is given by the aggregation

of the valuation of the household labor income streams:

∫
E0

[
∞∑

t=0

Πt

Π0

(
ĉt(ℓ

t, zt)Ct(z
t)− η̂t(ℓ

t, zt)Lt(z
t)
)
]
dΦ0

= E0

[
∞∑

t=0

Πt

Π0

∫ (
ĉt(ℓ

t, zt)dΦt(z
t)Ct(z

t)− η̂t(ℓ
t, zt)dΦt(z

t)Lt(z
t)
)
]
,

= E0

[
∞∑

t=0

Πt

Π0
[Ct(z

t)− Lt(z
t)]

]
,

where we have used the fact that the pricing kernel Πt does not depend on the idiosyncratic shocks, the labor income

shares integrate to one
∫
η̂t(ℓ

t, zt)dΦt(z
t) = 1, and the consumption shares integrate to one

∫
ĉt(ℓ

t, zt)dΦt(z
t) = 1,

in which Φt(z
t) is the distribution of household histories ℓt conditional on being in aggregate node zt.

Under the maintained assumption that the traded assets span aggregate uncertainty, this implies that aggregate

human wealth is the present discounted value of aggregate labor income and that total wealth is the present

discounted value of aggregate consumption, and that the discounting is done with the projection of the SDF on

the space of traded payoff space. Put differently, the discount factor is the same one that prices tradeable securities,

such as stocks and bonds. This result follows directly from aggregating households’ budget constraints. The result

obtains despite the fact that human wealth is non-tradeable in this model, and therefore, markets are incomplete.

Since the above argument only relied on iterating forward on the budget constraint, we did not need to know

the exact form of the equilibrium SDF. Chien, Cole, and Lustig (2011) show that the SDF in this environment

depends on the evolution of the wealth distribution over time. More precisely, for each agent, one needs to keep

track of a cumulative Lagrange multiplier which changes whenever the measurability constraints or the borrowing

constraints bind. One cross-sectional moment of these cumulative multipliers suffices to keep track of ho the
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wealth distribution affects asset prices. Because of the law of large numbers, that moments only depends on the

aggregate history zt. Similar aggregation results are derived in Constantinides and Duffie (1996) and in the limited

commitment models of Lustig (2007) and Lustig and Van Nieuwerburgh (2007). To sum up, in the presence of

heterogeneous agents who cannot trade idiosyncratic labor income risk, there is an additional source of aggregate

risk which captures the evolution of the wealth distribution. But asset prices will fully reflect that source of

aggregate risk so that our procedure remains valid in such a world.

No Spanning If the traded payoffs do not span the aggregate shocks then the preceding argument still goes

through for the projection of the candidate SDF on the space of traded payoffs:

Π∗

t

Π∗

t−1

= proj (Mt|Xt) .

We can still price the aggregate consumption and labor income claims using Π∗. In this case, the part of non-traded

payoffs that is orthogonal to the traded payoffs, may be priced:

Et

[(
Ct+1 − proj

(
Ct+1|Xt+1

))
Π∗

t+1

]
6= 0,

Et

[(
Yt+1 − proj

(
Yt+1|Xt+1

))
Π∗

t+1

]
6= 0,

where we assume that X includes a constant so that the residuals are mean zero. In the main text, we compute

good-deal bounds.

D Appendix: Robustness

The results of our estimation exercise are robust to different specifications of the state vector z and restrictions on

the benchmark law of motion for the state z. We compare ten models to gain insight in what part of the model

structure drives which result.

Model 1 is the benchmark model from the paper. It has the ten elements in the VAR and the companion

matrix Ψ, as specified in equation (1) of the paper. Models 2 through 6 simplify the benchmark model, starting

from two minimal models, and gradually building up to the benchmark model. Models 7 through 10 have the same

state space as the benchmark Model 1, but simplify the dynamics of the state space, i.e., Ψ. These variations are

selected to give insight into what drives our main result, as well as to verify the robustness of our results.

Table A.2 summarizes the goodness of fit of all ten models; each column refers to a model. The first ten rows

report the root mean-squared pricing errors (RMSE) on ten key asset pricing moments the model is trying to fit.

We estimate the market price of risk by minimizing a function of these RMSEs. The last four rows express the

goodness fit the models as well as a log difference with the benchmark model. The first comparison is based on

the simple average RMSE (labeled SM). The second comparison is based on a weighted average RMSE (labeled

WM), where the weights reflect the importance of each moment in the optimization routine. It shows that the

benchmark Model 1 has the best fit of all models we consider, justifying its label.

We now turn to a detailed discussion of these models and what they teach us about the wealth-consumption

ratio.
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D.1 Simpler Models

Model 2 The simplest model we consider, Model 2, only contains the short rate (nominal 1-quarter bond yield),

inflation, the yield spread (20-quarter minus 1-quarter yield), consumption growth, and labor income growth (in

that order). It strips out from the state the CP factor, the PD ratio on the stock market, the excess return on the

stock market, and the factor mimicking portfolios for consumption growth and labor income growth (computed

from the cross-section of stocks). Model 2 is the most basic model that still allows us to price the claims to

aggregate consumption and labor income. Inflation is necessary to go from nominal to real pricing kernels and

yields. The term structure with two maturities in the state vector is quite basic. The model purposely ignores all

equity moments.

Consistent with the logic explained in the estimation section of the paper, we estimate two elements in the

constant market price of risk vector Λ0 and the two corresponding rows (of three elements each) in the matrix

Λ1, which governs the time variation in prices of risk. These are the first and third elements corresponding to

the short rate and the yield spread. This is the minimal structure needed to provide a reasonably good fit to the

term structure of interest rates. The model also does a surprisingly good job at matching the dynamics of the

5-year nominal bond risk premium and a decent job at matching the dynamics of the CP factor. Because the CP

factor, a linear combination of 1- through 5-year yields, is not in the state, the model implicitly puts less weight

on matching that part of the term structure and instead pays more attention to matching the long end of the yield

curve. This results in a lower estimate for the 20-year nominal yields than in Model 1 (6.74% in Model 2 versus

6.85% in Model 1), bringing it closer to the data (6.23%). The model-implied 20-year real yield is correspondingly

lower (2.49% in Model 2 versus 2.87% in Model 1). Similarly, the annualized risk premium (average excess return

over a 1-period bond yield) on a (hypothetical) 50-year real bond is 1.29% in Model 2 versus 1.84% in Model 1.

Model 2 clearly illustrates our main conclusion: that the real term structure of interest rates is the key

determinant of the wealth-consumption ratio. The lower long-term real yields in Model 2 translate into a higher

mean wealth-consumption ratio : 113 versus 83 in Model 1. The average consumption risk premium, the excess

return on the claim to aggregate consumption, is 2.11% in Model 2 versus 2.38% in Model 1. While the mean

levels differ, the dynamics of the WC ratio in Model 2 are nearly identical to that in Model 1: their correlation is

99.03% and the volatilities are nearly identical (18.9% versus 18.6%). The correlation between the consumption

risk premia in the two model is 97.6%. The main reason for the similar dynamics in wealth-consumption ratios

and consumption risk premia is that long-term real yields comove strongly: the 20-year real yields have a time

series correlation of 99.86%.

Offsetting the strong real yield correlation is the fact that the cash flow risk in the consumption claim (as

opposed to the real rate risk) is priced somewhat differently in Model 2 than in Model 1. Because the state vectors

differ, expected consumption growth dynamics differ for Models 1 to 6. And innovations to future consumption

growth are priced differently across models. For example, the yield on a claim to the risky part of aggregate

consumption 50 years from now is about zero in Model 1. This implies that the entire yield on the 50-year

consumption strip (trend growth plus risky fluctuations around that trend) equals the yield on a 50-year coupon

bond (with cash flow adjusted for trend consumption growth). In contrast, the risky 50-year consumption strip has

a yield that is 20 basis points above that on the corresponding real bond in Model 2, implying substantially more

cash-flow risk. The reason for this difference is that real bond yields and yields on the risky part of the consumption

strip are strongly negatively correlated in Model 1 and strongly positively correlated in Model 2. Hence, the cash

flow risk of the consumption claim actually hedges the real rate risk in Model 1 while the exposures go in the same

direction in Model 2. The extra consumption cash flow risk in Model 2 translates in a higher consumption risk

premium ceteris paribus. These differences in consumption cash flow risk show up clearly in the form of higher

costs of consumption fluctuations in Model 2. However, the much lower bond risk premium more than offsets the
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higher consumption cash flow risk so that the consumption risk premium still ends up lower than in the benchmark

Model 1.

In summary, Model 2 is simple and generates results that are qualitatively and quantitatively similar to our

benchmark results. But, by construction, Model 2 does an awful job at pricing the stock-based moments. This

immediately raises the question of whether the low consumption risk premium and high wealth-consumption ratio

are the result of ignoring important sources of risk when pricing the consumption claim. To dispel this possibility,

we consider both bond- and stock-based moments in our benchmark model.

Model 3 To understand the role of equity-based moments better, we propose Model 3 which focusses on fitting

the equity return and the price-dividend ratio on the stock market while ignoring the bond-based moments. The

state vector contains the short rate, inflation, the PD ratio on the stock market, the excess return on the stock

market, consumption growth, and labor income growth (in that order). It strips out from the state the CP factor,

the yield spread, and the factor mimicking portfolios for consumption growth and labor income growth. This is

the minimal model that enables us to fit the aggregate stock market facts.

We estimate two elements in Λ0 and six elements in Λ1, associated with the short rate and the excess return

on equity (2 in row 1 and 4 in the equity row, consistent with the structure of full model). Because it implies a

one-factor structure for the nominal yield curve, it does substantially worse than Model 1 and 2 in fitting the term

structure of yields of all maturities as well as the CP factor; See Table A.2. The model implies an annual 20-year

real yield of 2.66%, a 50-year real bond risk premium of 1.50%, a consumption risk premium of 2.24%, and a mean

wealth-consumption ratio of 96. These numbers are in between those of Model 1 and Model 2. Hence, a model

that is substantially less rich on the term structure side but fits the equity excess return and price-dividend series

very well generates qualitatively similar conclusions, at least with respect to the mean wealth-consumption ratio

and the associated consumption risk premium.

The dynamics of the wealth-consumption ratio do differ somewhat from those of the benchmark model. The

volatility of the WC ratio is lower at 14% and the time series correlation with the WC ratio of Model 1 is 93.0%,

which is the lowest among all alternative models we consider. There are episodes in the sample where this results

in the WC ratio of Model 3 going up when the WC ratio of all other models goes down. The reason for the gap is

that, while the long-term real yield is still highly correlated with that in Model 1 (91.7%), the consumption risk

premium is much less so (67.1%). The low correlation between the consumption risk premium in Models 2 and 3

(68.8%) shows that emphasizing the pricing of risk in the stock market at the expense of the risk pricing in the

bond market makes a tangible difference. In particular, Model 3 fails completely at capturing the dynamics of

the nominal bond risk premium as described by the CP factor. This has implications for the cost of consumption

fluctuations.

Model 4 Model 4 combines Models 2 and 3. The state vector contains the short rate, inflation, the yield

spread, the PD ratio, the excess return on the stock market, consumption growth, and labor income growth (in

that order). It leaves out the CP factor and the factor mimicking portfolios for consumption growth and labor

income growth. Model 4 adds a second term structure factor to Model 3. Alternatively, it adds the aggregate

stock market moments to Model 2. Model 4 generates small bond pricing and stock pricing errors, but to sizeable

pricing errors on CP and the factor mimicking portfolio returns. Naturally, model 4 fits better than either Models

2 or 3, but the log difference in simple (weighted) average pricing errors is still 62% (54%) with the benchmark

Model 1. See Table A.2. In terms of the long-term real yield and bond risk premia, Model 4 is very close to

Model 2. In terms of the consumption risk premium, it is close to Model 3. The mean wealth-consumption ratio

is 96 in Model 4, similar to the 83 average in Model 1. The wealth-consumption ratios in Models 1 and 4 have a
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correlation of 99.85%.

Like Model 3, Model 4 implies a positive correlation between real bond prices and the prices on the consumption

strip with only cash flow risk; in Model 4 that correlation is higher still. This results in a substantial risk premium

for the consumption strip of about 30bps at 50-year horizon. The mean cost of consumption fluctuations is 52.9%

for Model 4 (compared to 36.2% for Model 2 and 16.2% for Model 3).

Model 5 In Model 5, we add back the CP factor to the state vector of Model 4. This is the full model, except

without the two factor mimicking portfolio returns in the state. This model results in a substantially better fit for

the CP factor. In order to fit the CP factor better, the model focuses more on the 1- to 5-year bond yields and

less on the long end of the term structure. The result is higher model-implied nominal and real long-term bond

yields. The 20-year nominal (real) yield is 7.01% (2.99%), the highest among all models. The 50-year real bond

risk premium is 2.05% per year. The mean wealth-consumption ratio is 69 compared to 96 in Model 4 (and 83 in

Model 1). The wealth-consumption ratios in model 1 and 5 have a correlation of 99.97%.

Going from Model 4 to Model 5, there is a dramatic change in consumption cash flow risk. In Model 5, the

prices of strips that pay the risky part of aggregate consumption and the prices of real bonds are strongly negatively

correlated, so that the cash flow part of the consumption strip hedges the real rate risk in these strips. This lowers

the risk premium and the overall yield on the consumption claim. It is the low consumption cash flow risk that is

responsible for the lower cost of consumption fluctuations in Model 5 (-1.8%), relative to Model 4 (52.9%). The

higher consumption risk premium of 2.67% is therefore solely attributable to the higher real yields and bond risk

premia, not to higher consumption cash flow risk.

Model 6 In Model 6, we add back the two factor mimicking portfolios in the state but leave out the CP factor.

Naturally, this results in a substantially better fit for the factor mimicking portfolios at the expense of the fit for

the CP factor. The bond pricing is similar to that in Models 2 and 4 with relatively low long-term rates and

real bond risk premia, a low consumption risk premium, and a high mean wealth-consumption ratio (115). The

factor mimicking portfolios add priced sources of equity risk which add to the riskiness of the consumption claim.

Adding the factor mimicking portfolios (going from Model 4 to Model 6) substantially increases the mean cost of

consumption fluctuations from 52.9% in Model 4 to 68.1% in Model 6. Despite the additional consumption cash

flow risk, the overall consumption risk premium is lower in Model 6 than in Model 4 because the real bond risk

premium is lower.

Summary Figure A.7 shows the wealth-consumption ratio for the benchmark model 1 and the 5 simpler (and

sequentially more complex) models. They show that the wealth-consumption ratios are highly correlated across

models, with all numbers lying between 91.23% and 99.98%. If we exclude Model 3, the correlation is never below

98%. The high comovement is largely driven by the high comovement in the real yield curve across models. For

example, the real 20-year yield across all 6 models varies between 91.68% and 99.97%. Again, the lowest correlation

comes from Model 3; all other have real yield correlations in excess of 99%. Since all models price the short-term

bond perfectly, and because one factor accounts for a lot of the comovement across bonds of various maturities,

that conclusion is not surprising.

The main difference between models, therefore, is in the level rather than the dynamics of the wealth-

consumption ratio. The average varies from 69 in Model 5 to 115 in Model 6. As discussed above, this difference is

largely accounted for by differences in the mean (real) yield curve, which is plotted in Figure A.8. The long-term

real yield is highest in Models 1 and 5, the only two that contain the CP factor. Including the CP factor forces the

estimation to focus more on the 1- through 5-year part of the yield curve in order to better match the one-year bond
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Figure A.7: Wealth-Consumption Ratio, Models 1-6

risk premium. This leads the estimation to choose a higher long-term bond yield, and a lower wealth-consumption

ratio.

Finally, the mean cost of consumption fluctuations (CCF), and to a lesser degree their dynamics, differ sub-

stantially across models. Figure A.9 plots the CCF for Models 1 through 6. Consumption cash flow risk is priced

quite differently in Models 1 and 5 with the CP factor in the state than in the other models, resulting in much

lower CCF than in Models 2, 3, 4, or 6. This difference underscores the importance of including the CP factor, a

measure of the one-year bond risk premium, when it comes to measuring the cost of consumption fluctuations.

D.2 Changes to State Dynamics

A different dimension of the “what drives what” question is the specification of the VAR which governs the

dynamics of the state variables. We study four models, Models 7-10, which have the same state variables as the

benchmark Model 1, but simplified VAR dynamics. Table A.2 lists the asset pricing errors of these models in its

four last columns.

Model 7 In Model 7, we zero out all non-significant elements of the Ψ matrix. This leads to only two zeros

in the 4 × 4 bond block. However, the pd ratio only loads on its own lag, and expected stock returns are only

significantly predicted by the lagged pd ratio. The factor mimicking portfolio returns depend on the lagged excess

stock return, and the fmp for consumption growth additionally on lagged inflation. The consumption growth rate

is predicted significantly by the yield spread, the pd ratio, and its own lag. Labor income growth is predicted only

by lagged consumption growth. After imposing these zero restrictions, we re-estimate the constrained companion

matrix.

Despite the substantial changes to the state vector’s dynamics, we find similar results. The wealth-consumption

ratio in Model 7 has a correlation of 99.98% with that in Model 1. The model-implied 20-year real yields are

essentially perfectly correlated because the dynamics of the bond block did not change much. The average long-

term real yield and real bond risk premium are higher, though, which results in a lower mean wealth-consumption
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Figure A.8: Average Yield Curve, Models 1-6
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Figure A.9: Cost of Consumption Fluctuations, Models 1-6
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Figure A.10: Wealth-Consumption Ratio Models 1 and 7-10

ratio (67 in Model 7 versus 83 in Model 1) and a higher consumption risk premium (2.74% versus 2.38%). Some

of the increase in the consumption risk premium is due to a higher reward for consumption cash flow risk. The

reason is that the prices of risky consumption cash flow strips are less negatively correlated with real bond prices

than in the benchmark model. The higher consumption cash flow risk leads to a cost of consumption fluctuations

which is slightly higher on average (4.0% compared to -2.4% in Model 1). While expected consumption growth

in Model 7 still has a high correlation of 96.3% with that in Model 1, that small difference is sufficient to lead to

noticeable differences in the consumption cash flow risk premium and the cost of consumption fluctuations.

Models 8 and 9 In Model 8, we only zero out only the elements in the pd and stock return equation that

are not significant. In Model 9, we zero out only the elements in the factor mimicking portfolio return equations

that are not significant. In both cases, this leads to very minor changes to the benchmark results because the term

structure implications of Models 1, 8, and 9 are nearly identical and the expected consumption growth dynamics

are identical.

Model 10 In Model 10, we only zero out the elements in the consumption and labor income growth equations

that are not significant. This model is similar to Model 7, which clarifies that the change in results between Model

1 and 7 is largely due to the changed consumption and labor income growth dynamics. In Model 10, we have

the lowest mean wealth-consumption ratio among all models, at 62, and the highest consumption risk premium at

2.94% per year. The cost of consumption fluctuations is 9.9% on average.

Summary Figure A.10 shows the wealth-consumption ratio for the benchmark model 1 and the four simpler

models in terms of VAR dynamics, Models 7-10. They show that the wealth-consumption ratios are highly corre-

lated across models, with all numbers lying between 99.62% and 99.99%. The high comovement is largely driven

by the high comovement in the real yield curve across models and the high correlation in expected consumption

growth dynamics. For example, the real 20-year yield across the five models is nearly perfect.
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Figure A.11: Average Yield Curve, Models 1 and 7-10

The main difference between models, therefore, is in the level rather than the dynamics of the wealth-

consumption ratio. The average varies from 62 in Model 10 to 87 in Model 9. As discussed above, this small

difference is largely accounted for by small differences in the mean (real) yield curve, which is plotted in Figure

A.11. Despite these differences, the mean wealth-consumption ratios of all 10 models (ranging from 62 to 115) are

all more than double the mean price-dividend ratio on stocks, which is 26 in our sample.

The range across all 10 models for the consumption risk premium is between 52bp and 74bp per quarter or

between 2.07% for Model 6 and 2.94% for Model 10 per year. It deserves emphasis that even the highest value,

implies a consumption risk premium less than half as big as the mean equity risk premium of 6.4%. Also, the

narrow range of estimates (87 basis points per year) is testimony to the robustness of our results.

Finally, Figure A.12 shows that the cost of consumption fluctuations is much less affected by zeroing out

elements of the VAR dynamics, compared to changing the elements in the state vector itself.
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Cost of consumption Fluctuations − models 1, 7−10
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Figure A.12: Cost of Consumption Fluctuations, Models 1 and 7-10
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Table A.2: Model Comparison: Root Mean Squared Errors

Model: 1 2 3 4 5 6 7 8 9 10
1q yield 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1y yield 0.465 0.500 0.495 0.495 0.500 0.575 0.464 0.473 0.467 0.462
3y yield 0.386 0.452 0.519 0.417 0.407 0.448 0.385 0.389 0.386 0.384
5y yield 0.332 0.382 0.553 0.346 0.338 0.353 0.334 0.332 0.332 0.333
10y yield 0.372 0.331 0.641 0.345 0.355 0.344 0.388 0.368 0.374 0.383
20y yield 0.653 0.589 0.847 0.628 0.658 0.620 0.700 0.651 0.654 0.687
CP 0.716 1.474 1.745 1.389 0.771 1.424 0.842 0.812 0.764 0.755
PD 0.224 39.141 0.392 0.381 0.235 0.411 0.262 0.244 0.229 0.278
Equity RP 0.151 3.163 0.390 0.222 0.154 0.194 0.146 0.137 0.157 0.177
FMPc RP 0.058 1.154 0.952 0.933 0.611 0.049 0.587 0.006 0.406 0.061
FMPl RP 0.365 1.612 1.738 1.765 1.332 0.486 0.234 0.490 0.552 1.019
SM 0.338 4.436 0.752 0.629 0.487 0.446 0.395 0.355 0.393 0.413
SM (%) − -257.4% -79.9% -62.0% -36.5% -27.6% -15.4% -4.7% -14.9% -19.9%
WM 0.528 5.522 1.125 0.907 0.628 0.806 0.631 0.564 0.581 0.582
WM (%) − -234.8% -75.6% -54.1% -17.4% -42.4% -17.9% -6.6% -9.6% -9.7%

The table reports root mean squared errors (expressed in percent) for six yields, ranging in maturity from 3-months to 20-years, the Cochrane-Piazzesi
factor (a measure of the nominal bond risk premium which is in the same units as a yield), the log price-dividend ratio (same units as yield), and
the equity risk premium on the market portfolio, the consumption growth factor mimicking portfolio, and the labor income growth factor mimicking
portfolio. The 10 different models are in the columns, with the first column being the benchmark model. The row SM reports the simple mean across
the 11 RMSEs. The row SM(%) reports the log difference in SM with Model 1. The row WM reports the weighted mean across the 11 RMSEs. The
row WM(%) reports the log difference in WM with Model 1. The weights in the weighted mean reflect the weight each of these moments receives in the
minimization problem we are solving to find the market prices of risk, with one exception. For the calculation of WM we cap the weight on the 20-year
yield at 30% while the estimation weights it more heavily. The weights are held constant across columns.
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