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1 Introduction

The study of social networks was initiated by sociologists more than a century ago and has

grown to be a central field of sociology over the past fifty years (see e.g. Wasserman and

Faust, 1994). Over that same period, a mathematical literature on the structure and prop-

erties of graphs has been developed and extensively studied (see, e.g. Bollobás, 1998). A

recent awakening of interest in social networks has occurred in the computer science and

statistical physics literatures, mainly over the past fifteen years (see Albert and Barabási,

2002; Newman, 2010, for an overview of these studies). While the importance of embed-

dedness of economic activity in social settings has been fundamental to sociologists for some

time, it was largely ignored by economists until the last decade. This is surprising given

that non-market interactions, i.e. interactions between agents that are not mediated by the

market, are crucial to explain different economic phenomena such as stock market crashes,

growth, education, religion, crime, etc. The studies of networks with economic perspectives

and using game-theoretic modelling techniques have only emerged over the last decade (see

Goyal, 2007; Jackson, 2008).

In the present article, we would like to survey the recent literature on networks in eco-

nomics. As in all surveys and because of space constraint, we will not be able to cover all

aspects of the literature and therefore we refer to other overviews such as Goyal (2007),

Jackson (2008), de Mart́ı and Zenou (2011) and Jackson and Zenou (2013a).1 We will ex-

pose what we believe are the most important aspects of the economics of networks and will

illustrate each aspect by a simple theoretical model.

This article is divided in two parts. In the first one, we will look at the theoretical aspects

of network economics using a game-theoretical approach. In this part, we will look first at

games on networks, which take networks as given and focus on the impact of their structure

on individuals’ outcomes. We will then analyze network formation and explain the way

links between agents are formed. We will also study what happens when agents choose both

links and actions. In the second part of this paper, we will see how the theoretical models

can be used to address applied and empirical-relevant questions. We will mainly focus on

labor-market networks and crime networks. We will also provide some empirical evidence

on these two types of networks and address some policy implications of the models.

1See also Jackson and Zenou (2013b) for a collection of the most important published papers in the

economics of networks.
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2 Networks in economics: Theoretical aspects

2.1 Games on networks

We begin with a class of canonical and widely applicable games; specifically, games where

there is a fixed and given network of interactions. Links indicate which players’ strategies

affect which others’ payoffs. In particular, a given player’s payoff depends only on the play

of her neighbors. Of course, this still results in network effects since there may be chains of

influence.

2.1.1 Network definitions

We provide some basic definitions on networks.

Players and Networks A set of players  = {1     } are connected by a network.
A graph or network is a pair (g), where g is a network on the set of nodes  . To

each network g, we associate its adjacency matrix G = []. A graph is undirected if G is

required to be symmetric so that  = , and is directed otherwise. It is useful to use the

notation  ∈ g to indicate that  = 1 and  ∈ g to indicate that  = 0, and one can

represent a graph by the set of links that are present (so one could alternatively represent g

by its set of links). A weighted adjacency matrix, G, is when  can take other values than

0 and 1.

A relationship between two nodes  and , represented by  ∈ g, is referred to as a link.
Links are also referred to as edges or ties in various parts of the literature; and sometimes

also directed links, directed edges, or arcs in the specific case of a directed network.

A walk in a network (g) refers to a sequence of nodes, 1 2 3     −1  such that

+1 ∈ g for each  from 1 to . The length of the walk is the number of links in it, or

 − 1. A path in a network (g) is a walk in (g), 1 2 3     −1  , such that all

the nodes are distinct.

The distance ( ) between two nodes  and  in the same component of a network is

the length of a shortest path (also known as a geodesic) between them.

The neighbors of a node  in a network (g) are denoted by (g), so that

(g) = {| ∈ g}
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The degree of a node  in a network (g) is the number of neighbors that  has in the

network, so that (g) = |(g)|. Unless otherwise stated, let us suppose that  = 0, so

that nodes are not linked to themselves.

The th power G = G( ) G of the adjacency matrix G keeps track of indirect

connections in g. More precisely, the coefficient 
[]
 in the ( ) cell of G

 gives the number

of paths of length  in  between  and . In particular, G0 = I. Note that, by definition, a

path between  and  needs not to follow the shortest possible route between those agents.

For instance, when  = 1, the sequence  → →  constitutes a path of length three in

 between  and .

2.1.2 Game on network definitions

When the network is fixed, there are two types of games: games with strategic complemen-

tarities and games with strategic substitutes. Let us define them formally. Players have

effort spaces , and payoff functions  :  → R. The action spaces are finite sets or sub-

sets of a Euclidean space. A given player’s payoff depends on other players’ behaviors, but

in particular only on those to whom the player is connected in the network. More formally,

’s payoff depends only on  and {}∈(g) and can be written as: ( ), where  ∈ 

is the effort of player . We have the following definitions:

A game exhibits strategic complements if it exhibits increasing differences; that is, for all

 , with  6= ,  ≥ 0 and  ≥ 0:

( )− (
0
 ) ≥ ( 

0
)− (

0
 

0
)

A game exhibits strategic substitutes if it exhibits decreasing differences; that is, for all

 , with  6= ,  ≥ 0 and  ≥ 0:

( )− (
0
 ) ≤ ( 

0
)− (

0
 

0
)

These notions are said to apply strictly if the inequalities above are strict whenever

  0 and   0.

Because of the lack of space, we will only expose games with strategic complementarities

since they have been more studied, have nice properties and have nicer and more natural

applications in economics.2

2Prominent papers studying games with strategic substitutes are Bramoullé and Kranton (2007) and
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2.1.3 A simple model with strategic complementarities3

The game Consider a game in which  agents, linked to each other in a network g,

must decide how much effort to exert in some activity. We denote by  the effort level of

agent  and by x = (1  )
> the vector of efforts of all agents (> means transposition).

Each agent  selects an effort  ≥ 0, and obtains a payoff (xg) that depends on the effort

profile x and on the underlying network g, in the following way:

(xg) =  − 1
2
2 + 

X
=1

 (1)

where    0. In this linear-quadratic utility function, agents are ex ante homogeneous in

terms of observable characteristics (i.e. they all have the same ) and their heterogeneity

only stems from their position in the network. The first two terms of (1),   − 1
2
2 , give

the individual benefits and costs of providing effort . The last term of this utility function,


P

=1 , reflects the influence of direct links on own action. This peer effect component

can be heterogeneous, and this endogenous heterogeneity reflects the different locations of

individuals in the network g and the resulting effort levels. More precisely, bilateral influences

are captured by the following cross derivatives, for  6= :

2(xg)


=  ≥ 0 (2)

When  and  are directly linked, i.e.  = 1, the cross derivative is   0 and reflects

strategic complementarity in efforts. When  and  are not direct friends, i.e.  = 0, this

cross derivative is zero.

The Bonacich network centrality Define

M (g ) = (I−G)−1 =
+∞X
=0

G

where I is the identity matrix. Denote by 1 the column vector of 1. We have the following

definition:

Galeotti and Goyal (2010). For an overview of the literature on games on networks, see Jackson and Zenou

(2012a).
3We assume perfect information, i.e. the players know everything about the network and other players’

actions. For games on networks with incomplete information, see Calvó-Armengol and de Mart́ı (2009),

Galeotti et al. (2009), Hagenbach and Koessler (2011) and Acemoglu et al. (2011).
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Definition 1 (Katz, 1953; Bonacich, 1987) Given  ≥ 0, a small enough scalar, the

vector of Katz-Bonacich centralities of parameter  in network g is defined as:

b (gφ) = (I− G)
−1
1 =M (gφ)1 =

+∞X
=0

G1 (3)

The Katz-Bonacich centrality of node  is thus (g ) =
P

=1(g ), and counts the

total number of walks in g starting from . It is the sum of all loops (g ) from  to 

itself, and of all the outer walks
P

 6=(g ) from  to every other player  6= , that is:

(g ) = (g ) +
X
 6=

(g )

By definition, (g ) ≥ 1, and thus (g ) ≥ 1, with equality when  = 0.

Nash equilibrium4

Let us now characterize the Nash equilibrium of the game where agents choose their

effort level  ≥ 0 simultaneously. Denote by 1(G) the spectral radius of G. Ballester et

al. (2006) have shown the following result:

Proposition 1 If 1(G)  1, the game with payoffs (1) has a unique interior Nash equi-

librium in pure strategies given by:

x∗ = b (g ) (4)

This results shows that the Katz-Bonacich centrality is the right network index5 to ac-

count for equilibrium behavior when the utility functions are linear-quadratic. In (1), the

local payoff interdependence is restricted to direct network contacts. At equilibrium, though,

this local payoff interdependence spreads all over the network through the overlap of direct

link clusters. The Katz-Bonacich centrality precisely reflects how individual decisions feed

into each other along any direct and indirect network path. The condition 1(G)  1 stip-

ulates that local complementarities must be small enough compared to own concavity, which

4In game theory, the Nash equilibrium (named after John F. Nash) is a solution concept of a game

involving two or more players, in which no player has anything to gain by changing only her own strategy

(i.e., by changing unilaterally). If each player has chosen a strategy and no player can benefit by changing

her strategy while the other players keep theirs unchanged, then the current set of strategy choices constitute

a Nash equilibrium.
5There are many other centrality measures such as the betweeness or the closeness centrality. See Wasser-

man and Faust (1994) for an overview on the different possible centrality measures.
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prevents multiple equilibria to emerge and, at the same time, rules out corner solutions. The

condition 1(G)  1 also guarantees that (I− G) is invertible and its series expansion

well defined.

Proposition 1 has characterized the equilibrium effort ∗ of each agent  as equals to her

Bonacich centrality. We can now characterize the equilibrium utility of  as a function of her

Bonacich centrality. It is easily verified that:

(x
∗g) =

1

2
∗2 =

1

2
[  (g )]

2

In other words, the equilibrium utility of each agent  is positively related to her Katz-

Bonacich centrality.

2.2 Network formation

In the previous section, we have seen how the position in the network of each player (i.e.

her Katz-Bonacich centrality) affects her outcomes when the network is fixed. We now look

at network formation but agents cannot decide how much effort to exert in some activity.

They only choose with whom they want to form a link.

2.2.1 Static models of network formation

Myerson (1977, 1991) provides an early formulation of a network formation game. The

structure of the game is simple: agents have to decide about their potential partners and

their strategies consist in naming those with whom they want to form a link with. For a

link to be formed, it has to be that two individuals name each other, i.e. there needs to

be mutual consent in link creation. The Nash equilibrium concept defined above can then

be used to find out which strategy profiles are stable and, hence, which networks are the

possible outcomes of the game.

The main problem of using the Nash equilibrium concept is that it exacerbates the

coordination problems that arise when all agents are simultaneously deciding about links.

In particular, the empty network (i.e. nobody forms a link) is always a Nash equilibrium of

this game since no deviation is profitable. Indeed, deviating means here to name someone

as a friend but this will not generate a link because of mutual consent. In general, with the

Myerson game, there are many equilibria, which reduces the attractiveness of this approach.
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A solution to this problem has been proposed by Jackson and Wolinsky (1996). In their

seminal paper, they introduce an alternative solution concept for network formation games,

namely pairwise stability, which provides a network equilibrium notion. Let us define it.

Consider some payoff function  (g) = (1 (g)       (g)) that assigns a payoff to every

agent in  as a function of the underlying network g connecting them.

Definition 2 A network g is pairwise stable for the payoff function  if and only if:

() for all  ∈ g, (g) ≥ (g−) and (g) ≥ (g−)
() for all  6∈ g, if (g)  (g+), then (g)  (g+)

In words, a network is pairwise-stable if () no player gains by cutting an existing link, and

() no two players not yet connected both gain by creating a direct link with each other.

Pairwise-stability thus only checks for one-link deviations.6 It requires that any mutually

beneficial link be formed at equilibrium but does not allow for multi-link severance.7 This

notion takes into account the individual incentives to create and sever links and the necessary

mutual consent between both sides for a link to be formed.8

Pairwise-stable networks can be interpreted as the limiting graphs of a dynamic procedure

of network formation. Suppose, indeed, that players myopically add or sever links to improve

their current status, and that only one link is added or removed at a time. When this process

converges, the networks ultimately reached are pairwise-stable.9

Let us now define strong efficiency.

Definition 3 A network g ⊂ g is strongly efficient if


¡
g
¢ ≡X

∈g
(g

) ≥ (g) ≡
X
∈g

(g) for all g ⊂ g

6This weak equilibrium concept is often interpreted as a necessary conditions for stronger stability

concepts.
7There are other network equilibrium concepts, which are often refinements from the pairwise-stability

equilibrium notion. See Bloch and Jackson (2006) for a complete overview on this issue. In particular, they

compare variations on three types of definitions: those based on a pairwise stability notion, those based on

the Nash equilibria of a link formation game, and those based on equilibria of a link formation game where

transfers are possible.
8Bala and Goyal (2000) extend the Myerson model described above by only considering directed networks,

i.e. individuals form links unilaterally without requiring the consent of the other party to create a link.
9Note that network transitions only concern one link at at time. The dynamics may thus lock in (the set

of limiting graphs need not be unique) or cycle. See Jackson and Watts (2002) for more details.
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Observe that this concept of efficiency is utilitarian and not Paretian since this definition

says that the socially efficient network is the one for which the sum of utilities of all agents

is the highest among all possible networks with  agents.

2.2.2 A simple model: The connections model

Jackson and Wolinsky (1996) has proposed a simple model where the utility function of each

individual  in a network g is given by:

(g) =
X
 6=

() −
X

∈()

 =
X
 6=

() − (g)  (5)

where 0    1 gives the value of the link between two individuals  and , ( ) is the

geodesic distance between  and , i.e. the length of any shortest path between  and ,10 and

finally  is the cost of forming a link. In this formulation, when individual  has a direct link

with , she first benefits from this link by obtaining  (since, for any direct link, ( ) = 1)

but then she may benefit from the direct links of  by obtaining () (indirect connections,

which are weighted by a decay factor).

Observe that if two agents create a link between them it is never detrimental to a third

partie (positive externalities). This is because creating a new link does not affect the cost of

a third player (she still has the same number of direct links) but can affect her gains since

a new link can shorten the distance between a third player and another one. Here is an

example of utilities for the following star network:

1 32

cgu  2
1 )(  cgu 22)(2   cgu  2

3 )( 

Figure 1: Utility values in a star-shaped network

We have the following result for the connections model (Jackson and Wolinsky, 1996):

Proposition 2 In the connections model in which the utility of each player  = 1   is

given by (5), we have:

10See Section 2.1.1.
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() A pairwise stable network has at most one (non-empty) component.

() For    − 2, the unique pairwise stable network is the complete graph  .

() For −2     a star encompassing all players is pairwise stable, but not necessarily

the unique pairwise stable graph.

() For   , any pairwise stable network that is non-empty is such that each player has

at least two links.

This proposition characterizes the pairwise-stable equilibria. In particular, it says that

if  − 2    , then the star-shaped is a pairwise stable equilibrium. Let us check if this

is true for the network described in Figure 1. If the star agent, player 2, wants to delete

a link (she cannot create any new link), her net utility is:  − . If   , this will never

happen. If a peripheral agent (say player 1) deletes a link, her net utility is:  −  while if

she creates a link (with player 3), her net utility is: − − 2. Any of these two actions will

never take place if  − 2    . It is easily verified that this same condition holds for a

star-shaped network with  agents to be pairwise stable. As can be seen in this proposition,

one of the main problems of pairwise stable networks is that it is very difficult to provide a

full characterization of the set of equilibrium networks.11

Let us now give a result in terms of efficiency:

Proposition 3 The unique strongly efficient network in the symmetric connections model,

where the utility of each player  = 1   is given by (5), is:

(1) the complete graph  if    − 2.

(2) a star encompassing all players if  − 2     +
(−2)
2

2

(3) no links (the empty network) if  +
(−2)
2

2  .

There is therefore a tension between stability and efficiency. Take part () of Propositions

2. In the high cost range (  ) the only (non-degenerated) paiwise stable networks are

those who are overconnected from an efficiency perspective. For example, when   , the

star cannot be pairwise stable but it is an efficient network.

11It is indeed well-known that non-cooperative games of network formation with nominal lists of intended

links are plagued by coordination problems (Myerson, 1991; Jackson, 2008). Cooperative-like stability

concepts solve them partially, but heavy combinatorial costs still jeopardize a full characterization.
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2.2.3 A second model: The co-author model

In this case, for   0,
12 the utility function of a player  = 1   in network g is given by:

(g) =
X

∈(g)

∙
1


+
1


+

1



¸
where  ≡ (g) is the number of direct links player  has (or equivalently the number of

projects player  is involved in). Here each player is a researcher and a link  is a joint

project (or joint paper or collaboration) between players  and .

Each researcher has a fixed amount of time to spend on research and so the time each

researcher  spends on a given project is inversely related to the number of project  he

is involved in. The synergy between two researchers  and  are captured by the term

1(). Here the more projects each researcher is involved with, the lower the synergy that

is obtained per project. There is no direct cost of forming a link but an indirect cost because

of congestion.

Contrary to the connections model, when two agents create a link, it is never beneficial

to a third partie (negative externalities). This is because creating a new link does affect the

time the researcher will spend on other projects with the researchers she is already connected

to.

Proposition 4 In the co-author model,

() if  is even, then the strongly efficient network is a graph consisting of 2 separate

pairs (dyads), and

() a pairwise stable network can be partitioned into fully intraconnected components, each

of which has a different number of members. If  is the number of members of one

such component and 0 is the next largest in size, then   (0)2.

2.3 Choosing both actions and links

There are different models that have combined actions’ and links’ choices. For example, Bloch

and Dutta (2009) proposed a model where both link intensities and network formation are

modeled. For games with strategic substitutes, Galeotti and Goyal (2010) has developed

12It is assumed that for  = 0, (g) = 0.
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a static model where players choose both actions and links while López-Pintado (2008)

investigates a dynamic one. Because we have focused on games with strategic complements,

we would like now to expose the static model of Cabrales et al. (2011).13

Consider a simultaneous move game of network formation (or social interactions) and

investment.  = {1  } is a finite set of players, and  = {1     } is a finite set of types
for these players. We let  be a multiple of , that is,  =  for some integer  ≥ 1, so
that there is the same number of players of each type. The case  =  is referred to as the

baseline game and the general case  =  as the −replica of this baseline game. For each
player  ∈  , we denote by  () ∈  her type. In an −replica game, there are exactly
 players of each type  ∈  . This replica game allows us to take limits as the population

becomes large without having to specify the types of the new individuals that are added.

Let   0. Player ’s utility is equal to:

(x s) = ()  + 

X
=1 6=

 (s) − 1
2
2 −

1

2
2 (6)

where  ≥ 0 is the productive effort taken by player , with x = (1  ) being a profile of
productive efforts while  ≥ 0 is the socialization effort of player , with s = (1  ) being
a profile of socialization efforts. This utility is very similar to the one defined in (1) with the

difference that the socialization effort  is also included. In (6), the returns to the investment

are the sum of a private component and a synergistic component. The private returns are

heterogeneous across players and depend on their type. We denote by a = (1  ) the

profile of these private returns, where 0  1 ≤ 2 ≤  ≤ . Payoffs have non-negative

cross effects, i.e.

2(x s)


= (s), for all  6= , (7)

reflecting strategic complementarities in productive investments ( ≥ 0 corresponds to the
level of synergistic returns). As in (1), the size (s) ≥ 0 of these complementarities

depends on the profile of socialization efforts, and varies across different pairs of players.

The key innovation is  (s), which determines link formation. Players  and  interact

with a link intensity given by:

13See König et al. (2012) for a dynamic model of network formation with strategic complements in efforts.
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(s) =
P

=1 
(8)

By definition, links are symmetric, that is,  = . We also allow for self-loops (when

 = ). From (8), we can determine the adjacency matrix G of this network where each cell

 is 0    1.

A key innovation of this paper is that the synergistic effort s is generic within a community

−a scalar decision. Socializing is not equivalent to elaborating a nominal list of intended
relationships, as in the literature on network formation surveyed by Jackson (2008) and

exposed in Section 2.2. We have seen (see Proposition 2) that this leads to too many equilibria

and that it is very difficult to provide a full characterization of the set of equilibrium networks.

To avoid this problem, here, network formation is not the result of an earmarked socialization

process so that agents put efforts in socialization that may result in links between agents.

This choice of a model without earmarked socialization greatly improves the tractability of

the analysis. Unlike with richer models of link formation a la Jackson and Wolinsky (1996)

exposed in Section 2.2, we can resort to off-the-shelf Nash equilibrium analysis without being

burdened by the extreme (combinatorial) multiplicity problems of the other models. As a

result, the authors can perform a standard type of equilibrium analysis that equates marginal

costs and benefits of both production and socialization. Define:

Φ(a) = 

P

=1 
2
P

=1 
 (9)

Cabrales et al. (2011) demonstrate the following result:

Proposition 5 Suppose that 2 (3)
32

 Φ(a)  0. Then, there exists an ∗ such that

for all −replica games with  ≥ ∗, there are exactly two stable interior pure strategy

Nash equilibria. These pure strategy Nash equilibria are such that, for all players  of type

 , the strategies ( ) converge to (
∗
() 

∗
()) as  goes to infinity, where ∗() = (),

∗() = (), and ( ) are positive solutions to:(
 = Φ(a)2

 [− Φ(a)] = 1
(10)

In words, when Φ(a) is small enough compared to the infra-marginal cost for a productive

investment, the system of two equations (10) with two unknowns has exactly two positive
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solutions. As  gets large, each such solution gets arbitrarily close to a pure strategy Nash

equilibrium of the corresponding −replica game. We get two approximate Nash equilibria.
Besides, as  gets large, every pure strategy Nash equilibrium gets arbitrarily close to a

solution of (10). The equilibrium multiplicity identified in Proposition 5 reflects an inter-

twinned coordination problem in the socialization process and in the production technology.

The authors are then able to compare the actions and payoffs of players across the two ap-

proximate equilibria characterized in Proposition 5. They show that the equilibrium actions

can be ranked component-wisely and the equilibrium payoffs can be Pareto-ranked accord-

ingly. There is a Pareto-superior approximate equilibrium (s∗x∗) and a Pareto-inferior

approximate equilibrium (s∗∗x∗∗) while the socially efficient outcome lies in between the

two equilibria. Formally, (s∗x∗) ≥ ¡
sx

¢ ≥ (s∗∗x∗∗) and u
¡
sx

¢ ≥ u (s∗x∗) ≥
u (s∗∗x∗∗), where ≥ is the component-wise ordering. This simple model has shown how

the set of equilibria can be reduced and equilibria can be characterized when agents do not

direct their links but instead choose some effort in socialization.

3 Networks in economics: Applications and empirical

aspects

We would like now to study two important applications of economic networks: labor market

and crime networks.

3.1 Labor-market networks

There is a host of evidence showing that social networks are pervasive in the labor market.

For instance, Holzer (1987, 1988) documents that, in the US, among 16-23 year old workers

who reported job acceptance, 66 percent use informal search channels while only 11 percent

use state agencies and 10 percent newspapers.14 Topa (2001) argues that the observed spatial

distribution of unemployment in Chicago is consistent with a model of local interactions and

information spillovers, and may thus be generated by an agent’s reliance in informal methods

of job search such as networks of personal contacts. Similarly, Bayer et al. (2008) document

that people who live close to each other, defined as being in the same census block, tend to

14See also Granovetter (1995) for additional evidence.
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work together, that is, in the same census block.15 Let us now provide a simple model that

captures these facts.

3.1.1 The model

Let us describe the model of Calvó-Armengol and Jackson (2004). Time evolves in discrete

periods indexed by . The vector  describes the employment status of the workers at time

. If individual  is employed at the end of period , then  = 1 and if  is unemployed then

 = 0.

A period  begins with some agents being employed and others not, as described by the

vector σ−1 = (1−1  −1) that gives the employment status of all workers from the last

period. Next, information about job openings arrives. In particular, any given individual

hears about a job opening with probability  that is between 0 and 1. This job arrival process

is independent across individuals. If the individual is unemployed, then she will take the

job. However, if the individual is already employed then she will pass the information along

to a friend, picked at random among her unemployed friends. As stated above, the graph or

network g summarizes the links of all agents, where  = 1 indicates that  and  know each

other (strong tie), and share their knowledge about job information, while  = 0 indicates

that they do not know each other. Finally, the last thing that happens in a period is that

some agents lose their jobs. This happens randomly according to an exogenous breakup rate,

, which is between 0 and 1. We are able to write the probability P of the joint event that

individual  learns about a job and this job ends up in individual ’s hands. It is equal to:

P(σ) =

⎧⎪⎪⎨⎪⎪⎩
 if  = 0 and  = 


P

:=0
 if  = 1,  = 0, and  = 1

0 otherwise

(11)

where the vector σ describes the employment status of all the individuals at the beginning

of the period. In (11),  is the probability of obtaining a job information without using

friends and relatives. Three cases may then arise. If individuals  and  are unemployed

( =  = 0), then the probability that  will obtain a job is just  since individual  will

never transmit any information to . If individual  is already employed and her friend 

is not ( = 1,  = 0), then individual  transmits this job information to all her direct

15For a survey of the literature on social interactions and the labor market, see Ioannides and Loury (2004).
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unemployed neighbors, who total number is
P

:=0
. We assume that all unemployed

neighbors are treated on equal footing, meaning that the employed worker who has the job

information does not favor any of her direct neighbors. As a result, the probability that an

unemployed worker  is selected among the
P

:=0
 unemployed direct neighbors of an

employed worker  is given by: 
P

:=0
. Finally, if individual  is employed, then she

does not need any job information, at least in the current period.

The first result obtained by Calvó-Armengol and Jackson (2004) is the following.

Proposition 6 The higher (g), the number of strong ties (direct friends) individual  has,

the higher is her individual probability of finding a job.

Indeed, if an individual has more strong ties (direct friends), then she is more likely to

hear on average about more jobs through them but her chance of finding a job directly does

not increase since  is not affected by the size of the network. This result is quite intuitive

since, when the number of direct connections increases, the source of information about jobs

is larger and people find it easier to obtain a job through their friends and relatives. This

is the first prediction of this model, which implies that workers have a greater chance of

finding a job, the higher is the number of their strong ties. Observe that the individual

probability of finding a job through strong ties for individual  is obviously not given by (11)

since P(s) is the probability that only one individual, , who hold a strong tie with , and

who is aware of some job, will transmit this information to individual . To determine the

individual probability of obtaining a job for , one has to do the calculation for all the direct

friends of .

We would now like to study the impact of weak ties (indirect friends or path-connected

friends) on the individual probability of finding a job. Calvó-Armengol and Jackson (2004)

show that, in steady-state, there is a positive correlation in employment status between two

path-connected workers. This result is not at all easy to obtain since, in the short run, the

correlation is negative. Indeed, in a static model, if an employed worker is directed linked

to two unemployed workers, then if she is aware of a job, she will share this job information

with her two unemployed friends (see (11)). These two persons, who are path-connected

(path of length two) are thus in competition and one (randomly chosen) will obtain the job

and be employed while the other will stayed unemployed. So their employment statuses will

be negatively correlated (see Calvó-Armengol, 2004).
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Let us now give the intuition why this negative correlation result does not hold in a

dynamic labor-market model. Consider the star-shaped network described in Figure 2 with

three individuals, i.e.  = 3 and 12 = 23 = 1. Suppose the employment status of these

three workers from the end of the last period is σ−1 = (0 1 0). In the figure, a black

node represents an employed worker (individual 2), while unemployed workers (1 and 3) are

represented by white nodes. Conditional on this state σ−1, the employment states 1 and

3 are negatively correlated. As stated above, this is due to the fact that individuals 1 and

3 are “competitors” for any job information that is first heard by individual 2.

1

2

3

Figure 2: Employment correlations in a star-shaped network

Despite this negative (conditional) correlation in the short run, individual 1 can benefit

from individual 3’s presence in the longer run. Indeed, individual 3’s presence helps improve

individual 2’s employment status. Also, when individual 3 is employed, individual 1 is more

likely to hear about any job that individual 2 hears about. These two aspects counter the

local (conditional) negative correlation, and help induce a positive correlation between the

employment status of individuals 1 and 3.

Proposition 7 Under fine enough subdivisions of periods, the unique steady-state long-run

distribution on employment is such that the employment statuses of any path-connected

agents are positively correlated.

The proposition shows that, despite the short-run conditional negative correlation be-

tween the employment of competitors for jobs and information, in the longer run any in-

terconnected workers’ employment is positively correlated. This implies that there is a

clustering of agents by employment status, and employed workers tend to be connected with

employed workers, and vice versa. The intuition is clear: conditional on knowing that some

set of agents are employed, it is more likely that their neighbors will end up receiving in-

formation about jobs, and so on. The benefits from having other agents in the network

outweigh the local negative correlation effects, if we take a long-run perspective.
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Proposition 8 The longer the length of two-path connected individuals (i.e weak ties), the

lower is the correlation in employment statuses between these two individuals.

Indeed, the correlation between two agents’ employment is (weakly) decreasing in the

number of links that each an agent has, and the correlation between agents’ employment

is higher for direct compared to indirect connections. The decrease as a function of the

number of links is due to the decreased importance of any single link if an agent has many

links. The difference between direct and indirect connections in terms of correlation is due

to the fact that direct connections provide information, while indirect connections only help

by indirect provision of information that keeps friends, friends of friends, etc., employed. In

other words, the longer the path in the social network between two individuals, the weaker

is the effect of job transmission.

3.1.2 Empirical test

Using individual-level data from the UK Labour Force Survey, Patacchini and Zenou (2012a)

test this model by looking at the employment prospects of ethnic minorities. To the tra-

ditional determinants of employment rates (sex, age, education, years since arrival in UK,

percentage of high-skilled leaving nearby, etc...), they add the local ethnic employment den-

sity bands based on travel-time between areas.

Because they do not have direct data on social networks, Patacchini and Zenou (2012a)

conjecture that the social space is highly correlated to the physical space for ethnic minorities

in relatively small areas. This approximation is based on the fact that, in relatively small

areas, ethnic minorities of a given group (say Indians or Pakistanis) are likely to interact

with other ethnic minorities from the same group and thus exchange information about jobs.

In other words, ethnic employment density is interpreted as a proxy for the strength of social

contacts in delivering information about jobs.

Patacchini and Zenou (2012a) test Propositions 6 and 8 described above, which show

that the individual probability of finding a job increases with the number of strong ties and

weak ties, and the longer the length of weak ties, the lower is this probability.

They find that the higher is the percentage of employed workers from a given ethnic

group living nearby, the higher is the probability of finding a job through social networks

(Proposition 6). This effect decays, however, very rapidly with distance, losing significance

beyond approximately an hour travel time (Proposition 8). They argue that local social

18



interactions between people of the same ethnicity can explain this positive relationship and

its spatial trend.

Let us now investigate our second application: criminal networks.

3.2 Criminal networks

It is well-established that delinquency is, to some extent, a group phenomenon, and the

source of crime and delinquency is located in the intimate social networks of individuals

(see e.g. Sutherland, 1947, Sarnecki, 2001 and Warr, 2002). Indeed, delinquents often have

friends who have themselves committed several offenses, and social ties among delinquents

are seen as a means whereby individuals exert an influence over one another to commit

crimes.

3.2.1 A simple model

Glaeser et al. (1996) where among the first to model criminal social interactions. In their

model, criminal interconnections act as a social multiplier on aggregate crime. They impose,

however, a specific network structure, the circle, for the location of criminals. Following

Calvó-Armengol and Zenou (2004) and Ballester et al. (2010), we would like to propose a

more general model that can encompass any social network. For that, we will use the model

of Section 2.1.3 by reinterpreting it in terms of criminal activities.

Denote by  the delinquency effort level (i.e., how often they commit crime) of delinquent

, and by x = (1  )
> the population delinquency profile. Delinquents in network g

decide how much effort to exert. Each agent  selects an effort  ≥ 0, and obtains a payoff
(xg) that depends on the effort profile x and on the underlying network g, in the following

way:

(xg) = |{z}
Proceeds

− 1

2
2|{z}

moral cost of crime

−  ·  · | {z }
cost of being caught

+ 

X
=1

| {z }
positive peer effects

(12)

where   0. This utility has a standard cost/benefit structure (as in Becker, 1968). The

proceeds from crime are given by  and are increasing in own effort . The costs of

committing crime are captured by the probability of being caught 0    1 times the fine

 , which increases with own effort , as the severity of the punishment increases with
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one’s involvement in crime. Individuals have a moral cost of committing crime equals to

1
2
2 , which is also increasing in own crime effort . Finally, the new element in this utility

function is the last term 
P

=1 , which reflects the influence of friends’ behavior on

own action. Denote  ≡ −   0. Then (12) can be written as:

(xg) =  − 1
2
2 + 

X
=1

 (13)

which is exactly the same as (1). We can thus apply Proposition 1 and show that, if

1(g)  1, there is exists a unique Nash equilibrium in crime effort given by:

x∗ =  (I−G)−1 1 = b (g )

3.2.2 Policy implications

One interesting aspect of criminal networks is that we can propose alternative policies than

those advocated by Becker (1968) and others. In particular, because of the network aspect,

we can implement a key player policy, which consists in finding and getting rid of the key

player, i.e., the delinquent who, once removed, leads to the highest aggregate delinquency

reduction.

Given that delinquent removal has both a direct and an indirect effect on the group

outcome, the choice of the key player results from a compromise between both effects. In

particular, the key player need not necessarily be the one exerting the highest delinquency

effort or, equivalently, the one with the highest Katz-Bonacich centrality measure. The

planner’s objective is thus to generate the highest possible reduction in aggregate delinquency

level by picking the appropriate delinquent. Formally, the planner’s problem is the following:

max{∗(g)− ∗(g[−]) |  = 1  }

where ∗(g) =
X


∗ (g) is the total equilibrium level of crime in network g and g[−] is

the network when individual  has been removed. In terms of adjacency matrix, network

g[−] corresponds to the adjacency matrix G[−], which is equal to G for which the row and

column of individual  has been removed. The program above is equivalent to:

min{∗(g[−]) |  = 1  } (14)
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From Ballester et al. (2006, 2010), we now define a new network centrality measure of player

, the intercentrality index, that solves this program.

(g ) =
(g )

2

(g )
(15)

where (g ) is the 
 element on the diagonal of M = (I−G)−1. The Katz-Bonacich

centrality of player  counts the number of paths in g stemming from ; the inter-centrality

counts the total number of such paths that hit . It is the sum of ’s Katz-Bonacich central-

ity and ’s contribution to every other player’s Katz-Bonacich centrality. Holding (g )

fixed, (g ) decreases with the proportion of ’s Katz-Bonacich centrality due to self-loops,

(g )(g ).

Let us now provide an example showing that the key player is not always the most active

delinquent in a network.

Example Consider the following network g:

t
t t

t
t

1

3

2

6

4

5

HHHH

­
­
­
­
­
­­

³³
³³

³³

©©
©©

J
J
J
J
J
JJ

PPPPPPA
A
A
A

¢
¢
¢
¢

t
©©

©©
©©

©©HHHHHHHH

t
t t

tt

8

7

11

9

10

¢
¢
¢
¢

A
A
A
A

³³
³³

³³

PPPPPP

HH
HH

­
­
­
­
­
­­

J
J
J
J
J
JJ

©©©©

Figure 3: Network with eleven delinquents.

We distinguish three different types of equivalent actors in this network, which are the

following:

Type Players

1 1

2 2, 6, 7 and 11

3 3, 4, 5, 8, 9 and 10

For  = 1, the following table computes, for delinquents of types 1, 2 and 3, the value of

delinquency efforts , centrality measures (g ) and intercentrality measures (g ) for

two different values of , 01 and 02. In each column, a variable with a star identifies the
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highest value.

 0.1 0.2

Player Type  (g ) (g )  (g ) (g )

1 0077 175 292 0072 833 4167∗

2 0082∗ 188∗ 328∗ 0079∗ 917∗ 4033

3 0075 172 279 0067 778 3267

First note that type−2 delinquents always display the highest Bonacich centrality mea-
sure. These delinquents have the highest number of direct connections. Besides, they are

directly connected to the bridge delinquent 1, which gives them access to a very wide and

diversified span of indirect connections. For low values of , the direct effect on delin-

quency reduction prevails, and type−2 delinquents are the key players −those with highest
intercentrality measure . When  is higher, though, the most active delinquents are not

anymore the key players. Now, indirect effects matter a lot, and eliminating delinquent 1 has

the highest joint direct and indirect effect on aggregate delinquency reduction. Note that

the network g[−1] has twenty different links, while g[−2] has nineteen links. In fact, when  is

small enough, the key player problem minimizes the number of remaining links in a network,

which explains why type−2 delinquents are the key player when  = 01 in this example.

3.2.3 Empirical test

Testing the idea of key players in crime is quite complicated since we need very detailed

information about networks and crime outcomes. Fortunately, there is a unique data-

base on friendship networks from the National Longitudinal Survey of Adolescent Health

(AddHealth).16 It collects data on students in grades 7-12 from a nationally representative

sample of roughly 130 private and public schools in years 1994-95. In terms of networks, the

most interesting aspect of the AddHealth data is the information on friendships. Indeed,

the friendship information is based upon actual friends nominations. Pupils were asked to

identify their best friends from a school roster (up to five males and five females). As a

result,  = 1 if either  or  or both have nominated each other. Otherwise,  = 0.

Using this dataset, Liu et al. (2011) try to identify key players for juvenile crime in the

United States. First, as in the example above, they find that a little bit more than 20 percent

16The AddHealth website http://www.cpc.unc.edu/projects/addhealth describes survey design and data in

details.
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key players are not the most active deliquents. This is because they have a crucial position

in the network in terms of betweenness centrality. They also find that, compared to other

criminals, “key” criminals are less likely to be a female, are less religious, belong to families

whose parents are less educated and have the perception of being socially more excluded.

They also feel that their parents care less about them, are less likely to come from families

where both parents are married and have more trouble getting along with teachers. An

interesting feature is that key players are more intelligent (i.e. higher mathematics scores)

than the average criminal and are more likely to have friends who are older (i.e. in higher

grades), more religious and whose parents are more educated. Also, even though key players

themselves do not have a better self-esteem, are not more physically developed nor are they

more likely to be urbanites than other criminals, their friends are.

The authors also try to determine how efficient is a key-player policy as opposed to a

random-player policy, i.e. a policy that removes a criminal at random from the network.

Figure 4 displays the results.
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Figure 4: Difference between a key-player and a random-target policy

To plot this figure, Liu et al. (2011) put together networks of the same size and calculate
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the average crime reduction for this size of networks under the two policies. For example,

for all networks of size 4 (horizontal axis), the average crime reduction is 29.94 percent on

average when the key-player policy (vertical axis blue curve) is implemented while it is 23.86

percent when a random-target policy is implemented (vertical axis red curve). The difference

in crime reduction between these two policies can be large, especially for big networks. This

can justify why a key-player policy, though expensive, could be implemented.

4 Concluding Remarks

The study of networks in economics is still at an early stage and much more research needs

to be done. In this article, we have provided an overview on this literature by exposing

its recent developments. We have seen that the models of network formation are often

plagued by too many equilibria and that the full characterization of all possible equilibria is

a very difficult task. On the contrary, the study of games on networks, where the network is

fixed and the impact of the network structure on individuals’ outcomes is analyzed, is much

more developed since the existence, uniqueness and characterization of equilibrium has been

established. We have also seen how these models can easily been used to analyze issues

related to labor and crime networks (and also education, R&D, cities, etc.; see Jackson and

Zenou, 2012a).

We believe that, in the future, more effort should be devoted to the formation of networks

in a dynamic framework using some microfoundations based on economic choices. Indeed,

following the physics literature, some economic models have been used to model dynamic

network formation but links are usually formed in a random or probabilistic way.17 Some

recent papers have, however, tried to provide more microfounded models where links between

agents are formed based on a careful cost and benefit analysis so that agents maximize their

utility (see, in particular, Christakis et al., 2010; Mele, 2011; König et al., 2012).

We also believe that more work should be done to estimate empirically economic networks.

In Section 3, we have shown how labor and crime networks could be estimated and what kind

of policy implications they imply. Recent papers (Bramoullé et al., 2009; Calvó-Armnegol

et al., 2009) have shown how econometric issues such as the reflection problem (Manski,

17In these models, usually, one agent at a time is selected to form or create links. This greatly simplifies

the analysis and avoids the coordination problems highlighted in Section 2.2 where all agents could delete

or create links simultaneously.
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1993) and correlated effects can be solved using a network approach. This is a growing field

(see, in particular, Patacchini and Zenou, 2012b, Banerjee et al., 2012) and we hope that

many more tests on different economic aspects where networks are prevalent such as crime,

microfinance, religion, smoking, teenage pregnancy, etc. will be performed in the future.
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