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What's News in Business Cycles* 
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classical maximum-likelihood and Bayesian estimations of the contribution of 
anticipated shocks to business cycles in the postwar United States. Our 
identification approach relies on the fact that forward-looking agents react to 
anticipated changes in exogenous fundamentals before such changes 
materialize. It further allows us to distinguish changes in fundamentals by their 
anticipation horizon. We find that anticipated shocks account for about half of 
predicted aggregate fluctuations in output, consumption, investment, and 
employment. 
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1 Introduction

How important are anticipated shocks as a source of economic fluctuations? What type

of anticipated shock is important? How many quarters in advance are the main drivers of

business cycles anticipated? The literature extant has attempted to address these questions

using vector autoregression (VAR) analysis. A central contribution of this paper is the insight

that one can employ likelihood-based methods in combination with a dynamic stochastic

general equilibrium (DSGE) model populated by forward-looking agents to identify and

estimate the anticipated components of exogenous innovations in fundamentals. This is

possible because forward-looking agents will in general react differently to news about future

changes in different fundamentals as well as to news about a given fundamental with different

anticipation horizons.

An important motivation for pursuing a model-based, full-information econometric strat-

egy —as opposed to adopting a VAR approach— for the identification of anticipated shocks

is that the equilibrium dynamics implied by DSGE models featuring shocks with multi-

period anticipated components generally fail to have a representation that takes the form of

a structural VAR system whose innovations are the structural shocks of the DSGE model.

This problem arises even in cases in which the number of observables matches the total

number of innovations in the model. The reason for this failure is that the presence of

anticipated innovations with multi-period anticipation horizons introduces multiple latent

state variables. This proliferation of states makes it less likely that the dynamics of the

observables possess a VAR representation, hindering the ability of current and past values

of a given set of observables to identify the underlying structural innovations. As a result,

in general, a VAR methodology may not identify the anticipated component of structural

shocks. Leeper, Walker, and Yang (2008) articulate the difficulties of extracting information

about anticipated shocks via conventional VAR analysis in the context of a model with fiscal

foresight.

An additional concern with existing VAR-based studies of anticipated shocks is that they

have focused on identifying a single anticipated innovation—typically, anticipated innova-

tions in total factor productivity. By contrast, our model-based full-information approach

allows for the identification of anticipated components in multiple sources of uncertainty.

Further, our proposed methodology makes it possible to distinguish between anticipation

horizons and between stationary and nonstationary anticipated components.

Our assumed theoretical environment is a real-business-cycle model augmented with four

real rigidities: internal habit formation in consumption, investment adjustment costs, vari-

able capacity utilization, and imperfect competition in labor markets. In addition, following
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Jaimovich and Rebelo (2009), the model specifies preferences featuring a parameter that

governs the wealth elasticity of labor supply. The assumed real rigidities and preference

specification are intended to overcome the well-known criticism raised by Barro and King

(1984) regarding the ability of the neoclassical model to predict positive comovement between

consumption, output, and employment in response to demand shocks (including anticipated

movements in fundamentals).

In our model, business cycles are driven by seven structural shocks. Namely, sta-

tionary neutral productivity shocks, nonstationary neutral productivity shocks, station-

ary investment-specific productivity shocks, nonstationary investment-specific productivity

shocks, government spending shocks, wage-markup shocks, and preference shocks. Our

choice of shocks is guided by a growing model-based econometric literature showing that

these shocks are important sources of business cycles in the postwar United States (see, for

example, Smets and Wouters, 2007; and Justiniano, Primiceri, and Tambalotti, 2011).

The novel element in our theoretical formulation is the assumption that each of the seven

structural shocks features an anticipated component and an unanticipated component. The

anticipated component is, in turn, driven by innovations announced four or eight quarters in

advance. This means that in any period t, the innovation to the exogenous fundamentals of

the economy can be expressed as the sum of three signals. One signal is received in period

t − 8, the second in period t − 4, and the third in period t itself. Thus, the signal received

in period t − 4 can be interpreted as a revision of the one received earlier in period t − 8.

In turn, the signal received in period t can be viewed as a revision of the sum of the signals

received in periods t− 8 and t− 4.

We apply Bayesian and classical likelihood-based methods to estimate the parameters

defining the stochastic processes of anticipated and unanticipated shocks and other struc-

tural parameters. The resulting estimated DSGE model allows us to perform variance de-

compositions to identify what fraction of aggregate fluctuations can be accounted for by

anticipated shocks.

The main finding of this paper is that, in the context of our model, anticipated shocks are

an important source of uncertainty. Specifically, our model predicts that anticipated shocks

explain about one half of the variances of output, hours, consumption, and investment. This

result is of interest in light of the fact that the existing DSGE econometric literature on the

sources of business cycles implicitly attributes one hundred percent of aggregate fluctuations

to unanticipated variations in economic fundamentals.

The fact that the DSGE econometric literature on the sources of business cycles has been

mute about the role of anticipated shocks does not mean that business-cycle researchers in

general have not entertained the idea that changes in expectations about the future path of
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exogenous economic fundamentals may represent an important source of aggregate fluctu-

ations. On the contrary, this idea has a long history in economics, going back at least to

Pigou (1927). Recently, it has been revived by Cochrane (1994), who finds that contempo-

raneous shocks to technology, money, credit, and oil prices cannot account for the majority

of observed aggregate fluctuations. Cochrane shows that VARs estimated using artificial

data from a real-business-cycle model driven by contemporaneous and anticipated shocks

to technology produce responses to consumption shocks that resemble the corresponding

responses implied by VARs estimated on actual U.S. data. More recently, an influential

contribution by Beaudry and Portier (2006) proposes an identification scheme for uncov-

ering anticipated shocks in the context of a VAR model for total factor productivity and

stock prices. Beaudry and Portier argue that innovations in the growth rate of total factor

productivity are to a large extent anticipated and explain about half of the forecast error

variance of consumption, output, and hours. Our approach to estimating the importance of

anticipated shocks as a source of business-cycle fluctuations departs from that of Beaudry

and Portier (2006) in two important dimensions: first our estimation is based on a formal

dynamic, stochastic, optimizing, rational expectations model, and thus does not suffer from

the aforementioned invertibility problem. Second, we employ a full information econometric

approach to estimation, which allows us to identify simultaneously multiple distinct sources

of anticipation.

The present paper is related to Davis (2007) who in independent and contemporaneous

work estimates using full-information likelihood-based methods the effects of anticipated

shocks in a model with nominal rigidities.1 Davis finds that anticipated shocks explain

about half of the volatility of output growth, which is consistent with the results reported

here.

The remainder of the paper is organized in six sections. Section 2 illustrates the ability

of our full-information, likelihood-based econometric approach to identify the anticipated

component of shocks in the context of a small artificial economy. Section 3 presents the

DSGE model. Section 4 explains how to introduce anticipated disturbances into the DSGE

model. This section also demonstrates that our framework can accommodate revisions in

expectations, such as anticipated increases in productivity that fail to materialize. Section 5

presents classical and Bayesian likelihood-based estimations of the structural parameters of

the model defining the stochastic processes of the anticipated and unanticipated components

of the assumed sources of business cycles. It also performs a number of identification tests.

Section 6 presents our estimates of the contribution of anticipated shocks to business-cycle

1Our work is also related to Fujiwara et al. (2008). These authors estimate and compare the role of
anticipated shocks in Japan and the United States.
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fluctuations. Section 7 concludes.

2 Identification of Anticipated Shocks: An Example

Our full-information, likelihood-based, empirical strategy for identifying the standard devia-

tions of the anticipated and unanticipated components of each source of uncertainty exploits

the fact that in the theoretical model the observable variables react differently to anticipated

and unanticipated shocks. To illustrate the potential of our empirical strategy to identify

the parameters that govern the distributions of the underlying shocks, we present an esti-

mation of these parameters based on artificial data generated from a small model featuring

disturbances anticipated 0, 1, and 2 periods.2

The model is given by

xt = ρxxt−1 + ε0t + ε1t−1 + ε2t−2,

yt = ρyyt−1 + ε1t ,

and

zt = ε2t ,

where εit ∼ N(0, σ2
i ) is an i.i.d. random innovation in xt that is announced in period t but

materializes in a change in x only in period t + i. The parameters ρx and ρy govern the

persistence of xt and yt and lie in the interval (−1, 1). The other variables of the model

change in anticipation of future changes in x. Specifically, the variable yt responds to one-

period anticipated innovations in x, and the variable zt responds to two-period anticipated

innovations in x.

We create an identification problem similar to the one that emerges in the economic

model analyzed in later sections, by assuming that the econometrician can only observe two

variables, xt and vt. The variable vt is a linear combination of yt and zt and is given by

vt = yt + zt.

That is, the econometrician cannot observe yt and zt separately. However, we assume that

the econometrician knows both the structure of the model and that vt is linked to yt and zt by

the above relationship. The econometric problem consists in estimating the three parameters

σ0, σ1, and σ2, defining the standard deviations of the unanticipated, one-period-anticipated,

and two-period-anticipated innovations in xt. We set ρx and ρy at 0.9 and 0.5, respectively.

The true impulse responses of the observable xt to unit innovations in each of the three

2We thank Harald Uhlig for suggesting this example.
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shocks, ε0t , ε
1
t , and ε2t are copies of each other, simply shifted one period to the right (see

Schmitt-Grohé and Uribe, 2011b, section 1). This feature of the model may raise the question

of whether an econometrician would be able to correctly identify the parameters of interest

with a sample of observations on xt and vt. The answer to this question is yes. The intuition

for why identification is possible in spite of the seemingly unrevealing aspect of the impulse

responses of the observables is that each of the three shocks has a distinct effect on the joint

behavior of the two observables. The virtue of the simple example economy at hand is that

these effects can be easily discerned: first, the covariance between vt and xt+1 depends only

on σ1. So this moment identifies σ1. Second, the variance of vt depends only on σ1 and σ2

and therefore identifies σ2, given σ1. And third, the variance of xt depends on σ0, σ1, and σ2,

so it identifies σ0, given σ1 and σ2. Thus knowledge of the underlying data generating process

should allow for the design of a successful econometric strategy to identify the volatilities

of the three underlying sources of uncertainty. Next, we substantiate this conjecture by

formally estimating the example economy using Bayesian methods on simulated data for xt

and vt.

We consider two cases, each representing a different economy. The two economies differ in

the relative importance of the three underlying shocks. In one case, the innovations display

very different relative standard deviations. Specifically, this case assumes that σ2 = 0.8,

σ1 = σ2/2, and σ0 = σ2/4. In the second case, all innovations are assumed to share the

same standard deviation, which we set at 0.8. In each case, we produce an artificial data set

of 250 observations of the observables xt and vt. We then estimate σi for i = 0, 1, 2 using

Bayesian methods. For both economies we adopt gamma prior distributions with mean 0.5

and standard deviation 0.2. Figure 1

displays for each of the three parameters being estimated (σ0, σ1, and σ2) its posterior

density, its prior density, and its true value. Posterior densities are calculated using 500,000

draws from the posterior distribution. The Bayesian estimation strategy uncovers the true

values of the parameters in question. In the economy in which (σ0, σ1, σ2) = (0.2, 0.4, 0.8),

shown in the left column of figure 1, the posterior means are, respectively, (0.24, 0.40, 0.79),

with standard deviations (0.06, 0.02, 0.04). And in the economy in which (σ0, σ1, σ2) =

(0.8, 0.8, 0.8), shown in the right column of figure 1, the posterior means are, respectively,

(0.75, 0.73, 0.77), with standard deviations (0.07, 0.04, 0.05). (The posterior medians are very

close to the corresponding posterior means.)

We apply two additional identification tests to this example model. One consists in exam-

ining the rank of the information matrix. We compute this matrix applying the methodology

proposed by Chernozhukov and Hong (2003). We find that for both parameterizations of

the data generating process, the information matrix is full rank. The second test we apply is
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Figure 1: Identification in the Example Economy
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Note. Posterior densities are shown with solid lines, prior densities with broken lines,
and the true value of σi for i = 0, 1, 2 with vertical dotted lines. Posterior densities
are calculated using 500,000 draws from the posterior distribution of the respective
parameter. The left column of the figure corresponds to the case in which the true
parameter values are σ2 = 2σ1 = 4σ0 = 0.8. The right column corresponds to the case
in which the true parameter values are σ2 = σ1 = σ0 = 0.8.
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Iskrev’s (2010) test of identifiability. In essence the Iskrev test checks whether the derivatives

of the predicted autocovariogram of the observables with respect to the vector of estimated

parameters has rank equal to the length of the vector of estimated parameters. For the

example model developed in this section, the rank condition can be shown analytically to

hold globally. This result obtains even in the special cases in which either ρx or ρy or both

are nil. See Schmitt-Grohé and Uribe (2011b) section 2 for a derivation of this result.

Although one cannot derive general conclusions from this example, it certainly suggests

that the identification of the standard deviations of the anticipated and unanticipated com-

ponents of shocks is possible when there are fewer observables than shocks and even when

the impulse responses of some of the observables to shocks hitting the economy at different

anticipation horizons are shifted copies of one another.

3 The Model

Consider an economy populated by a large number of identical, infinitely-lived agents with

preferences described by the lifetime utility function

E0

∞∑

t=0

βtζtU(Vt), (1)

where U denotes a period utility function, which we assume to belong to the CRRA family

U(V ) =
V 1−σ − 1

1 − σ
,

with σ > 0. The variable ζt denotes an exogenous and stochastic preference shock in period

t. This type of disturbance has been identified as an important driver of consumption

fluctuations in most existing econometric estimations of DSGE macroeconomic models (e.g.,

Smets and Wouters, 2007; Justiniano, Primiceri, and Tambalotti, 2008). The argument of

the period utility function, Vt, is assumed to be given by

Vt = Ct − bCt−1 − ψhθ
tSt, (2)

where Ct denotes private consumption in period t, ht denotes hours worked in period t, and

St is a geometric average of current and past habit-adjusted consumption levels. The law of

motion of St is postulated to be

St = (Ct − bCt−1)
γS1−γ

t−1 . (3)
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The parameter β ∈ (0, 1) denotes the subjective discount factor, b ∈ [0, 1) governs the degree

of internal habit formation, θ > 1 determines the Frisch elasticity of labor supply in the spe-

cial case in which γ = b = 0, and ψ > 0 is a scale parameter. This preference specification

is due to Jaimovich and Rebelo (2009). It introduces the parameter γ ∈ (0, 1] governing the

magnitude of the wealth elasticity of labor supply while preserving compatibility with long-

run balanced growth. We modify the Jaimovich-Rebelo preference specification to allow for

internal habit formation in consumption. As γ → 0, the argument of the period utility func-

tion becomes linear in habit-adjusted consumption and a function of hours worked, which,

in the absence of habit formation, is the preference specification considered by Greenwood,

Hercowitz, and Huffman (1988). This special case induces a supply of labor that depends

only on the current real wage, and, importantly, is independent of the marginal utility of

income. As a result, when γ and b are both small, anticipated changes in income will not

affect current labor supply. As γ increases, the wealth elasticity of labor supply rises. In

the polar case in which γ is unity, Vt becomes a product of habit-adjusted consumption and

a function of hours worked, which is the preference specification most commonly studied

in the closed-economy business-cycle literature. Because no econometric evidence exists on

the value of the parameter γ, an important byproduct of our investigation is to obtain an

estimate of this parameter.

Households are assumed to own physical capital. The capital stock, denoted Kt, is

assumed to evolve over time according to the following law of motion

Kt+1 = (1 − δ(ut))Kt + zI
t It

[
1 − S

(
It
It−1

)]
, (4)

where It denotes gross investment. Owners of physical capital can control the intensity with

which the capital stock is utilized. Formally, we let ut measure capacity utilization in period

t. The effective amount of capital services supplied to firms in period t is given by utKt.

We assume that increasing the intensity of capital utilization entails a cost in the form of

a faster rate of depreciation. Specifically, we assume that the depreciation rate, given by

δ(ut), is an increasing and convex function of the rate of capacity utilization. We adopt a

quadratic form for the function δ:

δ(u) = δ0 + δ1(u− 1) +
δ2
2

(u− 1)2,

with δ0, δ1, δ2 > 0. The parameter δ2 defines the sensitivity of capacity utilization to varia-

tions in the rental rate of capital. The parameter δ1 governs the steady-state level of ut. We

will set this parameter at a value consistent with a unit steady-state value of ut. And the
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parameter δ0 corresponds to the rate of depreciation of the capital stock in a deterministic

steady state in which ut is unity.

The function S introduces investment adjustment costs of the form proposed by Chris-

tiano, Eichenbaum, and Evans (2005). We assume that the function S evaluated at the

steady-state growth rate of investment satisfies S = S ′ = 0 and S ′′ > 0. We will focus on a

quadratic specification of S:

S(x) =
κ

2
(x− µi)2,

where κ > 0 is a parameter and µi denotes the steady-state growth rate of investment.

The technology transforming investment goods into capital goods is subject to a transitory

exogenous disturbance denoted by zI
t . This type of shock has recently been identified as an

important source of aggregate fluctuations by Justiniano, Primiceri, and Tambalotti (2011).

The sequential budget constraint of the household is given by

Ct + AtIt + Tt = W ∗
t ht + rtutKt + Pt. (5)

The left-hand side of this expression represents the uses of income, given by consumption,

investment, and taxes. The variable At is an exogenous stochastic productivity shock shifting

the (linear) technical rate of transformation of consumption goods into investment goods. In

a decentralized competitive equilibrium At coincides with the relative price of new investment

goods in terms of consumption goods.3 We assume that the growth rate of At, denoted

µa
t ≡ At

At−1

,

follows a stationary process and has a steady-state value of µa. The variable Tt denotes lump-

sum taxes. The right-hand side of the budget constraint represents the sources of income,

which consist of wage income, capital income, and lump-sum profits from the ownership of

firms and membership in a labor union. The variable W ∗
t denotes the wage rate received

by households, the variable rt denotes the rental rate of an effective unit of capital, and the

variable Pt denotes profits.

The household’s optimization problem consists in choosing a set of stochastic processes

{Ct, ht, St, Vt, It, Kt+1, ut}∞t=0 to maximize (1) subject to (2)-(5), taking as given the

stochastic processes {ζt, zI
t , At, rt, W

∗
t , Tt, Pt}∞t=0, and the initial conditions C−1, S−1, I−1,

3The linear relationship between the relative price of investment and At and the implied exogeneity of the
relative price of investment could be broken by assuming that the technology for transforming consumption
goods into investment goods is nonlinear. In Schmitt-Grohé and Uribe (2011a), we estimate the curvature of
the technology for producing investment goods and find that the data strongly favors a linear specification
like the one maintained here.
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and K0.

Motivated by earlier DSGE-based econometric studies of the U.S. business cycle (e.g.,

Smets and Wouters, 2007), we introduce an exogenously time-varying markup in wages. This

type of shock has been found to explain a large fraction of fluctuations in hours worked over

the business cycle. To introduce a time-varying wage markup, we model the labor market

as imperfectly competitive. On the demand side of this market, we assume that final-goods-

producing firms demand a composite labor input given by hc
t =

[∫ 1

0
h

1
1+µt
jt dj

]1+µt

, where hjt

denotes the differentiated labor input of type j ∈ [0, 1], and µt denotes the markup in wages.

We assume that µt is exogenous and stochastic, with a steady-state value µ > 1. Let Wjt

denote the wage posted by workers of type j. The labor-cost minimization problem of a

firm demanding hc
t units of the composite labor input is then given by min{hjt}

∫ 1

0
Wjthjtdj

subject to

[∫ 1

0
h

1
1+µt
jt dj

]1+µt

≥ hc
t . The solution of this cost minimization problem implies a

demand for labor of type j of the form hjt = hc
t

(
Wjt

Wt

)− 1+µt
µt , where Wt =

[∫ 1

0
W

− 1
µt

jt dj

]−µt

,

denotes the cost of one unit of the composite labor input.

The supply side of the labor market consists of monopolistically competitive labor unions

selling differentiated labor services to firms. The problem of the seller of labor of type j is to

choose Wjt to maximize (Wjt −W ∗
t )hjt, subject to the above labor demand schedule. Using

that schedule to eliminate the labor input, hjt from the objective function, the maximization

problem of labor union j takes the form maxWjt
(Wjt −W ∗

t )hc
t

(
Wjt

Wt

)− 1+µt
µt . The optimality

condition associated with this problem is W ∗
t =

Wjt

1+µt
. It follows from this expression that

the wage rate the union pays to its members is smaller than the wage rate firms pay to the

unions. Also apparent from this expression is that all labor unions charge the same wage

rate Wt. In turn, the fact that all type of labor command the same wage implies, by the

demand functions for specialized labor services, that firms will demand identical quantities

of each type of labor, hjt = hc
t for all j. Profits of union j, given by µt/(1 + µt)Wjthjt, are

assumed to be rebated to households in a lump-sum fashion. Finally, in equilibrium, we

have that the total number of hours allocated by the unions must equal total labor supply,

or
∫ 1

0
hjtdj = ht, which, since hjt = hc

t for all j, implies that hc
t = ht. This completes the

description of the labor market.

Output, denoted Yt, is produced with a homogeneous-of-degree-one production function

that takes as inputs capital, labor services, and a fixed factor that can be interpreted as

land or organizational capital. The fixed factor of production introduces decreasing returns

to scale in the variable factors of production. Jaimovich and Rebelo (2009) suggest that a

small amount of decreasing returns to scale allows for a positive response of the value of the
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firm to future expected increases in productivity. The production technology is buffeted by a

transitory productivity shock, denoted zt, and by a permanent productivity shock, denoted

Xt. Formally, the production function is given by

Yt = ztF (utKt, Xtht, XtL), (6)

where F is taken to be of the Cobb-Douglas form: F (a, b, c) = aαkbαhc1−αk−αh , where αk, αh ∈
(0, 1) are parameters satisfying αk +αh ≤ 1. The growth rate of the permanent productivity

shock, denoted

µx
t ≡ Xt

Xt−1

,

is assumed to be an exogenous, stationary stochastic process with a steady-state value equal

to µx.

The government is assumed to consume an exogenous and stochastic amount of goods

Gt each period and to finance these expenditures by levying lump-sum taxes. We assume

that government spending, Gt, displays a stochastic trend given by XG
t . We let gt ≡ Gt/X

G
t

denote detrended government spending. The trend in government spending is assumed to

be cointegrated with the trend in output, denoted XY
t . This assumption ensures that the

share of government spending in output is stationary. However, we allow for the possibility

that the trend in government spending is smoother than the trend in output. Specifically,

we assume that XG
t =

(
XG

t−1

)ρxg
(
XY

t−1

)1−ρxg
, where ρxg ∈ [0, 1) is a parameter governing the

smoothness of the trend in government spending. In the present model, the trend in output

can be shown to be given by XY
t = XtA

αk/(αk−1)
t . Notice that XG

t resides in the information

set of period t− 1. This fact together with the assumption that gt is autoregressive, implies

the absence of contemporaneous feedback from any endogenous or exogenous variable to

the level of government spending. At the same time, the maintained specification of the

government spending process allows for lagged feedback from changes in the trend path of

output.

A competitive equilibrium is a set of stochastic processes {Ct, ht, It, Kt+1, Yt, ut, Qt, Λt,

St, Vt, Πt}∞t=0 satisfying

Kt+1 = (1 − δ(ut))Kt + zI
t It

[
1 − S

(
It
It−1

)]

Ct + AtIt +Gt = Yt

Yt = ztF (utKt, Xtht, XtL)

Vt = (Ct − bCt−1) − ψhθ
tSt
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St = (Ct − bCt−1)
γS1−γ

t−1

[
ζtU

′(Vt) − Πtγ
St

Ct − bCt−1

]
− βbEt

[
ζt+1U

′(Vt+1) − Πt+1γ
St+1

Ct+1 − bCt

]
= Λt

θψζtU
′(Vt)h

θ−1
t St = Λt

ztXtF2(utKt, Xtht, XtL)

1 + µt

Πt = ψζtU
′(Vt)h

θ
t + β(1 − γ)EtΠt+1

St+1

St

QtΛt = βEtΛt+1 [zt+1ut+1F1(ut+1Kt+1, Xt+1ht+1, Xt+1L) +Qt+1(1 − δ(ut+1))]

ztF1(utKt, Xtht, XtL) = Qtδ
′(ut)

AtΛt = QtΛtz
I
t

[
1 − S

(
It
It−1

)
− It
It−1

S ′
(

It
It−1

)]
+ βEtQt+1Λt+1z

I
t+1

(
It+1

It

)2

S ′
(
It+1

It

)
,

given the set of exogenous stochastic processes {zt, Xt, Gt, At, z
I
t , ζt, µt}∞t=0, and the initial

conditions K0, I−1, C−1, and S−1. The variables Λt, Πt, and QtΛt represent, respectively,

the Lagrange multiplier associated with the sequential budget constraint, the evolution of

St, and the evolution of physical capital in the household’s optimization problem.

The variable Qt can be interpreted as the relative price of installed capital in period t

available for production in period t + 1 in terms of consumption goods of period t. This

relative price is also known as marginal Tobin’s Q. A related concept is the value of the firm.

Let V F
t denote the value of the firm at the beginning of period t. Then one can write V F

t

recursively as: V F
t = Yt −Wtht − AtIt + βEt

Λt+1

Λt
V F

t+1. This expression states that the value

of the firm equals the present discounted value of current and future expected dividends.

4 Introducing Anticipated Shocks

Our model of the business cycle is driven by seven exogenous forces: the stationary neu-

tral productivity shock zt, the nonstationary neutral productivity shock Xt, the stationary

investment-specific productivity shock zI
t , the nonstationary investment-specific productivity

shock At, the government spending shock Gt, the wage-markup shock µt, and the preference

shock ζt. We assume that all of these forces are subject to anticipated as well as unantici-

pated innovations. We study a formulation with four and eight-quarter anticipated shocks.

This choice is motivated by two considerations. First, we would like to capture a relatively

long anticipation horizon (in this case, two years). Second, we wish to avoid the proliferation

of estimated parameters. Each anticipation horizon adds one parameter per driving force,

namely, the standard deviation of the innovation at that particular anticipation horizon.

Under the current specification we are estimating 21 standard deviations. This is 14 para-
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meters more than in a specification without anticipation. It would be of interest to study the

robustness of our results regarding the importance of anticipation to making the anticipation

structure longer and denser.

We assume that all exogenous shocks xt, for x = z, µx, µa, g, zI , ζ, µ, evolve over time

according to the following law of motion:

ln(xt/x) = ρx ln(xt−1/x) + εx,t,

εx,t = ε0x,t + ε4x,t−4 + ε8x,t−8,

where εjx,t for j = 0, 4, and 8 is assumed to be an i.i.d. normal disturbance with mean zero

and standard deviation σj
x.

The innovation εjx,t denotes j-period anticipated changes in the logarithm of xt. For

example, ε4x,t−4 is an innovation to the level of xt that materializes in period t, but that

agents learn about in period t− 4. Therefore, ε4x,t−4 is in the period t− 4 information set of

economic agents but results in an actual change in the variable xt only in period t. We thus

say that ε4x,t−4 is a 4-period anticipated innovation in xt. The disturbance εjx,t has mean zero,

standard deviation σj
x, and is uncorrelated across time and across anticipation horizons.

That is, Eεjx,tε
k
x,t−m = 0 for k, j = 0, 4, 8 and m > 0, and Eεjx,tε

k
x,t = 0 for any k 6= j.

These assumptions imply that the error term εx,t is unconditionally mean zero and serially

uncorrelated, that is, Eεx,t = 0 and Eεx,tεx,t−m = 0 for m > 0. Moreover, the error term εx,t

is unforecastable given only past realizations of itself. That is, E(εx,t+m|εx,t, εx,t−1, . . . ) = 0,

for m > 0. Note that the proposed process for εx,t does not contain any moving average

component.

The key departure of this paper from standard business-cycle analysis is the assumption

that economic agents have an information set larger than one simply containing current and

past realizations of εx,t. In particular, agents are assumed to observe in period t current and

past values of the innovations ε0x,t, ε
4
x,t, and ε8x,t. That is, agents can forecast future values of

εx,t as follows:

Etεx,t+k =





ε4x,t+k−4 + ε8x,t+k−8 if 1 ≤ k ≤ 4

ε8x,t+k−8 if 4 < k ≤ 8

0 if k > 8

.

Because agents are forward looking, they use the information contained in the realizations

of the various innovations εjx,t in their current choices of consumption, investment, hours

worked, and asset holdings. It is precisely this forward-looking behavior of economic agents

that allows an econometrician to identify the volatilities of the anticipated innovations εjx,t,

even though the econometrician himself cannot directly observe these innovations.
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4.1 Autoregressive Representation of Anticipated Shocks

The law of motion of the exogenous process xt can be written recursively as a first-order

linear stochastic difference equation of the form

x̃t+1 = Mx̃t + ηνx,t+1,

where νx,t = [ ν0
x,t ν4

x,t ν8
x,t ]′ distributes normal i.i.d. with mean zero and variance-covariance

matrix equal to the identity matrix. The vector x̃t and the matrices M and η are given in

Schmitt-Grohé and Uribe (2011b) section 4.

The central goal of our investigation is to econometrically estimate the nonzero elements

of η, which are given by the standard deviations of the anticipated and unanticipated com-

ponents of each of the seven exogenous shocks, σ0
j , σ

4
j and σ8

j , for j = z, µx, µa, zI , g, ζ, µ.

4.2 Accommodating Revisions

We view the structure given above to anticipated and unanticipated innovations as just one

of potentially many ways to model information diffusion. Our approach is flexible enough

to accommodate revisions in announcements. These revisions capture situations such as

announced productivity improvements that do not pan out or wage negotiations that start

out as promising for workers (i.e., the announcement of a future increase in wage markups)

but then go sour. Consider, for example, a positive realization of the innovation ε8z,t. This

shock represents the announcement in period t of an improvement in productivity that

will take place in period t + 8. Under our formulation, this announcement is subject to

two revisions. The first revision takes place in period t + 4. Suppose for instance that the

realization of ε4z,t+4 is negative. This is equivalent to the announcement that the productivity

improvement announced in period t will not materialize as expected. At this point, the

economy may enter into a recession even though none of the economic fundamentals has

changed. The second revision of the announcement of period t occurs in period t + 8.

Suppose that the realization of ε0z,t+8 is negative and offsets the prior two announcements

ε8z,t + ε4z,t+4. This is a situation in which agents learn that the earlier optimistic outlook for

productivity did not pan out at all. The economy may experience at this point a double dip

recession. Like the one that took place in period t+4, the t+8 recession occurs without any

changes in observed economic fundamentals. This interpretation suggests an equivalent but

more parsimonious representation of anticipation in which state variables collect all prior

innovations that will materialize in a given horizon. One advantage of this formulation is

that it reduces the number of exogenous state variables in the system. We present this
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formulation, which was suggested to us by an anonymous referee, in Schmitt-Grohé and

Uribe (2011b) section 4.

4.3 Inducing Stationarity and Solution Method

The exogenous forcing processes Xt and At display stochastic trends. These random trends

are inherited by the endogenous variables of the model. We focus our attention on equilibrium

fluctuations around these stochastic trends. To this end, we perform a stationarity-inducing

transformation of the endogenous variables by dividing them by their trend component.

We compute a log-linear approximation to the equilibrium dynamics of the model. We

have already shown how to express the law of motion of the exogenous driving forces of

the model in a first-order autoregressive form. Then, using familiar perturbation techniques

(e.g., Schmitt-Grohé and Uribe, 2004), one can write the equilibrium dynamics of the model

up to first order as

xt+1 = hxxt + ηνt+1, (7)

yt = gxxt + ξmt, (8)

where xt is a vector of endogenous and exogenous state variables, yt is the vector of ob-

servables, νt is a vector of structural disturbances distributed N(0, I), and mt is a vector of

measurement errors distributed N(0, I). The matrices hx, gx, η, and ξ are functions of the

structural parameters of the model.

5 Estimating Anticipated Shocks

We use Bayesian and classical maximum likelihood (ML) methods to estimate a subset of

the deep structural parameters of the model. Of particular importance among the estimated

parameters are those defining the stochastic processes of anticipated and unanticipated in-

novations. The parameters that are not estimated are calibrated in a standard fashion.

5.1 Calibrated Parameters

Table 1 presents the values assigned to the calibrated parameters. The time unit is defined

to be one quarter. We assign a value of 1 to σ, the parameter defining the curvature of

the period utility function. This value is standard in the business-cycle literature. Following

Jaimovich and Rebelo (2009), we assume a degree of decreasing returns to scale of 10 percent.

We set the capital elasticity of the production function, αk, to 0.225. This value, together

with the assumed degree of decreasing returns to scale, implies that the labor share is 0.67,
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Table 1: Calibrated Parameters
Parameter Value Description
β 0.99 Subjective discount factor
σ 1 Intertemporal elasticity of substitution
αk 0.225 Capital share
αh 0.675 Labor share
δ0 0.025 Steady-state depreciation rate
u 1 Steady-state capacity utilization rate
µy 1.0045 Steady-state gross per capita GDP growth rate
µa 0.9957 Steady-state gross growth rate of price of investment
G/Y 0.2 Steady-state share of government consumption in GDP
h 0.2 Steady-state hours
µ 0.15 Steady-state wage markup

Note. The time unit is one quarter.

which is in line with existing business cycle studies. We assume a depreciation rate of 2.5

percent per quarter. We calibrate the parameter δ1 to ensure that capacity utilization, u,

equals unity in the steady state. We set the discount factor β at 0.99, a value commonly

used in related studies. We calibrate the steady-state growth rates of per capita output and

of the relative price of investment, µy and µa, respectively, to be 0.45 and -0.43 percent

per quarter. These two figures correspond to the average growth rates of per capita output

and the price of investment over the period 1955:Q2 to 2006:Q4. Following Justiniano,

Primiceri, and Tambalotti (2008), we set the steady-state wage markup, µ, at 15 percent.

We set the parameter ψ of the utility function at a value consistent with a steady-state

fraction of time dedicated to remunerated labor of 20 percent. Finally, we set the share

of government purchases in output equal to 20 percent, which is in line with the average

government spending share in our sample.

5.2 Bayesian and Classical Maximum Likelihood Estimation

We perform classical maximum likelihood and Bayesian estimations of the noncalibrated

structural parameters of the model. Specifically, given the system of linear stochastic dif-

ference equations (7) and (8) describing the equilibrium dynamics of the model up to first

order, it is straightforward to numerically evaluate the likelihood function of the data given

the vector of estimated parameters, which we denote by L(Y |Θ), where Y is the data sam-

ple and Θ is the vector of parameters to be estimated. This object is the basis of our

maximum likelihood estimation of the parameter vector Θ. Given a prior parameter dis-
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tribution P (Θ), the posterior likelihood function of the parameter Θ given the data, which

we denote by L(Θ|Y ), is proportional to the product L(Y |Θ)P (Θ). This object forms the

basis of our Bayesian estimation. In particular, following the methodology described in An

and Schorfheide (2007), we use the Metropolis-Hastings algorithm to obtain draws from the

posterior distribution of Θ.

The vector of estimated parameters, Θ, contains the parameters defining the stochastic

process for anticipated and unanticipated innovations, namely, ρj and σi
j for i = 0, 4, 8 and

j = z, µx, zI , µa, g, µ, ζ. In addition, the parameter vector Θ includes the parameter ρxg,

governing the smoothness in the trend component of government spending, the parameter

γ related to the wealth elasticity of labor supply, the preference parameter b defining habits

in consumption, the preference parameter θ related to the Frisch elasticity of labor supply,

the parameter δ2 governing the convexity of the cost of adjusting capacity utilization, and

the parameter κ, governing the cost of adjusting investment.

We estimate the model on U.S. quarterly data ranging from 1955:Q2 to 2006:Q4. The

data include seven time series: the growth rates of per capita real GDP, real consumption,

real investment, real government expenditure, and hours, and the growth rates of total factor

productivity and the relative price of investment. Our set of observables differs from those

employed in existing likelihood-based estimates of DSGE macroeconomic models in that it

includes both a time series for total factor productivity and a time series for the relative

price of investment. Naturally, the inclusion of these two time series restricts the freedom of

neutral and investment specific productivity shocks to explain the behavior of observables

other than total factor productivity and the relative price of investment themselves. This

is because the estimation procedure has a tendency to pick stochastic processes for neutral

and investment-specific productivity shocks geared towards accounting for movements in

their respective observable counterparts, namely, total factor productivity and the price of

investment.

We assume that output growth is measured with error. Allowing for measurement error

in output is required by the fact that, up to first order, the resource constraint of the model

economy postulates a linear restriction among the seven observables. Formally, the vector
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of observable variables is given by

vector of observables =




∆ ln(Yt)

∆ ln(Ct)

∆ ln(AtIt)

∆ ln(ht)

∆ ln(Gt)

∆ ln(TFPt)

∆ ln(At)




× 100 +




εme
y,t

0

0

0

0

0

0




,

where ∆ denotes the temporal difference operator, and TFPt ≡ ztX
1−αk
t denotes total factor

productivity. The measurement error in output growth, εme
y,t , is assumed to be an i.i.d.

innovation with mean zero and standard deviation σme
gy . The appendix provides more detailed

information about the data used in the estimation of the model. The vector of estimated

parameters Θ also includes the standard deviation of the measurement error, σme
gy .

Table 2 displays the assumed prior distribution P (Θ) of the estimated structural parame-

ters contained in the vector Θ. We assume gamma distributions for the standard deviations

of all 21 innovations of the model. The reason why we use gamma distributions instead of

inverse-gamma distributions, which are more commonly used as priors for standard devia-

tions, is to allow for a positive density at zero for the standard deviations of anticipated

shocks. In this way, our priors allow for the possibility that individual anticipated shocks

not matter at all. For each of the seven shocks in the model, the prior distributions of the

standard deviations of the two anticipated components are assumed to be identical. We as-

sume that for each of the seven shocks the variance of the unanticipated component is three

times as large as the sum of the variances of both anticipated components—or, equivalently

the variance of the unanticipated component equals 75 percent of the total variance of the

shock. Formally, at the mean of the prior distributions, we have that

(σ0
x)

2

(σ0
x)

2 + (σ4
x)

2 + (σ8
x)

2
= 0.75; x = z, µx, zI , µa, g, µ, ζ.

We set the total prior variance of the seven shocks so that the model predictions for standard

deviations, serial correlations, and correlations with output growth of the seven observables

are broadly in line with the data when the remaining structural parameters are set at their

maximum-likelihood point estimates. We complete the specification of the prior distributions

of the standard deviations of the 21 innovations by imposing a common unit coefficient of

variation on all of these distributions. This choice of priors gives rise to prior probability

densities for the share of anticipated shocks in the variance of key macroeconomic variables
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Table 2: Parameter Estimation on U.S. Data
Parameter Bayesian Estimation ML Estimation

Prior Distribution Posterior Distribution
Distribution Median 5% 95% Median 5% 95% Point Est. Std.

θ Gamma* 3.89 2.57 5.81 4.74 3.88 5.83 5.39 0.85
γ Uniform 0.50 0.05 0.95 0.00 0.00 0.01 0.00 0.00
κ Gamma 3.92 2.51 5.77 9.11 7.41 10.91 25.07 2.25

δ2/δ1 Igamma 0.75 0.32 2.45 0.34 0.23 0.50 0.44 0.15
b Beta 0.50 0.17 0.83 0.91 0.89 0.93 0.94 0.01
ρxg Beta 0.73 0.32 0.96 0.72 0.44 0.88 0.74 0.17
ρz Beta 0.73 0.32 0.96 0.92 0.85 0.96 0.96 0.03
σ0

z Gamma 1.04 0.08 4.51 0.65 0.54 0.74 0.62 0.09
σ4

z Gamma 0.43 0.03 1.84 0.11 0.01 0.31 0.11 0.08
σ8

z Gamma 0.43 0.03 1.84 0.09 0.01 0.27 0.11 0.08
ρµa Beta 0.50 0.17 0.83 0.48 0.38 0.58 0.48 0.06
σ0

µa Gamma 0.22 0.02 0.94 0.21 0.02 0.35 0.16 0.09
σ4

µa Gamma 0.09 0.01 0.39 0.16 0.01 0.34 0.20 0.10
σ8

µa Gamma 0.09 0.01 0.39 0.16 0.01 0.33 0.19 0.10

ρg Beta 0.73 0.32 0.96 0.96 0.93 0.99 0.96 0.02
σ0

g Gamma 0.73 0.05 3.14 0.62 0.06 1.07 0.53 0.31
σ4

g Gamma 0.30 0.02 1.28 0.57 0.04 1.07 0.69 0.31
σ8

g Gamma 0.30 0.02 1.28 0.37 0.03 1.00 0.43 0.29

ρµx Beta* 0.23 -0.18 0.46 0.38 0.12 0.49 0.27 0.16
σ0

µx Gamma 0.32 0.02 1.36 0.38 0.22 0.57 0.45 0.16
σ4

µx Gamma 0.13 0.01 0.56 0.08 0.01 0.28 0.12 0.09
σ8

µx Gamma 0.13 0.01 0.56 0.10 0.01 0.27 0.12 0.09

ρµ Beta 0.73 0.32 0.96 0.98 0.95 1.00 0.98 0.01
σ0

µ Gamma 0.82 0.06 3.56 0.50 0.04 1.24 1.51 1.00
σ4

µ Gamma 0.34 0.02 1.46 4.79 3.18 5.70 3.93 1.12
σ8

µ Gamma 0.34 0.02 1.46 0.51 0.04 2.85 3.20 1.26

ρζ Beta 0.50 0.17 0.83 0.17 0.07 0.30 0.10 0.07
σ0

ζ Gamma 4.37 0.32 18.87 4.03 1.20 6.02 2.83 1.79
σ4

ζ Gamma 1.78 0.13 7.70 1.89 0.17 4.84 2.76 1.99
σ8

ζ Gamma 1.78 0.13 7.70 2.21 0.14 4.85 5.34 1.51

ρzI Beta 0.50 0.17 0.83 0.47 0.22 0.64 0.21 0.10
σzI Gamma 11.88 0.88 51.36 11.72 8.90 14.94 34.81 4.03
σ4

zI Gamma 4.85 0.36 20.97 1.93 0.16 6.15 11.99 4.47
σ8

zI Gamma 4.85 0.36 20.97 5.50 1.71 10.58 14.91 2.55
σme

gy Uniform 0.15 0.02 0.29 0.30 0.30 0.30 0.30 0.00

Note. Bayesian estimates are based on 500,000 draws from the posterior distribution. A
star indicates that a linear transformation of the associated parameter has the indicated
prior distribution.
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that are quite dispersed (see figure 2 and table 5).

The prior distributions for the remaining estimated structural parameters of the model

follow broadly those used in the related literature. An exception is the preference parameter

γ, controlling the income elasticity of labor supply, which, to our knowledge has not been

previously estimated. We adopt a uniform prior distribution for γ, with a support spanning

the interval (0,1]. Our maximum likelihood and Bayesian estimates of γ are consistent

with each other and both point to a value close to zero. This estimate implies that in the

absence of habit formation, the model would display a labor supply schedule with a near-zero

wealth elasticity, providing support for the preference specification proposed by Greenwood,

Hercowitz, and Huffman (1988). Finally, we choose a uniform prior distribution for the

standard deviation of measurement error in output growth. We restrict the measurement

error to account for at most 10 percent of the variance of output growth.

5.3 Model Fit

Table 3 presents the model’s predictions regarding standard deviations, correlations with

output growth, and serial correlations of the seven time series included as observables in the

estimation. Predicted second moments are computed unconditionally. When the model is es-

timated using maximum likelihood, the population second moments are computed using the

point estimates of the structural parameters. When the model is estimated using Bayesian

methods, the table reports the median of the posterior distribution of the population second

moments. For comparison, the table also shows the corresponding empirical second moments

calculated over the sample 1955:Q2 to 2006:Q4.

The second moments predicted by the estimated model are quite similar under maximum

likelihood and Bayesian estimation. Overall, the estimated model matches well the empirical

second moments. In particular, it replicates the observed levels of volatility in consumption,

investment, hours, government spending, total factor productivity, and the relative price of

investment, and slightly underpredicts the volatility of output. The model also captures well

the autocorrelations and contemporaneous correlations with output growth of consumption,

investment, government spending, total factor productivity, and the relative price of invest-

ment. The most notable discrepancies between model predictions and data can be found in

the serial correlation of the growth rate of hours and, to a lesser extent, in the correlation

of hours and output.
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Table 3: Model Predictions
Statistic Y C I h G TFP A

Standard Deviations
Data 0.91 0.51 2.28 0.84 1.14 0.75 0.41
Model – Bayesian Estimation 0.73 0.58 2.69 0.85 1.13 0.79 0.40
Model – ML Estimation 0.67 0.53 2.28 0.79 1.01 0.76 0.36

Correlations with Output Growth
Data 1.00 0.50 0.69 0.72 0.25 0.40 -0.12
Model – Bayesian Estimation 1.00 0.58 0.69 0.42 0.33 0.28 0.01
Model – ML Estimation 1.00 0.60 0.67 0.38 0.34 0.22 0.04

Autocorrelations
Data 0.28 0.20 0.53 0.60 0.05 -0.01 0.49
Model – Bayesian Estimation 0.43 0.39 0.60 0.14 0.02 0.03 0.47
Model – ML Estimation 0.36 0.34 0.52 0.09 0.03 0.05 0.48

Note. Bayesian estimates are medians of 500,000 draws from the posterior distributions
of the corresponding population second moments. The columns labeled Y , C, I, h, G,
TFP , and A refer, respectively, to the growth rates of output, private consumption,
investment, hours, government consumption, total factor productivity, and the relative
price of investment.

5.4 Identifiability and Identification

To gauge the ability of our empirical strategy to identify the parameter vector Θ, we perform

three identification tests. First, we check for the identifiability of the estimated parameter

vector Θ by applying the test proposed by Iskrev (2010). See Schmitt-Grohé and Uribe

(2011b) section 3 for details on the implementation of this test. We find that the derivative

of the vectorized predicted autocovariogram of the vector of observables with respect to Θ

has full column rank when evaluated at the maximum-likelihood estimate or at the posterior

mean or median of the Bayesian estimate. Full column rank obtains starting with the

inclusion of covariances of order 0 and 1. According to this test, therefore, the parameter

vector Θ is identifiable in the neighborhood of our estimate. Specifically, the test result

indicates that in the neighborhood of our estimate of Θ, all values of Θ different from our

estimate give rise to autocovariograms that are different from the one associated with our

estimate of Θ.

Our second identification test consists in examining the rank of the information matrix.

We compute this matrix following the methodology proposed by Chernozhukov and Hong

(2003). We find that the information matrix is full rank, which suggests that, given our data

sample, the parameter vector Θ is indeed identified.
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Our third identification test consists in applying our estimation strategy to artificial data

stemming from the DSGE model to show that our proposed empirical approach can recover

the underlying parameters. Specifically, we calibrate our baseline DSGE model using the

posterior mean of the estimated parameters. Then we generate artificial data for the seven

observables. The artificial data set contains 207 observations, which is the length of the actual

data set used in our study. We add measurement error to the time series of output growth

of the size implied by our calibration. Then we estimate the model using ML and Bayesian

methods following exactly the same procedures and code as we do in our estimation using

real data. The Bayesian estimates are based on the same prior distributions as those used

in our estimation of the model on actual data. At no point does the estimation procedure

make use of our knowledge of the true parameter values. Table 4 displays the results of this

identification test. The table reports the true value of the parameter vector, the maximum-

likelihood estimate, and the posterior median, 5th percentile, and 95th percentile computed

from 500,000 draws from the posterior distribution. In our view, given the size of the artificial

data sample, both the ML and Bayesian estimation procedure capture the true parameter

values reasonably well.

6 The Importance of Anticipated Shocks

In this section, we present model-based evidence on the importance of anticipated shocks as

sources of business-cycle fluctuations through a number of perspectives.

6.1 Bayesian Estimate

Table 5 displays the share of the unconditional variances of output growth, consumption

growth, investment growth, and hours growth that according to our Bayesian estimation can

be accounted for by anticipated shocks. Panel 2 of the table displays the median posterior

share as well as the fifth and ninety fifth percentiles computed from 500,000 draws from the

posterior distribution of the vector of estimated structural parameters. The table shows that

anticipated shocks account for 41 percent of the variance of output growth and for 77 percent

of movements in hours. This finding is of interest in light of the fact that the long existing

literature on business cycles has implicitly attributed one hundred percent of the variance

of output and hours growth to unanticipated shocks. Our results represent an example of a

model economy in which when one allows for unanticipated and anticipated disturbances to

play separate roles, the latter emerge as an important driving force.

Figure 2 displays the prior and posterior probability density functions of the share of
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Table 4: Estimation On Artificial Data
Parameter True ML Bayesian Estimation

Point Prior Distribution Posterior Distribution
Value Estimate Distribution Median 5% 95% Median 5% 95%

θ 4.78 6.25 Gamma* 3.89 2.57 5.81 4.82 3.92 4.90
γ 0.00 0.00 Uniform 0.50 0.05 0.95 0.00 0.00 0.01
κ 9.12 9.49 Gamma 3.92 2.51 5.77 5.44 4.09 6.97

δ2/δ1 0.35 0.67 Igamma 0.75 0.32 2.45 0.39 0.25 0.58
b 0.91 0.96 Beta 0.50 0.17 0.83 0.91 0.88 0.93
ρxg 0.70 0.76 Beta 0.73 0.32 0.96 0.65 0.37 0.82
ρz 0.91 0.91 Beta 0.73 0.32 0.96 0.87 0.78 0.93
σ0

z 0.65 0.49 Gamma 1.04 0.08 4.51 0.63 0.40 0.76
σ4

z 0.13 0.20 Gamma 0.43 0.03 1.84 0.17 0.01 0.45
σ8

z 0.11 0.32 Gamma 0.43 0.03 1.84 0.21 0.02 0.48
ρµa 0.48 0.43 Beta 0.50 0.17 0.83 0.44 0.33 0.55
σ0

µa 0.20 0.17 Gamma 0.22 0.02 0.94 0.26 0.06 0.33
σ4

µa 0.16 0.17 Gamma 0.09 0.01 0.39 0.10 0.01 0.28
σ8

µa 0.16 0.21 Gamma 0.09 0.01 0.39 0.09 0.01 0.26

ρg 0.96 0.94 Beta 0.73 0.32 0.96 0.92 0.85 0.97
σ0

g 0.59 0.00 Gamma 0.73 0.05 3.14 0.53 0.04 0.90
σ4

g 0.56 0.31 Gamma 0.30 0.02 1.28 0.35 0.02 0.86
σ8

g 0.43 0.86 Gamma 0.30 0.02 1.28 0.41 0.03 0.89

ρµx 0.35 0.20 Beta* 0.23 -0.18 0.46 0.28 0.02 0.97
σ0

µx 0.39 0.68 Gamma 0.32 0.02 1.36 0.43 0.19 0.65
σ4

µx 0.10 0.00 Gamma 0.13 0.01 0.56 0.11 0.01 0.37
σ8

µx 0.11 0.04 Gamma 0.13 0.01 0.56 0.11 0.01 0.35

ρµ 0.97 0.97 Beta 0.73 0.32 0.96 0.95 0.91 0.99
σ0

µ 0.55 0.00 Gamma 0.82 0.06 3.56 1.15 0.08 2.88
σ4

µ 4.65 5.00 Gamma 0.34 0.02 1.46 3.72 0.60 4.69
σ8

µ 0.81 1.97 Gamma 0.34 0.02 1.46 0.41 0.02 3.95

ρζ 0.18 0.13 Beta 0.50 0.17 0.83 0.17 0.07 0.29
σ0

ζ 3.85 6.11 Gamma 4.37 0.32 18.87 3.58 0.35 5.59
σ4

ζ 2.15 4.88 Gamma 1.78 0.13 7.70 1.51 0.10 4.19
σ8

ζ 2.28 5.71 Gamma 1.78 0.13 7.70 2.09 0.16 5.27

ρzI 0.45 0.17 Beta 0.50 0.17 0.83 0.52 0.19 0.75
σ0

zI 11.73 13.16 Gamma 11.88 0.88 51.36 6.89 4.71 9.62
σ4

zI 2.45 8.48 Gamma 4.85 0.36 20.97 2.35 0.16 8.35
σ8

zI 5.69 9.05 Gamma 4.85 0.36 20.97 2.20 0.19 6.96
σme

gy 0.30 0.28 Uniform 0.15 0.02 0.29 0.28 0.26 0.30

Note. The true parameter value is the posterior mean of the Bayesian estimation on
actual data. The posterior median, 5th percentile, and 95th percentile estimated on
artificial data were computed over 500,000 draws from the posterior distribution of the
estimated parameter vector.
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Table 5: Share of Unconditional Variance Explained by Anticipated Shocks

Percentile Y C I h
1. Prior

5th 5 5 3 9
50th 33 36 37 51
95th 83 88 92 92

2. Posterior
5th 28 28 17 69
50th 41 50 33 77
95th 60 83 53 83
3. Maximum Likelihood Estimation
Point Estimate 49 70 41 72

4. Stock Prices Observable
5th 61 77 62 45
50th 67 82 68 55
95th 73 85 73 66

5. HP Filtered Predictions
5th 30 34 24 74
50th 46 56 47 84
95th 64 81 68 90

Note. Shares are in percent. For panels 1 through 4, Y , C, I, and h denote the growth
rates of output, consumption, investment, and hours, respectively. For panel 5, Y , C, I,
and h denote the HP-filtered log-levels of output, consumption, investment, and hours,
respectively, with a smoothing parameter of 1600. The prior and posterior percentiles
were computed using 500,000 draws from the prior and posterior distributions of the
corresponding shares.
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Figure 2: Prior and Posterior Probability Densities of the Share of the Unconditional Vari-
ance of the Growth Rates of Selected Variables Attributable to Anticipated Shocks
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the variance of output growth, consumption growth, investment growth, and hours growth

accounted for by anticipated shocks in our estimated model. It is evident from this figure that

our choice of prior distributions for the standard deviations of the underlying anticipated

and unanticipated disturbances delivers highly dispersed prior distributions for the share

of variance accounted for by anticipated shocks. By contrast, the corresponding posterior

distributions are concentrated around their respective means. This is particularly the case

for the growth rates of hours worked, output, and investment. The figure demonstrates that

our finding of a sizable fraction of aggregate volatility being explained by anticipated shocks

is not an artifact of the assumed priors.

6.2 Maximum Likelihood Estimate

To further convey the notion that our findings on the importance of anticipated shocks are

not driven by the assumed underlying prior distributions, we present in panel 3 of table 5

variance decompositions based on a classical maximum likelihood estimation of the model.

The maximum likelihood estimates of the fraction of variations in output, consumption,

investment, and hours explained by anticipated shocks are indeed slightly higher than the

corresponding Bayesian estimates. This result suggests that our choice of priors is conserva-

tive in the sense that it results in a smaller estimated role of anticipated shocks than implied

by the maximum likelihood estimate.

6.3 Anticipated Wage Markup Shocks

Table 6 presents a variance decomposition of the seven observables into the 21 sources of

uncertainty present in our DSGE model. Among the anticipated sources of uncertainty,

the most relevant one is ε4µ, the four-quarter anticipated innovation in wage markups. A

number of existing studies have found that wage markups are an important source of aggre-

gate fluctuations, especially in hours worked. For instance, Justiniano et al. (2008) report

that 65 percent of the variance of hours is explained by this type of disturbance and Smets

and Wouters (2007) estimate that it explains about half of the forty-quarter ahead forecast-

ing error variance of output. Our findings are consistent with these results. Wage-markup

shocks explain 69 percent of the unconditional variance of hours growth and 17 percent of

the unconditional variance of output growth. However, our results depart from the existing

literature in that we find that virtually the totality of movements in hours and output due to

wage markup shocks is attributable to its anticipated component. Specifically, we estimate

that four-quarter-anticipated markup shocks explain 62 percent of the variance of employ-

ment growth and 16 percent of the variance of output growth. By contrast, unanticipated
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Table 6: Variance Decomposition

Innovation Y C I h G TFP A
Stationary Neutral Tech. Shock (zt)

ε0z 11 3 13 13 0 71 0
ε4z 1 0 1 1 0 4 0
ε8z 0 0 0 1 0 3 0
Nonstationary Neutral Tech. Shock (µx

t )
ε0µx 14 9 7 2 4 17 0
ε4µx 1 1 0 1 0 2 0
ε8µx 1 1 0 1 1 2 0

Stationary Investment-Specific Tech. Shock (zI
t )

ε0zI 21 1 44 3 0 0 0
ε4zI 1 0 4 0 0 0 0
ε8zI 6 1 15 2 0 0 0

Nonstationary Investment-Specific Tech. Shock (µa
t )

ε0µa 0 0 0 0 0 0 40
ε4µa 0 0 0 0 0 0 30
ε8µa 0 0 0 0 0 0 30

Government Spending Shock (gt)
ε0g 3 0 0 1 37 0 0
ε4g 4 0 0 1 35 0 0
ε8g 2 0 0 1 23 0 0

Preference Shock (ζt)
ε0ζ 8 34 1 2 0 0 0
ε4ζ 4 14 0 1 0 0 0
ε8ζ 4 17 0 1 0 0 0

Wage-Markup Shock (µt)
ε0µ 0 0 0 2 0 0 0
ε4µ 16 17 11 62 0 0 0
ε8µ 1 1 1 5 0 0 0

Note. Figures are in percent and correspond to the mean of 500,000 draws from the
posterior distribution of the variance decomposition. The columns labeled Y , C, I, h,
G, TFP , and A refer, respectively, to the growth rates of output, private consumption,
investment, hours, government consumption, total factor productivity, and the relative
price of investment.
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variations in wage markups are estimated to have a negligible role in generating movements

in hours and other indicators of aggregate activity. A possible interpretation of anticipated

wage-markup shocks is that they represent expected outcomes of wage and benefit negotia-

tions between employers and workers that are decided in the present but implemented with

a lag.

The reason why anticipated wage-markup shocks are favored by our data sample is that

they help account for the observed regularity that output and the main components of aggre-

gate demand (consumption and investment spending) all lead employment. We document

this pattern in Schmitt-Grohé and Uribe (2011b) section 5. There, we also show that the

DSGE model’s ability to capture this pattern diminishes when we shut off the four-period

anticipated markup shock. The intuition behind this result is that an increase in expected

wage markups represents an anticipated adverse cost-push shock to the economy. It induces

firms to immediately cut spending in investment goods and to lower capacity utilization. It

also induces households to adjust consumption downward upon the news, as they anticipate

a decline in income. By contrast, labor supply does not adjust much on impact. This is

because our estimated wealth elasticity of labor supply, governed by the parameter γ, is

close to zero. Instead, the response of hours is delayed and takes place mostly once the

markup shock is realized. In this way, the model captures the observed lagging behavior of

employment relative to output and the components of aggregate demand.

6.4 Anticipated Government Spending Shocks

Our estimation results shed light on the debate on whether government spending shocks

are mostly anticipated or unanticipated. In our model, government spending, like all other

exogenous variables considered, is subject to unanticipated innovations as well as to inno-

vations that are anticipated four or eight quarters. In the VAR literature that uses the

narrative approach to the identification of government spending shocks, for example Ramey

and Shapiro (1998), a central argument is that changes in government spending are known

several quarters before they result in actual increases in spending. By contrast, Blanchard

and Perotti (2002) identify government spending shocks that are by construction unantic-

ipated. Mountford and Uhlig (2009) apply the sign restriction methodology due to Uhlig

(2005) to identify anticipated and unanticipated fiscal shocks in vector autoregressions. Our

proposed model-based methodology allows us to jointly evaluate the relative importance of

both types of government spending shocks. Table 6 shows that 60 percent of the variance of

government spending is due to anticipated shocks and 40 percent is to due to unanticipated

shocks. Furthermore, the table shows that government spending shocks account for close to
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ten percent of the variance of output growth. This magnitude is standard in the literature. A

novel insight emerging from our econometric estimation is that two thirds of this fraction is

attributable to anticipated innovations and one third to surprise movements in government

spending. This result suggests that the VAR and narrative approaches to estimating the

effects of government spending shocks are not mutually exclusive but complementary.

6.5 Investment-Specific Shocks

A growing literature is concerned with the macroeconomic effects of investment-specific

shocks. Our economic environment embeds two such disturbances: At and zI
t . The shock At

affects the rate of transformation of consumption goods into investment goods, whereas zI
t

affects the rate of transformation of investment goods into installed capital. Table 6 shows

that At is estimated to play no role in generating economic fluctuations. This result is in

sharp contrast with that obtained by Justiniano et al. (2008) whose estimation assigns a cen-

tral role to this disturbance. The reason for this discrepancy is that our estimation includes

the relative price of investment as an observable, whereas the estimation in Justiniano et

al. does not. As mentioned earlier, the relative price of investment is linearly linked to At.

The negligible role of At in our estimation reflects the fact that the observed volatility of the

relative price of investment is low. If we were to eliminate the price of investment from the

set of observables, At would emerge as an important driver of aggregate fluctuations, but at

the cost of an implied volatility of the relative price of investment several times larger than

its observed counterpart.

On the other hand, the investment-specific shock zI
t is estimated to explain a significant

fraction of variation in output (28 percent) and investment (63 percent). This result is

consistent with those reported in Justiniano et al. (2011). A novel result emerging from our

investigation is that a substantial fraction of the contribution of zI
t to aggregate volatility

(about 30 percent) is due to its anticipated components.

6.6 No Anticipation in TFP Shocks

Finally, in line with many existing studies, we find that neutral technology shocks explain

a sizable fraction of the variance of output growth, about 30 percent. However, we find

that all of this contribution stems from the unanticipated component of TFP. The minor

role assigned to anticipated neutral productivity shocks is a consequence of the fact that

in our formulation this type of shock competes with a variety of other shocks. In Schmitt-

Grohé and Uribe (2011b) section 7, we show that in the context of a more parsimonious

shock specification that allows only for productivity and government spending shocks, the
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anticipated component of neutral technology shocks plays a major role in driving business

cycles.

6.7 The Anticipated Component of Hodrick-Prescott-Filtered Busi-

ness Cycles

Panel 5 of table 5 shows that the role of anticipated shocks is also estimated to be prominent

when one measures the business-cycle component of a time series by using the Hodrick-

Prescott filter. We perform this exercise as follows. (1) We draw a realization of the vector

of estimated parameters Θ from its posterior or prior distribution, depending on whether

we are computing posterior or prior share densities. (2) Then allowing only one innovation

to be active at a time, we generate artificial time series of the logarithmic levels of output,

consumption, investment, and hours of length 500 quarters. (Log-levels are obtained by

accumulating growth rates.) At this point, our procedure has decomposed each endogenous

variable of interest (i.e., output, consumption, investment, and hours) into 21 independent

time series corresponding to the 21 innovations included in our model. (3) We apply the

Hodrick-Prescott filter to the last 207 observations—the length of our actual data sample—

of each of the 21 independent components using a smoothing parameter value of 1,600. (4)

For each variable of interest (output, consumption, investment, and hours), we compute the

ratio of the sum of the variances of its 14 components associated with anticipated shocks

to the sum of the variances of all of its 21 components. This ratio provides the share of

the variance attributable to anticipated shocks for each endogenous variable considered. (5)

We repeat steps (1)-(4) 500,000 times and report the median shares as well as the fifth and

ninety fifth percentiles. This procedure takes into account both parameter and finite-sample

uncertainty.

We find that the median share of predicted variances explained by anticipated shocks at

business cycle frequencies, as defined by the HP filter, are higher than those obtained using

growth rates. This is particularly the case for investment, for which the share explained

by anticipated shocks rises from 33 percent when the cycle is described by unconditional

second moments of first-differenced variables to 47 percent when the cycle is measured using

simulated, HP-filtered time series. Overall, anticipated shocks explain between 46 and 84

percent of the variances of the four macroeconomic indicators considered. These results

suggest that the importance of anticipated shocks in accounting for variations in business

fluctuations is robust to detrending the predicted time series using growth rates or using the

Hodrick-Prescott filter.
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6.8 Incorporating Data on Stock Prices

The empirical literature on anticipated shocks has emphasized the role of stock prices in

capturing information about future expected changes in economic fundamentals. Beaudry

and Portier (2006), for instance, use observations on stock prices to identify anticipated

permanent changes in total factor productivity. The reason why stock prices are believed

to be informative about anticipated changes in fundamentals is that they are typically con-

sidered more flexible than other nominal and real aggregate variables often included in the

econometric estimation of macroeconomic models. Real variables, such as consumption, in-

vestment, and employment, are believed to be costly to adjust in the short run due to the

presence of habit formation, time to build, and hiring and firing costs. At the same time,

the adjustment of product and factor prices is assumed to be hindered by the presence of

price rigidities. With this motivation in mind, we reestimate the model including in the set

of observables the growth rate of the real per capita value of the stock market as measured

by the S&P500 index. In the theoretical model, we associate this variable with the value of

the firm at the beginning of the period, V F
t , defined in section 3. Panel 4 of table 5 displays

the result of this estimation regarding the importance of anticipated shocks. As expected,

when stock prices are included in the set of observables, the model attributes a larger frac-

tion of business-cycle fluctuations to anticipated shocks. For the four variables considered in

the table, the median share of their unconditional variance explained by anticipated shocks

ranges from 55 to 82 percent when stock prices are included in the estimation. Moreover, the

posterior distributions of the shares of variances explained by anticipated shocks are more

concentrated around their medians pointing more clearly to their importance. The reason

why we decided not to include stock prices in our baseline estimation is twofold. First,

the existing related model-based literature on the sources of business cycles typically does

not include observations on stock prices in estimation (e.g., Smets and Wouters, 2007; and

Justiniano, Primiceri, and Tambalotti, 2011). Excluding stock prices from the baseline es-

timation facilitates comparison with this literature. Second, and perhaps more importantly,

as is well known, the neoclassical model does not provide a fully adequate explanation of

asset price movements.

7 Conclusion

In this paper, we perform classical maximum likelihood and Bayesian estimation of a dynamic

general equilibrium model to assess the importance of anticipated and unanticipated shocks

as sources of macroeconomic fluctuations.
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Our identification methodology represents a fundamental departure from VAR-based ap-

proaches to the identification of anticipated shocks. For it exploits the fact that in theoreti-

cal environments in which agents are forward looking, endogenous variables, such as output,

consumption, investment, and employment, react to anticipated changes in fundamentals,

whereas the fundamentals themselves do not. Moreover, the fact that economic agents’

responses to future changes in economic fundamentals depend on how far into the future

the change is expected to occur, allows our empirical strategy to identify horizon-specific

anticipated shocks.

Our central finding is that, in the context of our model, about half of the variance of the

growth rates of output, consumption, investment, and hours is attributable to anticipated

disturbances. This result stands in sharp contrast to those in the existing literature on the

sources of business cycles, which implicitly assumes that the totality of aggregate fluctuations

is due to unanticipated changes in economic fundamentals.
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Appendix: Data Sources

The time series used to construct the seven observable variables used in the estimation are:

1. Real Gross Domestic Product, BEA, NIPA table 1.1.6., line 1, billions of chained 2000

dollars seasonally adjusted at annual rate. Downloaded from www.bea.gov.

2. Gross Domestic Product, BEA NIPA table 1.1.5., line 1, billions of dollars, seasonally

adjusted at annual rates.

3. Personal Consumption Expenditure on Nondurable Goods, BEA, NIPA table 1.1.5.,

line 4, billions of dollars, seasonally adjusted at annual rate. Downloaded from www.bea.gov.

4. Personal Consumption Expenditure on Services, BEA NIPA table 1.1.5., line 5, billions

of dollars, seasonally adjusted at annual rate. Downloaded from www.bea.gov.

5. Gross Private Domestic Investment, Fixed Investment, Nonresidential, BEA NIPA

table 1.1.5., line 8, billions of dollars, seasonally adjusted at annual rate. Downloaded from

www.bea.gov.

6. Gross Private Domestic Investment, Fixed Investment, Residential, BEA NIPA table

1.1.5., line 11, billions of dollars, seasonally adjusted at annual rate. Downloaded from

www.bea.gov.

7. Government Consumption Expenditure, BEA NIPA table 3.9.5., line 2, billions of

dollars, seasonally adjusted at annual rate. Downloaded from www.bea.gov.

8. Government Gross Investment, BEA NIPA table 3.9.5., line 3, billions of dollars,

seasonally adjusted at annual rate. Downloaded from www.bea.gov.

9. Civilian Noninstitutional Population Over 16, BLS LNU00000000Q. Downloaded from

www.bls.gov.

10. Nonfarm Business Hours Worked, BLS, PRS85006033, seasonally adjusted, index

1992=100. Downloaded from www.bls.gov.

11. GDP Deflator = (2) / (1).

12. Real Per Capita GDP = (1) / (9).

13. Real Per Capita Consumption = [(3) + (4)] / (11) / (9).

14. Real Per Capita Investment = [(5) + (6)] / (9) / (11).

15. Real Per Capita Government Expenditure = [(7) + (8)] / (9) / (11).

16. Per Capita Hours = (10) / (9).

17. Relative Price of Investment: Authors’ calculation following the methodology pro-

posed in Fisher (2006). An appendix detailing the procedure used in the construction of this

series is available from the authors upon request.

18. Total factor productivity in the non-farm business sector adjusted for capital capacity

utilization. This series is taken from Beaudry and Lucke (2009).
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