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1 Introduction

Very often, a manufacturer has to decide whether to sell its products through one or

several retailers, a franchisor whether to have one or multiple franchisees, the owner of a

patent whether to license its technology to one or more licensees. As a result, exclusive

clauses may be signed whereby in a given geographical area only one agent will deal with

the principal’s product, brand, or technology. Such clauses are quite common in vertical

markets,1 yet their role remains relatively poorly understood.

Perhaps the most common justification for the optimality of exclusive contracts is

that given in Hart and Tirole (1990) (see also Segal (1999) and Rey and Tirole (2007)).2

When downstream firms are homogenous and the upstream firm offers public bilateral

contracts, it can always extract the monopoly profit. But when it offers unobservable

bilateral contracts, it cannot commit to not renegotiate with downstream firms, and as a

result is unable to obtain the monopoly profit. Exclusive contracts serve as a commitment

device to restore monopoly profit.

This paper revisits the problem of an upstream firm offering bilateral contracts to

downstream firms, and shows that exclusive contracts can be optimal even when such

contracts are public information. This arises when downstream firms have private in-

formation about their potentially heterogenous productivity levels,3 and are either suffi-

ciently risk averse or wealth-constrained. The basic message of the paper is that down-

stream market environments that appear natural in some contexts lead to exclusion in

the absence of commitment problems upstream.

Our analysis builds on two basic ideas. First, when downstream firms compete, they

impose externalities on one another. If one produces more, the market price goes down,

affecting the profits of others. But if productive firms produce more than less productive

firms and cost types are private information, downstream firms do not know the size of

the externality that competition will impose on them. Second, the size of the externalities

is endogenous to the contracts the upstream firm offers. By increasing or decreasing the

difference in input levels offered to more and less productive firms, the upstream firm

determines the magnitude of the uncertainty that downstream firms face.

When downstream firms are risk-neutral and can absorb losses, the upstream firm

offers both of them the input in equilibrium.4 This helps reduce volatility in aggregate

1Azoulay and Shane (2001) collect an original dataset of newly founded business-franchise systems.
They find that 142 out of 170 systems adopt exclusive contracts. Blair and Lafontaine (2011) analyze a
large dataset of franchise contracts, and show that, in 17 out of 18 sectors, more than 50% of franchisors
adopt exclusive territories. In the context of licensing deals, Anand and Khanna (2000) show that over
30% of the agreements in their dataset are exclusive.

2A separate stream of literature, beginning with Telser (1960), emphasizes the efficiency gains of
exclusive contracts.

3Firms are ex-ante identical in the sense that their productivities are drawn from the same distribution.
4In our baseline model, there are two downstream firms each with two potential cost types, but we
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revenue by ensuring that all productive firms are given a share of the market.5 When

firms are risk averse, there is a cost to the upstream firm of contracting two downstream

firms: the uncertainty in their realized profit forces it to pay them a risk premium. When

risk aversion is sufficiently high, exclusive contracts are optimal because, by offering zero

input to one downstream firm, the upstream firm eliminates the competition externality,

and with it the uncertainty a downstream firm faces.6 A similar mechanism operates

when downstream firms cannot lose money from competition because they are wealth-

constrained or enjoy limited liability. The resulting rents that the upstream firm must

pay out when contracting two firms more than offset the gain from output smoothing,

which induces it to offer an exclusive contract.

It is worth stressing how our mechanism differs from that in Segal (1999). He shows

that when bilateral contracts are public information, inefficiencies only arise if there are

externalities on non-traders, which are absent in both the canonical Hart and Tirole

(1990) model and ours. In the world of homogenous downstream firms that Segal (1999)

considers, each one knows its payoff conditional on observing the full set of posted con-

tracts. In our model firms do not in general know their payoffs conditional on observable

contracts, and this feature generates novel insights.7

Rey and Tirole (1986) also analyze a model in which the upstream firm suffers from

asymmetric information and retailers may be risk averse (either demand realization or

distribution costs are uncertain). However, they arrive at the opposite result to ours:

when retailers are infinitely risk-averse, the upstream firm wants them to compete, and

when they are risk-neutral, it wants to offer them exclusivity. This is because in their

paper retailers do not have private information relative to each other. Hence, competition

eliminates any uncertainty, because it univocally determines their prices and profits: for

instance, when they are undifferentiated, Bertrand competition leads them to set price

equal to marginal cost (whatever the realization of distribution cost and of demand turns

out to be), leading them to have certain zero profits. In our paper, instead, costs are

private information and competition is precisely what creates uncertainty for the retailers.

show in an extension that our results generalize to an arbitrary number of firms and cost types.
5One can think of other mechanisms, such as product differentiation, that would also generate the

optimality of offering more than one firm the input.
6We also show that for intermediate risk preferences partial exclusion arises, with one downstream

firm being offered no input if it is high cost, and lower input than the other firm if it is low cost.
7Two streams of the mechanism design literature have examined the effect of risk aversion on optimal

contracts. They differ in the source of uncertainty for the agent. First, Laffont and Rochet (1998) analyze
an environment with one principal and one agent in which the former must design a contract before the
realization of the agent’s type. Second, Matthews (1983) and Maskin and Riley (1984) consider an
auction (i.e. multilateral contracting) environment in which agents know their types, but are uncertain
about whether they will win given the uncertainty about others’ types. We are not aware of other papers
that study the effects of risk aversion with bilateral contracting and multiple agents in which there is
uncertainty about realized payoffs given externalities among agents.

2



Beyond making the theoretical point that non-observability is not necessary for gener-

ating exclusivity with bilateral contracting, one might ask the extent to which our model

can account for actual exclusion. This in turn depends on whether our assumptions

are reasonable. First, key to our results is that contracting is bilateral. If we allowed

multilateral contracts, we conjecture (following McAfee and McMillan (1986); Laffont

and Tirole (1987); McAfee and McMillan (1987); and Riordan and Sappington (1987))

that the upstream firm would offer the entire market to the most efficient producers in

a mechanism that resembled an auction. While we do not doubt that auctions would

improve the situation for the upstream firm, the non-linear, price-discriminating bilateral

contracts we consider appear substantially more flexible than many real-world vertical

contracts. For example, Lafontaine (1992) surveys 130 business-format chains, and finds

that 42% offered a single contract on a take-it-or-leave-it basis, with 38% more only al-

lowing negotiations for non-monetary terms.8 Furthermore, Lafontaine and Shaw (1999)

examine a panel data set of franchisors and find that over a 13-year period 75% of them

never change their terms.

Second, in our model the upstream firm would like to cancel exclusive contracts offered

to non-productive firms ex-post. To the extent that exclusive contracts are long-term

and binding, our static contracting approach is appropriate; otherwise a more complex

dynamic model would be needed. Blair and Lafontaine (2011) report that the average

duration of a franchise contract in their dataset is 10.7 years, with over 90% of contracts

renewed. Also, they describe rather stringent legal requirements for breaking a franchise

deal or not renewing it.9

Finally, while limited liability is a common component of industrial organization mod-

els, firm’s risk aversion is not. To the extent that agents are distributors or retailers, or

more generally small firms that are unable to diversify risk, it will probably not take much

convincing that this assumption is realistic.10 But there are reasons why even larger firms

may be reluctant to take risk. One is that actual decisions are taken by managers who,

being individuals, may well be risk averse. Also, Nocke and Thanassoulis (2010) show

that firms that face credit constraints subsequent to competing in the downstream mar-

ket behave as if they were risk averse. Finally, van Eijkel and Moraga-González (2010)

present empirical evidence of the relevance of firm risk aversion, as do the references

827% of those using exclusive contracts cited transaction costs as the main reason for contract uni-
formity, which are probably also a major factor in explaining why upstream firms do not always allocate
market shares through auctions.

9For example, in most US states an automobile manufacturer cannot refuse to renew a dealership
contract. More generally, common law requires good cause both for termination and non-renewal, which
is defined as a substantial breach of the material terms of the contract.

10Outside of industrial organization, downstream firms are occasionally modelled as risk averse. For
example, Brickley and Dark (1987) assume that franchisors are risk neutral and franchisees are risk
averse just as we do, and study the organizational implications of these preferences.
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mentioned in Asplund (2002).

The paper is organized thus. Section 2 describes the baseline model, which is then

solved first for the cases of risk-neutral and infinitely risk-averse agents in section 3.

Section 4 then proposes two ways of modelling intermediate risk aversion and provides

conditions for exclusive contracts to be optimal. Section 5 examines the case where down-

stream firms are risk neutral but wealth constrained. Section 6 explores three extensions

of the baseline model in which exclusion remains optimal. Section 7 concludes the paper.

Appendix A contains all proofs.

2 Model

We consider an industry in which a risk-neutral upstream firm M supplies an input that is

transformed in a one-to-one relationship by two downstream firms i = 1, 2 whose product

is homogenous. Aggregate demand for the product is P (Q), where Q ≥ 0 is aggregate

quantity. We assume that P ′(Q) < 0; that marginal revenue P (Q) + QP ′(Q) = MR(Q)

is decreasing; and that there exists some finite quantity Q̃ at which MR(Q̃) = 0.

The downstream firms, which may be risk neutral or risk averse, may be heterogeneous

in their productivity. Each has a constant marginal cost of production ci ∈ {0, c} where

c > 0, Pr [ ci = 0 ] = r, and c1 and c2 are independent. We also assume that ci is private

information for firm i. The constant returns to scale embedded in the constant marginal

cost assumption keeps aggregate production costs independent of the number of firms in

the market, allowing one to focus on revenue volatility as the main driver of the exclusion

results. We assume that at the quantity Q′ at which MR (Q′) = 0, c < P (Q′).11

M offers the downstream firms contract menus Ti(Qi), where Qi ≥ 0 is the amount of

input that firm i uses (and which it converts to output Qi) and Ti(Qi) ∈ R is the transfer

that firm i pays to M for using Qi. (0, 0) is included as an element of Ti(Qi). The fact

that in general T1 6= T2 for the same input level means that M can price discriminate

between the firms. Unlike in Hart and Tirole (1990), we assume that these contracts

are publicly observable. Given the posted contract menus, firms play a simultaneous

game of incomplete information. When a pure strategy equilibrium exists, its outcome

is {Qi(ci), Ti(ci)}2
i=1, or a quantity and transfer choice made by each cost type of each

downstream firm. Using the standard revelation principle argument, one can without loss

of generality focus on M offering each downstream firm a two-point, incentive-compatible

contract menu. To formalize this idea, one can denote the menu offered to firm i as

[Qi(ĉi), Ti(ĉi)] for ĉi ∈ {0, c}. Here ĉi corresponds to the cost type that firm i reports at

11This is a standard condition. It implies that low cost firms face competition from high cost firms in
the sense that the high cost firm can still profitably produce when the low cost firm chooses its monopoly
quantity Q′, defined by MR(Q′) = MC = 0.
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the stage it must choose an element from the menu. Let

πi(ĉi, ĉj, ci) = Qi(ĉi) {P [Qi(ĉi) +Qj(ĉj)]− ci} − Ti(ĉi) (1)

be firm i’s profit from reporting cost type ĉi when firm j 6= i reports cost type ĉj and

firm i has marginal cost ci. Here one can see the externality in the model: firm j’s choice

of ĉj affects πi through the market price. We refer to this as a competition externality.

Crucial for the model is that firm i does not know the size of the competition external-

ity it faces. Suppose it is common knowledge that firm j reports ĉj = 0 with probability

r and ĉj = c with probability 1− r. This induces the lottery

Li(ĉi | ci) = {[πi(ĉi, 0, ci), πi(ĉi, c, ci)] ; (r, 1− r)} (2)

for firm i. Let U be the common utility function over such lotteries. This function embeds

downstream firms’ risk preferences, for which we will provide specific functional forms.

M ’s problem can be expressed as

max
{Qi(ĉi),Ti(ĉi)}2i=1

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (3)

U [Li(0 | 0)] ≥ U [0] (PCL
i )

U [Li(c | c)] ≥ U [0] (PCH
i )

U [Li(0 | 0)] ≥ U [Li(c | 0)] (ICL
i )

U [Li(c | c)] ≥ U [Li(0 | c)] (ICH
i )

Qi(ĉi) ≥ 0. (NN)

Here there are twelve constraints corresponding to participation (denoted PC) and incen-

tive compatibility (denoted IC) constraints for each cost type of each downstream firm,

as well as non-negativity constraints on output (denoted NN). U [0] corresponds to the

utility from receiving the certain wealth level 0. We can focus without loss of gener-

ality on contracts that induce participation since (0, 0) is an element of each contract.

Since optimal contracts are incentive compatible, one can interpret M as posting contract

menus but not actually observing which element is chosen until after each downstream

firm has ordered the input. For simplicity we sometimes refer to a contract menu simply

as a contract.

There are several relevant definitions for exclusion.

Definition 1 Let {Q∗i (ĉi), T ∗i (ĉi)}2
i=1 be a solution to (3).

1. Firm i is excluded if Q∗i (0) = Q∗i (c) = 0.
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2. Firm i is ε-excluded if max {Q∗i (0), Q∗i (c)} < ε.

3. Firm i is partially excluded if Q∗i (0) < Q∗j(0) and Q∗i (c) < Q∗j(c) for j 6= i.

Below we study how different kinds of exclusion depend on U .

To summarize, the timing of the game is the following:

1. The upstream firm M posts a contract for each downstream firm i.12

2. Each downstream firm orders input, which is not observed by the competitor, and

commits to pay the corresponding transfer.

3. Downstream firms produce output, the market clears, profits are realized, and they

pay the transfer to the upstream firm.

Here downstream firms do not observe each others’ actions prior to producing. Were

this not so, one could imagine a signalling game being played rather than a simultaneous

game of incomplete information. We have also assumed that downstream firms are not

wealth-constrained and can pay the agreed transfer even if doing so means negative profits

ex-post. We come back to exploring the consequences of wealth constraints in section 5.

3 Exclusion and Attitudes Towards Risk

To begin our analysis of the relationship between risk aversion and exclusion, we consider

the extreme cases of risk neutrality and infinite risk aversion. Here we show that under

risk neutrality, the upstream firm gains from dealing with both firms, while under infinite

risk aversion it prefers to exclude one of the two firms.

3.1 Risk Neutrality

When downstream firms are risk neutral, their utility from facing the lottery induced by

the competitor selling in the same market is simply the expected profit, so that

U [Li(ĉi | ci)] = rπi(ĉi, 0, ci) + (1− r)πi(ĉi, c, ci). (4)

M ’s constrained optimization problem in (3) can be rewritten as an unconstrained prob-

lem in which it chooses quantities to maximize downstream firms’ expected revenue net of

production costs and information rents. These last two quantities are linear in aggregate

quantities due to constant returns to scale, so are irrelevant for exclusion.

To understand the effect of the distribution of total contracted output, it is useful to

rewrite the contract variables. Define Qi(c) ≡ QH
i and let QH = QH

1 + QH
2 be the total

12We discuss the case in which contracts are the same for both firms in section 6.1.
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production of high cost firms; let ∆i = Qi(0)−QH
i be the difference between the quantity

produced by the low and high cost types of downstream firm i; and let ∆ = ∆1 + ∆2.

One can easily establish that ∆i ≥ 0 is a necessary condition for incentive compatibility,

meaning that meeting a low cost competitor is worse for profits that meeting a high

cost one. When these variables carry asterisk superscripts, they should be understood to

represent optimal values.

Downstream expected revenue can be written as

r2
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)2QHP

(
QH
)

+

r(1− r)
[(
QH + ∆1

)
P
(
QH + ∆1

)
+
(
QH + ∆−∆1

)
P
(
QH + ∆−∆1

)]
. (5)

This only depends on the distribution of output between the two firms via the term in

square brackets, which is the total revenue conditional on there being one high cost and

one low cost firm downstream. So, for a fixed level of ∆, the optimal value of ∆1 is

defined by

MR
(
QH + ∆∗1

)
= MR

(
QH + ∆−∆∗1

)
. (6)

In other words, the optimal allocation of ∆ across firms 1 and 2 equates the marginal

revenue from increasing ∆i for each firm. To see why, suppose we begin with a situation

in which ∆1 = 0. Increasing ∆1 has two offsetting effects. First, it increases total

revenue when firm 1 is low cost and firm 2 is high cost. At the same time, it decreases

total revenue when the opposite is true. But, because marginal revenue is decreasing in

aggregate quantity, the first effect dominates the second. One can use similar arguments

for any allocation of the aggregate low cost output gap for which ∆1 6= ∆2: there is

always a possibility to increase expected revenue by distributing ∆ more evenly.

Building on this argument, we can show that

Proposition 1 In the optimal contracts, ∆∗ > 0 and ∆∗1 = ∆∗2 = ∆∗

2
.

This immediately implies that both firms sell strictly positive output in equilibrium.

Corollary 1 Under the optimal contracts, neither firm is excluded.

To gain further intuition, the linear demand case where P = 1 − Q is helpful. In

this situation, aggregate revenue is given by E[Q(1−Q) ] = E[Q ] − E[Q ]2 − V [Q ].

So distributing output between the two firms should be done to decrease the variance

in aggregate output. This is not because M is risk averse (in fact, it is risk-neutral),

but because aggregate revenue is concave in aggregate output. Now, firm i’s output in

an incentive compatible contract is the random variable Qi = QH
i + x̃i∆i where x̃i is a

Bernoulli random variable with mean r and variance r(1−r). So V [Q ] = r(1−r)
∑

i ∆
2
i ,

which is clearly minimized by equating ∆i across firms.
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Proposition 1 pins down the distribution of ∆ across downstream firms, but not

that of QH . As long as ∆1 = ∆2 holds, any split of QH between the firms is optimal. In

particular, asymmetric contracts are optimal. The important point is that both firms have

a positive probability of producing under the optimal contract menus in order to smooth

output. The model breaks the indeterminacy of the optimal number of firms in complete

information models of vertical markets in which the upstream firm can fully commit

to contracts. In such models there is one known monopoly quantity that maximizes

the upstream firm’s profits, and it can be distributed arbitrarily among any number of

downstream firms. Here the upstream firm is uncertain about the optimal quantity: it

can either be high or low depending on the realizations of the downstream firms’ cost

types. Having two firms in the market helps it “hedge its bets” by making sure that when

one of the two firms is the low cost type it gets a piece of the market.

3.2 Infinite Risk Aversion

If serving two firms is useful for the upstream firm because of a reduction in the uncer-

tainty about the aggregate output level, the opposite is true for the downstream firms.

If a downstream firm knows that it alone produces, it knows for certain what will be its

profits conditional on producing. On the other hand, when it knows that the other firm

is offered a menu with different input levels for high and low cost type realizations, its

profit conditional on producing is uncertain. In the case of risk neutrality, this has no

effect since downstream firms are willing to pay a transfer equal to expected profit in

order to enter the market. In reality, however, one might imagine that downstream firms

have some aversion to the uncertainty that competition creates.13 To begin the analysis

of how this affects the optimal menus, we make the extreme assumption—which we later

relax—that downstream firms are infinitely risk averse, so that:

U [Li(ĉi | ci)] = min{πi(ĉi, 0, ci), πi(ĉi, c, ci)} (7)

In incentive compatible contracts, low cost firms produce more than high cost firms.

So, rather than asking downstream firms to pay a transfer equal to expected revenue, M

13A common intuition from statistics is that uncertainty should decrease as the number of competitors
increases since the distribution of the expected payoff becomes less variable. This does not apply when
firms are risk averse because their utility does not only depend on the expected payoff. With infinite
risk aversion, what matters is the worst possible outcome, which get worse with more competitors.
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can now only ask expected payments (net of production costs and information rents) of

r
[(
QH + ∆1

)
P
(
QH + ∆

)
+
(
QH + ∆2

)
P
(
QH + ∆

)]
+

(1− r)
[
QH

1 P
(
QH + ∆2

)
+QH

2 P
(
QH + ∆1

)]
= r

(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)

[
QH

1 P
(
QH + ∆2

)
+QH

2 P
(
QH + ∆1

)]
. (8)

The difference between (8) and (5) comes from two sources. First, since downstream

firms’ certainty equivalent income is equal to the worst profit realization, two firms can

no longer smooth output. Second, the presence of a competitor with uncertain costs

decreases firm i’s utility relative to the risk neutral case, which requires the upstream

firm to pay a risk premium.

Because price is decreasing in quantity, (8) has an upper bound of

r
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)QHP

(
QH
)
, (9)

which is exactly the profit level achieved through an exclusive contract in which some

firm i is offered the contract QH
i = ∆i = 0. The intuition here is that minimizing the risk

premium requires the elimination of competition externalities, which exclusive contracts

do.14 Exclusive contracts are strictly optimal whenever M wishes to contract a positive

amount of high cost production (which it does when r is low); otherwise, QH∗ = 0 and

any split of ∆∗ across the two downstream firms is optimal.

Proposition 2 There exists an r∗ ∈ (0, 1) such that for i, j = 1, 2, i 6= j:

1. Whenever r < r∗ the optimal contracts are such that ∆∗i > 0, QH∗
i > 0, and

∆∗j = QH∗
j = 0.

2. Whenever r ≥ r∗ the optimal contracts are such that QH∗
i = QH∗

j = 0 and ∆∗1+∆∗2 =

∆∗ > 0.

This result immediately implies that

Corollary 2 Under infinite downstream risk aversion, exclusion of one downstream firm

always solves M ’s profit maximization problem, and whenever r < r∗, exclusion is the

only solution to its problem.

14Reducing ∆i would also decrease uncertainty: as ∆i → 0, the upstream firm also pays no risk
premium to downstream firms. But this alternative is poor because when ∆i is small, M does not take
advantage of the greater productivity of low cost firms. It keeps both downstream firms in the market
and minimizes the risk premium, but sacrifices production efficiency. When contracting with one firm, it
minimizes the risk premium but also takes advantage of the productivity gains that arise from contracting
the low cost firm to produce more than the high cost firm.
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This result contains a basic message of the paper. Even if the upstream firm can fully

commit to bilateral contracts, it may simply be too costly to include both firms in the

downstream market because uncertain competition externalities impose a cost on risk

averse firms. While the case of infinite risk aversion provides a clear illustration of the

main idea of the paper, it is admittedly an extreme case. The next section explores the

optimal contracts with intermediate risk aversion to generate a more subtle understanding

of risk and exclusion.

4 Intermediate Risk Preferences

The standard way of modelling risk preferences is to represent utility over lotteries in

terms of the expected value of some utility of wealth function u. Such a formulation

presents major challenges in our framework. Perhaps most seriously, it is unclear whether

the resulting expected utility U [Li(ĉi | ci)] satisfies the single-crossing condition15 that

greatly reduces the complexity of M ’s problem. Also, when firms’ payoffs are non-linear

in profits, characterizing optimal contracts is not straightforward.

This section presents two formulations of intermediate risk preferences that overcome

these problems. First, we examine the case in which downstream firms have CARA

preferences; next, we examine the case in which they have Rank-Dependent Utility.

4.1 CARA preferences

We now assume firms’ preferences are given by

U [Li(ĉi | ci)] = −r exp [−aπi(ĉi, 0, ci)]− (1− r) exp [−aπi(ĉi, c, ci)] (10)

where a represents the constant level of absolute risk aversion. CARA utility has the

property that the certainty equivalent income from a lottery is independent of initial

wealth, which implies that U [Li(ĉi | ci)] satisfies single-crossing.

The next result shows that nearly exclusive contracts can be optimal with sufficient

risk aversion.

Proposition 3 Suppose that QH∗ > 0 under infinite risk aversion. Then for every ε > 0,

there exists an a such that ε-exclusion is optimal for all a ≥ a.

Intuitively, as a grows large, downstream firms become close to infinitely risk averse.

Since M ’s objective function is continuous in a, the solution to its problem when a is

large is close to the solution to its problem with infinite risk aversion.

15The condition is that
∂U
∂Qi
∂U
∂Ti

is increasing in ci.
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The importance of this result is to show that the optimality of exclusion does not

depend on the knife-edge assumption of infinite risk aversion. One can observe contracts

arbitrarily close to exclusive contracts with less extreme preferences. At the same time,

proposition 3 is a limit result, and as such does not characterize optimal contracts for a

wide range of intermediate cases. We now turn to an alternative framework to do so.

4.2 Rank-Dependent Utility

The Rank-Dependent Utility (RDU) literature represents preferences over lotteries both

in terms of the probability weights attached to wealth outcomes and the utility of wealth

function.16 When utility is linear in wealth, the probability weights alone embody an

individual’s attitudes towards risk. We use this framework to model downstream firms’

utility functions, as suggested by Yaari (1987).17 More specifically we assume that

U [Li(ĉi | ci)] = r̂(r)πi(ĉi, 0, ci) + [1− r̂(r)]πi(ĉi, c, ci) (11)

where r̂(r) is a weighting function defined on r ∈ (0, 1) with the following properties: (1)

r̂(r) > r; (2) r̂′(r) > 0; (3) limr→0 r̂(r) = 0; and (4) limr→1 r̂(r) = 1.18 Figure 1(a) plots

an example of a weighting function.

This formulation of risk aversion nests the two extreme cases from section 3. Risk

neutrality is obtained as r̂(r) approaches r and infinite risk aversion is obtained as r̂(r)

approaches 1. Essentially the weighting function captures pessimism since the weight

attached to the worse profit realization—the one corresponding to meeting a low cost

competitor—is higher than the probability of meeting such a firm. To see that this

notion is closely related to risk aversion, one can rewrite U [Li(ĉi | ci)] in (11) as

rπi(ĉi, 0, ci) + [1− r] πi(ĉi, c, ci)− [r̂(r)− r] [πi(ĉi, c, ci)− πi(ĉi, 0, ci)] , (12)

or the expected value of the lottery minus r̂(r) − r times the distance between the two

16See Quiggin (1982) for a seminal reference.
17“In studying the behavior of firms, linearity in payments may in fact be an appealing feature. Under

the dual theory, maximization of a linear function of profits can be entertained simultaneously with risk
aversion. How often has the desire to retain profit maximization led to contrived arguments about firms’
risk neutrality?” (Yaari (1987), page 96).

18The general formulation of rank-dependent utility is the following. Let n wealth outcomes be ordered
so that w1 ≥ w2 ≥ . . . ≥ wn where pi is the probability of wi being realized. Then utility is

n∑
i=2

α
 i∑

j=1

pj

− α
i−1∑

j=1

pj

u(wi) + α(p1)u(w1)

where α is a weighting function such that α(0) = 0 and α(1) = 1. In our formulation u(wi) = wi,
w1 = πi(ĉi, c, ci), w2 = πi(ĉi, 0, ci), and p1 = 1− r. So α(p1) = α(1− r) describes preferences, which we
have represented by the mirror function r̂(r) = 1− α(1− r).
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Figure 1: Examples of Weighting Functions

wealth outcomes. This is similar to the standard approach of endowing firms with mean-

variance preferences, but replaces variance with an alternative measure of outcome disper-

sion. This alternative representation also makes clear that r̂(r)−r measures risk aversion.

Suppose some firm x has a weighting function r̂x(r) such that r̂x(r)−r = χx(r) and some

firm y has a weighting function r̂y(r) such that r̂y(r) − r = χy(r) < χx(r) ∀r ∈ (0, 1).

Then whenever firm x accepts an uncertain bet, firm y does too. Thus one can model an

increase in risk aversion as an increase in r̂(r) for all values of r, as shown in figure 1(b).

We now use this framework to derive optimal contracts.19

4.2.1 Optimal contracts

With CARA preferences, we showed that sufficient risk aversion led to optimal contracts

that were at least very close to exclusive. With RDU we go further by showing that

sufficient risk aversion leads to full exclusion. At the same time, optimal contracts are

asymmetric on the full range of intermediate cases. In this section, we normalize firm 1

to be the one for which ∆1 ≥ ∆2.

In the appendix we show that the expected payments (net of production costs and

19Another interpretation of the RDU framework with two cost types is simply that the upstream firm
and downstream firms have different subjective beliefs about the probability that each firm will meet a
low-cost competitor. We rely specifically on the RDU structure in appendix B when we must compute
downstream firms’ utility over more than two wealth outcomes.
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information rents) M asks with RDU are given by

rr̂(QH + ∆)P (QH + ∆) + (1− r)(1− r̂)QHP (QH)+

r(1− r̂)
[
(QH + ∆1)P (QH + ∆1) + (QH + ∆2)P (QH + ∆2)

]
+

(r̂ − r)
[
QH

1 P (QH + ∆2) +QH
2 P (QH + ∆1)

]
(13)

The two relevant quantities for distributing output across the two firms with intermediate

risk aversion emerged in the previous section with extreme preferences. The term in

the second line of (13) is also found in (5), and reflects an incentive to smooth output

by splitting ∆ even across downstream firms. The term in the third line is found in

(8), and reflects an incentive to minimize the risk premium by eliminating competition

externalities by excluding one downstream firm. Moreover, the degree of risk aversion

affects the relative importance of each term. When r̂ increases, the incentive to exclude

becomes more important, while smoothing becomes less so. Our next result show how

the optimal contract resolves this tension.

Proposition 4 There exist values c∗, r∗, and r̂∗ > r such that, whenever c < c∗ and

r < r∗:

1. (QH∗
1 ,∆∗1) = (QH∗,∆∗) is uniquely optimal whenever r̂ > r̂∗.

2. QH∗
1 = QH∗ and ∆∗2 <

∆∗

2
is uniquely optimal whenever r̂ ≤ r̂∗.

Corollary 3

1. If firms are sufficiently risk averse, exclusive contracts are optimal.

2. For any level of risk aversion, there is partial exclusion.

The point we wish to highlight is that a small amount of risk aversion is sufficient to

generate starkly asymmetric contracts in which one firm produces all of the high cost

output as well as more of the low cost output.

The conditions that r and c take low values are imposed in order to ensure that the

upstream firm wishes to contract high cost firms to produce positive output, which will

be the case when the probability of meeting high cost firms is high (so that r is low) and

when high cost firms are relatively efficient. When no high cost output is contracted, the

optimal contract splits ∆ evenly across firms.

We next explore the linear demand case P (Q) = 1−Q to generate finer predictions.

Proposition 5 With linear demand, whenever r < min
{

1− c, 2+r̂−2(1+r̂)c
3

}
, QH∗

1 =

QH∗ > 0 and:

13



1. ∆∗2 = 0 whenever r̂ > r̂∗ = r(1+c−r)
1−c−r+2cr

.

2. 0 < ∆∗2 <
∆∗

2
whenever r̂ ≤ r̂∗.

3.
∆∗

2

∆∗ is declining in r̂ on r̂ ∈ (r, r̂∗).

The condition on r is again made to ensure that positive high cost output is contracted.

Conditional on QH being positive, exclusive contracts are optimal if and only if firms’

risk aversion surpasses a certain threshold, whereas proposition 5 shows the weaker result

that exclusive contracts arise when firms are sufficiently risk averse. This gives the model

some empirical content—at least in the linear demand case. It predicts that in markets

in which firms are more risk averse (e.g. because they are smaller, have less access to

capital markets, etc.) exclusion is more likely to be observed.

The solution also displays another kind of monotonicity. In addition to producing all

high cost output, firm 1 produces an increasing share of ∆ when risk aversion increases.

Hence a more refined empirical prediction of the model is that the difference in average

output between two risk averse downstream firms is increasing in their risk aversion.

Proposition 5 also provides insights as to how exclusion depends on the heterogeneity

of downstream firms as measured by c. One can easily show that ∂r̂∗

∂c
> 0. This means

that when heterogeneity increases, the threshold for exclusion becomes higher.

Corollary 4 In the linear demand case, the probability of exclusion is decreasing in the

heterogeneity of downstream firms.

The model also delivers another surprising result when c takes on low values. Clearly,

limc→0 r̂
∗ = r, meaning that when heterogeneity between downstream firms declines

sufficiently far, almost any level of risk aversion is sufficient to guarantee the optimality

of exclusive contracts. This further reinforces the point that the optimality of exclusive

contracts arises in a potentially wide range of circumstances. At least a partial intuition

for corollary 4 arises from the trade-offs identified in the general demand case. When c

is lower and downstream firms are more homogenous, the gains from contracting a larger

∆ are reduced. At the same time, when ∆ is lower, the gains from spreading it across

firms is lower, so exclusion becomes more likely.

5 Exclusion and Limited Liability

As with risk aversion, the existence of wealth constraints or limited liability prevents the

upstream firm from fully extracting expected downstream profits when firms compete.

In the baseline case with risk neutrality explored in section 3.1, downstream firms with

high cost types are held to their participation constraints. This implies that high cost

14



downstream firms lose money when meeting a low cost competitor. In reality downstream

firms may not be able to suffer losses, either because they have insufficient funds and

have limited access to credit markets, or because of limited liability laws. In this case,

contracting two firms forces the upstream firm to leave a rent to high cost downstream

firms (in addition to the information rent left to low cost firms) that again keeps it from

fully exploiting the gains of dealing with multiple firms.

We modify the baseline model and suppose that the upstream firm solves the problem

max
{Qi(ĉi),Ti(ĉi)}2i=1

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (14)(
QH
i + ∆i

)
P
(
QH + ∆

)
− Ti(0) ≥ 0 (LLLLi )(

QH
i + ∆i

)
P
(
QH + ∆i

)
− Ti(0) ≥ 0 (LLLHi )

QH
i

[
P
(
QH + ∆j

)
− c
]
− Ti(c) ≥ 0 (LLHLi )

QH
i

[
P
(
QH
)
− c
]
− Ti(c) ≥ 0 (LLHHi )(

QH
i + ∆i

) [
rP
(
QH + ∆

)
+ (1− r)P

(
QH + ∆i

)]
− Ti(0) ≥

QH
i

[
rP
(
QH + ∆j

)
+ (1− r)P

(
QH
)]
− Ti(c) (ICL

i )

QH
i

[
rP
(
QH + ∆j

)
+ (1− r)P

(
QH
)
− c
]
− Ti(c) ≥(

QH
i + ∆i

) [
rP
(
QH + ∆

)
+ (1− r)P

(
QH + ∆j

)
− c
]
− Ti(0) (ICH

i )

QH
i ≥ 0, QH

i + ∆i ≥ 0. (NN)

Here the participation constraints in (3) have been replaced by limited liability constraints

that ensure that downstream firms never lose money in the market. We are interested

in conditions under which the cost of contracting two downstream firms outweighs the

gains from output smoothing. The following provides an answer.20

Proposition 6 There exists an r∗ such that for all r < r∗ only exclusive contracts are

optimal with limited liability.

We find a remarkable similarity between the case of infinite risk aversion and limited

liability. In both cases, if the probability of finding an efficient firm is sufficiently low,

exclusive contracts alone are optimal. Hence the competition externalities that lie at

the core of our theoretical setup map into optimal contracts in a similar way across two

different downstream environments.21 Moreover, since wealth constraints are sometimes

20The strategy of the proof is to ignore all constraints except ICL
i and LLHL

i and show that the only
global maxima of the relaxed problem are exclusive contracts when r is sufficiently low. The firm’s
objective function takes essentially the same form as in the RDU model, and the analysis proceeds
similarly.

21The intuition for the condition on r begin sufficiently low is richer with limited liability than infinite
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relevant when risk aversion is not, the result also expands the set of situations in which

our model predicts exclusion.

Proposition 6 is also important for another theoretical reason. We have shown that

the interaction of risk aversion and competition externalities generates the optimality

of exclusive contracts. In a more general contracting setup with auctions, competition

externalities would not arise because the most efficient firm would produce all output.

Nevertheless, it is an open theoretical question whether downstream risk aversion would

induce the upstream firm to restrict the number of auction participants to extract more

surplus. With limited liability this issue does not arise. We suspect a wide range of

auction formats (for example, a second price auction) could be used to allocate the

downstream market optimally without imposing losses on any auction participant. So,

the upstream firm would not want to restrict the number of limited-liable auction partici-

pants. Instead, the combination of bilateral contracting (and the associated externalities)

with limited liability generates exclusion.

6 Extensions

We use this section to explore three extensions of the model. We consider situations

in which the upstream firm cannot offer different contracts to downstream firms; there

are more than two firms and cost types; and the upstream firm can choose whether to

insure downstream firms (or, in the limited liability case, to provide liquidity) prior to

posting contracts. In each extension, we continue to find conditions under which exclusive

contracts are optimal.

6.1 Standardized contracts

In this section we relax the assumption that M is able to fully discriminate between the

downstream firms.22 When the upstream firm can offer different contracts to different

downstream firms, we know that under infinite risk aversion (as long as r is sufficiently

small) exclusion of one of them is uniquely optimal. The question is whether M is able

to replicate this outcome when it is restricted to offering the same standardized contract

to both firms. We show here that the answer is affirmative under certain (possibly very

mild) conditions.

More precisely, M would like to implement the following equilibrium outcome:

risk aversion. When r is low the probability of meeting a low cost firm is low. But, since the profit of
meeting a low cost firm must be zero, the upstream firm pays out a rent with high probability when r is
low. When r is low enough, these rents payments wipe out the gain from contracting two firms.

22This is similar to Segal (2003), who examines when the optimal allocation under bilateral contracting
with individualized contracts can be replicated with standardized contracts.

16



1. It offers both firms the same menu of contracts {(T (0), Q(0)) , (T (c), Q(c)) , (0, 0)},
with Q(0) = QH∗ + ∆∗, Q(c) = QH∗, T (0) = (QH∗ + ∆∗)P (Q∗ + ∆∗)− cQH∗, and

T (c) = QH∗P (QH∗) − cQH∗, where QH∗ and ∆∗ are the optimal values found for

an exclusive contract.23

2. One firm (say 1) chooses (T (0), Q(0)) if low cost and (T (c), Q(c)) if high cost; and

the other firm (say 2) chooses (0, 0) for both cost types.

For this to be an equilibrium outcome, each player must find the candidate strategy to

be optimal given the choices of the others. For M , optimality follows immediately from

the fact that this contract reproduces the optimal outcome obtained under less restrictive

assumptions on its strategies (it cannot achieve higher profits when it is obliged to use

standardized contracts than when it can discriminate).

In the case of firm 1, the choice is also optimal given that firm 2 chooses not to

participate in the market: since (0, 0) effectively amounts to exclusion, we know that the

participation and incentive constraints are all satisfied when firm 2 does not sell).

Therefore, we only need to confirm whether firm 2 prefers not to participate (i.e.,

chooses (0, 0)) given that firm 1 chooses (T (0), Q(0)) if low cost and (T (c), Q(c)) if high

cost. Under infinite risk aversion, this is true when the following incentive constraints

are satisfied:

0 ≥ QH∗P
(
2QH∗ + ∆∗

)
− cQH∗ − T (c) (ICHH)

0 ≥
(
QH∗ + ∆∗

)
P
(
2QH∗ + 2∆∗

)
− c

(
QH∗ + ∆∗

)
− T (0) (ICHL)

0 ≥ QH∗P
(
2QH∗ + ∆∗

)
− T (c) (ICLH)

0 ≥
(
QH∗ + ∆∗

)
P
(
2QH∗ + 2∆∗

)
− T (0), (ICLL)

where ICHH and ICHL refer to the possible deviations of high cost firm 2 (he might want

to pick (T (c), Q(c)) or (T (0), Q(0)), respectively); and similarly ICLH and ICLL refer to

the possible deviations of low cost agent 2. After substitution, the four ICs become:

0 ≥ P
(
2QH∗ + ∆∗

)
− P (QH∗) (ICHH)

0 ≥ P
(
2QH∗ + 2∆∗

)
− P (Q∗ + ∆∗) (ICHL)

0 ≥ P
(
2QH∗ + ∆∗

)
− P (QH∗) + c (ICLH)

0 ≥
(
QH∗ + ∆∗

) (
P
(
2QH∗ + 2∆∗

)
− P

(
QH∗ + ∆∗

))
+ cQH∗. (ICLL)

Because the demand function is assumed to be decreasing, the first two constraints

23These are the values that solve: MR
(
QH∗ + ∆∗

)
= 0 and (1− r)MR

(
QH∗) = c.
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are always satisfied, so we are left with the last two ICs. We find that

Proposition 7 There exists a c > 0 such that for c ≤ c M is able to implement the

(optimal) exclusionary outcome by making use of standardized contracts.

Proposition 7 gives a sufficient condition for standardized contracts to implement the

same exclusionary outcome as individual ones. It is important to note that this condition

might be very weak. For instance, under P = 1−Q with individual contracts, we know

that exclusion is optimal for r < (1− c)/(1 + c), and that QH∗ = 1−c−r
2(1−r) and ∆∗ = c

2(1−r) .

By replacing these values into ICLH and ICLL, one obtains c = 1/2. Moreover, c < 1/2

is exactly what we assumed in the baseline model to ensure that the low cost firms face

competition from high cost ones.

6.2 Multiple firms and types

Throughout the paper we have maintained a simple two by two setup for expositional

clarity. We now adopt a more general environment in which there are F ∈ N firms

each with N ∈ N possible cost types. We maintain symmetry by assuming that the

distribution of cost types is iid, and let rj be the probability that firm i has cost type cj.

We adopt the convention that cj > cj+1, assume that cN ≥ 0, and that P (0) > c1.

Proposition 8 There exists an r∗N such that, when all downstream firms are infinitely

risk averse and rN < r∗N , only exclusive contracts are optimal.

This result says that as long as the probability of firms’ being the most efficient type

is not too large, only exclusive contracts solve M ’s problem. The condition placed on rN

ensures that the upstream firm wants at least the second most efficient type to produce

output. Thus the optimality of exclusive contracts does not rely on the least efficient type

producing, merely any type that is not the most efficient producing. We view this as a

weak restriction. For example, if one assumed that the cost distribution were uniform

and the values of c1 and cN fixed, the condition would be satisfied for high enough N .

Moreover, by employing the same logic as in the proof of proposition 3, one can show

that ε-exclusion is optimal when downstream firms have CARA utility, rN < r∗N , and the

level of absolute risk aversion is sufficiently high.

6.3 Production only contracts

We have argued that competition is a source of uncertainty for downstream firms, and

that this leads the upstream firm to offer an exclusive contract and sacrifice the benefits

of two firms if risk aversion is sufficiently high. A seemingly straightforward solution is

for the upstream firm to pay downstream firms to produce output, but then itself collect
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the revenue from selling the output. This arrangement insures downstream firms against

revenue volatility, and allows the upstream firm to replicate the payoff it obtains from

contracting with two risk neutral firms. Since fairly simple contracts appear to address

the tension in our model, one might question the relevance of our story.24

In appendix B we extend our model with RDU to allow the upstream firm to choose

whether to collect the revenue from the output that each downstream firm produces or

whether to let each collect it as in the baseline case. After this decision, it offers optimal

contracts given the distribution of revenue income. In all cases, each firm is offered a menu

of quantity-transfer pairs as above. Since some definitions of ownership are formulated

in terms of who collects the residual income from an asset (in this case the output to be

sold), we interpret the the upstream firm’s choosing to collect the sales revenue of firm i

as “vertically integration” with firm i. We solve for the organizational arrangement that

maximizes the joint ex-ante expected utility of all three firms.

Two key results emerge. First, unsurprisingly, the upstream firm is always better off

when integrated with both firms since it no longer has to pay any risk premium. More

surprising is that joint downstream revenue is lower when both firms are integrated and

contracted to produce compared to when both are independent and only one offered an

exclusive contract. The reason is that aggregate information rents decrease with an ad-

ditional firm. This allows us to construct an example in which the organization that

maximizes joint ex-ante utility leaves both firms independent with one excluded.25 Thus,

subject to certain conditions, our insights are robust to an environment in which the

upstream firm could choose insurance to avoid exclusion if it so wanted. If one instead

interpreted vertical integration as a means of granting wealth-constrained downstream

firms access to internal capital markets, this example would also show that maintain-

ing such constraints and excluding can be preferable to providing downstream access to

funding.

7 Summary and conclusions

This paper identifies a new rationale for using exclusivity provisions: when agents com-

pete downstream, and do not observe one another’s cost types, competition generates

uncertainty, leading risk-averse or wealth-constrained agents to require a rent. To save

the payment of such rents, the upstream firm sometimes prefers to deal exclusively with

one downstream firm, and more generally offers asymmetric contracts in many cases.

24One reason why production only contracts might not be efficient is if there were a moral hazard
problem whose solution required downstream firms to be exposed to the wealth effects of their actions.

25More specifically, this is true with linear demand when r̂∗ = r(1+c−r)
1−c−r+2cr , c is sufficiently small, and r

is sufficiently large.
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Beyond the specific model used here, we believe that this mechanism offers a general

reason why a principal may endogenously restrict the number of agents with whom it

wants to deal. Whenever the payoff of one agent depends on the actions or the type

of other agents, and there is imperfect information, the introduction of competition will

oblige the principal to pay a risk premium whenever agents are risk averse. To save on

these, the principal may prefer to contract with a strict subset of the potential agents.

This same mechanism should hold in very different settings, such as in a moral hazard

model where agents are paid according to relative performance schemes.
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A Omitted Proofs

(3) is not a standard adverse selection problem because of externalities. However, if the exter-

nalities are separable from types in agents’ utility function, one can apply standard tools, as

the following result formalizes.

Lemma 1 Suppose that for i = 1, 2 and j 6= i

U [Li(ĉi | ci)] = f [Qi(ĉi), Qj(0), Qj(c)]− ciQi(ĉi)− Ti(ĉi).

Then (3) rewrites as

2∑
i=1

{rf [Qi(0), Qj(0), Qj(c)] + (1− r)f [Qi(c), Qj(0), Qj(c)]− cQi(c)}

such that Qi(0) ≥ Qi(c) ≥ 0.

Proof. ICLi and PCHi together imply PCLi is satisfied. So ICLi must bind, since otherwise M

could increase Ti(0). Now ICHi can be rewritten as26

c [Qi(0)−Qi(c)] ≥ Ti(c)− Ti(0) +

{
f [Qi(0), Qj(0), Qj(c)]−
f [Qi(c), Qj(0), Qj(c)]

}
≥ 0. (A.1)

So Qi(0) ≥ Qi(c) is necessary for incentive compatibility, and, under this condition, ICLi binding

implies ICHi is satisfied. This leaves PCHi , which must be binding, since otherwise the upstream

firm could increase Ti(c). The maximization problem is obtained by substituting in for Ti(0)

and Ti(c) and imposing the implementability condition Qi(0) ≥ Qi(c).

A.1 Proof of Proposition 1

Proof. The risk neutrality case satisfies the condition of lemma 1 with

f [Qi(ci), Qj(0), Qj(c)] = Qi(ĉi) {rP [Qi(ĉi) +Qj(0)] + (1− r)P [Qi(ĉi) +Qj(c)]} . (A.2)

The resulting objective function is equation (5) minus cQH .

It remains to be shown that the optimal value of ∆ is positive. Suppose not, and let

the optimal value of QH be QH′. The total profit of the upstream firm from this solution is

QH′
[
P
(
QH′

)
− c
]
. Without loss of generality, this can be achieved through contracts in which

QH1 = QH′ and ∆1 = ∆2 = 0. Now consider the problem in which the upstream maximizes

profit within the restricted class of contracts QH1 = QH and ∆1 = ∆. The problem becomes

max
QH≥0,∆≥0

r
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)QHP

(
QH
)
− cQH . (A.3)

26The last inequality follows from ICL
i .
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The optimal values (QH∗,∆∗) for this problem solve the first order conditions

MR
(
QH∗ + ∆∗

)
≤ 0 (A.4)

rMR
(
QH∗ + ∆∗

)
+ (1− r)MR

(
QH∗

)
− c ≤ 0 (A.5)

where (A.4) holds with equality if ∆∗ > 0 and (A.5) holds with equality if QH∗ > 0. These

conditions together imply that ∆∗ > 0. Suppose not, and that QH∗ = 0. Then, from (A.4),

it must be the case that MR(0) ≤ 0 which is ruled out by assumption. Suppose not, and

that QH∗ > 0. Then (A.5) gives MR
(
QH∗

)
= c > 0 while (A.4) gives MR

(
QH∗

)
< 0, a

contradiction. Since the contracts QH = QH′ and ∆1 = ∆ = 0 are within the set of feasible

contracts for (A.3) and are not chosen, we have arrived at a contradiction of their optimality.

A.2 Proof of Proposition 2

Proof. The risk neutrality case satisfies the condition of lemma 1 with

f [Qi(ci), Qj(0), Qj(c)] = Qi(ĉi)P [Qi(ĉi) +Qj(0)] .

The resulting objective function is equation (8) minus cQH . By arguments in the text whenever

QH > 0 exclusion is strictly optimal. From (A.4) and (A.5), QH∗ > 0 if and only if r <

1 − c
MR(0) = r∗. Otherwise QH∗ = 0, and M ’s problem becomes max∆≥0 ∆P (∆). Since

MR(0) = P (0) > 0 it is optimal to set ∆ > 0.

A.3 Proof of Proposition 3

Proof. Let W be firm i’s certainty equivalent income from the lottery Li(ĉi | ci). This is

defined by

−r exp [−aπi(ĉi, 0, ci)]− (1− r) exp [−aπi(ĉi, 0, ci)− aRi(ĉi)] = − exp [−aW ] .

where Ri(ĉi) = πi(ĉi, c, ci)− πi(ĉi, 0, ci). Solving for W gives

W = πi(ĉi, 0, ci)−
ln [(1− r) exp [−aRi(ĉi)] + r]

a
.

Utilities expressed as certainty equivalent incomes satisfy lemma 1 by taking

f [Qi(ci), Qj(0), Qj(c)] = Qi(ĉi)P [Qi(ĉi) +Qj(0)]− ln [(1− r) exp [−aRi(ĉi)] + r]

a
.
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Replacing α = 1
a , the objective function becomes

r
(
QH + ∆

)
P
(
QH + ∆

)
− cQH + (1− r)

[
QH1 P

(
QH + ∆2

)
+QH2 P

(
QH + ∆1

)]
−∑

i

rα ln

[
(1− r) exp

(
−Ri(0)

α

)
+ r

]
−
∑
i

(1− r)α ln

[
(1− r) exp

(
−Ri(c)

α

)
+ r

]
. (A.6)

Since ∆i ≥ 0, Ri(0) ≥ 0 and Ri(c) ≥ 0, meaning that this expression limits to the objective

function in the infinite risk aversion case as α→ 0.

Denote by S(α) =
(
QH∗i (α),∆∗i (α)

)2
i=1
∈ R4

+ the solution correspondence to the problem

of maximizing (A.6) such that QHi ≥ 0 and ∆i ≥ 0 for i = 1, 2. We now argue that this

correspondence must be bounded for all α ∈ [0,∞). Note that ln
[
(1− r) exp

(
−Ri(c)

α

)
+ r
]

and ln
[
(1− r) exp

(
−Ri(0)

α

)
+ r
]

are bound between ln[r] and 0 and that

r
(
QH + ∆

)
P
(
QH + ∆

)
− cQH + (1− r)

[
QH1 P

(
QH + ∆2

)
+QH2 P

(
QH + ∆1

)]
≤

r
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)QHP

(
QH
)
≡ rQ1P

(
Q1
)

+ (1− r)Q2P
(
Q2
)

We claim that limQk→∞Q
kP
(
Qk
)

= −∞. One can decompose QkP
(
Qk
)

as

∫ Q̃+µ

0
MR(v)dv +

∫ Qk

Q̃+µ
MR(v)dv ≤

∫ Q̃+µ

0
MR(v)dv +MR(Q̃+ µ)(Qk − Q̃− µ),

which is unbounded below as Qk →∞ since MR(Q̃+µ) < 0. Since M gets 0 by offering 0 input

to all firms, the solution correspondence must be bounded. So we can rewrite the constraints

as QHi ∈
[
0, Q

]
and ∆i ∈

[
0,∆

]
for some Q ≤ ∞ and ∆ ≤ ∞.

Since (A.6) is continuous and the constraint set is compact-valued, the Maximum Theorem

applies (see Sundaram (1996) theorem 9.14 for details), and so S(α) is upper-semicontinuous.

Now, by proposition 2, whenever r < r∗ S(0) =
{(
QH∗,∆∗, 0, 0

)
,
(
0, 0, QH∗,∆∗

)}
. Now define

the open set V ∈ R4 as

V =


(
QH∗ − ε,QH∗ + ε

)
(∆∗ − ε,∆∗ + ε)

(−ε, ε)
(−ε, ε)

 ∪


(−ε, ε)
(−ε, ε)(

QH∗ − ε,QH∗ + ε
)

(∆∗ − ε,∆∗ + ε)


Clearly S(0) ⊂ V . So by usc there exists some α′ > 0 such that S(α) ⊂ V whenever α ∈ (0, α′).

A.4 Proof of Proposition 4

Proof. (11) satisfies the conditions of lemma 1 by taking f as in A.2 but substituting r = r̂.

The resulting objective function is
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r

[
r̂(QH1 + ∆1)P (QH + ∆) + (1− r̂)(QH1 + ∆1)P (QH + ∆1)− cQH1 +

r̂(QH2 + ∆2)P (QH + ∆) + (1− r̂)(QH2 + ∆2)P (QH + ∆2)− cQH2

]
+

(1− r)

[
r̂QH1 P (QH + ∆2) + (1− r̂)QH1 P (QH + ∆2)− cQH1 +

r̂QH2 P (QH + ∆1) + (1− r̂)QH2 P (QH + ∆1)− cQH2 .

]

After removing

rr̂(QH + ∆)P (QH + ∆) + (1− r)(1− r̂)QHP (QH)− cQH

one is left with

r(1− r̂)
[
(QH1 + ∆1)P (QH + ∆1) + (QH2 + ∆2)P (QH + ∆2)

]
+

(1− r)r̂
[
QH1 P (QH + ∆2) +QH2 P (QH + ∆1)

]
which equals

r(1− r̂)
[
(QH1 + ∆1)P (QH + ∆1) + (QH2 + ∆2)P (QH + ∆2)

]
+

r(1− r̂)
[
QH1 P (QH + ∆2) +QH2 P (QH + ∆1)

]
+

(1− r)r̂
[
QH1 P (QH + ∆2) +QH2 P (QH + ∆1)

]
−

r(1− r̂)
[
QH1 P (QH + ∆2) +QH2 P (QH + ∆1)

]
and finally

r(1− r̂)
[
(QH + ∆1)P (QH + ∆1) + (QH + ∆2)P (QH + ∆2)

]
+

(r̂ − r)
[
QH1 P (QH + ∆2) +QH2 P (QH + ∆1)

]
.

Whenever ∆1 ≥ ∆2, QH1 = QH and QH2 = 0 is (weakly) optimal. Substituting these conditions

in profits along with the condition ∆1 = ∆−∆2 gives

π(QH ,∆,∆2) = rr̂R
(
QH + ∆

)
+ (1− r)(1− r̂)R

(
QH
)
− cQH+

r(1− r̂)
[
R
(
QH + ∆−∆2

)
+R

(
QH + ∆2

)]
+

(r̂ − r)QHP
(
QH + ∆2

)
. (A.7)

We will solve the relaxed problem

max
QH≥0,∆≥0,∆2≥0

π(QH ,∆,∆2) (A.8)

and show that all solutions satisfy ∆2 ≤ ∆
2 .

In general (A.8) is not a concave problem and there can be multiple solutions to the Kuhn-

Tucker first order conditions, some of which are not global maximum. We can rule out the case

where ∆ = 0 (and therefore ∆1 = ∆2 = 0) since (A.7) then becomes QHP (QH)− cQH , which,
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by the arguments from the proof of proposition 1, can be improved by some ∆1 > 0. One can

also rule out solutions in which QH = 0 and ∆2 = 0. When QH = 0 (A.7) becomes

rr̂R (∆) + (1− r)(1− r̂)R (0) + r(1− r̂) [R (∆−∆2) +R (∆2)] (A.9)

which is maximized at ∆2 = ∆
2 .

This solution (with QH = 0 and ∆2 = ∆
2 ) satisfies the Kuhn-Tucker first order conditions if

∂π(QH ,∆,∆2)

∂QH
=


rr̂MR

(
QH + ∆

)
+ (1− r)(1− r̂)MR

(
QH
)

+

r(1− r̂)
[
MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+

(r̂ − r)
[
P
(
QH + ∆2

)
+QHP ′

(
QH + ∆2

)]
− c < 0 (A.10)

∂π(QH ,∆,∆2)

∂∆
= rr̂MR

(
QH + ∆

)
+ r(1− r̂)MR

(
QH + ∆−∆2

)
= 0 (A.11)

∂π(QH ,∆,∆2)

∂∆2
=

{
r(1− r̂)

[
−MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+

(r̂ − r)QHP ′
(
QH + ∆2

) }
= 0 (A.12)

are all satisfied at QH = 0 and ∆2 = ∆
2 > 0. (A.12) is clearly satisfied, while (A.10) and (A.11)

rewrite as27

r̂MR (∆) + (1− r̂)MR

(
∆

2

)
= 0 (A.13)

(1− r)(1− r̂)MR (0) + r(1− r̂)MR

(
∆

2

)
+ (r̂ − r)P

(
∆

2

)
< c. (A.14)

Call the solution to A.13 ∆∗(r̂). Plugging into A.14 gives the condition on r

r >
(1− r̂)MR(0) + r̂P

(
∆∗(r̂)

2

)
− c

(1− r̂)
[
MR(0)−MR

(
∆∗(r̂)

2

)]
+ P

(
∆∗(r̂)

2

) = r̃(r̂, c). (A.15)

r̃(r̂, c) < 1 since

(1− r̂)MR

(
∆∗(r̂)

2

)
+ (r̂ − 1)P

(
∆∗(r̂)

2

)
= (1− r̂)

[
MR

(
∆∗(r̂)

2

)
− P

(
∆∗(r̂)

2

)]
< 0 < c.

(A.16)

r̃(r̂, c) > 0 if28

c < (1− r̂)P (0) + r̂P

(
∆∗(r̂)

2

)
. (A.17)

The right-hand side of this expression is positive since P
(

∆∗(r̂)
2

)
> R

(
∆∗(r̂)

2

)
> 0, where the

last inequality follows from (A.13). Now define c∗minr̂(1 − r̂)P (0) + r̂P
(

∆∗(r̂)
2

)
∈ (0, P ′(0))

and r′ = minr̂ r̃(r̂, c
∗). So one can conclude that the solution with QH = 0 and ∆2 = ∆

2 > 0

does not exist when r < r′ and c < c∗.

27Here we have also plugged (A.10) into (A.11).
28Recall that MR(0) = P (0).
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Another potential solution to (A.8) is an exclusive contract in which ∆2 = 0. By the above

arguments an exclusive contract can only be optimal if QH > 0. Such an exclusive contract

satisfies the Kuhn-Tucker first order conditions if[
∂π(QH ,∆,∆2)

∂QH

]
∆2=0

= 0 (A.18)[
∂π(QH ,∆,∆2)

∂∆

]
∆2=0

= 0 (A.19)[
∂π(QH ,∆,∆2)

∂∆2

]
∆2=0

= 0. (A.20)

which simplifies to

rMR
(
QH + ∆

)
+ (1− r)MR

(
QH
)

= c (A.21)

rMR
(
QH + ∆

)
= 0 (A.22)

r(1− r̂)
[
−MR

(
QH + ∆

)
+ MR

(
QH
)]

+ (r̂ − r)QHP ′
(
QH
)
< 0. (A.23)

and further to

(1− r)MR
(
QH
)

= c (A.24)

rMR
(
QH + ∆

)
= 0 (A.25)

r(1− r̂)MR
(
QH
)

+ (r̂ − r)QHP ′
(
QH
)
< 0. (A.26)

Let QH∗(r) be the solution to (A.24). Since MR(QH∗) = P (QH∗) + QH∗P ′(QH∗) (A.26) is

satisfied whenever

r̂ >
rP
(
QH∗(r)

)
rMR (QH∗(r))−QH∗(r)P ′(QH∗(r))

= f(r) ∈ (r, 1). (A.27)

Let r̂′ = maxr f(r). Now, because marginal revenue is decreasing, QH∗(r) is decreasing in

r. QH∗(r) > 0 for r near 0 since by assumption MR(0) = P ′(0) > c. But, assuming that

MR(0) <∞, there will exist some point r′′ > 0 at which QH∗(r′′) = 0. Define r∗ = min{r′, r′′}.
The final solution to consider is one in which no boundary solutions to (A.8) exist. The

resulting system of equations simplifies to{
(1− r)(1− r̂)MR

(
QH
)

+ r(1− r̂)MR
(
QH + ∆2

)
+

(r̂ − r)
[
P
(
QH + ∆2

)
+QHP ′

(
QH + ∆2

)] }
= c (A.28)

r̂MR
(
QH + ∆

)
+ (1− r̂)MR

(
QH + ∆−∆2

)
= 0 (A.29)

r(1− r̂)
[
−MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+ (r̂ − r)QHP ′

(
QH + ∆2

)
= 0. (A.30)

Since P ′ < 0, (A.30) implies that MR
(
QH + ∆2

)
> MR

(
QH + ∆−∆2

)
which in turn implies

∆2 < ∆ −∆2 and ∆2 <
∆
2 . So the original claim that the solution to the relaxed problem in

(A.8) is also the solution to the problem with the constraint ∆1 ≥ ∆2 is validated. Also notice
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that as r̂ approaches 1, the left hand side of (A.30) must be strictly negative. So there exists

some value r̂′′ such that this solution does not exist for r̂ > r̂′′. Let r̂∗ = max{r̂′, r̂′′}.
We have show that for r < r∗ and c < c∗ only the exclusive contract and above solution

exist. Moreover, within this parameter space, when r̂ > r̂∗, only the exclusive contract solution

exists. When r̂ ≤ r̂∗, either the exclusive contract or above solution exist. For both solutions

we find that ∆∗2 <
∆∗

2 .

A.5 Proof of Proposition 5

Proof. The strategy for the first part of the proof is to utilize the expressions for the existence

of the three solutions derived in the proof of proposition 4. First consider the solution in which

Q = 0 and ∆2 = ∆
2 > 0. Equation (A.13) becomes

r̂(1− 2∆) + (1− r̂)(1−∆) = 0 (A.31)

or ∆ = 1
1+r̂ . Plugging this expression in (A.15) gives

r̃(r̂, c) =
(1− r̂) + r̂

(
1− 1

2(1+r̂)

)
− c

(1− r̂)
[
1−

(
1− 1

1+r̂

)]
+
(

1− 1
2(1+r̂)

) =
1− r̂

2(1+r̂) − c

(1− r̂)
(

1
1+r̂

)
+ 1− 1

2(1+r̂)

=

2(1 + r̂)− r̂ − 2(1 + r̂)c

1 + 2(1 + r̂)− 2r̂
=

2 + r̂ − 2(1 + r̂)c

3
. (A.32)

Next consider the exclusive contract solution. (A.24) gives Q∗(r) = 1−r−c
2(1−r) which is positive

as long as r < 1− c. So whenever r < min
{

1− c, 2+r̂−2(1+r̂)c
3

}
the exclusive contract solution

exists and the solution above does not. Plugging Q∗(r) into (A.27) gives

f(r) =
r
[

2−2r−(1−r−c)
2(1−r)

]
r
[

1−r−(1−r−c)
(1−r)

]
+ 1−r−c

2(1−r)

=
r(1− r + c)

1− r − c+ 2cr
. (A.33)

Now finally consider the solution with partial exclusion. Expressions (A.28)-(A.30) solve as

Q∗ =
r(1− r̂)(2− 3r + r̂ − 2c(1 + r̂))

4r − 2rr̂ − r̂2 + r2(−5 + 4r̂)
> 0 (A.34)

∆∗ =
−r2 + r(2 + 6c− 6cr̂) + r̂(−2 + 2c(1− r̂) + r̂)

8r − 4rr̂ − 2r̂2 + 2r2(−5 + 4r̂)
> 0 (A.35)

∆∗2 =
−r2 − (1− c)r̂ + r(1 + c+ r̂ − 2cr̂)

4r − 2rr̂ − r̂2 + r2(−5 + 4r̂)
> 0. (A.36)

Whenever r < 2+r̂−2(1+r̂)c
3 the numerator of (A.34) is positive. The condition for the denomi-

nator to be positive is that

r ≤ r̂ ≤ −r(1− 2r) + 2(1− r)
√
r(1 + r) < 1. (A.37)
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(A.35) is positive when

r ≤ r̂ ≤
1− c+ 3cr −

√
(1− r)2(1− 2c) + c2(1 + 3r)2

1− 2c
, (A.38)

which is more stringent than the condition in (A.37). Finally, the condition for (A.36) positive

is

r ≤ r̂ ≤ r(1 + c− r)
1− c− r + 2cr

≡ r̂∗. (A.39)

Since r̂∗ <
1−c+3cr−

√
(1−r)2(1−2c)+c2(1+3r)2

1−2c , r ≤ r̂ ≤ r(1+c−r)
1−c−r+2cr ≡ r̂∗ is the condition for the

partial exclusion solution to hold.

To prove the final statement, let

T =
∆∗2
∆∗

=
2
[
−r2 − (1− c)r̂ + r(1 + c+ r̂ − 2cr̂)

]
−r2 + r(2 + 6c− 6cr̂) + r̂(−2 + 2c(1− r̂) + r̂)

.

Differentiating this expression yields

∂T

∂r̂
=

−2
[
A (c, r) +B(c, r)r̂ − C(c, r)r̂2

]
[−r2 + r(2 + 6c− 6cr̂) + r̂(−2 + 2c(1− r̂) + r̂)]2

,

where

A(c, r) = 4cr − 4c2r − r2 − 9cr + 6c2r2 + r3 + 4cr3,

B(c, r) = 2r
(
1− c− 2c2 − r + 2cr

)
> 0,

and

C(c, r) = (1− 2c) [(1− c)− (1− 2c)r] > 0.

To show that ∂T
∂r̂ ≤ 0 we have to show that C(c, r)r̂2−B(c, r)r̂−A(c, r) ≤ 0. This inequality

is solved by: r̂1(c, r) ≤ r̂ ≤ r̂2(c, r), where: r̂1(c, r) = B−
√
B2−4AC
2C and r̂2(c, r) = B+

√
B2−4AC
2C .

Now [
∂T

∂r̂

]
r̂=r

= −1− c− r(1 + c)

8cr(1− r)
< 0.

We also know that T (r̂∗) = 0 and that, for r̂ > r̂∗, T (r̂) ≤ 0. If r̂2(c, r) were lower than r̂∗,

then it would also be true that
[
∂T
∂r̂

]
r̂=r̂∗

> 0, which is a contradiction since it would imply that

there exists an ε such that T (r̂) > 0 for r̂ = r̂∗ + ε. Hence, it must be that
[
∂T
∂r̂

]
r̂=r̂∗

≤ 0, and

that T (r̂) is decreasing on r̂ ∈ (r, r̂∗).

A.6 Proof of Proposition 6

Proof. We consider the relaxed problem.

max
{Qi(ĉi),Ti(ĉi)}2i=1

2∑
i=1

rTi(0) + (1− r)Ti(c) such that (A.40)
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QHi
(
P
[
QH + ∆j

]
− c
)
− Ti(c) ≥ 0 (LLHLi )(

QHi + ∆i

) {
rP
[
QH + ∆

]
+ (1− r)P

[
QH + ∆i

]}
− Ti(0) ≥

QHi
{
rP
[
QH + ∆j

]
+ (1− r)P

[
QH
]}
− Ti(c). (ICLi )

QHi ≥ 0, QHi + ∆i ≥ 0 (NN)

If an exclusive contract is the only solution this relaxed problem, an exclusive contract must be

the only solution to (14) because it satisfies the ignored constraints.

One can express transfers as

Ti(c) = QHi
(
P
[
QH + ∆j

]
− c
)

= QHi
(
rP [QH + ∆j ] + (1− r)P [QH ]− c

)
−QHi (1− r)

(
P [QH ]− P [QH + ∆j ]

)
and

Ti(0) =
(
QHi + ∆i

) {
rP
[
QH + ∆

]
+ (1− r)P

[
QH + ∆i

]}
−

QHi
{
rP
[
QH + ∆j

]
+ (1− r)P

[
QH
]}

+ Ti(c)

=
(
QHi + ∆i

) {
rP
[
QH + ∆

]
+ (1− r)P

[
QH + ∆i

]}
−

QHi
{
rP
[
QH + ∆j

]
+ (1− r)P

[
QH
]}

+QHi
(
P
[
QH + ∆j

]
− c
)

=
(
QHi + ∆i

) {
rP
[
QH + ∆

]
+ (1− r)P

[
QH + ∆i

]}
−

QHi (1− r)
(
P
[
QH
]
− P

[
QH + ∆j

])
− cQHi

Plugging back into the objective function gives

r2
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)2QHP

(
QH
)
− cQH+

r(1− r)
[(
QH + ∆1

)
P
(
QH + ∆1

)
+
(
QH + ∆2

)
P
(
QH + ∆2

)]
−

(1− r)QH1 [P (Q)− P (Q+ ∆2)]− (1− r)QH2 [P (Q)− P (Q+ ∆1)] .

which rewrites as

r2
(
QH + ∆

)
P
(
QH + ∆

)
− r(1− r)QHP

(
QH
)
− cQH+

r(1− r)
[(
QH + ∆1

)
P
(
QH + ∆1

)
+
(
QH + ∆2

)
P
(
QH + ∆2

)]
+

(1− r)QH1 P
(
QH + ∆2

)
+ (1− r)QH2 P

(
QH + ∆1

)
.

We normalize ∆1 ≥ ∆2, so that QH2 = 0 is optimal. With this restriction the above becomes

r2
(
QH + ∆

)
P
(
QH + ∆

)
− r(1− r)QHP

(
QH
)
− cQH+

r(1− r)
[(
QH + ∆1

)
P
(
QH + ∆1

)
+
(
QH + ∆2

)
P
(
QH + ∆2

)]
+ (1− r)QHP

(
QH + ∆2

)
.
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Substituting ∆1 = ∆−∆2 gives the expression

π(QH ,∆,∆2) = r2R
(
QH + ∆

)
− r(1− r)R

(
QH
)
− cQH+

r(1− r)
[
R
(
QH + ∆−∆2

)
+R

(
QH + ∆2

)]
+

(1− r)QHP
(
QH + ∆2

)
(A.41)

We will solve the relaxed problem

max
QH≥0,∆≥0,∆2≥0

π(QH ,∆,∆2) (A.42)

and ignore the constraint ∆2 ≤ ∆
2 , and show that all solutions to the relaxed problem satisfy

this ignored constraint. As explained in the proof of proposition 4, one need only consider three

solutions to this problem.

The solution with QH = 0 and ∆2 = ∆
2 satisfies the Kuhn-Tucker first order conditions if

∂π(QH ,∆,∆2)

∂QH
=


r2MR

(
QH + ∆

)
− r(1− r)MR

(
QH
)

+

r(1− r)
[
MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+

(1− r)
[
P
(
QH + ∆2

)
+QHP ′

(
QH + ∆2

)]
− c < 0 (A.43)

∂π(QH ,∆,∆2)

∂∆
= r2MR

(
QH + ∆

)
+ r(1− r)MR

(
QH + ∆−∆2

)
= 0 (A.44)

∂π(QH ,∆,∆2)

∂∆2
=

{
r(1− r)

[
−MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+

(1− r)QHP ′
(
QH + ∆2

) }
= 0 (A.45)

are all satisfied at QH = 0 and ∆2 = ∆
2 > 0. (A.45) is clearly satisfied, while (A.43) and (A.44)

rewrite as29

rMR (∆) + (1− r)MR

(
∆

2

)
= 0 (A.46)

−r(1− r)MR (0) + r(1− r)MR

(
∆

2

)
+ (1− r)P

(
∆

2

)
< c. (A.47)

This solution cannot exist for r sufficiently small since MR
(

∆
2

)
= 0 and P

(
∆
2

)
< c cannot hold

simultaneously by assumption.

Another potential solution to (A.42) is an exclusive contract in which ∆2 = 0. By the above

arguments an exclusive contract can only be optimal if QH > 0. Such an exclusive contract

satisfies the Kuhn-Tucker first order conditions if[
∂π(QH ,∆,∆2)

∂QH

]
∆2=0

= 0 (A.48)[
∂π(QH ,∆,∆2)

∂∆

]
∆2=0

= 0 (A.49)

29Here we have also plugged (A.43) into (A.44).
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[
∂π(QH ,∆,∆2)

∂∆2

]
∆2=0

< 0. (A.50)

which simplifies to

rMR
(
QH + ∆

)
+ (1− r)MR

(
QH
)

= c (A.51)

rMR
(
QH + ∆

)
= 0 (A.52)

r(1− r)
[
−MR

(
QH + ∆

)
+ MR

(
QH
)]

+ (1− r)QHP ′
(
QH
)
< 0. (A.53)

and further to

(1− r)MR
(
QH
)

= c (A.54)

MR
(
QH + ∆

)
= 0 (A.55)

rMR
(
QH
)

+QHP ′
(
QH
)
< 0. (A.56)

This solution clearly exists when r is small.

The final solution to consider is one in which no boundary solutions to (A.42) exist. The

resulting system of equations simplifies to{
−r(1− r)MR

(
QH
)

+ r(1− r)MR
(
QH + ∆2

)
+

(1− r)
[
P
(
QH + ∆2

)
+QHP ′

(
QH + ∆2

)] }
= c (A.57)

rMR
(
QH + ∆

)
+ (1− r)MR

(
QH + ∆−∆2

)
= 0 (A.58)

r(1− r)
[
−MR

(
QH + ∆−∆2

)
+ MR

(
QH + ∆2

)]
+ (1− r)QHP ′

(
QH + ∆2

)
= 0. (A.59)

Since P ′ < 0, (A.59) implies that MR
(
QH + ∆2

)
> MR

(
QH + ∆−∆2

)
which in turn implies

∆2 < ∆ − ∆2 and ∆2 <
∆
2 . As r approaches 0, the left hand side of (A.59) must be strictly

negative. So this solution cannot exist for r sufficiently small.

A.7 Proof of Proposition 7

Proof. We know that the optimal exclusionary solution can be implemented if ICLH and ICLL

are satisfied. First, consider ICLH . It can be rewritten as P (QH∗) − P
(
2QH∗ + ∆∗

)
≥ c.

The LHS is always strictly positive because of decreasing demand. (Note that QH∗ and ∆∗ in

general depend on c, but as c→ 0, QH∗ will always be strictly positive whereas limc→0 ∆∗ = 0.

This follows immediately by inspection of the FOCs implicitly defining QH∗ and ∆∗.) Define

inf
(
P (QH∗)− P

(
2QH∗ + ∆∗

))
as the lowest value that the LHS can attain, and set c1 =

inf
(
P (QH∗)− P

(
2QH∗ + ∆∗

))
. For any c ≤ c1, the ICLH is satisfied.

Next, consider ICLL. It can be rewritten as
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
(QH∗ +

∆∗)/QH∗ ≥ c. Since (QH∗ + ∆∗)/QH∗ ≥ 1, if
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
≥ c, the

ICLL will be satisfied. The LHS of the last inequality is always strictly positive because of

decreasing demand. Define inf
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
as the lowest value that the

LHS can attain, and set c2 = inf
[
P (QH∗ + ∆∗)− P

(
2QH∗ + 2∆∗

)]
. For any c ≤ c2, the ICLL
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is satisfied.

Define c = min {c1, c2}. If c ≤ c, both ICs are satisfied: the principal is able to implement

the exclusionary solution, with only one firm selling in equilibrium, by making use of uniform

contracts.

A.8 Proof of Proposition 8

Proof. Let Qi(cj) be the quantity offered to the cost type cj of firm i; let Q(cj) be total output

of cost type cj ; let ∆j
i = Qi(cj) − Qi(cj−1) (defined for j > 1); let ∆j =

∑F
i=1 ∆j

i be the total

output difference between cost types cj and cj−1; and let ∆j
−i =

∑
k 6=i ∆j

k be the total output

difference between cost types cj and cj−1 that is not produced by firm i.

The maximization problem for M is

max
{Qi(ĉj),Ti(ĉj)}i=F,j=N

i=1,j=1

F∑
i=1

N∑
j=1

rjTi(ĉj) such that ∀i, j, l 6= j

Qi(cj)
{
P
[
Qi(cj) +Q−i

]
− cj

}
− Ti(cj) ≥ 0 (PCji )

Qi(cj)
{
P
[
Qi(cj) +Q−i

]
− cj

}
− Ti(cj) ≥ Qi(cl)

{
P
[
Qi(cl) +Q−i

]
− cj

}
− Ti(cl) (ICjli )

Qi(cj) ≥ 0. (NN)

where Q−i is the maximum amount produced by all firms other than i.

Lemma 2 The optimal transfers are given by

Ti(c1) = Qi(c1)

P
Qi(c1) +

∑
k 6=i

Qk(cN )

− c1


Ti(cj) = Qi(cj)

P
Qi(cj) +

∑
k 6=i

Qk(cN )− cj

−
j−1∑
l=1

Qi(cl)(cl − cl+1) ∀j > 1

Proof. Following steps similar to those in the proof of lemma 1, one can show that a necessary

condition for incentive compatibility is Qi(cj+1) ≥ Qi(cj). So Q−i =
∑

k 6=iQk(cN ). Moreover,

the optimal transfers make the participation constraint of type c1 bind (from which the expres-

sion for Ti(c1) follows directly), as well as the upward local incentive compatibility constraint

(ICj,j+1
i ) for all other types. The transfer for cost type c2 is obtained from

Qi(c2)
{
P
[
Qi(c2) +Q−i

]
− c2

}
− Ti(c2) = Qi(c1)

{
P
[
Qi(c1) +Q−i

]
− c2

}
− Ti(c1)

= (c1 − c2)Qi(c1).
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Now suppose the stated form is true for some j ∈ {3, . . . , N − 1}. Then we obtain

Qi(cj+1)
{
P
[
Qi(cj) +Q−i

]
− cj+1

}
− Ti(cj+1) = Qi(cj)

{
P
[
Qi(cj) +Q−i

]
− cj+1

}
− Ti(cj)

=

j−1∑
l=1

Qi(cl)(cl − cl+1) +Qi(cj)(cj − cj+1) =

j∑
l=1

Qi(cl)(cl − cl+1).

So the proof follows by induction.

Clearly aggregate production costs and information rents are independent of output distri-

bution. Expected revenue is given by

r1

F∑
i=1

Qi(c1)P

Q(c1) +

N∑
j=2

∆j
−i

+

N−1∑
j=2

rj

F∑
i=1

(
Qi(c1) +

j∑
l=2

∆l
i

)
P

Q(c1) +

j∑
l=2

∆l +
N∑

l=j+1

∆l
−i

+

rN

(
Q(c1) +

N∑
l=2

∆l

)
P

[
Q(c1) +

N∑
l=2

∆l

]
.

The distribution of output only depends on the first two terms. Observe that

F∑
i=1

Qi(c1)P

Q(c1) +
N∑
j=2

∆j
−i

 ≤ Q(c1)P [Q(c1)] (A.60)

and

N−1∑
j=2

rj

F∑
i=1

(
Qi(c1) +

j∑
l=2

∆l
i

)
P

Q(c1) +

j∑
l=2

∆l +

N∑
l=j+1

∆l
−i

 ≤
N−1∑
j=2

rj

(
Q(c1) +

j∑
l=2

∆l

)
P

[
Q(c1) +

j∑
l=2

∆l

]
. (A.61)

An exclusive contract in which some firm i is offered the contract Qi(c1) = Q(c1) and ∆j
i = ∆j

achieves both upper bounds, so exclusive contracts are optimal. Moreover the inequality in

(A.61) is strict whenever ∆N−1 > 0, so the only circumstance under which exclusive contracts

are not strictly optimal is when M only wants to contract positive aggregate output from cost

type cN .

Let Qj = Q(cj). When contracting with one firm, M chooses Qj to maximize

r1

[
Q1P

(
Q1
)
− c1Q

1
]

+

N∑
j=2

(
rj
[
QjP

(
Qj
)
− cj

]
−

j−1∑
l=1

Ql(cl − cl+1)

)
.
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The first order conditions for a solution in which all quantities except QN are 0 is

MR(QN )− cN = 0 (A.62)

rj
[
MR(Qj)− cj

]
− (cj − cj+1)

N−j−1∑
l=0

rN−l =

rjMR(Qj)− cj
N−j∑
l=0

rN−j + cj+1

N−j−1∑
l=0

rl < 0, ∀ j < N. (A.63)

Now, plugging in Qj = 0 for j < N and adding together equations (A.63) gives

N−1∑
j=1

rjMR(0)− c1 + cNrN < 0. (A.64)

As rN → 0 we must have
∑N−1

j=1 rj → 1 and (A.64) becomes MR(0) − c1 < 0 which is ruled

out by assumption. So there exists some r∗N such that, whenever rN < r∗N the firm contracts

some cost type cj , j > N , to produce positive output, in which case only exclusive contracts

are optimal.

B Production Only Contracts

We introduce a period 0 in which the upstream firm chooses xi ∈ {INT, IND} for i = 1, 2.

xi = INT means firm i is integrated, while xi = IND means firm i is independent. We refer to

(x1, x2) as an organization. Firm i’s profit is

πi(ĉi, ĉj , ci, xi) = 1(xi = IND)Qi(ĉi)P [Qi(ĉi) +Qj(ĉj)]− cQj(ĉj)− Ti(ĉi) (B.1)

and the lottery it faces is

Li(ĉi | ci, xi) = {[πi(ĉi, 0, ci, xi), πi(ĉi, c, ci, xi)] ; (r, 1− r)} . (B.2)

Given an organization, M ’s problem is

max
{Qi(ĉi),Ti(ĉi)}2i=1

2∑
i=1

rTi(0) + (1− r)Ti(c) + 1(xi = INT)Qi(ĉi)P [Qi(ĉi) +Qj(ĉj)] (B.3)

such that U [Li(0 | 0, xi)] ≥ U [0] (PCLi )

U [Li(c | c, xi)] ≥ U [0] (PCHi )

U [Li(0 | 0, xi)] ≥ U [Li(c | 0, xi)] (ICLi )

U [Li(c | c, xi)] ≥ U [Li(0 | c, xi)] . (ICHi )

Qi(ĉi)P [Qi(ĉi) +Qj(ĉj)] represents the revenue that accrues from selling Qi(ĉi) units when

firm j 6= i sells Qj(ĉj) units. When a downstream firm i is integrated, this revenue accrues to
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the upstream firm, and Li(ĉi | c, xi) is a degenerate lottery. When firm i is independent, this

revenue accrues directly to it.

We denote by (x∗1, x
∗
2) the organization that maximizes the sum of M ’s and the two down-

stream firms’ joint ex-ante expected utility (that is, before downstream firms’ types are realized),

assuming that the contracts chosen under organization (x1, x2) solve (B.3). We imagine M com-

mitting to an organization in exchange for a fixed payment from each downstream firm that

holds it to its ex-ante participation constraint. The outcome of this Coasean bargain is (x∗1, x
∗
2).

Since (INT, IND) and (IND, INT) produce the same ex-ante expected payoffs by symmetry, we

do not consider the latter. To simplify the problem, we assume that demand is linear; that

downstream firms have rank-dependent utility; and that r̂(r) = r(1+c−r)
1−c−r+2cr so that exclusive

contracts solve (B.3) when (x1, x2) = (IND, IND). Under (IND, IND) each downstream firm

gets the exclusive contract with probability 0.5.

Lemma 3 Suppose that r < 1−c
1+c .

1. Under (IND, IND), QH∗ = 1−c
2 −

c
2

r
1−r , and ∆∗ = c

2(1−r) .

2. Under (INT, IND), QH∗1 = QH∗ = 1−c
2 −

cr
1−r+ r̂−r

2

, and ∆∗1 = ∆∗2 = c
2

1
1−r+ r̂−r

2

.

3. Under (INT, INT), QH∗ = 1−c
2 −

cr
1−r , and ∆∗1 = ∆∗2 = c

2(1−r) .

Proof. Let (x1, x2) = (IND, IND). The optimal exclusive contract is given by equations (A.54)

and (A.55) which rewrite as

(1− r)
(
1− 2QH∗

)
= c

1− 2
(
QH∗ + ∆∗

)
= 0

and from which 1. emerges immediately.

Let (x1, x2) = (INT, IND). The optimal transfers are given by

T1(0) = T1(c) = cQH1

T2(0) = (QH2 + ∆2)
[
r̂P
(
QH + ∆

)
+ (1− r̂)P

(
QH + ∆1

)]
− cQH2

T2(c) = QH2
[
r̂P
(
QH + ∆2

)
+ (1− r̂)P

(
QH
)
− c
]

which when plugged into M ’s objective function gives

r[T1(c) + T2(0)] + (1− r)[T1(c) + T2(c)] =

r

[
r(QH1 + ∆1)P (QH + ∆) + (1− r)(QH1 + ∆1)P (QH + ∆1)− cQH1 +

r̂(QH2 + ∆2)P (QH + ∆) + (1− r̂)(QH2 + ∆2)P (QH + ∆2)− cQH2

]
+

(1− r)

[
rQH1 P (QH + ∆2) + (1− r)QH1 P (QH + ∆2)− cQH1 +

r̂QH2 P (QH + ∆1) + (1− r̂)QH2 P (QH + ∆1)− cQH2

]
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which rewrites as

r2
(
QH + ∆

)
P
(
QH + ∆

)
+ (1− r)2QHP

(
QH
)
− cQH+

r(1− r)
[(
QH + ∆1

)
P
(
QH + ∆1

)
+
(
QH + ∆−∆1

)
P
(
QH + ∆−∆1

)]
+

r(r̂ − r)
(
QH2 + ∆2

) [
P (QH + ∆)− P (QH + ∆2)

]
+

(1− r)(r̂ − r)QH2
[
P
(
QH + ∆1

)
− P

(
QH
)]
.

The last two lines of this expression are clearly negative, so QH1 = QH and QH2 = 0 is optimal.

When demand is linear, the part of this expression that depends on the distribution of output

between firms becomes

−r(1− r)∆2
1 − r(1− r)∆2

2 − r(r̂ − r)∆1∆2 = −r(1− r)∆2 + r(2− r̂ − r)∆1∆2

which is clearly maximized at ∆1 = ∆2 = ∆
2 . M ’s objective function then becomes

r2(QH + ∆)(1−QH −∆) + (1− r)2QH(1−QH) + 2r(1− r)
(
QH +

∆

2

)(
1−QH − ∆

2

)
−cQH − r(r̂ − r)∆2

4
. (B.4)

The first order conditions for QH and ∆ are

1− 2QH∗ − c− 2r∆∗ = 0

r2
(
1− 2QH∗ − 2∆∗

)
+ r(1− r)

(
1− 2QH∗ −∆∗

)
− r(r̂ − r)∆∗

2
= 0.

Solving these two together gives

∆∗ =
c

1− r + r̂−r
2

QH∗ =
1− c

2
− rc

1− r + r̂−r
2

Let (x1, x2) = (INT, INT). The derivation of the optimal contracts is identical to the

previous taking r̂ = r.

Now that we have established optimal contracts in each organization, we can provide con-

ditions under which (x1, x2) = (INT, INT) maximizes joint utility.

Proposition 9 There exists a c > 0 and r < 1 such that (x∗1, x
∗
2) = (IND, IND) when c < c

and r > r.

Proof. We will first compare organizations (IND, IND) and (INT, IND). M ’s profit in (IND, IND)

is equivalent to its profit from contracting with one risk-neutral firm since it always offers an

exclusive contract. As explained on page 7, M ’s profit in this case is

πM (IND, IND) = E[Q(IND, IND) ]−E[Q(IND, IND) ]2−r(1−r)∆(IND, IND)−cQH(IND, IND).
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Expression (B.4) shows that M ’s profit in the (INT, IND) organization is equal to its profit

from contracting two risk-neutral firms minus a risk premium term, so that M ’s profit can be

written as

πM (IND, IND) = E[Q(INT, IND) ]−E[Q(INT, IND) ]2 − r(1− r)
∑
i

∆2
i (INT, IND)−

r(r̂ − r)∆(INT, IND)2

4
− cQH(INT, IND).

Since E[Q(IND, IND) ] = E[Q(INT, IND) ] the difference in profits only depends on the ∆ and

QH terms.

Consider now downstream profits. In (IND, IND), each downstream firm earns zero profit

in all events except the one in which it is low cost and receives the exclusive contract, in which

case it earns the information rent cQH(IND, IND). This event occurs with probability 0.5r. So,

following the general RDU formulation presented in footnote 18, joint downstream profits are

πD(IND, IND) = 2 [1− r̂(1− 0.5r)] c

(
1− c

2
− r

1− r
c

2

)
.

In (INT, IND) the integrated firm earns an information rent with probability r and the inde-

pendent firm always earns 0. So joint downstream profits are

πD(INT, IND) = [1− r̂(1− r)] c

(
1− c

2
− rc

1− r + r̂−r
2

)
.

Note that 1− r̂(1− r) = r(r−c)
c+r−2cr , 2 [1− r̂(1− 0.5r)] = r(0.5r−c)

c+0.5r−cr , and

r(r − c)
c+ r − 2cr

− r(0.5r − c)
c+ 0.5r − cr

=
r2c(1− c)

(c+ r − 2cr)(c+ 0.5r − cr)
> 0.

So

πD(IND, IND)− πD(INT, IND) >

rc2(0.5r − c)
c+ 0.5r − cr

(
r

1− r + r̂−r
2

− r

1− r
1

2

)
− 1

2

r2c2(1− c)2

(c+ r − 2cr)(c+ 0.5r − cr)
.

Now observe that

lim
c→0

 πM (IND,IND)−πM (INT,IND)
c2

+

r(0.5r−c)
c+0.5r−cr

(
r

1−r+ r̂−r
2

− r
1−r

1
2

)
− 1

2
r2(1−c)2

(c+r−2cr)(c+0.5r−cr)

 =

r

[
r

1− r
− r

2(1− r)

]
+ 2r(1− r)

[
1

1− r
1

2

]2

− r

1− r
− r(1− r)

(
1

2(1− r)

)2

+
r

1− r
1

2
− 1 =

r − 1

2
− 2(1− r)

r
.
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This last expression is clearly positive for high enough r. So there exists some c1 and r1 such

that (IND, IND) produces higher joint utility than (INT, IND) whenever c < c1 and r > r1.

πM (INT, INT) and πD(INT, INT) are obtained by evaluating πM (INT, IND) and πD(INT, IND)

at r̂ = r. One can follow exactly the same steps to show that there exists some c2 and r2 such

that (IND, IND) produces higher joint utility than (INT, INT) whenever c < c2 and r > r2.

The proof is completed by taking r = max{r1, r2} and c = min{c1, c2}.
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