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1 Introduction

Contests are one of the most common economic interactions and are taking place, for exam-

ple, in job markets, politics, R&D, and sports. A contest is de�ned as an activity in which

players exert e¤ort in order to win a prize (or several prizes). Many real-life contests are

sequential in nature. For instance, in many sport contests (e.g., athletics and gymnastics)

the contestants perform one after the other. Likewise, in contests in the labor market several

job candidates compete for the same job and arrive one by one. Even R&D tournaments

can sometimes be sequential when one �rm develops a product to compete with an existing

product of another �rm. The outcomes of such contests are obviously a¤ected by the number

of the players, their abilities and their order. This paper analyzes a sequential all-pay con-

test with incomplete information and a general number of players. We address the following

questions. If the designer of the contest wishes to maximize the players�expected highest

e¤ort, is it always better to have more players? Is it always better to have a contest among

strong players than among weak players? If the players are ex-ante asymmetric, who should

be �rst, the stronger or the weaker player? How should the designer order the contestants?

Most existing studies on all-pay contests (auctions) deal with simultaneous all-pay con-

tests where each player submits a bid (e¤ort) and the player who submits the highest bid

wins the contest, but, independently of success, all players bear the cost of their bids.1 We,

on the other hand, study multi-stage sequential all-pay contests under incomplete informa-

tion where the ability of each contestant is his private information and contestants submit

their bids one after the other.2 In Segev and Sela (2011) we studied sequential all-pay con-

tests with two contestants who compete for a prize of size 1. Contestant 1 (the �rst mover)

1All-pay auctions have been studied either under complete information (see, for example, Hillman and

Samet (1987), Hillman and Riley (1989), Baye et al. (1993, 1996), Che and Gale (1998) and Siegel (2009))

or under incomplete information (see, for example, Hillman and Riley (1989), Amman and Leininger (1996),

Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006) and Moldovanu et al. (2010)).
2Sequential all-pay auctions under complete information vave been studied in the literature. For example,

Leininger (1991) modeled a patent race between an incumbent and an entrant as a sequential asymmetric

all-pay auction under complete information, and Konrad and Leininger (2007) characterized the equilibrium

of the all-pay auction under complete information in which a group of players choose their e¤ort �early�and

the other group of players choose their e¤ort �late�.
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makes an e¤ort in the �rst period, while contestant 2 (the second mover) observes the e¤ort

of contestant 1 and then makes an e¤ort in the second period. Contestant 2 wins the contest

if his e¤ort is larger than or equal to the e¤ort of contestant 1; otherwise, contestant 1 wins.

Here, we generalize this model and study a sequential all-pay auction with n � 2 contestants,

who compete for a prize of size 1, where in each period of the contest, 1 � j � n, a new

contestant joins and chooses an e¤ort. Contestant j; j = 1; :::; n observes the e¤orts of all

contestants in the previous j � 1 periods and then exerts an e¤ort in period j: Contestant j

wins if his e¤ort is larger than or equal to the e¤orts of all the contestants in the j � 1 pre-

vious periods and strictly larger than the e¤orts of all the contestants in the following n� j

periods. We assume throughout that the contest designer�s goal is to maximize the expected

highest e¤ort which indeed is the case in many real-life contests. This is especially true in

sport competitions where the designer wishes to see as many records broken as possible as

well as in R&D contests in which the goal of the society is that the product being developed

will have the highest quality.

We �rst show that the expected highest e¤ort in the multi-stage sequential all-pay contest

is not necessarily monotonic in the number of contestants (stages). Thus, if the designer adds

new contestants the expected highest e¤ort might decrease. This implies that the designer

can sometimes increase the expected highest e¤ort by excluding some contestants from par-

ticipation. This result holds regardless of whether the contestants are ex-ante symmetric

or ex-ante asymmetric. The intuition is that each contestant when deciding what e¤ort to

exert takes into account his probability of winning which is determined by the identity and

the number of contestants that perform after him. Therefore, as we formally show, the con-

test designer may sometimes increase the expected highest e¤ort by reducing the number of

stages or, alternatively, the number of active contestants since then the contestants in the

early stages will exert higher e¤orts. Moreover, similarly to the result of Moldovanu and Sela

(2006) in the simultaneous all-pay auction with n players under incomplete information, we

show that in the multi-stage sequential all-pay auction under incomplete information the

optimal expected highest e¤ort might be obtained for any number of contestants 2 � k �

n. Thus, the expected highest e¤ort is neither increasing nor decreasing in the number of

contestants.
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In our sequential model we say that contestant A is stronger than contestant B if con-

testant A�s ability distribution �rst-order stochastically dominates contestant B�s ability

distribution. In that case, we obtain another interesting result that does not hold in the

simultaneous all-pay auction under incomplete information. This result shows that the ex-

pected highest e¤ort in a contest among n weak players might be higher than the expected

highest e¤ort in a contest among n strong players. Therefore, a contest designer who wishes

to maximize the expected highest e¤ort might want to choose a pool of contestants who are

not too strong but also not too weak.

In order to address the question of how to order asymmetric players over the stages

according to their ability distributions, we focus here on a family of distribution functions of

the contestants�abilities for which we are able to explicitly derive the contestants�equilibrium

e¤orts. We show that in the two-stage sequential all-pay auction the stronger contestant

should always be allocated to the �rst stage and the weaker to the second. However, if

the number of contestants is larger than two, the optimal order of the players cannot be

determined and depends on the exact distribution of the contestants�abilities. On the other

hand, we show that if one of the contestants is substantially stronger than the others, he

should never be allocated to the last stage. Interestingly, in several other contest forms, it is

shown that the strongest contestant should be excluded in order to increase the competitive

balance and therefore the contestants�expected e¤orts (see Baye, Kovenock and de Vries

1993). In our sequential model, however, we show that the designer can never achieve a

strictly higher expected highest e¤ort by excluding the strongest contestant.

1.1 Related literature

It is well known that in order to maximize the players�expected e¤orts it might be pro�table

to exclude the players with the lower abilities. Fullerton and McAfee (1999) showed in a two-

stage model that the optimal research tournament requires competing �rms to participate in

an all-pay auction with entry fees, while only a subset of the most competitive �rms engage

in innovation activities. Fu and Lu (2009) studied a multi-stage simultaneous elimination

Tullock contest, and showed that the optimal contest eliminates one contestant at each stage

until the �nal, and the winner of the �nal takes the entire prize sum. In our sequential model,
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however, some players should be excluded but not necessarily those with the lowest abilities.

Furthermore, from the literature on contests we know that the expected e¤ort in any two-

player contest does not solely depend on the ability (or strength) of the respective players,

but also on their relative ability. While Baye et al. (1993), as was mentioned previously,

looked for the optimal set of contestants in an all-pay auction, and found that it is sometimes

bene�cial to exclude the strongest player, Clark and Riis (1998) showed that, similarly to

our sequential model, it does not pay-o¤ to exclude the strongest player from a simultaneous

moves contest if there are several prizes.

The question of how to allocate the players according to their types (abilities) has been

extensively studied by several researchers. Rosen (1986) considered an elimination tourna-

ment with homogeneous players where the probability of winning a match is a stochastic

function of the players� e¤orts. His main result is that rewards in later stages must be

higher than rewards in earlier stages in order to sustain a non-decreasing e¤ort along the

tournament. He also considered an example with four players who can be either �strong�

or �weak�and found (numerically) that a random seeding yields a higher total e¤ort than

the seeding where strong players meet weak players in the semi�nals. Groh et al. (2012)

studied an elimination all-pay auction with heterogenous players whose ability is common

knowledge. For tournaments with four players, they found optimal seedings for several crite-

ria. While these authors focused on which types of players should be in the �nal, Amegashie

(1999) determined the optimal number of �nalists in a two-stage contest à la Tullock with

homogenous players.

In a related paper referred to earlier, Moldovanu and Sela (2006) studied a two-stage

all-pay auction under incomplete information and examined how the players are split among

several sub-contests whose winners compete against each other (while other players are

eliminated). They showed that if the designer maximizes the expected total e¤ort, the

optimal architecture is a single grand static contest but if he maximizes the expected highest

e¤ort and if there are su¢ cient competitors, it is optimal to split the competitors into two

divisions, and then hold a �nal among the two divisional winners. Amegashie (2000) studied

a two-stage contests and compared between pooling (players compete against all others in

each stage) and grouping (players are divided into groups). He showed that the former
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generates a higher rent-dissipation rate.

The rest of the paper is organized as follows: Section 2 characterizes the subgame perfect

equilibrium of our multi-stage sequential all-pay auction. Section 3 analyzes the e¤ect of the

number of players and their types on the expected highest e¤ort, while Section 4 analyzes

the e¤ect of the players�allocation over the stages on the expected highest e¤ort. Section 5

concludes. Some of the proofs are in the Appendix.

2 The model

We consider a multi-stage sequential all-pay auction with n � 2 contestants who compete

for a prize of size 1. Contestants arrive one by one. In period j; 1 � j � n; contestant

j observes the e¤orts of contestants 1; 2; :::; j � 1 in the previous periods and then exerts

an e¤ort xj. The winner is the contestant who exerts the highest e¤ort. We break ties in

favor of later contestants. Thus, contestant j wins the contest if his e¤ort is larger than or

equal to the e¤orts of all the contestants in the previous periods and if his e¤ort is strictly

larger than the e¤orts of all the contestants in the following periods. Formally, contestant

j wins i¤ xj � xi for all i < j and xj > xi for all i > j. Contestant j�s cost of e¤ort xj

is given by xj
aj
where aj is a parameter that describes his ability (a higher aj causes a lower

cost and therefore a higher ability) and is private information to contestant j.3 It is common

knowledge among the contestants that contestant j�s ability aj is drawn from a distribution

Fj with a continuous and positive density function fj and a support [0; 1]. Our aim is to

characterize the perfect Bayesian equilibrium e¤ort strategies of the contestants.

We start the analysis by describing contestant n�s e¤ort strategy. Contestant n exerts

an e¤ort that is equal to the highest e¤ort of all the previous contestants as long as his type

an is larger than or equal to this highest e¤ort; otherwise he stays out of the contest. The

equilibrium e¤ort of contestant n is then given by

bn(an; b1; :::; bn�1) =

8<: 0 if 0 � an < maxj<n bj
maxj<n bj if maxj<n bj � an � 1

3An equivalent interpretation is that aj is player�s j valuation for the prize and his cost is equal to his

bid.
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where bj; j < n is the e¤ort of contestant j: Given this equilibrium strategy, contestant n�1�s

maximization problem becomes

max
b

�
Fn (b)�

b

an�1

�
s:t b � max

j=1;:::;n�2
bj

Let 
n�1 = maxj=1;:::;n�2 bj . By deriving the above maximization problem w.r.t. b we get

that if Fn is concave then contestant n� 1�s equilibrium e¤ort strategy is given by

bn�1(an�1; b1; :::; bn�2) =

8>>>>><>>>>>:
0 if 0 � an�1 < 
n�1

Fn(
n�1)


n�1 if 
n�1
Fn(
n�1)

� an�1 < min
�

1

fn(
n�1)
; 1

�
(fn)

�1
�

1
an�1

�
if min

�
1

fn(
n�1)
; 1

�
� an�1 � 1

Note that since 
n�1
Fn(
n�1)

> 
n�1; some types of contestant n � 1 with higher abilities

than the maximum e¤ort of contestants 1; :::; n� 2 choose to stay out of the contest and do

not exert an e¤ort. The reason is simply that if such a contestant exerts an e¤ort of 
n�1

(the lowest e¤ort that provides him a positive probability of winning) then his expected

payo¤ is Fn
�

n�1

�
� 
n�1

an�1
which is non-negative only when an�1 � 
n�1

Fn(
n�1)
. Moreover,

if 
n�1
Fn(
n�1)

> 1

fn(
n�1)
contestant n� 1 does not exert an e¤ort of 
n�1 and we have

bn�1(an�1; b1; :::; bn�2) =

8><>:
0 if 0 � an�1 < 
n�1

Fn(
n�1)

(fn)
�1
�

1
an�1

�
if 
n�1

Fn(
n�1)
� an�1 � 1

Finally, as long as 
n�1
Fn(
n�1)

� an�1 < min

�
1

fn(
n�1)
; 1

�
the constraint in the maxi-

mization problem of contestant n � 1 is binding and then this contestant exerts an e¤ort

that is equal to 
n�1, the highest e¤ort of the contestants in the previous stages. When

an�1 � min
�

1

fn(
n�1)
; 1

�
, the constraint in the maximization problem of contestant n � 1

is not binding and then his equilibrium e¤ort is obtained by solving the following �rst-order

condition (F.O.C.):

an�1fn(bn�1(s))b
0
n�1(s)� b0n�1(s) = 0

The second-order condition (S.O.C.) is then

an�1f
0
n(bn�1(s))(b

0
n�1(s))

2 + an�1fn(bn�1(s))b
00
n�1(s)� b00n�1(s) = an�1f 0n(bn�1(s))(b0n�1(s))2
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If Fn is not concave then the S.O.C. does not hold. In particular, if Fn is convex then

Fn (b)� b
an�1

is negative for all b. Therefore bn�1 (an�1) = 0. Thus, in the rest of this paper

we assume that Fn is concave. Contestant n� 2�s maximization problem is then

max
b

�
Fn�1

�
b

Fn (b)

�
Fn (b)�

b

an�2

�
s:t b � max

j=1;:::;n�3
bj

Now, let 
n�2 = maxj=1;:::;n�3 bj . By deriving the above maximization problem w.r.t. b

we get that if Gn�2 (x) = Fn�1
�

x
Fn(x)

�
Fn (x) is concave, contestant n�2�s equilibrium e¤ort

strategy is given by

bn�2(an�2; b1; :::; bn�3) =

8>>>>>><>>>>>>:

0 if 0 � an�2 < 
n�2

Fn�1

�

n�2

Fn(
n�2)

�
Fn(
n�2)


n�2 if 
n�1

Fn�1

�

n�2

Fn(
n�2)

�
Fn(
n�2)

� an�2 < �an�2

h (an�2) if �an�2 � an�2 � 1

where h (an�2) is implicitly de�ned as the solution of the following F.O.C.

fn�1

�
b

Fn (b)

��
1� bfn (b)

Fn (b)

�
+ Fn�1

�
b

Fn (b)

�
fn (b)�

1

an�2
= 0

and �an�2 is the minimum between 1 and the type a2 for which h (an�2) = 
n�2.

At this stage, it is clear that we cannot derive a closed-form solution to the maximization

problem of contestant j for j � n� 2. In the next subsection, we therefore restrict attention

to a speci�c family of concave distribution functions (Fi(x) = xci ; 0 < ci < 1) for which

we are able to explicitly calculate the subgame perfect equilibrium e¤ort of each contestant.

This will allow us to derive some general (negative) results on multi-stage sequential all pay

auctions.

2.1 A special case Fi (x) = xci

We now assume that the distributions of contestants�abilities are Fi (x) = xci for i = 1; :::; n

where 0 < ci < 1. Let dj = �nl=j+1 (1� cl) for j = 1; :::; n � 1 and dn = 1. Moreover, let


j = maxi<j bi(ai; b1; :::; bi�1) for j = 1; :::; n. Then we have the following perfect Bayesian

equilibrium.
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Proposition 1 In the multi-stage sequential all-pay auction when Fi (x) = xci, i = 1; :::; n ,

0 < ci < 1; the perfect Bayesian equilibrium e¤ort strategies are given by

bn(an; b1; :::; bn�1) =

8<: 0 if 0 � an < 
n

n if 
n � an � 1

(1)

for j = 2; :::; n� 1

bj(aj; b1; :::; bj�1) =

8>>><>>>:
0 if 0 � aj < 
djj

j if 


dj
j � aj < min

n
1

(1�dj)

dj
j ; 1

o
((1� dj) aj)

1
dj if min

n
1

(1�dj)

dj
j ; 1

o
� aj � 1

(2)

and,

b1(a1) = ((1� d1) a1)
1
d1 for all 0 � a1 � 1 (3)

Proof. In the Appendix.

Note that 
djj < min
n

1
(1�dj)


dj
j ; 1

o
since 
j < 1 (no contestant ever exerts an e¤ort higher

than 1) and dj < 1. In this case, we observe that a contestant�s e¤ort in stage j; 1 � j � n�1

is not a¤ected by the order of contestants in the following stages, only by their identity.

This is true since the only relevant parameter for this contestant is dj = �nl=j+1 (1� cl) :

Furthermore, since b1(a1) > 0 for all 0 < a1 � 1 and 
djj < 1 for all j = 2; :::; n we can

conclude that in a multi�stage all-pay auction where Fi(x) = xci ; 0 < ci < 1; i = 1; :::; n

there are types of contestants who exert positive e¤orts in all the n stages of the sequential

contest.

3 The optimal number of contestants

We assume now that the contest designer wishes to maximize the expected highest e¤ort.

Therefore, given a realization of the contestants�abilities, we de�ne the highest e¤ort as

HE (a1; ::an) = max fb1 (a1) ; b2 (a2; b1) ; :::; bn (an; b1; :::; bn�1)g

The expected highest e¤ort is then given by

HE =

Z 1

0

::::

Z 1

0

HE (a1; ::an) fn (an) dan:::::f1 (a1) da1
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We �rst prove an interesting and rather counter-intuitive result which shows that the

expected highest e¤ort is non-monotonic in the number of contestants n. Therefore, adding

more contestants is not always pro�table when the goal is to maximize the expected highest

e¤ort.

Proposition 2 The expected highest e¤ort in a multi-stage sequential all-pay auction, re-

gardless of whether the contestants are ex-ante symmetric or asymmetric, is not necessarily

monotonic in the number of contestants n.

Proof. Consider a multi-stage sequential all-pay auction with j symmetric contestants.

Denote by HEn=j (c) the expected highest e¤ort in the contest with j; j = 2; 3; 4 contestants

and a distribution function F (x) = xc; 0 < c � 1: The following �gure presents the expected

highest e¤orts HEn=j (c) ; j = 2; 3; 4 as a function of the parameter c:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

c

HE

Figure 1: The expected highest e¤ort as a function of c. For n = 2 the curve is in black, for

n = 3 it is in red and for n = 4 it is in green.

For example, when c = 1
2
we have HEn=3 (c) = 0:07438 8 > HEn=4 (c) = 0:06433 1: The

complete proof for when the contestants are ex-ante asymmetric or symmetric including the

formal calculations is given in the Appendix.

We now present the following de�nition that we need for the rest of the paper.
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De�nition 1 We say that contestant i is stronger than contestant j if Fi �rst-order sto-

chastically dominates Fj i.e., Fj (x) � Fi (x) for all x 2 [0; 1] and for some x the inequality

is strict.

The intuition behind the result of Proposition 2, at least when the contestants are ex-

ante asymmetric, is as follows: When we allocate, for example, a strong contestant in the

last stage, the probability of the other contestants in the previous stages of winning the

contest becomes quite low and therefore they exert lower e¤orts. The strong contestant that

is allocated in the last stage only equalizes the highest e¤ort of the other contestants, and

therefore he makes no real contribution to the expected highest e¤ort. The result is that the

allocation of the strong contestant in the last stage may decrease the expected highest e¤ort.

However, even if the contestants are ex-ante symmetric we show that increasing the number

of contestants can strictly decrease the expected highest e¤ort. We recall that Moldovanu

and Sela (2006) proved that in a simultaneous all-pay auction under incomplete information

with n contestants, the optimal highest e¤ort is obtained either for n contestants or for any

number smaller than n:We similarly show that in the multi-stage sequential all-pay auction

when Fi (x) = xc for all i and n = 4; the optimal number of contestants could be either 2 or

3 or 4.

We now derive another interesting result, namely that, when two sets of n ex-ante sym-

metric contestants are given such that all the contestants in one set are stronger than those

in the other set, the set with the weaker contestants might yield a higher expected highest

e¤ort in equilibrium. Thus, if a designer wants to maximize the expected highest e¤ort

and can choose between a set of strong contestants and a set of weak contestants, it is not

necessarily true that he should choose the set of strong contestants.

Proposition 3 Given two sets of n ex-ante symmetric contestants I1 and I2, assume that

the ability of each contestant in I1 is drawn from the distribution function F1 and that of

each contestant in I2 is drawn from the distribution function F2 such that F1 �rst-order

stochastically dominates F2: Then, the expected highest e¤ort in the multi-stage sequential

all-pay auction with the set of contestants I1 might be either larger or smaller than in the

multi-stage sequential all-pay auction with the set of contestants I2:

11



Proof. This result is easily obtained from the proof of Proposition 2. Note that when

the distribution functions are Fi (x) = xci ; 0 < ci < 1, contestant i is stronger than j if

ci > cj. Now, observe that HEn=2 (c) ; HEn=3 (c) and HEn=4 (c) are all non-monotonic

in c and therefore, for example, with three contestants when c = 1
2
, we have an expected

highest e¤ort that is equal to HEn=3
�
c = 1

2

�
= 0:07438: With a set of three much stronger

contestants, however, when, for example, c = 4
5
; we have a lower expected highest e¤ort that

is equal to HEn=3
�
c = 4

5

�
= 0:0536:

The intuition for the result in Proposition 3 is that when the contestants are relatively

strong the contestants that are allocated in the �rst stages exert low e¤orts since there is

a high probability that their rivals in the last stages will have a high ability and will win

the contest. On the other hand, when the contestants are relatively weak, the (high-ability)

contestants in the �rst stages exert relatively high e¤orts since they believe they have a high

probability to win against the contestants in the last stages.

4 The optimal order of contestants

Given that the contestants are ex-ante asymmetric it is interesting to investigate what the

optimal allocation of contestants is over the stages of the multi-stage sequential all-pay

auction. Should the stronger (weaker) contestants be allocated to the �rst stages or the last

stages? We focus here on the special case where Fi (x) = xci ; 0 < ci < 1 but we hypothesize

that some of the results below will hold for a larger family of distribution functions. We

begin with an analysis of a two stage contest.

Proposition 4 In the two-stage sequential all-pay auction when Fi(x) = xci , 0 < c < 1;

the e¤ort of a su¢ ciently high ability contestant in the �rst stage increases in the strength

(strong/weak) of the contestant in the second stage, while the e¤ort of a su¢ ciently low

ability contestant decreases in the strength of the contestant in the second stage. Formally,

for a su¢ ciently high value of ability a we have

d

dc2
b1(a; c2) > 0

12



and for a su¢ ciently small value of ability a we have

d

dc2
b1(a; c2) < 0

Proof. In the Appendix.

The following example illustrates the result of Proposition 4.

Example 1 Assume a two-stage sequential all-pay auction. If the distribution of contestant

2�s ability in the second stage is F2(x) = x
1
2 ; then by Proposition 1 the equilibrium e¤ort of

contestant 1 in the �rst stage is given by b1(a) = a2

4
: On the other hand, if the distribution

of contestant 2�s ability in the second stage is G2(x) = x
4
5 which �rst order stochastically

dominates F2; then the equilibrium e¤ort of contestant 1 in the �rst stage is given by eb1(a) =
0:327a5: These equilibrium e¤orts in the �rst stage (as a function of a) are given in the

following �gure

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

a

b1

Figure 2: equilibrium bid as a function of the type. b1 - in black, eb1 - in green
This �gure shows that eb1(a) > b1(a) for all a > 0:914 and eb1(a) � b1(a) for all a � 0:914:
Usually in simultaneous contests and particularly in simultaneous all-pay auctions under

incomplete information, most of the total e¤ort comes from the high ability types. According

to Proposition 4 the high types exert relatively high e¤orts in the �rst stage when there is

a strong contestant in the second stage while they exert relatively low e¤orts when there is

13



a weak contestant in the second stage. However, for our sequential two-stage contest the

following result shows that it is optimal to allocate the stronger contestant in the �rst stage.

Proposition 5 In a two-stage sequential all-pay auction when Fi(x) = xci , 0 < ci < 1; i =

1; 2 the expected highest e¤ort is higher when the stronger contestant is allocated in the �rst

stage, i.e., if c1 > c2 then,

HEn=2 (c1; c2) � HEn=2 (c2; c1)

Proof. In the Appendix.

From the optimal order in the two-stage sequential all-pay auction we can obtain the

following result for the multi-stage sequential all-pay auction.

Proposition 6 In the multi-stage sequential all-pay auction when Fi(x) = xci ; 0 < ci < 1;

i = 1; :::; n if contestant j is su¢ ciently stronger than all the other contestants (cj >> ci for

all i 6= j), a designer who maximizes the expected highest e¤ort will not allocate contestant

j in the last stage.

Proof. In the Appendix.

Following Proposition 6, one might think that if there is a very strong contestant it is

better that he be allocated in the �rst stage to avoid a negative e¤ect on the contestants�

e¤orts in the previous stages. However, when we move the strong contestant to the �rst

stage his e¤ort will be smaller than if he would be allocated in a later stage, and since

this contestant makes a meaningful contribution to the expected highest e¤orts, it is not

necessarily optimal that he be allocated in the �rst stage.

Our next result shows that when we have a multi-stage sequential all-pay auction with

n contestants it is always bene�cial in terms of the expected highest e¤ort to replace the

contestant in the �rst stage with a di¤erent, stronger contestant.

Proposition 7 Assume a multi-stage sequential all-pay auction when Fi (x) = xci ; 0 < ci <

1: Then, if 
 > c1 we have

HE (
; c2; c3; :::; cn) > HE (c1; c2; c3:::; cn)

14



In other words, the expected highest e¤ort HE (c1; c2; c3:::; cn) is increasing in c1.

Proof. In the Appendix.

Assume now that we have a set of n contestants N = f1; 2; :::; ng with distribution

functions Fi (x) = xci ; 0 < ci < 1: Let �K 2 RjKj be an order of the contestants in a given

subset K � N with n � 1 or less contestants; where �iK indicates the identity (ci) of the

contestant in stage i according to the order �K . We denote by DK the set of all such orders

for a given subset K. Then jDK j = n!
(n�jKj)! . We say that �A is (weakly) preferred over �B

if the expected highest e¤ort under the order �A is higher than or equal to the expected

highest e¤ort under the order �B, that is, HE (�A) � HE (�B). We denote the optimal

order for a subset K � N by e�K , i.e.,
e�K = arg max

�K2DK
HE(�K)

Let T be an optimal subset such that

T = argmaxK�NHE(e�K)
Then, by Proposition 7 we show that

Proposition 8 In the multi-stage sequential all-pay auction when Fi(x) = xci ; 0 < ci < 1;

let T = argmaxK�NHE(e�K). If T is uniquely determined (no other subset K maximizes

HE(e�K)) and if s is the strongest contestant, i.e. cs = max fc1; :::; cng ; then s 2 T .
Moreover, if T is not uniquely determined then the strongest player s must be included

in one of the optimal subsets. The immediate conclusion of Proposition 8 is

Conclusion 1 In the multi-stage sequential all-pay auction when Fi(x) = xci ; 0 < ci < 1; it

is not pro�table for a designer who wishes to maximize the expected highest e¤ort to exclude

the strongest contestant.

To sum up, we showed that the expected highest e¤ort may be non-monotonic in the

number of contestants so it might be pro�table to exclude some contestants. However, we

also showed that the strongest contestant should always be allocated in one of the stages.
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5 Concluding remarks

We studied multi-stage sequential all-pay auctions under incomplete information and showed

that the contestants�expected highest e¤ort is not necessarily increasing or decreasing in

the number of contestants regardless of whether they are ex-ante symmetric or asymmetric.

However, while some contestants might be excluded in order to increase the expected highest

e¤ort, the strongest contestant will not be among them. Since it is not possible to explicitly

calculate the contestants�equilibrium e¤orts for all distribution functions of the contestants�

ability our results are restrictive to a speci�c family of distribution functions, but we hy-

pothesize that these results hold for a larger family of distribution functions. Moreover, and

importantly, by assuming a speci�c family of distribution functions we obtain general �neg-

ative�results (i.e., non-monotonicity in the number of contestants) about the contestants�

behavior. Our analysis sheds light on the multi-stage sequential all-pay auction but it also

indicates the complexity of this sequential contest form. Thus, there remains much work to

be done in order to understand this interesting model.

6 Appendix

6.1 Proof of Proposition 1

The equilibrium e¤ort function of contestant n, which is given by (1), is straightforward.

Assume then that contestants 1; :::; i� 1; i+1; :::; n behave according to the strategies given

by (2) and (3). Recall that dj = �nl=j+1 (1� cl) for j = 1; :::; n � 1 and dn = 1. Then

contestant i solves the following maximization problem

max
b

�
�nj=i+1Fj

�
bdj
�
� b

ai

�
s:t b � max

j=1;:::;i�1
bj

By deriving this maximization problem w.r.t. b we obtain that, sinceHi (x) = �nj=i+1Fj
�
xdj
�

is concave for i = 2; :::; n (note that by reordering we have Hi (x) = x1�di) then indeed

bi (ai) = ((1� di) ai)
1
di maximizes the expected payo¤ of contestant i conditional on

bi (ai) = ((1� di) ai)
1
di � 
i , ai �

1

(1� di)

dii
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Moreover, when 0 � aj < 
dii an e¤ort of bi = 
i yields a negative payo¤. Thus, we get for

i = 2; :::; n� 1

bi(ai; b1; :::; bi�1) =

8>>><>>>:
0 if 0 � ai < 
dii

i if 
dii � ai < min

n
1

(1�di)

di
i ; 1

o
((1� di) ai)

1
di if min

n
1

(1�di)

di
i ; 1

o
� ai � 1

Finally, for contestant 1, 
1 = 0 and we obtain

b1 (a1) = ((1� d1) a1)
1
d1 for 0 � a1 � 1

�

6.2 Proof of Proposition 2

We prove this proposition using the special case in subsection 2.1 for which we have a closed-

form solution of the contestants�behavior in equilibrium. Thus, Fj(x) = xcj ; 0 < cj < 1 ,

dj = �
n
l=j+1 (1� cl) for j = 1; :::; n � 1 and dn = 1: Then, the expected highest e¤ort in a

two-stage contest is

HEn=2 (c1; c2) =

Z 1

0

�
(c2a1)

1
1�c2

�
c1a

c1�1
1 da1 =

c
1

1�c2
2 c1 (1� c2)
c1 (1� c2) + 1

=
c1d1 (1� d1)

1
d1

c1d1 + 1
(4)

and the expected highest e¤ort in the three-stage contest is (note that d1 here is di¤erent

from d1 in the above expression for two contestants)

HEn=3 (c1; c2; c3) =

Z c
1�c2
3

(1�d1)

0

0B@Z ((1�d1)a1)
1

(1�c2)
c3

0

�
((1� d1) a1)

1
d1

�
c2a

c2�1
2 da2

1CA c1ac1�11 da1(5)

+

Z c
1�c2
3

(1�d1)

0

 Z 1

((1�d1)a1)
1

(1�c2)
c3

�
(c3a2)

1
(1�c3)

�
c2a

c2�1
2 da2

!
c1a

c1�1
1 da1

+

Z 1

c
1�c2
3

(1�d1)

�
((1� d1) a1)

1
(1�c2)(1�c3)

�
c1a

c1�1
1 da1

=
c
1+c1d1
d2

3 c2d2
(1 + c1d1) (1 + c2d2 + c1d1) (1� d1)c1

+
c1d1 (1� d1)

1
d1

(1 + c1d1)
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For example when c1 = 1
2
; c2 =

1
2
and c3 = 4

5
we haveHEn=2 (c1; c2) = 0:05> HEn=3 (c1; c2; c3) =

0:04365. Note that the third contestant we add is a very strong contestant (his distribution

of ability �rst-order stochastically dominates the other contestants�distribution functions)

and the expected highest e¤ort decreases when he is added to the contest.

When contestants are ex-ante symmetric i.e., c1 = c2 = ::: = cn = c we have dj =

(1� c)n�j and then the expected highest e¤orts in the contest with two, three and four

contestants are given by

HEn=2 (c) =

Z 1

0

�
(ca1)

1
1�c

�
cac�11 da1 =

c
2�c
1�c (1� c)
c (1� c) + 1

HEn=3 (c) =
c
c(1�c)2+2�c

1�c (1� c)�
1 + c (1� c)2

� �
1 + c (1� c) + c (1� c)2

� �
1� (1� c)2

�c
+
c (1� c)2

�
1� (1� c)2

� 1

(1�c)2�
1 + c (1� c)2

�
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HEn=4 (c) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

(1�c)3c
(2�c)(1+c(1�c)2)

1�c

(1+c(1�c)+c(1�c)2+c(1�c)3)(1�(1�c)3)
c +

c

(2�c)(1+c(1�c)2)
1�c (1�c)2

(1+c(1�c))(2�c)(1�(1�c)3)
c

� c

(1+c(1�c))(c2+3(1�c))
1�c (1�c)4

(1+c(1�c))(1+c(1�c)+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

+ (1�c)4c
2+2c�6c2+4c3�c4

1�c

(2�c)(1+c(1�c)3)(1�(1�c)2)
c
(1�(1�c)3)

c

� (1�c)4(1�(1�c)2)
c

(1�c) c

(2+2c�6c2+4c3�c4)
(1�c)

(2�c)(1+c(1�c)+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

+ (1�cc)(1�c)2c
(2�c)(1+c�2c2+c3)

1�c

(1+c(1�c)+c(1�c)2)(1�(1�c)2)
c
(1�(1�c)3)

c

� (1�cc)(1�(1�c)2)
1+c(1�c)
(1�c)2 (1�c)5c

(1+c�c2)(3�3c+c2)
1�c

(1+c(1�c)+c(1�c)2)(1+c(1�c)+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

+ (1�c)c
(2�c)(1+c�2c2+c3)

1�c

(1+c(1�c))(1�(1�c)2)
c
(1�(1�c)3)

c � (1�c)2c
(2�c)(1+c�2c2+c3)

1�c

(2�c)(1+c(1�c))(1�(1�c)3)
c

� c
(1+c�c2)(3�3c+c2)

1�c (1�c)3

(1+c(1�c))(1+c(1�c)+c(1�c)2)(1�(1�c)2)
c
(1�(1�c)3)

c

+
(1�c)6(1�(1�c)2)

1+c(1�c)
(1�c)2 c

4�c�5c2+4c3�c4
1�c

(1+c(1�c))(1+c(1�c)+c(1�c)2)(1+c(1�c)+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

+
c(1�c)2(1�(1�c)2)

1+c�3c2+3c3�c4
(1�c)2

(1+c(1�c)2)(1�(1�c)3)
c � c(1+c(1�c)

2)(1�c)2(1�(1�c)2)
1

(1�c)2

(1+c(1�c)2)(1�(1�c)3)
c

� c2(1�c)5(1�(1�c)2)
1+c(1�c)3

(1�c)2

(1+c(1�c)2)(1+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

+ c
(1+c�c2)(3�3c+c2)

1�c (1�c)5

(1+c(1�c)2)(1�(1�c)2)
c
(1�(1�c)3)

c
(1+c(1�c)2+c(1�c)3)

+
c(1�c)3(1�(1�c)2)

1+c(1�c)3

(1�c)2

(1+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

� c
1+(1�c)+c(1�c)2+c(1�c)3

(1�c) (1�c)3

(1�(1�c)2)
c
(1+c(1�c)2+c(1�c)3)(1�(1�c)3)

c

+
c(1�c)2(1�(1�c)2)

1+c(1�c)3

(1�c)2

(1+c(1�c)2)(1�(1�c)3)
c � c(1+c(1�c)

2)(1�c)2(1�(1�c)2)
1

(1�c)2

(1+c(1�c)2)(1�(1�c)3)
c

� c2(1�c)5(1�(1�c)2)
(1+c(1�c)3)

(1�c)2

(1+c(1�c)2)(1+c(1�c)2+c(1�c)3)(1�(1�c)3)
c

+ c

(1+c�c2)(3�3c+c2)
(1�c) (1�c)5

(1+c(1�c)2)(1+c(1�c)2+c(1�c)3)(1�(1�c)2)
c
(1�(1�c)3)

c

+
c(1�c)3(1�(1�c)3)

1
(1�c)3

(1+c(1�c)3)
� c(1�c)3(1�(1�c)2)

1+c(1�c)3

(1�c)2

(1+c(1�c)3)(1�(1�c)3)
c

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Given the above expressions of the highest e¤orts when the contestants are ex-ante sym-

metric, if c = 1
2
we have

HEn=3 (c) =
4

297
2
3
4

p
3 +

9

256
= 0:07438 8

while

HEn=4 (c) =
11 021

4533 760
2
1
8

p
7� 2573

7254 016
2
5
8

p
7� 9

448
2
3
8

p
7� 20

11 781
2
5
8

p
3
p
7

+
2673

144 704
3
1
4

p
7 +

436

39 501
2
1
8

p
3
p
7 +

5764 801

285 212 672

= 0:06433 1

Thus, although the contestants are ex-ante symmetric, the expected highest e¤ort in the

four-stage contest is smaller than in the three-stage contest. �

6.3 Proof of Proposition 4

In the two-stage sequential all-pay auction if the distribution of the contestant�s ability

in the second stage is F2(c) = xc, then by (3) the equilibrium e¤ort in the �rst stage is

b(a) = (ac)
1

1�c : The derivative of b(a) w.r.t. c is

d

dc
b(a; c) =

c
c

1�ca
1

1�c

(1� c)2
(c ln ac+ (1� c))

The function c ln ac+ (1� c) is increasing in a and is negative around a = 0 but is positive

around a = 1 . Thus, for su¢ ciently low values of a (a � 0) we have

d

dc
(b(a; c) < 0

and for su¢ ciently high values of a (a � 1) we have

d

dc
(b(a; c) > 0

�
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6.4 Proof of Proposition 5

Assume a two-stage sequential all-pay auction when Fi(x) = xci ; 0 < ci < 1; c1 � c2. Then

by (4) we have

HEn=2 (c1; c2) � HEn=2 (c2; c1),
c

1
1�c2
2 c1 (1� c2)
c1 (1� c2) + 1

� c
1

1�c1
1 c2 (1� c1)
c2 (1� c1) + 1

The inequality above holds i¤

c2c1

�
c

c2
1�c2
2 (1� c2)� c

c1
1�c1
1 (1� c1)� (1� c1) (1� c2)

�
c

1
1�c1
1 � c

1
1�c2
2

��
� 0

or i¤
c

c2
1�c2
2

c
c1

1�c1
1

� 1� c1 + (1� c1) (1� c2) c1
1� c2 + (1� c1) (1� c2) c2

=
(1� c1) (1 + c1 � c1c2)
(1� c2) (1 + c2 � c1c2)

(6)

Note that if c2 = c1 then we have equality in equation (6). Moreover, the function
c

c2
1�c2
2

c

c1
1�c1
1

is decreasing in c2, while the function
(1�c1)(1+c1�c1c2)
(1�c2)(1+c2�c1c2) is increasing in c2 (for all c2 2 [0; 1]

given c1 2 [0; 1]). Thus, we get that for c2 � c1 the inequality (6) holds. �

6.5 Proof of Proposition 6

We consider a multi-stage sequential all-pay auction where Fi(x) = xci ; 0 < ci < 1, i =

1; :::; n: Assume that cn ! 1. Then since limcn!1 dj = �nl=j+1 (1� cl) = 0 we have for all

0 � aj < 1; 1 � j � n� 2

lim
cn!1

((1� dj) aj)
1
dj = 0

Thus, by (2) we obtain that limcn!1bj(aj; b1; :::; bj�1) = 0 for all 0 � aj < 1; 1 � j � n � 2:

Let HE(j; k); 1 � j � n; now be the expected highest e¤ort of contestants j; j+1; :::; k: The

above argument yields that

lim
cn!1

HE(1; n) = lim
cn!1

HE(n� 1; n) (7)

Given that the order of contestants n � 1 and n does not a¤ect the equilibrium e¤orts

of the �rst n � 2 contestants, by (7) and Proposition 5 according to which if c1 > c2 then

HEn=2 (c1; c2) � HEn=2 (c2; c1), we obtain that if the stronger player (cn ! 1) will be

allocated in stage n � 1 instead of stage n; independent of the order of the �rst n � 2

contestants, the expected highest e¤ort will be higher. �
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6.6 Proof of Proposition 7

We wish to prove that the expected highest e¤ort HE is increasing in c1. Note that by (1),

(2) and (3) when the �rst contestant is replaced with a stronger contestant (c1 increases) the

equilibrium e¤ort functions of all contestants remain the same (including that of the �rst

contestant). The equilibrium e¤ort function of each contestant depends only on the identity

of the contestants in the later stages and therefore the equilibrium strategies are not changed

if we replace the contestant in the �rst stage. In other words, the random variables

b2 (a2; b1) ; ::::; bn (an; b1; :::; bn�1)

are the same when c1 changes to 
 > c1. Moreover, it is still true that

b1 (a1) = ((1� d1) a1)
1
d1 for 0 � a1 � 1

Let HE (a1) be the expected highest e¤ort given a1, i.e.,

HE (a1) =

Z 1

0

::::

Z 1

0

max fb1 (a1) ; b2 (a2; b1) ; :::; bn (an; b1; :::; bn�1)g fn (an) dan:::::f2 (a2) da2

Then HE (a1) is not a function of c1 and does not change when moving from the distribution

functions Fi (x) = xci ; i = 1; :::; n to the distribution functions F1 (x) = x
; Fi (x) = xci ; i =

2; :::; n. We �rst need the following lemma.

Lemma 1 HE (a1) is an increasing function of a1.

Proof. We show that for each realization of a2; :::; an the highest e¤ort is increasing in

a1. Given a realization of a1; ::::; an we prove by induction on k, for k = 2; :::; n, that the

highest e¤ort among contestants 1; :::; k � 1; 
k (a1) = maxi<k bi(ai; b1; :::; bi�1) is increasing

in a1 (keeping the realization of a2; :::; an constant).

Note that the contestant n0s e¤ort is always smaller or equal to 
n and thereforeHE (a1) =


n (a1). For k = 2 we have 
2 (a1) = b1 (a1). Obviously b1 (a1) is increasing in a1. Assume

by the induction hypothesis that 
2 (a1) ; :::
k�1 (a1) are increasing in a1. Then, given a1,

there are �ve possible cases for the realization of ak�1:

1. Case A: 0 � ak�1 <
�

k�1 (a1)

�dk�1 andbk�1 (ak�1; a1; :::; ak�2) = 0:
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Assume that a1 < ~a1; then by the induction hypothesis
�

k�1 (a1)

�dk�1 � �
k�1 (~a1)�dk�1
and therefore 0 � ak�1 <

�

k�1 (a1)

�dk�1 � �
k�1 (~a1)�dk�1 and bk�1 (ak�1; ~a1; :::; ak�2) = 0.
In this case 
k (~a1) = 
k�1 (~a1) � 
k�1 (a1) = 
k (a1). Therefore 
k (~a1) � 
k (a1).

2. Case B:
�

k�1 (a1)

�dk�1 � ak�1 � �
k�1 (~a1)�dk�1.
This is a type who exerts a positive e¤ort when the �rst contestant�s type was a1 but

will exerts an e¤ort of zero when the �rst contestant�s type is ~a1. Note that it is still true

in this case that 
k (a1) = 
k�1 (a1) since this type exerts an e¤ort that is equal to 
k�1.

Moreover, when a1 increases to ~a1 we will still have that 
k (~a1) = 
k�1 (~a1) (this type

exerts an e¤ort of zero and the highest e¤ort is not changed). Therefore we again have that


k (~a1) = 
k�1 (~a1) � 
k�1 (a1) = 
k (a1).

3. Case C:
�

k�1 (~a1)

�dk�1 � ak�1 < minn 1
(1�dk�1)

�

k�1 (a1)

�dk�1 ; 1o.
For this type since min

n
1

(1�dk�1)
�

k�1 (a1)

�dk�1 ; 1o < minn 1
(1�dk�1)

�

k�1 (a1)

�dk�1 ; 1o ;
bk�1 (ak�1; a1; :::; ak�2) = 
k�1 (a1), bk�1 (ak�1; ~a1; :::; ak�2) = 
k�1 (~a1) and again 
k (~a1) =


k�1 (~a1) � 
k�1 (a1) = 
k (a1).

4. Case D: min
n

1
(1�dk�1)

�

k�1 (a1)

�dk�1 ; 1o � ak�1 � minn 1
(1�dk�1)

�

k�1 (~a1)

�dk�1 ; 1o.
For this type bk�1 (ak�1; a1; :::; ak�2) = ((1� dk�1) ak�1)

1
dk�1 and bk�1 (ak�1; ~a1; :::; ak�2) =


k�1 (~a1). But since ak�1 � 1
(1�dk�1)

�

k�1 (~a1)

�dk�1 we have that ((1� dk�1) ak�1) 1
dk�1 ��


k�1 (~a1)
�
. Thus 
k (a1) = ((1� dk�1) ak�1)

1
dk�1 while 
k (~a1) = 
k�1 (~a1) and 
k (~a1) �


k (a1).

5. Case E: min
n

1
(1�dk�1)

�

k�1 (~a1)

�dk�1 ; 1o � ak�1 � 1.
For this type bk�1 (ak�1; a1; :::; ak�2) = ((1� dk�1) ak�1)

1
dk�1 , bk�1 (ak�1; ~a1; :::; ak�2) =

((1� dk�1) ak�1)
1

dk�1 and 
k (~a1) = ((1� dk�1) ak�1)
1

dk�1 = 
k (a1). This concludes the proof

that 
k (a1) is (weakly) increasing in a1 and therefore HE (a1) is increasing in a1.

The expected highest e¤ort can be written as

HE =

Z 1

0

HE (a1) c1a
c1�1
1 da1

We wish to prove that this function is increasing in c1. Since d
dc1
HE (a1) = 0 we have

d

dc1
HE =

Z 1

0

HE (a1) (1 + c1 ln a1) a
c1�1
1 da1
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Now

1 + c1 ln a1 � 0, e
� 1
c1 � a1 � 1

Thus, we need to show thatZ 1

0

HE (a1) (1 + c1 ln a1) a
c1�1
1 da1

=

Z e
� 1
c1

0

HE (a1) (1 + c1 ln a1) a
c1�1
1 da1 +

Z 1

e
� 1
c1

HE (a1) (1 + c1 ln a1) a
c1�1
1 da1 > 0

or equivalently thatZ e
� 1
c1

0

HE (a1) (�1� c1 ln a1) ac1�11 da1 <

Z 1

e
� 1
c1

HE (a1) (1 + c1 ln a1) a
c1�1
1 da1

Since HE (a1) is increasing in a1 we haveZ e
� 1
c1

0

HE (a1) (�1� c1 ln a1) ac1�11 da1 � HE
�
e
� 1
c1

�Z e
� 1
c1

0

(�1� c1 ln a1) ac1�11 da1

while Z 1

e
� 1
c1

HE (a1) (1 + c1 ln a1) a
c1�1
1 da1 � HE

�
e
� 1
c1

�Z 1

e
� 1
c1

(1 + c1 ln a1) a
c1�1
1 da1

Thus, it is su¢ cient to prove thatZ e
� 1
c1

0

(�1� c1 ln a1) ac1�11 da1 �
Z 1

e
� 1
c1

(1 + c1 ln a1) a
c1�1
1 da1

and in fact we have equality here sinceZ e
� 1
c1

0

(�1� c1 ln a1) ac1�11 da1

= �
Z e

� 1
c1

0

ac1�11 da1 � c1
Z e

� 1
c1

0

(ln a1) a
c1�1
1 da1 = �

1

c1
e�1 � c1

�
� 2

ec21

�
=

1

ec1

and

Z 1

e
� 1
c1

(1 + c1 ln a1) a
c1�1
1 da1

=

Z 1

e
� 1
c1

ac1�11 da1 + c1

Z 1

e
� 1
c1

ln a1a
c1�1
1 da1 =

1

c1

�
1� e�1

�
+ c1

�
�e+ 2
ec21

�
=

1

ec1
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�

6.7 Proof of Proposition 8

We wish to show that if s is the strongest contestant, i.e. cs = max fc1; :::; cng ; and T =

argmaxK�NHE(e�K) and is uniquely determined, then s 2 T . Assume to the contrary

that s =2 T . Then e�T indicates the optimal order of the contestants in T . Also assume
that contestant j is the �rst contestant in that order. Now if we replace contestant j with

contestant s; it follows from Proposition 7 that either the expected highest e¤ort is now

strictly higher which contradicts the de�nition of T or the expected highest e¤ort is the

same which contradicts the uniqueness of T .�
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