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Policy Change and Learning in the RBC Model* 

What is the impact of surprise and anticipated policy changes when agents 
form expectations using adaptive learning rather than rational expectations? 
We examine this issue using the standard stochastic real business cycle 
model with lump-sum taxes. Agents combine knowledge about future policy 
with econometric forecasts of future wages and interest rates. Both permanent 
and temporary policy changes are analyzed. Dynamics under learning can 
have large impact effects and a gradual hump-shaped response, and tend to 
be prominently characterized by oscillations not present under rational 
expectations. These fluctuations reflect periods of excessive optimism or 
pessimism, followed by subsequent corrections.  
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1 Introduction

Typically economic models are analyzed with an unchanged structure. How-

ever, in practice, policy changes do take place, and these often involve long

delays. This is well recognized in the case of fiscal policy which involves lags

sometimes even exceeding two years. The process of changing taxes involves

legislative lags, between when the new tax is proposed and when it is passed,

and implementation lags, between when the legislation is signed into law and

when it actually takes effect. These changes in policy may well be anticipated

by economic actors (often with discussions in the media) and will influence

economic decisions even before the actual implementation of the proposed

policy change.1

The standard assumption in macroeconomics is, of course, rational expec-

tations (RE), and this has been used to analyze the impact of both surprise

and preannounced policy changes. Within a nonstochastic perfect foresight

setting, see, for example, Sargent and Wallace (1973), Blanchard and Fischer

(1989), Romer (2011) and Ljungqvist and Sargent (2004).

The seminal contributions of Baxter and King (1993) and Aiyagari, Chris-

tiano, and Eichenbaum (1992) analyze changes to fiscal policy within a RE

framework in the stochastic Real Business Cycle (RBC) model. These papers

consider changes to government spending and analyze both temporary and

permanent changes when the government conducts a balanced budget.2

However, the benchmark assumption of RE is very strong and arguably

unrealistic when analyzing the effect of policy changes. Economic agents

need to have complete knowledge of the underlying structure, both before

and after the policy change. They must also rationally and fully incorporate

this knowledge in their decision making, and do so under the assumption

that other agents are equally knowledgeable and equally rational.

Recently there has been increasing interest in studying situations in which

agents have incomplete knowledge of the economy. The assumption that

1See Evans, Honkapohja, and Mitra (2009) for some further discussion. Active fiscal

strategies have been adopted recently in various countries around the world (like in the US

and UK) in the wake of the recent “Great Recession”. These measures include temporary

tax cuts and credits and large public works projects; see for instance Auerbach, Gale, and

Harris (2010).
2Baxter and King (1993) focus on surprise changes and consider two alternative scenar-

ios; one where the government has access to lump-sum taxes only and the second where

it has access to distortionary income taxes as well.
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economic agents engage in “learning” behavior has been incorporated into

macroeconomic theory (see e.g. Sargent (1993) and Evans and Honkapohja

(2001)) and used in a wide range of applications in macroeconomics and

finance. The standard adaptive learning approach treats economic agents

like econometricians who estimate forecast rules, updating the parameter

estimates over time as new data become available. It has been shown that in

many models, including the RBC model, least-squares learning can converge

over time to the RE solution, while at the same time often providing plausible

transitional dynamics that are arguably of empirical importance.3

However, analyses of learning typically assume an unchanged economic

structure.4 An apparent drawback of least-squares learning rules is that

estimated coefficients respond relatively slowly to data, and thus standard

learning rules take time to adjust to structural or policy changes. In some

cases this is realistic, but in the case of clearly articulated policy changes

one would expect even boundedly rational agents to incorporate structural

information about future policy.

In this paper we show how to analyze fiscal policy changes in a learning

framework for the stochastic RBC model. To do so we assume that agents

forecast some key variables using adaptive learning, while simultaneously

incorporating structural knowledge about future government spending and

taxes. Both permanent and temporary policy changes are examined, and the

results contrasted with those from the RE approach. One case we consider

in detail is the impact of announced future policy changes.

The question of how to analyze known structural changes in a learning

framework was taken up in Evans, Honkapohja, and Mitra (2009). They

considered announced changes in fiscal policy in a simple endowment econ-

omy model and (briefly) in a Ramsey model. However, a major limitation of

their framework was its deterministic nature which consequently restricted

the type of learning behavior that could be analyzed.5 In addition, the vari-

able labor supply assumption in the RBC model plays a crucial role in the

policy analysis of government spending by Baxter and King (1993).

Our approach uses an adaptive learning model in which agents in effect

3See, for example, Sargent (2008) and Evans and Honkapohja (2011) for extensive

references.
4See, however, Evans, Honkapohja, and Marimon (2001), Marcet and Nicolini (2003)

and Giannitsarou (2006) for partial exceptions.
5For a discussion of the differences of learning in deterministic and stochastic models

see Evans and Honkapohja (1998).
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also have partial structural knowledge. At each moment in time agents must

make consumption and labor supply decisions based on the time path of

expected future wages, interest rates and taxes. As is standard with adaptive

learning, we assume that agents make forecasts of wages and interest rates

based on a statistical model, with coefficients updated over time using least-

squares. However, for forecasting future taxes we assume that agents use the

path of future taxes announced (credibly) by policymakers.6

This approach seems to us very natural. The essence of the adaptive

learning approach is that agents are assumed not to understand the general

equilibrium considerations that govern the evolution of the central endoge-

nous variables, i.e. capital, labor and factor prices. Agents are therefore

assumed to forecast these variables statistically. On the other hand, agents

can be expected to immediately incorporate into their decisions the direct

effects on their future net incomes of the announced path of future taxes.

As noted in Evans, Honkapohja, and Mitra (2009), this general approach

to combining statistical learning and limited structural knowledge can be

adapted to other economic situations.

Several general features stand out in our analysis of fiscal policy changes

in the RBC model. As under RE, announced current or future changes in

government spending lead to immediate changes in consumption, employ-

ment, and output.7 However, with adaptive learning the solution exhibits

hump-shaped responses and oscillatory convergence to the new steady state,

including overshooting not present under RE. These dynamics stem from a

combination of inertia in capital accumulation and the adaptation of expec-

tations to data generated by the statistical learning rules used by private

agents.

We also show that for changes in policy, announced to take place in the

future, the impact effects under learning can be more extreme than under

RE, because the wealth effects of future tax changes are immediate, while

the partially offsetting price effects are spread out over time and unknown to

agents. For both surprise and announced future changes we sometimes find

that the dynamics under learning and RE can be qualitatively different for

a period of time following the immediate impact.

A final important feature of the model under learning dynamics is that

6For convenience we assume throughout a balanced budget, so that in each period taxes

equal government spending.
7Surprisingly, it appears that announced future changes of government spending have

not previously been systematically studied under RE for the stochastic RBC model.
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policy changes can lead to systematic waves of optimism or pessimism. The

details depend naturally on the type of policy change considered. For ex-

ample, a permanent increase in government spending, announced to take

place in the future, generates a period of over-optimism concerning wages

during much of the pre-implementation period, followed by a correction dur-

ing the post-implementation period. Such periods of over-optimism or over-

pessimism reflect general equilibrium effects, and are a consequence of the

agents’s incomplete structural knowledge.

Section 2 below describes the basic RBCmodel in the presence of learning

by agents. Section 3 analyzes permanent changes in policy both within a RE

framework and under learning and Section 4 does the same for temporary

policy changes. The final section concludes.

2 The Model

There is a representative household who has preferences over non-negative

streams of a single consumption good  and leisure 1−  given by

̂{
∞X
=

−( 1− )} (1)

Here ̂ denotes potentially subjective expectations at time  for the future,

which agents hold in the absence of rational expectations. The analysis of

the model under RE is standard. When RE is assumed we indicate this by

writing  for ̂. Our presentation of the model is general in the sense that

it applies under learning as well as under RE.

We assume the general form

( 1− ) =
1−

1− 
+ 

(1− )
1−

1− 
 (2)

for   0 and often focus on the widely considered special case,  =  = 1

i.e.

( 1− ) = ln  +  ln(1− ) (3)

as in Ljungqvist and Sargent (2004), p. 324, Long and Plosser (1983) and

McCallum (1989).8

8As shown in King, Plosser, and Rebello (1988), log utility for consumption is needed

for steady state labor supply along a balanced growth path. Campbell (1994), Section 3,

uses (2) with  = 1.

4



The household flow budget constraint is

+1 =  +  −  −  where (4)

 = 1−  +  (5)

Here  is per capita household wealth at the beginning of time , which

equals holdings of capital  owned by the household less their debt (to other

households),  i.e.  ≡  −   is the gross interest rate for loans

made to other households,  is the wage rate,  is consumption,  is labor

supply and  is per capita lump sum taxes. Equation (5) arises due to the

absence of arbitrage from loans and capital being perfect substitutes as stores

of value;  is the rental rate on capital goods, and  is the depreciation rate.

Households maximize utility (1) subject to the budget constraint (4)

which yields the Euler equation for consumption

− = ̂+1
−
+1 (6)

We next derive the (linearized) consumption function.

From the flow budget constraint (4) we can get the intertemporal budget

constraint (in realized terms)

0 =  +

∞X
=1

(+())
−1+ +  (7)

where + =
Q

=1

+,  ≥ 1 and  ≡  −  − 

assuming the transversality condition −1
+++1 → 0 as  →∞ holds.

Note that (7) involves future choices of labor supply by the household

which we next eliminate to derive the linearized consumption function. For

this we make use of the static first order condition (between consumption

and labor supply) from the household’s problem which is

(1− )
− = 

−
 (8)

This can be written as

 = 1− 
1
 



 

− 1
  (9)

so that  =  − 
1
 



 

1− 1
 . This gives a relationship between labor

supply and consumption choices which can be used to substitute out +
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in (7). Taking expectations we then get the expected value intertemporal

budget constraint9

0 =  + ( − 
1
 



 

1− 1
 −  − ) +

∞X
=1

̂(+)
−1{+ − 

1
 




+
1−1



+ − + − +}

To obtain its optimal choice of consumption , we assume that the house-

hold uses a consumption function based on a linearization around steady

state values. In particular, we assume agents linearize the expected value

intertemporal budget constraint and the Euler equations around the initial

steady state values ̄ ̄ ̄ ̄ and ̄ = −1. This is a natural choice since
agents can be assumed to have estimated precisely the steady state values

before the policy change that takes place.10

As shown in the Appendix, substituting the linearized Euler equations

into the intertemporal budget constraint, we obtain the consumption function

( − ̄) = ̄( − ̄) + −1( − ̄)− ( − ̄)

+( − ̄)− 

 −   + 


 (10)

where   and  are given in the Appendix and where

 ≡
∞X
=1

+1
X

=1

(+ − ̄) (11)

  ≡
∞X
=1

( + − ̄) (12)


 ≡

∞X
=1

(
+ − ̄) (13)

9Note we do not assume point expectations as in Evans, Honkapohja, and Mitra (2009);

this model cannot be solved exactly so we proceed by linearizing the Euler equation and

the intertemporal budget constraint.
10Thus we assume that the final steady state values of  and  are not initially known

to agents. Under least-squares learning agents will eventually come to know the new steady

state values as happens in all of the simulations below. We remark that an alternative

approach to our procedure would be to assume that agents also update over time the point

around which the consumption function is linearized, with the sequence of linearization

points chosen to be consistent with the agent’s estimates of the new steady-state values.

Provided the changes in government spending are not too large, it is satisfactory to use

our simpler procedure of using a fixed linearization point.
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denote “present value” type expressions. For the case  =  = 1, the lin-

earization coefficients are given by

 = (1 + )(1− )  = 1 and  = ̄ − ̄

Equation (10) specifies a behavioral rule for the household’s choice of

current consumption based on pre-determined values of initial assets, real

interest rates, wage rates, current values of lump-sum taxes and (subjective)

expectations of future values of wages, interest rates, and lump-sum taxes.

Expectations are assumed to be formed at the beginning of period  and,

for simplicity, we assume these to be identical across agents (though agents

themselves do not know this to be the case). Equation (10) can then be

viewed as the behavioral rule for per capita consumption in the economy.

To implement the behavioral rule, however, the household requires fore-

casts + 

+ and  + For taxes 


+ (and ̄) we assume that agents

use “structural” knowledge based on announced government spending rules.

For convenience we assume balanced budgets, so that + = +. For

+ and 
+ we will assume that household estimate future values using a

VAR-type model in    and , with coefficients updated over time by

recursive least squares (RLS). The detailed procedure is described below in

Section 3.1.

Linearizing equation (9) we also obtain the employment equation, which

will be useful later:

 − ̄ = −


1
 ̄−

1
 ̄



−1( − ̄) +

1

̄

1
 ̄−

1
 ̄


 ( − ̄)

To complete the model, we describe the evolution of the other state vari-

ables, namely     and +1. Households own capital and labor ser-

vices which they rent to firms. The firm uses these inputs to produce output

 using the Cobb-Douglas production technology

 = 

 

1−


where  is the technology shock that follows an AR(1) process

̂ = ̂−1 + ̃

with ̂ = (−̄) Here ̄ is the mean of the process and ̃ is an iid zero-mean
process with constant variance 2

11

11For simplicity we do not include a trend in technical progress. This would be straight-

forward to add, but doing so would require choosing between a deterministic and a sto-

chastic trend, and it would substantially complicate the presentation.
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Profit maximization by firms implies the standard first-order conditions

involving wages and rental rates

 = (1− )(



) (14)

 = (



)1− (15)

In equilibrium, aggregate private debt  is zero, so that  =  and market

clearing determines +1 from

+1 = 

 

1−
 + (1− ) −  −  (16)

where  is per capita government spending.

For simulations of the model we follow standard procedures and approxi-

mate the path using a linearization around the steady state.12 The linearized

wage rate, rental rate, and real interest rate equations are

 − ̄ = ̄[(


̄
− 1) + (



̄
− 1)− (



̄
− 1)] (17)

 − ̄ = ̄[(


̄
− 1)− (1− )(



̄
− 1) + (1− )(



̄
− 1)] (18)

 − ̄ =  − ̄ (19)

Finally, the linearized output and capital accumulation equations are

 − ̄ = ̄[(


̄
− 1) + (



̄
− 1) + (1− )(



̄
− 1)]

+1 − ̄ = ( − ̄)− ( − ̄)− ( − ̄) + (1− )( − ̄)

Here the equations giving the steady state are

̄ = 1−  + ̄ = −1

̄ = ̄̄̄1− − ̄ − ̄

̄ = ̄(1− ̄)

̄ = (1− )̄(
̄

̄
) and ̄ = ̄(

̄

̄
)−1

12It is also straightforward to simulate the model under learning using the exact (non-

linear) equations for     and +1. For the model at hand we have found the

results for the two methods to be very similar. Simulations using linear approximations

are much faster, however, so we have used these in the reported results.
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These five equations can be solved simultaneously to yield the steady state

values of ̄ ̄ ̄ ̄ and ̄ given the value of ̄ and the structural parameters

     

To examine the impact of policy in the model under learning, we will

compare the dynamics to those under RE. At this stage we remark that, as

is well known, in the absence of a policy change, under RE the endogenous

variables, +1      can be written as an (approximate) linear

function of  and , e.g. Campbell (1994). The linearized equations of

motion take the form

̂+1 = 2̂ + ̂ (20)

̂ = ̂ + ̂ (21)

̂ = ̂ + ̂ (22)

̂ = ̂ + ̂ (23)

̂ = ̂ + ̂ (24)

̂ = ̂−1 + ̃

where the hatted values are deviations from the RE deterministic steady

state i.e. ̂ =  − ̄ ̂ =  − ̄ ̂ =  − ̄ etc. The RE solution

takes the form of a stationary VAR(1) in the state ̂ ≡
µ

̂
̂

¶
µ

̂+1
̂+1

¶
= 

µ
̂
̂

¶
+

µ
0

1

¶
̃+1 (25)

 =

µ
2 
0 

¶
 (26)

with the other variables given by linear combinations of the state. Note

also that under RE forecasts of future ̂+ and ̂+ are given by linear

combinations of the forecasted future state ̂+ = ̂.

We now turn to obtaining the dynamics, under both RE and learning,

when there is a policy change.

3 Permanent Policy Changes

At the beginning of period  = 1 a policy announcement is made that the

level of government spending will change permanently upward from ̄ to ̄0

9



at a specified date  in the future. The policy announcement is assumed to

be credible and known to the agents with certainty. With a balanced budget,

this means equivalently that there is an anticipated change in (per capita)

taxes, i.e.,  = ̄ = ̄ when    and  = ̄ 0 = ̄0 when  ≥ 

The long run effects on the steady state of an increase in government

expenditure are well-known, e.g. Baxter and King (1993). From the steady

state equations, it is easy to see that the new steady state involves lower

consumption and higher levels of investment, output, labor, and capital, but

an unchanged capital-labor ratio. The latter implies that steady state wages

and interest rates are unchanged.

The method for obtaining the impact of policy changes under RE is stan-

dard, e.g. see Ljungqvist and Sargent (2004), Ch. 11.

3.1 Learning dynamics

We now consider the learning dynamics in the context of the policy change

just described. In the standard adaptive learning approach, private agents

would formulate an econometric model to forecast future taxes as well as

interest rates and wage rates, since these are required in order for agents

to solve for their optimal level of consumption. We continue to follow this

approach with respect to interest rates and wage rates, but take the radically

different approach for forecasting taxes by assuming that agents understand

the future course of taxes implied by the announced policy. In effect, we are

giving the agents structural knowledge of one part of the economy: the fiscal

implications of the announced future change in government spending.13

As argued in the Introduction, we think this is a natural way to proceed,

since changes in agents’ own future taxes have a quantifiable direct effect,

while future wages and interest rates are determined through dynamic general

equilibrium effects. The adaptive learning perspective is that it is unrealistic

to assume that agents understand the economic structure sufficiently well to

improve on reduced form econometric forecasts of aggregate variables like

wages and interest rates.

To keep things simple, we assume that the government operates and is

known to operate under a balanced-budget rule. Given this structural knowl-

13A related approach is followed in Preston (2006) and Eusepi and Preston (2010) in

connection with monetary policy: in some cases agents are assumed to incorporate the

announced interest-rate rule in their forecasts.
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edge of the government budget constraint and the announced path of gov-

ernment spending, the agents can thus use ̄ = ̄, for   , and ̄ 0 = ̄0,
for  ≥ , for their forecasts of future taxes. Of course, for simplicity we

are assuming that the announced policy change is fully credible. It would

be possible to relax this assumption within the general framework of our

approach.

Since the path of future taxes  + = + is known to agents, they com-

pute its present value as

  =

∞X
=1

(+ − ̄) =

(
−+1
1− (̄0 − ̄), 1 ≤  ≤  − 1



1− (̄
0 − ̄)  ≥ 

However, under learning, agents still need to form forecasts of future wages

and interest rates since these are needed for their individual consumption

choice in (10). Moreover, they need to form forecasts of these variables

without full knowledge of the underlying model parameters.

Under RE, in contrast, agents are assumed to know all the underlying

parameters involved in the REE solution, i.e. the parameters in (25) and

(23) - (24), which they can then use to form future forecasts of wages and

rental rates. For anticipated changes in policy the implicit assumptions under

RE are even stronger: agents need to know the full structural model and

use it to deduce the full equilibrium path that puts the economy on the

new saddle path at the exact time at which the policy change takes place.

Furthermore this computation by agents must be made under the assumption

that other agents are equally “rational” and make the same computation.

The learning perspective is that these assumptions are implausibly strong

and hence unrealistic.

Under learning wage and interest rate forecasts depend on the perceived

laws of motion (PLMs) of the agents, with parameters updated over time in

response to the data. We consider PLMs given by (20), (23), and (24) in

which future capital, wages, and rental rates depend on the current capital

stock and technological shock,  and .
14 That is, we consider PLMs that

14We will explore alternative PLMs in future work, for instance PLMs based solely on

observed wages and interest rates. Such PLMs may be considered more realistic since

(arguably) it is easier to observe market values of wages and interest rates than it is to

observe contemporaneous values of capital stock and productivity.
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are of the form (including constants)

+1 =  +  + ̂ +  (27)

 =  +  + ̂ +  (28)

 =  +  + ̂ +  (29)

̂ = ̂−1 + ̃ (30)

where the PLM parameters   etc. will be estimated on the basis of

actual data. The final line is the stochastic process for evolution of the (de-

meaned) technological shock, which for simplicity is assumed known to the

agents. In real-time learning, the parameters in (27), (28), (29) are time

dependent and are updated using RLS; see for example Evans and Honkapo-

hja (2001) p. 233. We assume agents allow for structural change, which

would include policy changes as well as other potential structural breaks, by

discounting older data as discussed below.

We remark that in assuming that agents forecast using the PLM (27) -

(30), we are implicitly assuming that they do not have useful information

available from previous policy changes. We think this is generally plausible,

since policy changes are relatively infrequent and since the qualitative and

quantitative details of previous policy changes are unlikely to be the same. In

particular, any previous fiscal policy changes, of the type considered here, are

likely to have varied in terms of the magnitude and duration of the change in

government spending, the extent to which it was anticipated, and the state

of the economy in which it was announced and implemented. Since older

information of this type would probably have limited value, we assume that

agents respond to policy change by updating the parameters of the PLM (27)

- (29) as new data become available.15

Before discussing how the PLM coefficients are updated over time using

least-squares learning, we describe how (27) - (29) are used by agents to

make forecasts. Given coefficient estimates and the observed state ( ̂),

equations (27) and (30) can be iterated forward to obtain forecasts + and

̂+ for  = 1 2     Then wage and rental rate forecasts 
+ 


+ are

obtained using the relationships (28) - (29) and interest-rate forecasts are

then given by + = 1− + + using (5). Given these forecasts, 

 and

 are computed from (13) and (11), which in turn are used in (10) to help

15However, if repeated policy changes take place that are qualitatively and quantitatively

similar, then agents might plausibly make use of this information using procedures along

the lines of Section 4 of Evans, Honkapohja, and Mitra (2009).
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determine consumption in the temporary equilibrium. For further details see

the Appendix.

Parameter updating by agents using RLS learning is as follows. We define

the time  parameter estimates as

 =

⎛⎝ 



⎞⎠   =

⎛⎝ 



⎞⎠   =

⎛⎝ 



⎞⎠   =

⎛⎝ 1


̂

⎞⎠ 

The RLS formulas corresponding to estimates of equation (27) then are

 = −1 + −1 −1( − 0−1−1) (31)

 = −1 + (−1
0
−1 −−1) (32)

Here we are assuming that agents update parameter estimates using “dis-

counted least squares,” i.e. they discount past data geometrically at rate

1 − , where 0    1 is a (typically) small positive number.16 In the

learning literature the parameter  is known as the “gain,” and discounted

least squares is also called “constant-gain” least squares.  and  are

estimated in the same way, see below.

Constant-gain least squares is widely used in the adaptive learning liter-

ature because it weights recent data more heavily. See for example Sargent

(1999), Cho, Williams, and Sargent (2002), McGough (2006), Orphanides

and Williams (2007), Ellison and Yates (2007), Huang, Liu, and Zha (2009),

Carceles-Poveda and Giannitsarou (2008), Eusepi and Preston (2011) and

Milani (2011). In the current context constant gain is particularly natural

since agents will be aware that the announced policy change will induce

changes in forecast-rule parameter values taking a possibly complex and time-

varying form. Use of a constant-gain rule allows parameter estimates to more

quickly track changes in parameter values than does straight (“decreasing-

gain”) least squares.

Analogously, the RLS formulas corresponding to estimates of equations

(28) and (29) are

 = −1 + −1 −1(−1 − 0−1−1) (33)

 = −1 + −1 −1(−1 − 0−1−1) (34)

16Giving a constant weight of  to the most recent data point implies discounting older

data as the sample size increases.
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with  being given by (32). Note that we have set the gain to be the same

in all of the regressions (this is done only for simplicity and is not essential).

The initial values of all parameter estimates  and  are set to the initial

steady state values under RE. See the Appendix for details.

3.2 Surprise permanent policy change

We first consider the benchmark case of a surprise change in government

spending that takes place immediately. This is a scenario that is frequently

studied in the RE literature (see, e.g., Baxter and King (1993), Aiyagari,

Christiano, and Eichenbaum (1992), and Romer (2011)).17 It would, there-

fore, be of interest to study a surprise policy change under learning and

compare with the corresponding RE dynamics. As we will see this provides

interesting insights.18

Figure 1 compares the dynamics under RE and learning for an increase

in government spending that takes place in period 1 and which was not

anticipated by agents. The variables plotted are capital (), gross investment

( = +1 − (1 − )), consumption (), labor (), output (), capital-

labor ratio (), wages () and the interest rate (). In all of the figures

below, period  = 0 depicts the initial steady state values of the variables.

We assume the following parametric form for the figures:  =  = 1  = 4

 = 0025  = 13  = 0985  = 09 ̄ = 1359 0 = 020 and  = 004 in

the learning rule.

The parameter values used conform to the ones used in the real business

cycle literature, see e.g. King and Rebello (1999) or Heijdra (2009). The

value of  used implies a quarterly real rate of interest of 15% (6% annually);

the value of  implies an annualized rate of depreciation of 10% per annum;

̄ = 1359 is chosen to normalize output to (approximately) unity. The

government spending/output ratio is 21% that of investment/output ratio

is 20% and that of consumption/output ratio is 59%19

17Baxter and King (1993) analyze surprise permanent and temporary changes in gov-

ernment spending in the neoclassical model while Ljungqvist and Sargent (2004), Chapter

11, analyze some anticipated changes in policy in deterministic neoclassical models with

elastic and inelastic labor supply.
18In the notation of the previous section, for the surprise permanent change, the dy-

namics under learning has  =

1− (̄

0 − ̄) for all  ≥ 1 since the anticipatory effects
are absent when the policy change takes the agents by surprise.
19Note that these values are (approximately) the ones used in Heijdra (2009); p. 510,
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Our choice of the gain parameter  = 004 is in line with most of the

literature, e.g. Branch and Evans (2006), Orphanides and Williams (2007)

and Milani (2007). Eusepi and Preston (2011) use a much smaller value for

the gain, but they do not consider changes in policy, for which a larger value

of  is more appropriate.20

̃ is assumed to be distributed uniformly with a support of (−0005 0005)
For the policy exercises, there is an increase in government spending from

0 = 020 to ̄ = 021 (a 5% increase) that takes place at  = 1. We plot the

mean time paths for each endogenous variable over 20 000 replications.21 We

focus attention on the mean time path across replications since this is the

most salient aspect of the differences between the RE and learning dynamics

when there is a change in policy.

We first describe the dynamics under RE of the surprise increase in gov-

ernment expenditure financed by lump-sum taxes under a balanced budget

regime. These dynamics are standard; see for instance Baxter and King

(1993), pp. 321-2 and Heijdra (2009), chapter 15. We can get some (qualita-

tive) intuition from the saddle path dynamics considered in Heijdra (2009),

Figures 15.1 and 15.2, in the deterministic continuous-time RBC model for

such a surprise, permanent change. This is reproduced as our Figure 5 at the

end of the paper. The 0 0 lines represent the initial capital stock and

consumption equilibrium lines respectively with 0 the initial steady state.

1 is the capital stock equilibrium line after the increase in government

spending and the new steady state is 1. Consumption falls immediately on

impact from point 0 to point  on the new saddle path (1) in Figure 5,

i.e. consumption under-shoots the new steady state 1 on impact. There-

after, the dynamics for consumption and capital are monotonically increasing

along 1 to the new steady state 1.

These RE qualitative dynamics are confirmed by the behavior of   in

equations (15.46)-(15.47). In our baseline case, the initial steady state values are ̄ =

022 ̄ = 829 ̄ = 059 ̄ = 304 See also footnote 5, p. 509, in Heijdra (2009).
20Our results are qualitatively robust to a range of values for the gain parameter, except

that very small values of  slow down convergence to the final steady state, and values

that are too large lead to instability. For further discussion of the gain parameter see

Evans, Honkapohja, and Mitra (2009).
21The learning rule uses a projection facility to keep the dynamics of capital bounded

since the autoregressive root in the AR(1) process for capital in the RE equilibrium is

close to one for plausible parameter values. The projection facility is used outside the

range (0.01, 0.99) In all the reported cases, this is used less than 1% of the times for all

replications over all the periods.
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Figure 1 which also illustrates the dynamics of other important endogenous

variables   


  and .

22 Intuitively, the permanent increase in

government spending has a large wealth effect on individuals, reducing their

permanent income. Since neither consumption nor leisure are inferior goods,

individuals respond by reducing consumption and leisure dramatically, so

that labor supply increases. Consumption under-shoots (and labor supply

over-shoots) the new steady state on impact as shown in Figure 1. Since the

capital stock is predetermined, the boost in labor input on impact increases

aggregate output, the marginal product of capital and the real interest rate.

In the short run, an accelerator mechanism operates to generate a boom

in investment (overshooting the new higher steady state); see Baxter and

King (1993), p. 321. The investment boom leads to a rising path of capital

which increases monotonically towards the new higher steady state (as does

output). The increase in the real interest rate on impact leads to a rising path

of consumption (and declining path of labor supply) due to intertemporal

substitution effects. Rising consumption in turn dampens the investment

boom which gradually converges towards the steady state. Rising  and

falling  raise the  ratio gradually towards its (unchanged) steady state

value which in turn drives the dynamics of  and ;  declines (and  rises)

towards the steady state.

Under learning, the most striking difference from RE is in the behavior

of capital and investment. Instead of the strong investment boom that char-

acterizes the RE dynamics, in the early periods under learning we have the

opposite case of a large drop in investment leading in fact to disinvestment

(negative net investment +1 −  =  − ) and hence a falling path of

capital in the initial periods after the policy change. Why does this happen

under learning? One way to view this is that in the new steady state, all

of the perceived parameters in the capital equation (i.e. the constant term

̄ the auto-regressive root 2 and the coefficient of the shock term ̄) are

higher than the initial steady state values. Since agents’ parameter estimates

are still at the initial steady state at  = 1, the “desired” capital stock under

learning is lower than under RE, which causes the disinvestment. In effect,

agents are yet to realize that the permanent increase in government spending

will lead to a higher steady state capital stock; under RLS learning, agents

figure this out gradually as they accumulate more data and update their

parameter estimates over time.

22All figures and tables are at the end of the paper.
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More specifically, in terms of the equilibrium dynamic system under learn-

ing, the mechanism is as follows. At  = 1, consumption falls because of the

increase in  . However, because wage and interest rate expectations are

predetermined, the fall in consumption and the increases in employment and

output are all less than under RE. Under RE the paths of lower future 

and higher  are fully anticipated, magnifying the impact relative to the

learning path in which expectations are initially unchanged. Under learning


+ 


+ gradually respond to the data, leading initially to a gradual fall in


+ (and rise in +) before eventually rising towards the steady state.

As a consequence of the smaller sizes of the impacts on output and con-

sumption at  = 1, the increase in  necessarily leads to a lower level of 
under learning than under RE, and in fact we see a sharp reduction in invest-

ment. In the periods immediately following the policy change, expectations

of wages and interest rates adjust. Two factors are at work. The lower capi-

tal stock in the periods soon after the policy change leads to lower forecasts

of future wages and higher forecasts of future interest rates and thus lower


 and higher 


 . This leads to a further reduction in , and increases in

 and , which results in increases in  from its low level at  = 1. After

several periods this process is sufficient to restore  to an upward path, ac-

companied by a fall in , and an increase in , drives  upwards and 
downwards to their steady state values. The other factor at work is that over

time coefficient estimates under RLS learning gradually adjust in response to

the shock and the evolution of the data. Eventually the coefficients converge

to the values that correspond to the REE values at the new steady state, so

that in the long run there is convergence to the new REE.

This situation is in stark contrast to the RE case where agents, at  = 1

are fully aware of the new steady values of all variables including capital.

Realizing that the long run capital stock is higher, desired capital stock is

higher and that causes the investment boom under RE, with the consequent

bigger initial impact effects on consumption and labor supply. Table 1, at

the end of the paper, compares these impact effects under RE and learning.

Compared to RE the paths of   and  under learning adjust less on

impact and respond more sluggishly, leading to a hump-shaped response of

,  and , with  eventually overshooting the new steady state (in effect

this compensates for the low levels of investment in the initial periods).23

23In RBC models with learning, hump-shaped responses to productivity shocks have

been observed by Eusepi and Preston (2011), Branch and McGough (2011), and Huang,
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This also implies that the paths followed by   and  (and hence 

and ) in the periods following the policy change are qualitatively in opposite

directions under learning compared to that under RE; e.g.   are falling

under learning initially whereas they are rising under RE.

3.3 Anticipated permanent policy change

We now examine the effects of an anticipated change in policy that is an-

nounced credibly in period 1 We will see that the dynamic effects under

both RE and learning depend on how far in advance the policy change is

announced. We, therefore, consider two values of  in what follows. Figure

2 plots the dynamics for an anticipated, permanent increase in government

spending to take place in period  = 5 i.e.  = 5. We interpret a period as a

quarter and frequently refer to this as an announcement one year in advance.

The parameter values used are the same as those for Figure 1 (and in fact

in all of the figures below). Figure 3 illustrates the dynamics when  = 29

(we refer to this as an announcement seven years in advance).

We first summarize the effects of the policy change under RE. We can

again use Figure 5 to help us understand the dynamics. When  is small

(like  = 5 in Figure 2), the impact effect on  at  = 1 is quite large (though

smaller than that for the surprise change) and it under-shoots the new steady

state 1. The dynamics, thereafter, is governed by the phase diagram implied

by the curves 0 0 since  is unchanged until . The phase diagram

implies that  and  rise monotonically during the anticipatory phase until

the saddle path 1 is hit at the time when  increases (and the dynamics

are then governed by the 0 1 lines). Thereafter, the paths of  and

 continue to increase monotonically along 1 until the steady state 1 is

reached.

When  is large (like 29 in Figure 3), the impact effect on 1 is much

smaller and it does not under-shoot the new steady state 1. The phase

diagram then implies that  and  rise monotonically initially until the

dynamics hits the 0 line. Thereafter,  falls but  continues to rise until

the new saddle path 1 is reached at the time when the actual increase

in  takes place. The paths of  and  then monotonically decrease along

1 towards the new steady state 1 (in accordance with the transitional

Liu, and Zha (2009). The latter also emphasize the plausible labor market dynamics

that arise from the learning model. However, none of these papers focus on changes in

government spending.
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dynamics implied by the 0 1 lines). Thus,  increases monotonically

until  = 29 over-shooting the new steady state before decreasing gradually

in the transient phase.

These effects are confirmed by the dynamics displayed under RE in Fig-

ures 2 and 3.24  falls on impact while , gross investment , and  all

rise on impact (correspondingly,  falls on impact). Over-shooting of  is

observed on impact in Figure 2 but not in Figure 3 which is consistent with

the explanation from the phase diagram. The impact effects under RE get

smaller as  increases. Intuitively, with large  the time period over which

the capital stock can be built up is longer, making it possible for agents to

smooth out their consumption with a smaller initial fall in consumption.

After these initial impact effects, there are further rises in  and  until

the policy is implemented which further boosts .  rises sharply, which

raises the  ratio and  during this phase. After the policy change,

the increase in  crowds out  which falls sharply and the other variables

converge gradually towards the steady state. An interesting thing to note is

that over-shooting of  (and , ) is observed when  = 29 whereas 
and  overshoot when  = 5 (rather than  , ) under RE; this is of

course consistent with the explanation given above.

Under learning, only the announced increase in future taxes reduces 
at  = 1 by equation (10), since expectations of wages and interest rates

are pre-determined. The impact effects under learning (like that under RE)

are reduced as  increases. However, compared to RE, the impact effects

are smaller under learning when  is small (see Figure 2) while they are

larger when  is large (see Figure 3). Table 1 summarizes the impact effects

in percentage terms for the surprise and the announced permanent changes

illustrated in Figures 1-3.

We return to the dynamics under learning, and focus on the case  =

29 which we examine in detail.25 The initial fall in consumption, due to

the higher anticipated future taxes  , leads to a temporary investment

boom and a period of capital accumulation. However, under learning this

is soon followed by a considerable period in advance of  = 29, specifically

24Note that for permanent changes in  the RE dynamics for the standard RBC model

are significantly different from the Ramsey model discussed in Ljungqvist and Sargent

(2004), Chapter 11 or Figures 8-9 of Evans, Honkapohja, and Mitra (2009); steady state

values of capital and labor change in the RBC model.
25For  = 5 the qualitative dynamics are similar under learning, except that the over-

shooting of   and  are not observed in the pre-implementation period.
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 = 4     23, in which there are higher wages and expected wages, 
 , and

lower interest rates and expected interest rates,  than under RE. These

expectations under learning are partially self-fulfilling, in that they are ac-

companied by higher , lower  and higher , compared to the RE path.

As a result, the qualitative dynamics of  and  under learning are actually

opposite to that under RE throughout most of the pre-implementation phase,

in the sense that  and  are falling over time under learning whereas they

rise over time fairly dramatically under RE.

Continuing with the learning scenario, these optimistic assumptions of

high future wages and low future interest rates offset the higher expected

taxes  , and consequently when  = 29 arrives, employment is back to

initial levels and consumption is actually slightly larger than it was initially.

During the period  = 29 itself, when the government spending increase

begins, there is virtually no impact on  or , or on  , since the tax

increases had been almost fully anticipated. Consequently almost the full

impact of the increase in ̄ at  is on  and thus on +1. This corresponds

to a similar decrease in  in the RE case. However, in the learning case the

fall in the capital stock after  = 29, during periods  = 30 − 35, leads to
a sharp reduction in wages and a sharp increase in interest rates that were

not correctly anticipated by agents. There is then a sustained period for

   of low , low , high  and high  (with both  and  overshooting

their new higher steady state levels), as agents adjust their expectations to

the post-policy implementation reality, with eventual convergence to the new

steady state.

To summarize, only the direct wealth effects from the anticipated change

in government spending (and taxes) are fully foreseen under learning in the

anticipatory phase. Under learning, in contrast to RE, agents do not cor-

rectly foresee the path of future wages and interest rates. This leads to

overoptimism concerning wages and interest rates in the pre-implementation

period, and a substantial correction following implementation, with a period

of low wages, low consumption and high interest rates.26

26Looking at Figures 1-3, it is evident that the  dynamics is qualitatively important

in determining the movement of   while the  dynamics is influential in determining

the behavior of  under learning; of course, the interaction between  and  generally

influences the paths of all variables simultaneously.
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3.4 Interpretation of results

For both surprise and anticipated permanent increases in  we see the fol-

lowing main qualitative features:

1. There are large impact effects for both the RE and learning solutions,

and these effects get smaller as  increases. The impact effects under learn-

ing are smaller than under RE for surprise changes but the opposite is true

when  is large.

2. The dynamics of variables under RE and learning can be in qualita-

tively opposite directions for some periods after the impact effects. For the

surprise change, ,  are falling after the policy change under learning while

they are rising under RE ( is rising under learning and falling under RE

during this time). These features lead to a hump-shaped response in vari-

ables under learning that is absent under RE. Similarly, for the announced

change,   and  are all falling under learning in the pre-implementation

phase whereas they are all rising under RE in this time period.

3. For anticipated future permanent changes in , under learning there is

essentially no impact on  or  on the date when the policy is implemented,

and in this respect is like RE. The reasons are the same in each case: the

tax change is fully anticipated and agents aim to smooth their consumption

path over time.

4. There can be classic “overshooting” results for both learning and RE

paths. For example, in the case of an announced increase in  when  is

large, the path for the capital stock rises above the new higher steady state

before eventually converging to it under RE. However, overshooting is a far

more prominent feature of learning paths; for an announced change in 

consumption falls instantaneously before gradually rising until ; there is

then a substantial fall in consumption under-shooting the new steady state

before converging to it.

5. Related to this last point, the learning paths exhibit oscillatory con-

vergence that is particularly pronounced for announced policy changes. For

example, in the announced case, under learning, the capital stock, after its

initial rise, falls for a period before increasing and eventually converging.

Other variables like , , ,  ratios (hence,  and ) all exhibit

oscillatory convergence as well.

We now discuss the intuition for these results. The key feature is that the

effects from the change in expected future government spending and taxes

is felt immediately (since agents foresee the path of  even under learning),
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while the implications for expected future wages and interest rates evolve

slowly in response to the data.

Consider the effect of an anticipated permanent increase in  illustrated

in Figures 2 and 3. At the time of the announcement agents understand that

the future higher taxes reduce their overall wealth, leading to lower  and

higher . Because  has not yet increased this leads to an investment boom

and a higher capital stock. This in turn leads to higher wages and lower

interest rates, offsetting the reduced wealth, so that under learning, for large

, variables can evolve to steady levels consistent with expectations. Then,

under learning, at  agents are again surprised because the (anticipated)

increase in  =  leads to an (unexpected) fall in aggregate capital, leading

to lower wages and higher interest rates. This second surprise on implemen-

tation under learning leads to a large drop in consumption, overshooting the

new lower steady state, and a subsequent sustained period during which the

capital stock is built up during the process of convergence to the new REE.

To summarize, on announcement of the future increase in , agents im-

mediately understand the implications for their wealth of their future higher

taxes and they immediately adjust their consumption and labor supply ac-

cordingly. During the period    they also revise their expectations of

future wages and interest rates in response to the data. What they do not

foresee, however, is that when the policy is implemented this will lead to a

crowding out of capital that will in turn eventually reduce wages and increase

interest rates. Consequently, for    there is another period of adjustment

as agents learn the properties of the new equilibrium steady state.

How reasonable is our implicit assumption that agents will not foresee the

extent to which capital is crowded out by the government spending in the

period following implementation? We think this is very plausible. For agents

to deduce that there will be the decline in the capital stock following  they

would need not only to understand the capital accumulation equation (16),

but also to accurately forecast aggregate consumption  and aggregate labor

supply  during the period following . As we have already indicated in

our earlier discussion of RE, this in turn requires an implausibly high de-

gree of structural knowledge of the economy, as well as a belief that this

structural information is common knowledge, that all agents are fully ratio-

nal and capable of computing equilibrium paths, and that this is common

knowledge.27 These are precisely the assumptions that the adaptive learning

27The strong assumptions required for agents to be able to deduce, and hence coordinate
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literature aims to avoid.

The approach taken in this paper is to examine the implications of assum-

ing that agents have some structural information pertinent to their decision

problem, here the path of future taxes, but that they use econometric fore-

casting procedures for other key variables. An implication of our approach

is that agents are likely to make systematic mistakes when confronted with

announced future increases in government spending: while the tax implica-

tions will be understood, agents may become overoptimistic in advance of

the policy implementation, leading to a subsequent correction.

3.5 Oscillatory dynamics under learning

We have noted that oscillatory dynamics is a prominent feature under learn-

ing. In general, the oscillatory convergence under learning is due to a combi-

nation of surprises and inertia. Given their expectations, households aim to

smooth consumption, and this leads to inertia in capital adjustment, which

is present under both RE and learning, and to monotone dynamics. Un-

der adaptive learning, there is also inertia in the parameters used in wage

and interest rate forecasts, and this can lead to a failure to understand the

full dynamics of future wages and prices. This leads to additional learning

dynamics that can produce oscillations in the endogenous macroeconomic

variables. In the case of anticipated policy changes, the inertia in learning

dynamics can also lead to a secondary surprise following implementation,

leading to a second round of oscillations.

More formally, the system under learning combines two types of dynam-

ics. First consider the case of the permanent surprise increase in . This

case is simpler since the structure of the system after the shock remains sta-

tionary. Under RE the policy change in effect re-initializes the system so

that the “initial” capital stock is below its new steady state values. Con-

sumption drops to the new saddle path, and the mean paths of all variables

converges over time to their new steady state values. The RE forecast func-

tions immediately jump to the parameter values corresponding to the RE

paths associated with the new steady state. Under RE the system dynamics

are inherently monotonic since the state is given by (25)-(26), which implies

that the mean path of capital simply follows

+1 − ̄0 = 02( − ̄0) where 0  02  1.

on RE, are discussed in Guesnerie (2002).
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Here ̄0 02 etc. denotes new steady state values.
Under learning the temporary equilibrium and thus the system dynamics

are driven by the values of the forecast parameters as well as by the current

state (and the random productivity shocks). The forecast functions (27),

(28), (29) and (30) are characterized by a vector of estimated coefficients

 = (        ), which are updated over time using

RLS. If, at the time of the policy change, the coefficient values for  changed

immediately to the new RE values (i.e. if  and  changed to  = 02
and  = (1 − 02)̄

0 and all other coefficients changed analogously) then
our temporary equilibrium system would replicate the REE. Under adap-

tive learning, however, the coefficients gradually evolve towards the new RE

values in response to data and the RLS updating scheme. One can show

the actual law of motion (ALM) dynamics for given parameters  takes the

same form as the PLM but with parameters  () instead of . The mapping

 : R9 → R9 can be computed numerically and REE parameter values are a
fixed point ̄ =  (̄). Under learning the parameters () evolve under RLS

updating. Denoting ∗() =  (()) and using ∗(), etc., for the components
of ∗, the (linearized) actual temporary equilibrium dynamics are given by

+1 = ∗() + ∗() + ∗()̂
 = ∗() + ∗() + ∗()̂
 = ∗() + ∗() + ∗()̂
̂ = ̂−1 + ̃

where the temporary equilibrium expression for  (and a corresponding ex-

pression for ) have been used to obtain this system. Thus under learning

the system has two types of dynamics: the linear state dynamics correspond-

ing to this system with given parameters () (equal to ̄ at an REE) and

the RLS dynamics governing the evolution of () over time. The resulting

system for the endogenous variables is a nonlinear stochastic dynamic system

that can include oscillatory responses to structural change.

In the case of the permanent surprise increase in  illustrated in Figure

1, the hump-shaped response for    and  results from this combined

dynamics. Immediately after the policy shock, the PLM parameters are at

the old steady state values ̄, and this leads to smaller impact effects than

under RE and a decline in . This then leads to further movements of

variables away from the new steady state as discussed above. However, over

time () evolves towards the new REE values ̄
0
, leading to the eventual
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monotonic convergence seen in Figure 1.28

In the case of anticipated permanent increases in , illustrated in Figures

2 and 3, we have the additional feature under learning, described above, of

a second surprise after the policy is implemented, taking the form of unex-

pected wages and interest rate changes. This leads to a second period of

oscillatory dynamics before convergence to the final steady state.

Intuitively, the system under learning exhibits a mixture of state variable

dynamics inherited from the rational expectations equilibrium and coefficient

dynamics from RLS learning. The rational expectations dynamics deliver a

strongly positively serially correlated process for capital and the other vari-

ables in the system. In contrast, the learning dynamics can deliver oscillatory

behavior around the REE values when the system undergoes either a surprise

or an anticipated structural change (here a change in policy).

The importance of cyclical or oscillatory dynamics has been emphasized

in RE models by a number of people, e.g. Farmer (1999), Chapter 7, Farmer

and Guo (1994) and Azariadis, Bullard, and Ohanian (2004). These papers

also argue that such dynamics are a feature of US data. Farmer and Guo

(1994) obtain cyclical dynamics in RBC-type models with nonconvexities (see

also Baxter and King (1991)). In Azariadis, Bullard, and Ohanian (2004)

the oscillatory dynamics arise from the overlapping generations structure. In

contrast, we have shown that in the presence of adaptive learning, oscillatory

dynamics can be expected to be a prominent feature of changes in fiscal policy

in standard RBC models. It would be interesting to examine this feature of

adaptive learning in more detail and to compare its implications with the

data.29

28It can be shown that the mean dynamics of the parameter estimates are governed by

the “E-stability” differential equation ̇ =  ()−, and that local asymptotic stability of an
REE ̄ is therefore determined by the Jabobian matrix (̄). Numerically for our baseline

parametrization, six of the nine eigenvalues are zero and the remaining are approximately

−450−095−064 Since all the eigenvalues are less than one, the equilibrium is E-

stable and therefore stable under least squares learning. For some initial conditions stable

oscillations of parameters could still arise, and large negative eigenvalues can make the

system more prone to oscillations under constant gain. These can even generate instability

for large gains, as noted in Evans and Honkapohja (2009).

29See Eusepi and Preston (2011) and Milani (2011) for empirically oriented studies in

models with unchanged policy.
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4 Temporary Policy Changes

The other natural fiscal policy experiment to consider is a change in govern-

ment spending that is known to be temporary. We assume that initially, at

 = 0, we are in the steady state corresponding to  = ̄, and consider the

following policy experiment, assumed fully credible and announced at the

start of period 1:

 =   =

½
̄0,  = 1   − 1

̄,  ≥ 
(35)

i.e., government spending and taxes are changed in period  = 1 and this

change is reversed at a later period . Thus, the experiment is one where

the policy change is announced in period 1 to take place in the future for a

fixed number of periods.30 The formal dynamics under RE and learning are

summarized in the Appendix.

Before examining the results we remark that our surprise temporary

changes include an important anticipated component, since the policy change

is assumed to be accompanied by an announced date at which the policy will

come to an end. We plot the dynamics for a surprise temporary policy

change, which takes place in period 1 and lasts for 8 periods (we interpret

this as a two-year war).31 The remaining parameter values are the same as

in the earlier Figures.

For the RE case we can again get some intuition from the phase diagram

considered in Figure 5. The impact effect on consumption will be less than for

the permanent change. In addition, given the transient nature of the shock,

1 will lie between the 0 and the 1 lines. Thereafter,  starts rising

and  starts falling (since 1 governs the dynamics in this phase) until the

dynamics hit the initial saddle path 0 passing through 0 when the policy

change is reversed. Thereafter  and  both rise monotonically towards the

initial steady state along this saddle path.

These dynamics are confirmed in Figure 4 and are qualitatively similar to

the RE dynamics for a similar policy analyzed in Baxter and King (1993) and

Aiyagari, Christiano, and Eichenbaum (1992).  falls as long as the policy

change is in effect and then increases towards the (unchanged) steady state.

 falls on impact and then increases monotonically towards the steady state.

30We have also examined the case of temporary changes in  that are announced in

advance, but for reasons of space we omit these results here.
31Of course, one could also incorporate uncertainty about the length of the war.
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As emphasized in these papers, the key difference from a surprise permanent

change is the behavior of investment. When the change is temporary, con-

sumption smoothing by agents is achieved by a reduction in investment. The

smaller wealth effect due to the temporary change has a smaller effect on ,

, and  on impact. The  ratio falls on impact which raises  and

lowers  on impact.  continues to be low during the war and this reduces

 over time. People, however, maintain a rising path of  by running down

their capital and  continues to decline as long as the war lasts which also

results in a falling path of  over time. There is no longer a need to reduce

capital to maintain a rising consumption path once the period of high  is

over. There is, therefore, an investment boom at this point and  starts in-

creasing towards the (unchanged) steady state. The  ratio starts rising,

which raises  (lowers ). The falling interest rates lead to further declines

in  which converges towards its steady state.

We now discuss the impacts of the policy under learning. The most

marked difference under learning compared to RE is the sharper fall in in-

vestment on impact.32 Under RE, agents foresee the path of low wages (and

high interest rates) in the future which reduces initial consumption more

on impact compared to learning. With expectations of future wages and

interest rates pre-determined, and only a small rise in   (due to the tem-

porary change), the reduction in consumption at  = 1 is much smaller under

learning than under RE (the impact effects on other variables is also muted

under learning for the same reason). Consequently, there is a sharp fall in

investment with the capital stock run down rapidly.

Under learning, although agents correctly foresee the period of higher

taxes, they fail to appreciate the precise form of the wage and price dy-

namics that result from the policy change. The reduction in  over  =

1      − 1 = 8, leads to lower wages and expected wages, 
 , and higher

interest rates and expected interest rates,  , resulting in a period of ex-

cessive pessimism during the period of the war. The resulting reduction in

 and increase in  during this period reverses the fall in investment and

stabilizes the capital stock at a level in excess of RE levels. Then, when the

war ends at  = 9, the planned reduction in government spending leads to

a sharp spike in investment and build-up of the capital stock. This leads

to a period of higher wages and expected wages, and lower interest rates

32See Table 2 for a comparison of impact effects under RE and learning for the endoge-

nous variables.
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and expected interest rates, and thus to an extended period of correction to

the earlier period of overpessimism, before eventual convergence back to the

REE steady state. Note that yet again the dynamics of ,    and 
display a hump-shaped pattern under learning unlike that under RE.

As in the case of permanent policy changes, one way to view these results

is that agents fail to foresee the full impacts of the crowding out or crowding

in of capital from government spending. In the present case, agents tend

to extrapolate the low wages during the war, which result from the run-

down of capital, and while they understand that their future taxes will fall

when the war ends, they fail to recognize the improvement in wages that

will occur after the crowding in of capital after the war. This is the source

of the excessive pessimism during the war, with a resulting correction after

the war ends. These shifts in household sentiment are the origins of the

oscillatory response observed under learning to the policy change. As a result

one also observes overshooting of all the key variables under learning. The

overshooting phenomenon is not observed here under RE. For example, under

learning, after the end of the war,   and  substantially overshoot the

steady state values.

5 Conclusion

Changes in fiscal policy, in an RBC model with adaptive learning, generate

mean trajectories that have both common features and significant differences

from the mean paths under RE. These dynamics were examined for various

types of fiscal changes: surprise vs. announced and permanent vs. tempo-

rary. For announced policy changes scheduled to take place in the future,

immediate anticipation effects under learning arise from the wealth effects of

anticipated future tax changes, followed by additional more gradual impacts

arising from changes in expected future wages and interest rates.33

The differences in dynamics under RE and adaptive learning therefore

arise due to the future path of wages and interest rates being fully foreseen

by RE agents, while agents learn only gradually about these variables under

incomplete knowledge. In effect, under learning agents understand the direct

33We remark that our focus on anticipated future fiscal changes is reminiscent of the

literature on news shocks about future productivity changes, see Jaimovich and Rebelo

(2009). The approach used in the current paper could naturally be extended to news

shocks within their framework.
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wealth effects of future changes of government spending and taxes, but fail

to fully anticipate the effect on factor prices of the crowding out or crowding

in of changes in government spending. Depending on the form of the an-

nounced policy change, the size of the impact effects under learning can be

either greater or smaller than under RE. In some cases the qualitative dy-

namics of variables can be in diametrically opposite directions under RE and

learning. Oscillatory dynamics, not present under RE, emerge prominently

as agents learn about the full impact of the policy change and its effect on

the new steady state. This feature of adaptive learning ought to be explored

more in future work since oscillatory dynamics are arguably present in US

macroeconomic data as well.

The current work has only considered a scenario with balanced budget

and lump-sum taxes, which is the baseline case considered in the RBC lit-

erature. In work in progress, we plan to analyze the impact of changes in

(distortionary) capital and labor taxes in an RBC type model and compare

the dynamics under adaptive learning with those under RE.
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Appendix

A Details of Solutions under Learning

Under learning, agents need to form forecasts of variables without full knowl-

edge of the underlying model parameters. In the basic formulation, an-

nounced policy changes are fully credible and, hence, future forecasts of

lump-sum taxes are assumed known to them. However, they still need to

form forecasts of future wages and rental rates/interest rates in order to de-

termine their consumption choice in (10). In the learning literature, these

forecasts depend on the perceived laws of motion (PLMs) of the agents. We

initially start with PLMs that correspond to the REE given in (20), (23) and

(24) in which wages, and rental rates are estimated on the basis of data on

capital stock and technological shock,  and . Thus the PLMs (including

constants) of the agents are taken to be of the form of equations (27) - (29),

where the PLM parameters    etc will be estimated on the basis

of actual data. The final line is the stochastic process for evolution of the

(de-meaned) technological shock which is assumed known to the agents (this

is without loss of generality).

We will now write these PLMs in deviation form; with deviations under

learning taken from the estimated steady state values of capital, wage rate,

and rental rate. Define

̃ =  − ̄ 

̃ =  − ̄ (36)

̃ =  − ̄
 

where, for instance, ̃ is the deviation of the rental rate from the steady

state rental rate estimated under learning at time  (i.e. ̄)

Using this notation we have

̃+1 = ̃ + ̂ (37)

̃ = ̃ + ̂ (38)

̃ = ̃ + ̂ (39)

where the estimated steady state values of capital, rental rates, and wages
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under learning are (omitting the time subscripts on ̄ , etc.)

̄ =


1− 
 (40)

̄ =  + 


1− 
 (41)

̄ =  + 


1− 
 (42)

Then under learning, the form corresponding to (25) isµ
̃+1
̂+1

¶
= ̃

µ
̃
̂

¶
+

µ
0

̃+1

¶


̃ =

µ
 
0 

¶


Defining ̃ ≡
µ

̃
̂

¶
 we have for  ≥ 1

̃+ = ̃̃ (43)

Using the future forecasts of capital stocks from (43), we can in turn obtain

the future forecasts of wages and rental rates from (38) and (39) as

̃
+ =

¡
 

¢
̃̃

̃+ =
¡
 

¢
̃̃

We linearize (6) around the deterministic steady state ̄ and ̄ = −1 to
get

 − ̄ = ̂(+1 − ̄)− −1̄̂(+1 − ̄) (44)

As noted in the main text, we assume agents choose the (known) initial

steady state as the point around which to linearize. Iterate equation (44)

forward to get

 − ̄ = ̂(+ − ̄)− −1̄̂

X
=1

(+ − ̄)

which describes current consumption in terms of expected consumption 

steps ahead and future short-term interest rates.
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Having obtained the future forecasts of wages and interest rates under

learning, we reproduce the consumption function below that agents use to

determine their current consumption. The linearized consumption function

is

( − ̄) = ̄( − ̄) + ̄( − ̄)− ( − ̄) + ( − ̄)

+1 + 2  (45)

where ̄ = −1 in the deterministic steady state and

 ≡ 1

1− 
(1 +





1
 ̄

−1
 ̄



−1)

 ≡ 1− − 1



1
 ̄


 ̄−

1
 

1 in (45) is defined as

1 ≡ −  (46)

 = ̄ − 
1
 ̄


 ̄

−1
 − ̄− ̄ (47)

and 2 is defined as

2 =

∞X
=1

̄−[(

+−̄)−( +−̄)−̄−1(

̄


+

1
 ̄


 ̄1−

1



)

X
=1

(+−̄)]

2 can be rewritten as

2 = 

 −   − (

̄


+


1
 ̄


 ̄1−

1



)  (48)

where   

 and 

 are given by equations (11), (12), and (13) in the

text.

If we combine the expressions in (46) and (48), we can write the con-

sumption function (45) as

( − ̄) = ̄( − ̄) + ̄( − ̄)− ( − ̄) + ( − ̄)

−( + ̄


+

̄

 

1



̄1−

1
 ) + 


 −  

which is equation (10) in the text, with

 =  + ̄−1 + ̄

 

1
 −1̄1−

1
 
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We note that equation (10) reduces to the following when  =  = 1; the

case assumed in the figures,

 − ̄ =
1− 

1 + 
[̄( − ̄) + ̄( − ̄)− ( − ̄) + ( − ̄)

−(̄ − ̄)

 + 

 −  ]

For the calibrations assumed in the figures, ̄  ̄ so that increases in 
and decreases in 

 reduce current consumption  as one would intuitively

expect.

Since announced policy changes are assumed to be credible, future fore-

casts of taxes   simply coincide with the assumed fiscal rule for the gov-

ernment in the consumption function (10). However, one still needs to obtain

analytical expressions for 
 and  which appear in (10). This is what

we do now.

Note that using (19) along with (36) we obtain

 − ̄ = ̃ + ̄ − ̄

which after iterating forward gives us

+ − ̄ = (̃+ + ̄ − ̄)

=
¡
 

¢
̃̃ + (̄


 − ̄)

since ̄+ = ̄; i.e. the estimated steady state rental rate  steps ahead is

still based on time  data and hence equals the time  estimate ̄ given in

(41). We use this to derive  below. Observe that

X
=1

(+ − ̄)

= (̄ − ̄) +
¡
 

¢
[( − ̃)−1̃ − ( − ̃)−1̃+1]̃

since
X

=1

̃ = ( − ̃)−1̃ − ( − ̃)−1̃+1
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Using this  is finally obtained as

 =
2

(1− )2
(̄−̄)+2

¡
 

¢
(−̃)−1̃[(1−)−1−̃(−̃)−1]̃

Similarly, since

(
+ − ̄) = (̄

 − ̄ + 
+ − ̄

 ) = (̄

 − ̄) + ̃+


 can be obtained from


 =

∞X
=1

(̄
 − ̄) +

∞X
=1

̃+

=


1− 
(̄

 − ̄) +

∞X
=1


¡
 

¢
̃̃

=


1− 
(̄

 − ̄) +
¡
 

¢
̃( − ̃)−1̃

Finally, we give details concerning the initialization of the parameters un-

der RLS learning discussed in Section 3.1. The initial values of all parameter

estimates are set to the initial steady state values under RE, i.e.,

0 =

⎛⎝ 0
0
0

⎞⎠ =

⎛⎝ (1− ̄2)̄

̄2
̄

⎞⎠ 

0 =

⎛⎝ 0
0
0

⎞⎠ =

⎛⎝ ̄ − ̄̄

̄
̄

⎞⎠ 

0 =

⎛⎝ 0
0
0

⎞⎠ =

⎛⎝ ̄ − ̄̄

̄
̄

⎞⎠ 

We also initialize the  matrix at the initial steady state. Define the vari-

ance/covariance matrix of

µ
̂
̂

¶
as

( ) =

µ
̄2 ̄
̄ 2

¶
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where ̄2 
2
 (= (1−2)−12) are the variances of the steady state capital and

technology shock, and ̄ is the covariance between capital and the shock

 in the initial steady state. Using standard techniques we can obtain these

variances using equations (25) and (26)34

(( )) = ( − ⊗)−1(Ω)

Ω =

µ
0 0

0 2

¶


so that ̄2 ̄ and 2 are given by the first, second, and fourth elements of

(( )). The second moment matrix of  can then be initialized as

̄ =

⎛⎝ 1 ̄ 0

̄ ̄2 + ̄2 ̄
0 ̄ 2

⎞⎠ 

which gives the starting point for the algorithm for RLS learning.

B Details of RE solution with policy change

We obtain the RE solution under a policy change as in Ljungqvist and Sargent

(2004) p. 352, to get

( ) = [(+1 +1){1 + (+1 − )}] (49)

( )

( )
= − = −(1− )(




) (50)

+1 = (
+1

+1
)1− (51)

 = 

 

1−
 + (1− ) −  − +1 (52)

We have for the utility function (2)

( ) = −  ( ) = −(1− )
−

and using these, (50) simplifies to

−
(1− )

= (1− )(



)

34Here  denotes the operator that stacks the columns of a matrix into a vector.
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Using (52) to eliminate consumption we get

(

 

1−
 + (1− ) −  − +1)

 − (1− )(



)(1− )

 = 0 (53)

Under policy changes, this (and all subsequent) equations will be linearized

around the final steady state.35 Linearizing (53) we get

0 = 0(− ̄)+0(− ̄)+1(+1− ̄)+0(−̄)+0(− ̄) (54)

0 denotes the partial derivatives evaluated for capital at the current time

period  (e.g. ) and 1 denotes the partial derivatives evaluated for capital

at next period +1 (e.g. +1) etc. At the steady state these derivatives are

0 = ̄−1(̄ + 1− )− (1− )̄
(1− ̄)

̄


1 = −̄−1
0 = ̄−1̄ + (1− )̄̄{̄−−1(1− ̄) + ̄−(1− ̄)−1}
0 = ̄−1̄̄1− − (1− )̄̄−(1− ̄)

0 = −̄−1
0 = ̄(1− ̄)

(49) on using (52) becomes

(

 

1−
 + (1− ) −  − +1)

−

= [{+1+11−+1 + (1− )+1 − +1 − +2}−

{1 + (+1(+1
+1

)1− − )}]

We can linearize this to obtain a solution of the form

0 = 0( − ̄) +1(+1 − ̄) +2(+2 − ̄) +0( − ̄) +

1(+1 − ̄) +0( − ̄) +1(+1 − ̄) +0( − ̄) +

1(+1 − ̄) (55)

35For convenience we now use ̄ ̄, etc., to denote the final steady state. Of course, for

temporary policy changes, the initial and final steady states are the same.
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Define the  coefficients here.

0 = −̄−−1(̄ + 1− )

1 = ̄−−1 + ̄−−1(̄ + 1− )̄ + (1− )̄−(̄̄1−̄−2)

2 = 1 = −̄−−1̄ = −̄−−1
0 = −̄−−1̄
1 = ̄−−1̄̄ − ̄−((1− )̄̄−̄−1)

0 = ̄−−1

0 = −̄−−1̄̄1−
1 = ̄−−1̄̄1−̄ − ̄̄

−

1 = ̄−(̄ − )

From (54) we get

− ̄ = −−10 [0(− ̄)+0(− ̄)+1(+1− ̄)+0(− ̄)] (56)

which implies

[+1 − ̄] = −−10 [0(+1 − ̄) +0(+1 − ̄) +

1(+2 − ̄) +0(+1 − ̄)] (57)

+1 is known in period , so there is no expectation before this term.

(56) and (57) are substituted in (55) to eliminate  and +1 which gives

an equation involving only the endogenous variable capital stock

0 = 0( − ̄) + 1(+1 − ̄) + 2(+2 − ̄) (58)

+0( − ̄) + 1(+1 − ̄) + 0( − ̄) + 1(+1 − ̄)

Define the coefficients  below

0 = 0 −0
−1
00

1 = 1 −0
−1
01 −1

−1
00

2 = 2 −1
−1
01

0 = 0 −0
−1
00

1 = 1 −1
−1
00

0 = 0 −0
−1
00

1 = 1 −1
−1
00

0 = −0
−1
00

1 = −1
−1
00
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and 1 is defined after (55).

(58) is a second order difference equation for  in terms of the exogenous

policy variables  and the shock  with a condition for initial capital stock

0. The linear approximation to the solution for the equilibrium  sequence

is obtained by solving the stable root backward and the unstable root forward

(see Ljungqvist and Sargent (2004), Chapter 11 for the details). We finally

write (58) as

(+2 − ̄) +1(+1 − ̄) +0( − ̄)

= 0( − ̄) +1(+1 − ̄) +0( − ̄) +1(+1 − ̄)(59)

where

1 = 1
−1
2  0 = 0

−1
2 

0 = −0−12  1 = −1−12 

0 = −0−12  1 = −1−12 

1 = −1
−1
2 

0 = −0
−1
2  0 = −1

−1
2 

For this model, one can show that

0 =
1

1 + 1
1

 1 = −1

1 = ̄̄(1− ̄)1−(
̄

̄
)1+̄−  0

1 = −1{(1− ̄)+ ̄}  0

so that 0  0  1 and hence 1 +0  0.

The government spending process implies +1 = ̄+1. Also given the

process for 
(+ − ̄) = ( − ̄)

Assuming

+2 = +2 + +1; +1 = 0

(59) becomes

(+2 − ̄) +1(+1 − ̄) +0( − ̄)

= 0( − ̄) +1(̄+1 − ̄) +0( − ̄) +1( − ̄)− +1(60)
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The stochastic process (60) can be solved using the techniques in Sargent

(1987), p. 393. This yields

+1 − ̄ = 2( − ̄)− 2
−1
0

∞X
=0


−
1 [0(+ − ̄) +1(̄++1 − ̄) +

(0 + 1)(+ − ̄)− ++1]

= 2( − ̄)− 2
−1
0

∞X
=0


−
1 [0(+ − ̄) +1(̄++1 − ̄) +

(0 + 1)(+ − ̄)]

This finally gives the stochastic process for capital (using the hatted values

for deviations from RE steady state)

̂+1 = 2̂−2−10
∞X
=0


−
1 [0(+−̄)+1(̄++1−̄)+(0+1)̂+

(61)

Here 1 2 are given by the roots of the quadratic equation (see Ljungqvist

and Sargent (2004) p. 345)

2 +1+0 = 0

12 = 0

where it is assumed that 1  1 and 0  2  1

We now specialize the analysis and summarize the details for obtaining

a linear approximation to the equilibrium RE capital sequence under a per-

manent policy change of the type considered in the paper.36 The capital

sequence is given by (61) i.e.

̂+1 = 2̂ − 2
−1
0 (() + ()) (62)

where

() ≡
∞X
=0


−
1 {0(̄+ − ̄) +1(̄++1 − ̄)} (63)

() ≡
∞X
=0


−
1 (0 + 1)̂+ = (0 + 1)

∞X
=0


−
1  ̂ (64)

36The summations below assume  ≥ 2. If  = 1 then the policy change is immediate
and is termed a surprise (from the point of view of the agents) change which is the

benchmark case considered in the paper. Equation (62) still gives the dynamics of capital

for the surprise permanent policy change by setting () ≡ 0.
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We have

̄ − ̄ =

½
̄0 − ̄, 1 ≤   

0,  ≥ 

̄+ − ̄ =

½
̄0 − ̄, +   

0, +  ≥ 

One can show that 1 = −1 in (63) which gives us

0(̄+ − ̄) +1(̄++1 − ̄) =

⎧⎨⎩ (0 − 1)(̄0 − ̄), +  ≤  − 2
0(̄

0 − ̄), +  =  − 1
0, +  ≥ 

We first compute (64). For all  ≥ 1 we have

() ≡ (0 + 1)̂

∞X
=0


−
1  =

(0 + 1)̂

1− 

1

 (65)

Then we compute (63). If 1 ≤  ≤  − 2 we have

() ≡
−2−X
=0


−
1 (0 − 1)(̄0 − ̄) + 

−(−1−)
1 0(̄

0 − ̄)

=

Ã
(0 − 1)1− 

−(−1−)
1

1− −11
+ 

−(−1−)
1 0

!
(̄0 − ̄)

and if  =  − 1 then we have
() ≡ 0(̄

0 − ̄)

and () = 0 for  ≥ 

To summarize,

() =

⎧⎨⎩
µ
(0 − 1)1−

−(−1−)
1

1−−11
+ 

−(−1−)
1 0

¶
(̄0 − ̄), 1 ≤  ≤  − 1

0,  ≥ 

(66)

Using the formulas in (65) and (66), we can compute the linearized capital

dynamics under RE from (62) for a permanent change in government spend-

ing under a balanced budget. This is the dynamics which we compare with

the learning dynamics.
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TABLES

Impact Surp Surp  = 5  = 5  = 29  = 29

Effects RE RLS RE RLS RE RLS

 −090 −034 −066 −031 −010 −022
 147 055 108 051 017 036

 249 −207 538 255 086 178

 098 037 072 034 012 024

 −145 −055 −107 −051 −017 −036
 −049 −018 −036 −017 −006 −012
 004 0015 003 0014 0005 0009

Table 1: Impact effects on key variables (in percentage terms) of a

permanent policy change under rational expectations (RE) and under

learning (RLS) for the surprise and announced changes.
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Impact

Effects RE RLS

 −041 −004
 068 0063

 −146 −451
 045 004

 −067 −0063
 −022 −002
 002 0002

Table 2: Impact effects on key variables (in percentage terms) of the

temporary policy change under rational expectations (RE) and under

learning (RLS)
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Figure 1: Dynamic paths for a surprise permanent increase in government

spending. The solid lines are the learning paths while the dashed lines are

the RE paths. The horizontal dashed lines depict the old and the new steady

states. Mean paths over 20,000 simulations.
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Figure 2: Dynamic paths for an anticipated permanent increase in govern-

ment spending taking place in period 5. The solid lines are the learning paths

while the dashed lines are the RE paths. The horizontal dashed lines depict

the old and new steady states. Mean paths over 20,000 simulations.
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Figure 3: Dynamic paths for an anticipated permanent increase in govern-

ment spending taking place in period 29. The solid lines are the learning

paths while the dashed lines are the RE paths. The horizontal dashed lines

depict the old and new steady states. Mean paths over 20,000 simulations.
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Figure 4: Dynamic paths for a surprise temporary increase in government

spending that lasts for two years. The solid lines are the learning paths while

the dashed lines are the RE paths. The horizontal dashed lines depict the

(unchanged) steady state. Mean paths over 20,000 simulations.

50



k

E0

E1

A

c

SP1

CSE1 CSE0

CE0

SP0

0

0 1

Figure 5: Effects under RE of fiscal policy in deterministic RBCmodel; based

on Heijdra (2009), Figures 15.1-15.2.
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