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ABSTRACT 

Flexibility and Collusion with Imperfect Monitoring* 

Flexibility - the ability to react swiftly to others' choices - facilitates collusion by 
reducing gains from defection before opponents react. Under imperfect 
monitoring, however, flexibility may also hinder collusion by inducing 
punishment after too few noisy signals. The combination of these forces 
predicts a non-monotonic relationship between flexibility and collusion. To test 
this subtle prediction we implement in the laboratory an indefinitely repeated 
Cournot game with noisy price information and vary how long players have to 
wait before changing output. We find that (i) the facilitating role of flexibility is 
lost under imperfect monitoring, and (ii) with learning, collusion unravels with 
low or high flexibility, but not with intermediate flexibility. 
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Flexibility, the ability to react swiftly to others’ choices, is commonly seen as a fac-

tor that facilitates cooperation. The intuitive logic behind this belief is that flexibility

reduces gains from unilateral defections by drawing punishment nearer. Axelrod, in his

Evolution of Cooperation (1984, p. 129), puts it as follows: “[One] way to enlarge the

shadow of the future is to make the interactions more frequent. In such a case the next

interaction occurs sooner, and hence the next move looms larger than it otherwise would”.

A recent experiment by Friedman and Oprea (forth.) offers strong support for a positive

effect of flexibility on cooperation. They implement a 60-seconds finite horizon repeated

Prisoner’s Dilemma under perfect monitoring and find a strong positive monotonic rela-

tionship between the speed at which subjects could adjust their actions and the rate of

cooperation.1

Though appealing and intuitive, this established role of flexibility is theoretically ro-

bust only for games in which players can perfectly observe each others’ actions. As first

shown by Abreu, Milgrom and Pearce (1991), with imperfect monitoring flexibility may

actually harm cooperation. The reason is that when imperfect information arrives fre-

quently, high flexibility forces players to react to ‘bad news’ early, when it is still very

noisy. This generates many costly mistakes which erode the value of cooperation. This

negative effect of flexibility counteracts the positive effect which is due to the reduced

gains from defection. Sannikov and Skrzypacz (2007) show in a variety of oligopolistic

environments that for high levels of flexibility the negative effect dominates the positive

one and renders collusion impossible altogether! For low levels of flexibility, on the other

hand, the positive effect tends to dominate the negative one and an increase in flexibility

will make collusion easier. The remarkable consequence is that the impact of flexibility

on the sustainability of collusion is non-monotonic.

The channel through which flexibility hinders cooperation under imperfect monitoring

is subtle though.2 Certainly the intuition for the negative effect is less straightforward than

the positive one that defection can be punished sooner. One may therefore question the

behavioral relevance of the negative effect of flexibility. Does cooperation really unravel

1In the extreme case in which subjects could adjust their actions almost continuously the median rate
of cooperation was as high as 90%. At the other extreme, in which subjects could adjust their actions
only once, cooperation rates were close to zero.

2Vives (2009) describes this result as ‘counterintuitive’. One might speculate, for example, that it is
possible to delay punishments until more convincing information becomes available that the other player
is really defecting. Such a strategy unravels though since such a delay will strengthen the incentives of
the other player to defect.
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with sufficiently high flexibility when monitoring is imperfect, or will the positive effect

still dominate? Can one really observe a non-monotonic effect of flexibility on collusion

in this case?

This paper presents an experimental study designed to start answering these questions.

We implement in the laboratory an indefinitely repeated quantity-setting duopoly game

in discrete time with imperfect monitoring, analogous to that studied by Sannikov and

Skrzypacz (2007). Players do not observe each other’s quantity choices; they only observe

price which is a noisy signal of total quantity. Across treatments we vary inflexibility (∆),

that is, the number of periods players have to wait before they can change quantity. The

game is set up such that collusion can be supported as an equilibrium of the repeated

game when ∆ = 2, but not when ∆ = 1 or ∆ = 3. This allows us to examine the

empirical support for a non-monotonic relationship between (in)flexibility and collusion

in the laboratory. In order to give it a fair chance, we allow for learning by having subjects

play seven repetitions of the indefinitely repeated game.3

The results show no support for the non-monotonicity of flexibility in the first few plays

of the repeated game. Average cooperation rates are highest when ∆ = 1, intermediate

when ∆ = 2, and lowest when ∆ = 3, which is in line with the effect that inflexibility

increases the period over which defection can go unpunished. With repetition, however,

cooperation rates show a significant downward trend when ∆ = 1 but not when ∆ = 2.

In the last two repetitions of the repeated game, cooperation rates are higher for ∆ = 2

than for ∆ = 1 and for ∆ = 3, in line with the predicted non-monotonicity (although the

first difference is not significant). This suggests that it takes some time for the disruptive

effect of flexibility to reveal its force, so that the theoretical prediction may indeed bite

if there is sufficient scope for learning. Additional evidence in this direction comes from

our results on the profitability of cooperation, which increases significantly in time with

∆ = 2 (i.e., when cooperation is an equilibrium) while it does not when ∆ = 1 or ∆ = 3

(i.e., when cooperation is not an equilibrium).

Our results reiterate the need to reconsider the ‘common wisdom’ that in general co-

operation is stabilized by the ability to react quickly. Both theory and experiment suggest

that flexibility is a mixed blessing with imperfect monitoring. This has important implica-

tions for our understanding of collusion and for antitrust policy, as the relevant textbooks

3Several experimental papers document strong learning effects in repeated game settings (Selten and
Stoecker, 1986; Camerer and Weigelt, 1988; Dal Bò and Fréchette, 2011).
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present frequent interaction as a facilitating factor independently of the information agents

have access to.4 It also has implications for other settings where imperfect observability

is the rule rather than the exception, such as team production, principal-agent relation-

ships and international agreements. If effort can only be observed with noise, frequent

monitoring and very short reaction lags are not generally conducive to cooperation, nor

in fact will be very lax monitoring and unresponsiveness to new information. The optimal

design may well involve some intermediate level of flexibility.

A number of recent experimental studies examines how cooperation is affected by im-

perfect monitoring per se. Bereby-Meyer and Roth (2006) study how imperfect monitoring

interferes with learning, showing that it considerably reduces subjects’ ability to learn to

cooperate in repeated PD games (and to defect in one-shot ones). Aoyagi and Fréchette

(2009) ask whether subjects’ ability to cooperate falls when information becomes more

noisy in a repeated game, finding significant support for this theoretical prediction. Fu-

denberg et al. (forth.) look at the prevailing strategies in repeated games where subjects’

choices are implemented with mistakes, highlighting the success of strategies that are “le-

nient” (do not punish the first deviation) and “forgiving” (return to cooperation after a

short punishment phase).5 These studies indicate that strategies and outcomes are signif-

icantly affected by the presence of imperfect monitoring. We take imperfect monitoring

as given, and examine how it affects the comparative statics of a key structural variable.

1 Experimental Design

The design of our experiment aims at replicating in the simplest possible setting Sannikov

and Skrzypacz (2007) [S&S]’s intriguing theoretical results. To do this, we adapt and

further simplify their analysis of collusion in a Cournot supergame (they also obtain the

result in more complex set ups).

4See Tirole (1988, p.240); Church and Ware (2000, p.343); Martin (2001, p.192); Ivaldi et al. (2003);
Motta (2004, p.145), Belleflamme and Peitz (2010, p.254).

5See also the earlier work by Cason and Khan (1999), who compare perfect monitoring with perfect
but delayed monitoring; and by Feinberg and Snyder (2002) and Holcomb and Nelson (1997), who study
the effects of different types of imperfect but private monitoring on cooperation.
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The Game

Two players interact repeatedly, in discrete time, in a Cournot market with homogeneous

products. Players simultaneously set quantities (q1t, q2t) and the resulting price depends

on total quantity (Qt = q1t + q2t) and a random shock (εt). Specifically, price Pt in period

t is given by the following demand function:

Pt(Qt) = a−Qt + εt, εt ∼ N(0, σ2)

Monitoring is imperfect because players receive information about each period’s price

Pt, but not about total quantity Qt or the random shock (εt). We restrict the action set

to qit ∈ {3, 4}. We set a = 12 in the demand function, marginal cost equal to 0, and per

period fixed cost equal to 16. Table 1 presents expected price and profits of the stage

game that result from this parameterization. Note that the expected profits are those of

a Prisoner’s Dilemma.6 Finally, we set the standard deviation of random price equal to

σ = 1.3.7

q2 q2

Price 3 units 4 units Profits 3 units 4 units

q1 3 units 6 5 q1 3 units 2, 2 -1, 4

4 units 5 4 4 units 4, -1 0, 0

Table 1: Expected price and expected profits of the stage game

Prices and profits materialize in every period, but quantities can be adjusted only

every ∆ periods. So, the quantities chosen in period t, together with the random shocks,

determine prices and profits for the following ∆ periods. A larger ∆ implies that it takes

longer before players can react to a (bad) price signal, but also that when they react they

will have observed more signals about their opponent’s quantity choice.

In the model of S&S the game is infinitely repeated and players discount future profits

using a common interest rate r. The per-period discount factor is then equal to δ = e−r∆.

In the experiment we do not implement discounting, but we implement a repeated game

of indeterminate length with a continuation probability equal to δ. This is a practical

6A convenient feature is that the Nash and minmax payoff are the same. This makes it easier to derive
the best possible collusive outcomes.

7This implies for example that there is a probability of 44% that the realized price will deviate by at
least 1 unit from the expected price.
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way to implement infinitely repeated games in the lab, and theoretically innocuous under

risk neutrality (which we need to assume). We choose r = 0.10 so that we have δ = e−r

= 0.90 for ∆=1, δ = 0.82 for ∆=2, and δ = 0.74 for ∆=3. The continuation probability

decreases with ∆, but conditional on the game being continued the number of additional

periods increases with ∆. The expected number of periods is ∆
1−δ , which is equal to 10,

11.1, and 11.5 for ∆ = 1, 2, and 3, respectively.

In the experiment we implement three different treatments in which ∆ takes the values

1, 2, and 3, respectively. A smaller value of ∆ (higher flexibility) has two contrasting

effects. One is that the discount factor is higher. This implies that defection can be

punished more effectively, which generates the usual positive effect on collusion. A smaller

value of ∆ also implies that the players attain fewer noisy (price) signals about the other

player’s previous action before making the next choice. This has a negative impact on the

scope for collusion, since it generates a high rate of “false positives”. The analysis of S&S

implies that the interplay between these two effects generates a non-monotonic effect of ∆.

Collusion can be supported as an equilibrium in the repeated game only for intermediate

values of ∆. When ∆ is large the gains from defection are too attractive; when ∆ is small

the stochastic variation in prices erodes the gains from collusion by triggering too frequent

punishments. In Appendix A we outline how this result can be derived. Applied to our

game, assuming risk neutral payoff maximization, collusion is sustainable when ∆ = 2,

but not when ∆ = 1 or ∆ = 3. It is this theoretical prediction that we explore in our

experiment.

Procedure

The experiment was run in the CentERlab at Tilburg University in March 2009. There

were six sessions, two for each treatment, with 16 subjects in each. Within each session,

there were two matching groups of 8 subjects and subjects interacted only with other sub-

jects in their matching group. This gives us four independent observations per treatment.

Subjects were recruited through an e-mail list of students interested to participate in ex-

periments. The experiment was computerized and programmed with zTree (Fischbacher

2007). Interaction between subjects in the experiment was anonymous.

Upon entering the lab, subjects were randomly seated at tables separated by partitions.

Written instructions were distributed and read aloud. See Appendix B for a copy of the
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instructions. Subjects were given ample time to study the instructions at their own pace

and to privately ask questions. A short quiz was conducted to check their understanding.

During the experiment profits were denoted in points; after the experiment points

were converted into cash at a rate of 8 points = 1 Euro. To accommodate for potential

losses, subjects were given a starting endowment of 80 points.8 Sessions lasted on average

one hour and 45 minutes, including instructions and payment, and subjects received an

average payment of 17 Euro.9

Subjects were randomly matched to one other subject to play the repeated game.

Below we will refer to one play of the repeated game as a match. In the first period

of each match, subjects had to determine the quantity (qit ∈ {3, 4}) they wanted to

produce. Depending on the treatment, quantities were fixed for the next ∆ periods. At

the end of each block of ∆ periods, subjects received information about the realized prices

and their own profits in the last ∆ periods. The random price shock which was drawn

independently for each period from a normal distribution with zero mean and standard

deviation σ = 1.3.10 After each block of ∆ periods, there was a probability δ that the

game continued, and a probability 1− δ that the game ended. When the game continued,

subjects had to choose the quantity for the next ∆ periods.

When a game ended, a subject was rematched to a new subject to play the repeated

game anew. To facilitate this rematching, the realization of the continuation probability

was common across all pairs of subjects in the same session. Rematching took place 6

times. So, each subject played the indefinitely repeated game exactly 7 times, and this

was common knowledge. To exclude reputation building across matches, we adopted a

matching protocol that ensured that two subjects never interacted together in more than

one match.

We carefully explained the details of the game and the procedure to the subjects. In

8In keeping with the model by S&S, we used an unbounded support for the price shocks. This implied
that a subject could in theory attain negative cumulative profits. The probability of this happening when
subjects always defect is 3%, but it is much lower when subjects cooperate. In 3 out of 672 matches, it
occurred that a subjects had a negative total payoff at some point, but it never happened that a subject
ended the experiment with a negative balance. The opposite possibility, that a subject would gain an
unreasonably high profit of above, say, 100 Euro, is negligible and comparable to the probability of a
power failure.

9If subjects had played non-cooperatively throughout, they would have had zero profits on average and
earned only the starting endowment, amounting to 10 Euro. Playing cooperatively throughout would earn
them 29.4 Euro in total in expectation. Playing the best cooperative equilibrium in ∆ = 2 would generate
expected total earnings of 23.8 Euro. This illustrates that the incentives to cooperate are substantial.

10The random shocks on prices were generated by the software at the beginning of each period. They
were different for each couple of subjects, and changed across sessions.
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particular, we took great care to explain the role of the random price shocks, the random

determination of the number of periods, and the (re)matching procedure.

2 Results

Our main interest is in how the rate of cooperation (collusion) varies across the three

treatments. A look at aggregate cooperation frequencies across treatments, reported

in Table 2, suggests at first hand that the theoretical prediction is not borne out by our

experimental data: there are no significant differences in aggregate cooperation frequencies

across the three treatments.11

Table 2: average cooperation frequencies, by treatment.

Treatment Cooperation rate

∆ = 1 0.247

∆ = 2 0.254

∆ = 3 0.205

Total 0.235

However, we know that aggregate comparisons may not tell the right story because

learning effects are often very important in non-trivial experimental settings (Seleten

and Stoeker, 1986; Camerer and Weigelt, 1988; Roth and Erev, 1995; and Dal Bò and

Frechétte, 2011). We also know that the presence of imperfect monitoring may make

learning even more difficult in set ups similar to ours (Bereby Meyer and Roth, 2006).

The positive effect of flexibility on the sustainability of collusion is more intuitive than

the negative one and less related to the information structure. We therefore expect that

subjects need to gain more experience with the game before the negative effect displays

its force than for the positive one to act. We will see that this expectation is largely

confirmed by the experimental data.

Figure 1 presents the development of the rate of cooperation (qt = 3) over the matches

for each of the three treatments. The top panel displays the average rates of cooperation in

the first period of each match; the bottom panel gives average rates of cooperation across

11We are counting one independent observation per matching group, 12 observations in total. According
to a Mann-Whitney Wilcoxon test, differences across treatments are not significant at any standard
significance level (p-value > 0.3 for all the three comparisons).
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all periods of a match. In both figures we see that in the early matches cooperation is

most frequent in treatment ∆ = 1. The positive effect of flexibility on cooperation seems

to dominate in the beginning of the experiment. The decline in cooperation over the

matches, however, is more pronounced for ∆ = 1 and ∆ = 3 than for ∆ = 2. As a

consequence, in later matches cooperation rates are higher in treatment ∆ = 2 than in

treatments ∆ = 1 and ∆ = 3.12

The decline in cooperation rates over matches in treatments ∆ = 1 and ∆ = 3 is

confirmed by the regressions in Table 3. The dependent variable is the binary decision

between cooperation (qt = 3) and defection (qt = 4), while the independent variables are

the treatment dummies (with ∆ = 2 being the reference treatment), the Match (which

takes values 1 to 7), and interactions between the two.13

Table 3: Panel regression for rates of cooperation

Cooperation first period Cooperation all periods

Match 0.001 (0.015) −0.008 (0.012)

∆ = 1 0.295∗∗ (0.135) 0.134 (0.084)

∆ = 3 0.076 (0.110) 0.035 (0.071)

Match x ∆ = 1 −0.051∗∗ (0.025) −0.033∗∗ (0.015)

Match x ∆ = 3 −0.046∗∗∗ (0.017) −0.022∗ (0.013)

Period −0.002∗ (0.001)

Constant 0.286∗∗∗ (0.085) 0.306∗∗∗ (0.078)

Observations 672 6272

R2-overall 0.061 0.024

R2-within 0.052 0.025

R2-between 0.073 0.018

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Linear probability model with random effects at the subject level. Robust standard errors for data
clustered on matching groups.

12The average cooperation rate over matches 4 to 7 is significantly higher in ∆ = 2 than in ∆ = 3
if we take the four matching groups in each treatment as independent observations (p < 0.05 with a
Mann-Whitney rank-sum test). The difference between ∆ = 1 and ∆ = 2 is not significant. This holds
both for cooperation rates in the first period and for cooperation rates across all periods in a match. The
same results are obtained if we look at cooperation rates in only the last two matches.

13In this and in the following regressions, standard errors are computed clustering on matching groups.
Clustering on sessions would produce qualitatively similar results (see Table C.1 in Appendix C). Here,
as well as below, we use a linear probability model. This makes it easier to calculate and report the
coefficients and significance levels of interaction effect (see Ai and Norton, 2003). Results for a logit
model are reported in Table C.2 in Appendix C.
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(a) First period.

(b) All periods.

Figure 1: Frequency of cooperation by match.
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The first regression considers only the first period decision, whereas the second re-

gression considers the decisions of all periods in each match. The latter regression also

includes the period in a match as an independent variable.14 While no significant trend

in cooperation across matches is found for the reference treatment (∆ = 2), for the other

two treatments the rate of cooperation decreases significantly with the match number.

Result 1. The rate of cooperation decreases significantly with experience in treatments

∆ = 1 and ∆ = 3, but not in treatment ∆ = 2.

Next we examine how profitable cooperation is in the different treatments. We hy-

pothesize that cooperation will be more remunerative in an environment in which it can

be sustained as an equilibrium outcome (∆ = 2) than in environments in which it can-

not (∆ = 1, ∆ = 3). Figure 2 presents the average per period profit for subjects who

cooperated in the first period of a match and those who did not. It shows that on av-

erage cooperation is more profitable than defection in ∆ = 2 but not in the other two

treatments.

Figure 2: Difference in average profit for first-period cooperators and defectors.

Table 4 presents the results of a linear panel regression. The dependent variable is the

average profit of each subject in each match. Thus we have 7 observations per subject.

14Table C.3 in Appendix C reports results for two alternative specifications of the model: the first one
does not control for the trend across periods within a match, the second one allows for different trends
across treatments.
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The regressors consist of the subject’s decision whether or not to cooperate in the first

period of the match (Coop(t=1)), dummies for the treatment (∆ = 1 and ∆ = 3),

the Match, and their interactions. The regression analyzes whether it pays off to play

cooperatively in the first period of a match, and how this depends on the treatment and

the number of the match.

Table 4: Panel regression of average profits

Average period profit

Constant 0.765∗ (0.390)

Coop(t=1) −0.465 (0.283)

∆ = 1 0.364 (0.942)

∆ = 3 0.395 (0.780)

Coop(t=1) x ∆ = 1 0.867 (1.260)

Coop(t=1) x ∆ = 3 0.473 (0.723)

Match −0.104 (0.101)

Match x

Coop(t=1) 0.181∗∗∗ (0.064)

∆ = 1 −0.006 (0.189)

∆ = 3 0.070 (0.152)

Coop(t=1) x ∆ = 1 −0.444∗∗ (0.222)

Coop(t=1) x ∆ = 3 −0.440∗∗∗ (0.134)

Observations 672

R2-overall 0.019

R2-within 0.016

R2-between 0.043

Note: Standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Panel regression with random effects. Robust standard errors for data clustered on matching groups.

Results indicate that for treatment ∆ = 2 there is a strong significant increase in

the profitability of cooperation over the matches (the positive coefficient of Match x

Coop(t=1) in the bottom panel). The other two treatments do not show such a trend.

The profitability of cooperation decreases over the matches in ∆ = 1 and ∆ = 3, and

significantly so in ∆ = 3.15

15The sum of coefficients for Match x Coop(t=1) and for Match x Coop(t=1) x ∆ = 3 is significantly
different from 0 at the 5% level. The sum of coefficients for Match x Coop(t=1) and for Match x

12



Result 2. The profitability of cooperation increases significantly as subjects gain experi-

ence in treatment ∆ = 2, while no such trend is visible for ∆ = 1 and ∆ = 3.

When collusion is an equilibrium – as in treatment ∆ = 2 of our experiment – it is

supported by trigger strategies prescribing to cooperate as long as observed price is above

a cut-off level and to switch to defection otherwise (see Appendix A).

To examine how subjects’ choices depended on realized prices we run a regression

where the dependent variable is the binary decision between cooperation (qt = 3) and

defection (qt = 4), while the independent variables are the treatment dummies (with

∆ = 2 being the reference treatment), the Match number, the action chosen by the

subject in the previous ∆ periods (Lcoop and Ldefect), the average price observed in the

last ∆ periods (Lprice), and interactions between these variables. Results are presented

in Table 5, while Figure 3 displays the marginal effect of the observed price (Lprice)

on cooperation, depending on the treatment and the action taken by the subject in the

previous period.

Figure 3: Cooperation rates and prices observed over the previous ∆ periods.

Figure 3 reveals that in all treatments subjects who cooperated in the previous ∆

periods are more likely to cooperate for the next ∆ periods the higher is the observed

price in the last ∆ periods. Subjects who defected previously exhibit a much weaker

Coop(t=1) x ∆ = 1 is not significantly different from 0 (p-value> 0.1).
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(negative) reaction to the observed price level. This is in line with the prediction that

the cooperative regime requires decisions to be dependent on the price signals, while the

defective regime does not.

Results from the regression in Table 5 confirm that there is a positive correlation

between a subject’s decision to keep cooperating and the price observed in the previous

∆ periods, but they also point out an important learning effect. The tendency to react

positively to prices when in a cooperative mode increases with experience (Match x Lprice

x Lcoop). However, this tendency is significantly weaker when ∆ = 1 as shown by the

negative coefficient of Match x Lprice) x Lcoop x ∆ = 1. This may partly explain why

cooperation becomes less profitable over time in this treatment (see Result 2).

Result 3. When a subject is in the “cooperative mode” (i.e. when he cooperated in the

previous ∆ period), continued cooperation depends positively on observed prices. This

dependency becomes stronger with experience when ∆ = 2 and ∆ = 3, while it weakens

when ∆ = 1.

14



Table 5: Probit regression with random effects table

Cooperation in all periods > 1

Constant 0.273∗∗∗ (0.089)

Lprice x Lcoop 0.046∗∗∗ (0.005)

Lprice x Ldefect −0.031∗ (0.018)

∆ = 1 −0.021 (0.099)

Lprice x Lcoop x ∆ = 1 0.040∗∗∗ (0.012)

Lprice x Ldefect x ∆ = 1 0.020 (0.022)

∆ = 3 0.073 (0.095)

Lprice x Lcoop x ∆ = 3 −0.027 (0.020)

Lprice x Ldefect x ∆ = 3 −0.013 (0.019)

Match −0.026∗∗ (0.012)

Match x

Lprice x Lcoop 0.006∗∗∗ (0.002)

Lprice x Ldefect 0.007∗ (0.004)

∆ = 1 0.011 (0.014)

Lprice x Lcoop x ∆ = 1 −0.010∗∗∗ (0.003)

Lprice x Ldefect x ∆ = 1 −0.008∗∗ (0.004)

∆ = 3 −0.011 (0.015)

Lprice x Lcoop x ∆ = 3 0.004 (0.005)

Lprice x Ldefect x ∆ = 3 −0.000 (0.004)

Observations 3024

R2-overall 0.162

R2-within 0.078

R2-between 0.862

Note: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Linear probability model with random effects at the subject level. Robust standard errors for data
clustered on matching groups.
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3 Conclusions

We illustrate the behavioral relevance of the argument, first pointed out by Abreu et al.

(1991), that the incentives to cooperate may be eroded by the ability to respond quickly to

noisy information about other players’ actions, when there is sufficient scope for learning.

As the subjects in our experiment gain experience, the rate of cooperation decreases in

the treatment with high flexibility. Cooperation rates also fall with experience at very low

levels of flexibility, illustrating that the gains from defection should not go unpunished

for too long either. So we indeed end up observing a non-linear relationship between

flexibility and cooperation as predicted by theory under imperfect monitoring (Sannikov

and Skrzypacz, 2007). Consistent with these results, we find that in the intermediate

flexibility treatment where collusion is an equilibrium, collusion becomes more remuner-

ative over time (while this is not the case when collusion is not an equilibrium), and that

subjects appear to react to noisy price information much in line with the trigger strategies

suggested by theory.

Several avenues for further experimental research suggest themselves. Our design

varies decision flexibility, while keeping the rate of information feedback constant. An

alternative design would be to keep action flexibility fixed, while varying the frequency

of information arrival. It would be interesting to see whether such an alternative design

would produce similar results, in the sense that cooperation is hindered both when infor-

mation arrives very frequently and when the information lag is large (Abreu et al., 1991).

Another variation would be to implement different types of noisy information signals.

Whereas Sannikov and Skrzypacz (2007) focus on information which arrives continuously

without shocks, another relevant environment is where signals arrive discontinuously (at

a Poisson rate). A testable prediction is that the impact of flexibility on cooperation will

depend on the type of signal (Abreu et al., 1991). High flexibility is more harmful if the

arrival rate of a signal is increasing in the rate of cooperation (the ‘good news’ case) than

in case the arrival rate of a signal is decreasing in the rate of cooperation (the ‘bad news’

case). It would be important to examine the behavioral support for this prediction as it

will further our understanding of the properties of optimal monitoring and enforcement

schemes.
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Appendices

A Theoretical analysis

In this Appendix we outline how the non-monotonic effect of flexibility (∆) on the sustain-

ability of collusion is derived. The sustainability of collusion depends on the punishment

strategy adopted by the players. Nonetheless, the authors prove that it is possible to com-

pute a robust lower bound by finding the best symmetric equilibrium with Nash reversion

as a punishment, and a robust upper bound by finding the best symmetric equilibrium

with the minimax payoff of 0 as a punishment. Both bounds are valid for both symmetric

and asymmetric equilibria. With our parameters, the upper and the lower bound coincide,

as the Nash equilibrium profit coincides with the minimax payoff in our game (both are

equal to zero).

We can follow Sannikov and Skrzypacz (2007) to show that in our set up collusion (

qi = 3) can be sustained when ∆ = 2, but not when ∆ = 1 or ∆ = 3. From Abreu et al.

(1986) we know that the best strongly-symmetric equilibrium payoff of this game can be

achieved by the following strategy profile:

• Players start in the collusive state and choose quantities qC , qC (for us it will be

(3, 3)).

• As long as the realized price is in region P+, players remain in the collusive state.

If the price is outside this region, they move to the punishment state forever after.

• Because in our game mini-max has the same payoffs as the static Nash equilibrium,

in an optimal equilibrium once the players reach the punishment state they play

(4, 4) forever.

We now characterize the region P+ and it’s complement P . Let G (Q) be the proba-

bility that the price will be in P+, and V the expected profit of the collusive equilibrium.

Each player’s IC constraint is:

π (qD, qC) (1− δ) + δ {V ∗G (qD + qC) + 0 ∗ [1−G (qD + qC)]} ≤

π (qC , qC) (1− δ) + δ {V ∗G (2qC) + 0 ∗ [1−G (2qC)]} , (1)
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which can be re-written as:

δV [G (2qC)−G (qD + qC)]− (1− δ) [π (qD, qC)− π (qC , qC)] ≥ 0. (2)

If the IC constraints are satisfied, then the expected profit in this equilibrium is:

V = (1− δ) π (qC , qC) + δ [V G (2qC) + 0 ∗ (1−G (2qC))] ,

which yields:

V = π (qC , qC)
1− δ

1− δG (2qC)
.

Note that V is decreasing in δ and increasing in G(2qC).

Sannikov and Skrzypacz (2007) show that the optimal P+ region (that maximizes V )

corresponds is a tail test. There is a cutoff p̂ such that above p̂ are in P+ and prices below

are in P .

If a tail test is adopted, then

G(Q) =

∫ ∞
p̂

φ

[
p(Q),

σ2

∆
, p

]
dp,

where φ(µ, σ2, x) is the probability density function of a normal distribution with mean

µ and variance σ2, evaluated at x. Using the parametrization in our experiment, with

p(Q) = 12− q1 − q2 and σ = 1.3, we can rewrite the IC-constraint as a function of p̂ and

calculate when it can be satisfied at different levels of ∆.

Numerical calculations show that the left-hand side of the IC-constraint (2) is convex,

and that when ∆ = 2 it is positive for cutoff prices p̂ ∈ [4.758, 5.060], while it takes

negative values for any p̂ ≥ 0 when ∆ = 1 or ∆ = 3.

This implies that in the infinite horizon Cournot duopoly game with imperfect pub-

lic monitoring collusion is sustainable in equilibrium when ∆ = 2, while no collusive

equilibrium is sustainable when ∆ = 1 or ∆ = 3.
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B Instructions

(for on-line publication)

In this Appendix, we report the experimental instructions for the treatment with

∆ = 3. Instructions for the other two treatments only change where strictly necessary,

and are available from the authors upon request.

Welcome to our experiment. Please follow the instructions carefully. During the

experiment your earnings are denoted in points. At the beginning of the experiment

you will receive an initial endowment of 80 points. In addition, you will make decisions

that can make you earn or lose points. The number of points you earn depends on your

decisions, the decisions of other participants, and chance. At the end, we will exchange

your points into Euro according a conversion rate of 1 point = 12.5 Eurocent, which

means that 8 points = 1 Euro. You will receive your payment privately at the end of the

experiment. We guarantee anonymity with respect to other participants and we do not

record any information connecting your name to your decisions or earnings.

Please be quiet during the entire experiment and do not talk to your neighbors. If you

have a question please raise your hand and you will be answered privately.

Your task

Production:

You will make decisions for a firm in this experiment. For a number of periods you have

to determine the quantity that your firm will produce. You can decide to produce a low

level of 3 units or a high level of 4 units. Your firm operates in a market with one other

firm. In each period, your profits (in points) will depend on the number of units you

produce and the number of units produced by other firm. The decisions for this firm will

be made by another participant. You cannot know who this participant is, nor can this

participant know who you are. We will refer to this other participant as “the other firm”.

We will now explain how your profits depend on the number of units you produce and

the number of units the other firm produces.

Costs:

Production involves costs. Every period, you have to pay a fixed cost of 16 points. These

costs are independent of whether you produce 3 units or 4 units.
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Price:

The market price in a period is the same for your firm and the other firm. The market

price depends on the total production in a period. The total production is the sum of

the number of units you produce, and the number of units produced by the other firm.

The larger total production, the lower the market price. The expected market price is as

follows:

Expected price = 12−(number of units you produce)−(number of units other firm pro-

duces)

For convenience the following table summarizes how the expected market price depends

on the number of units produced by your firm and the other firm.

Expected price Production of other firm

3 units 4 units

Your production 3 units 6 5

4 units 5 4

Profit:

Each period, your profits are equal to your revenue minus your cost, where your revenue

is equal to the number of units you produce multiplied by the market price. Hence, your

profit is:

Expected profit = Expected price * (number of units you produce) − 16

Recall that the price depends on your production and the production of the other firm. For

convenience, the table below calculates how your expected profit and the expected profit

of the other firm depend on your production and the production of the other firm. The

first entry in each cell represents your profit, while the second entry (in gray) represents

the profit of the other firm.
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Expected profits Production of other firm

3 units 4 units

Your production 3 units 2, 2 -1, 4

4 units 4, -1 0, 0

For example, you can read in the table that if in a period you produce 3 units and the

other firm produces 3 units, your expected profit will be equal to 2. You can check this

as follows:

• Expected price = 12 − 3 − 3 = 6

• Expected profit = 6 * 3 − 16 = 2

You can also read in the table that if you produce 4 units and the other firm produces

4 units, your expected profit will be equal to 0. You can check this as follows:

• Expected price = 12 − 4 − 4 = 4

• Expected profit = 4 * 4 − 16 = 0

Note that profit can be negative. In the unlikely event, that the total amount of points

you earn in the experiment is lower than 0, you will not receive any money, but you will

not have to pay any money either.

Price shocks: You may have noted that until now, we have talked about the expected

price and expected profits. Due to unobservable variations in demand, the market price

in a period is affected by a random shock. Specifically, the market price is the expected

price plus the shock:

Price = 12−(number of units you produce)−(number of units other firm produces)+ shock

The price shock in one period is independent of the price shock in another period. The

shock in each period is normally distributed with a mean of zero and a standard deviation

of 1.3. This means that the shock is equally likely to be positive or negative. The prob-

ability that the shock attains a value in a certain range is summarized in the following
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table.

Range of shock values below -1 -1 to 0 0 to 1 above 1

Probability 22% 28% 28% 22%

Since the mean value of the shock is zero, the expected price and the expected profit

depend on the number of units produced by you and the other firm, as indicated in the

tables above. The actual price and the actual profit, however, will differ as a result of the

shock. For example, if your firm produces 3 units, and the other firm produces 3 units,

the price will be equal to 12-3-3+shock = 6+shock, which means that the price will be

• below 5 with probability 22%

• between 5 and 6 with probability 28%

• between 6 and 7 with probability 28%

• above 7 with probability 22%.

Now suppose the actual price shock is −0.5. Then the actual price will be 6 −0.5=

5.5 and your actual profit will be 5.5 * 3 − 16 = 0.5, while your expected profit was 2.

Therefore, the price depends on the number of units produced by you, the number of

units produced by the other firm, and the shock as follows:

Price Production of other firm

3 units 4 units

Your production 3 units 6 + shock 5 + shock

4 units 5 + shock 4 + shock

By reducing the price a negative price shock also reduces your revenue and your profits.

Conversely, a positive price shock increases your revenue and your profit. Your profits

will then be:

Profit = (expected price + shock) * (number of units you produce) − 16
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It is important to realize that you have no influence whatsoever on the price shock. It

is truly random. The number of units produced by you and the other firm affect the

expected price, which will be higher the lower is the total production. But the actual

price is also affected by the random price shock.

Periods and markets

• You will be randomly paired to another participant for a sequence of periods, referred

to as a market. This other participant will make the decisions for the other firm.

• During the whole experiment you will participate in a total of 7 markets.

• In these 7 markets you will be paired to another participant at most once.

• Every 3 periods you will have to decide how many units your firm produces in each

period. This means that you will not be able to change the number of units you

produce every period, but only once every 3 periods. The same holds for the other

producer.

• How many periods a market will last is randomly determined. Each time three

periods have been completed, the computer will randomly draw a number between

1 and 100. If the number is below or equal to 74, the market will continue for

another three periods. Hence, the probability that the market continues with the

same participant for at least three more periods is 74%. If the number is above 74, a

new market will start in which you will be randomly paired to another participant;

unless you have already participated in 7 markets in which case the experiment will

end.

Information

At the end of each period you will be informed about the number of units you produced,

the price and your profits. For the periods in which you do not make a decision, this

information is shown only shortly. After every block of three periods, you will also receive

information on the average price and your average profits for the last three periods.

Information from all previous periods is presented in the so-called History Table in lower

part of your screen.
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It is important to note that you do not receive information on the number of units

produced by the other firm. You do get information on the market price, but because of

the random price shock you cannot infer exactly how many units the other firm produced,

nor how much profit the other firm made. Still, the price does give you some imperfect

indication about the number of units produced by the other firm.

On the top left of the screen you can see how many points you have earned until now

in the current market, and in the top right you can see how many points you have earned

during the whole experiment, including the initial endowment of 80 points.

Summary

1. You decide how many units you wish to produce in the next three periods.

2. The number of units you produce, the number of units the other firm produces, and

the price shock determine your profit in a period.

3. You are paired to one other participant for a sequence of periods, called a market.

4. After each block of three periods, there is a probability of 74% that you remain

paired to the same participant for another three periods and a probability of 26%

that the present market ends.

5. If a market ends you will be randomly paired to another participant and new market

will start, until you have participated in 7 markets in total.

6. The total profits you accumulate over all markets, together with the starting en-

dowment of 80 points determine your earnings for the experiment. 8 points will be

converted into 1 Euro.

Procedure and questions

You are now given some time to study the instructions on your own and to ask clarifying

questions (if any). After that, you will be asked to answer a few control questions to

check your understanding. The first market will start as soon as all the participants have

correctly answered the control questions.

Please be reminded that you are not allowed to talk or communicate to other participants
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during the experiment. If you have a question, please raise your hand and I will come to

your table.
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C Additional regressions

(not for publication)

Table C.1: Panel regression for rates of cooperation

Cooperation first period Cooperation all periods

Match 0.001 (0.011) −0.008 (0.014)

∆ = 1 0.295∗ (0.152) 0.134 (0.092)

∆ = 3 0.076 (0.109) 0.035 (0.071)

Match x ∆ = 1 −0.051∗ (0.031) −0.033∗ (0.019)

Match x ∆ = 3 −0.046∗∗∗ (0.017) −0.022 (0.015)

Period −0.002 (0.002)

Constant 0.286∗∗∗ (0.042) 0.306∗∗∗ (0.081)

Observations 672 6272

R2-overall 0.061 0.024

R2-within 0.052 0.025

R2-between 0.073 0.018

Standard errors robust for clustering at the session level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.2: Logit regression for rates of cooperation

Cooperation first period Cooperation all periods

coop

Match 0.008 (0.104) −0.056 (0.086)

∆ = 1 2.019∗∗ (1.020) 0.956 (0.648)

∆ = 3 0.777 (0.825) 0.352 (0.559)

Match x ∆ = 1 −0.368∗∗ (0.183) −0.211∗ (0.109)

Match x ∆ = 3 −0.492∗∗∗ (0.132) −0.201∗ (0.106)

Period −0.018∗ (0.010)

Constant −1.399∗∗ (0.690) −1.268∗∗ (0.619)

Subj1

Constant 1.932∗∗∗ (0.314) 1.662∗∗∗ (0.224)

Observations 672 6272

ll −322.557 −2700.272

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Logit regression with random effects.

Robust standard errors for data clustered on matching groups.
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Table C.3: Panel regression for rates of cooperation

without period trend different trends

Match −0.005 (0.011) −0.007 (0.012)

∆ = 1 0.160
∗

(0.083) 0.186
∗

(0.102)

∆ = 3 0.051 (0.072) 0.009 (0.085)

Match x ∆ = 1 −0.036
∗∗

(0.015) −0.030
∗

(0.016)

Match x ∆ = 3 −0.024
∗∗

(0.012) −0.022
∗

(0.013)

Period −0.002
∗

(0.001)

Period x ∆ = 1 −0.012
∗∗∗

(0.002)

Period x ∆ = 3 0.003
∗

(0.002)

Constant 0.271
∗∗∗

(0.071) 0.302
∗∗∗

(0.081)

Observations 6272 6272

R2-overall 0.021 0.027

R2-within 0.023 0.031

R2-between 0.011 0.012

Standard errors in parentheses. Linear probability model with random effects at the
subject level. Robust standard errors for data clustered on matching groups.
∗
p < 0.10,

∗∗
p < 0.05,

∗∗∗
p < 0.01

28



References

Abreu, D., P. Milgrom, and D. Pearce (1991), “Information and Timing in Repeated

Partnerships”, Econometrica, 59, 1713-1733.

Abreu, D., D. Pearce, and E. Stacchetti (1986), “Optimal Cartel Equilibria with Imperfect

Monitoring”, Journal of Economic Theory, 39, 251-269.

Ai, C., and E. Norton (2003), “Interaction terms in logit and probit models”, Economics

Letters, 80, 123-129.
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