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ABSTRACT 

Innovation Beyond Patents: Technological Complexity as a 
Protection against Imitation* 

A large portion of innovators do not patent their inventions. This is a relative 
puzzle since innovators are often perceived to be at the mercy of imitators in 
the absence of legal protection. In practice, innovators however invest actively 
in making their products technologically hard to reverse-engineer. We 
consider the dynamics of imitation and investment in such protection 
technologies, both by the innovator and by imitators. We show that it can 
justify high level of profits beyond patents and can account for the differences 
across sectors in the propensity to patent. Surprisingly, in general, the 
protection technologies that yield the highest profits for the innovator are 
expensive and do not protect well. Our model also allows us to draw 
conclusions on the dynamics of mobility of researchers in innovative 
industries. 
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1 Introduction

Contrary to popular belief, a large share of innovations is not protected by patents.

Moser (2011) documents that most innovations presented at 19th Century World Fairs

were not patented at all (e.g., 89 percent for the 1851 fair). More recently, in�uential

surveys of managers such as those by Levin et al. (1987) and Cohen et al. (2000) remark

that the legal protection conferred by patents is by far less preferred than other means

of protection, such as secrecy or lead time. Cohen et al. (2000) actually show that this

is true both for product and process innovations and that the trend seems to accelerate

over time. Moreover, all these papers note that the propensity to patent varies a lot by

sector.

It may appear somewhat puzzling that innovators do not rely more heavily on patents

since they can be seen as helplessly at the mercy of rampant imitation in the absence

of legal protection. Even if imitation is considered a time-consuming process, this lag

between innovation and imitation is most often viewed as exogenously given, a character-

istic of the product or of the sector for instance. In this paper, in line with the previously

mentioned evidence, we argue that innovators in many industries are not at all as helpless

as is commonly argued. We focus on the fact that they can partly control the speed and

extent of imitation by making their technologies harder to reverse-engineer. The main

point of our paper is to show that the dynamics of investment in such protective mea-

sures, by the innovator and by imitators, can explain both why �rms can collect high

pro�ts without patenting and can also account for the di¤erences across sectors in the

propensity to patent.

Concrete examples abound of how �rms can strategically invest to hamper imitation

e¤orts. Ichijo (2010) illustrates this for some consumer electronics products: �Sharp has

put tremendous e¤orts into making imitation of its LCD TV sets time consuming and

di¢ cult. Various initiatives at Kameyama are aimed at increasing complexities (...) in

order to make imitation di¢ cult�. A similar behavior can also be observed in some high-

tech manufacturing industries. The software industry is full of obfuscation strategies

and tools designed to interfere with reading of the machine code or its decompilation.

Not only software, but also hardware can be actively protected. For example, it is quite

typical in the semiconductor industry to encase some of the important circuitry in epoxy

blocks so that electronics are destroyed if someone tries to open them.1 It is not unusual

either to design the integrated circuits to have pieces that are seemingly unused but are

required for the operation. Note that in the CIS survey, complexity of products is listed

as a strategy alongside secrecy and lead time to collect pro�ts from innovations, and

it appears to be very popular (as emphasized for instance in Cassiman and Veugelers

1Another common way to reverse-engineer electronics and circuits is to use x-ray images and work
out what components have been used. For this reason, �rms try to hinder these imitation e¤orts by
positioning parts in such a way that the x-ray recognition is hampered.

1



(2002)). Finally, paying high wages to reduce researcher mobility is also an important

way to hamper imitation.

We argue in this paper that the common wisdom that free-riding by imitators is

extremely harmful for an innovator misses two important aspects that our model with

investments in protective measures does capture. First, free-riders �nd themselves in a

similar situation to that of the innovator once they have imitated a protected innovation.

Thus, the original innovator bene�ts from the incentive of imitators to keep imitation

barriers high for those who have not yet imitated. Second, the innovator also bene�ts

from the incentive that imitators have to free-ride on each other. If it is anticipated that

the next imitator to enter will not actively pursue protective measures, all remaining

imitators have incentives to delay their entry in the hope of bene�ting from the imitation

e¤ort of the next one who happens to enter.

All these ideas are formalized in an in�nite-horizon model in which the original inno-

vator faces a potentially large pool of ex ante identical imitators who are initially inactive.

At every period, imitators who have not yet reversed-engineered the innovator�s technol-

ogy decide whether to do so at some (possibly low) imitation cost ci. If they do, they also

decide whether or not to pay a given one-time protection cost cp. If all previous entrants

have paid cp, the cost of reverse-engineering for the remaining imitators is ci. If at least

one of them did not, the innovation becomes freely available. Protection technologies are

characterized by their cost, cp, and the strength they confer, ci.

We �nd in this context that the innovator can earn substantial rents, even in a very

unfavorable environment, where for instance imitation is instantaneous. Such high (post-

innovation) rents may also be well above those attained by imitators. Surprisingly, the

protection technologies that tend to yield a high payo¤ for the innovator are expensive

and do not protect very well (relatively high cp and small ci). The intuition behind this

result is as follows. The fact that the protection technology is relatively expensive means

that the innovator uses it but, upon entry, imitators do not. Thus, as soon as the �rst

imitator enters, the knowledge necessary to reproduce the technology enters the public

domain and all remaining imitators enter for free. This creates a strong incentive for

imitators to try to free-ride on other imitators�reverse engineering e¤orts and thus delay

entry, which leaves potentially very high pro�ts to the innovator. Our theory can shed

light on why innovation was observed to �ourish in sectors where legal protection did not

exist, such as in the software industry.

We focused our previous discussion on the most pro�table protection technology, but

we characterize in the paper the symmetric mixed-strategy equilibria for arbitrary tech-

nologies. This leads us to characterize a theoretically interesting pattern where typically

a series of preemption games is followed with some probability by a waiting game. Im-

itators are involved in a series of preemption games taking place quasi-instantaneously

at the outset of the game. All the imitators who happen to enter in this phase pay the
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protection cost, but fear mis-coordination and thus mix at each instant between waiting

and imitating. They pursue protection in the hope of securing some rents, anticipating

that the initial phase of massive entry will be followed with some probability by a wait-

ing game played by the imitators left to enter. Such a game involving delayed imitation

arises because once a su¢ cient number of imitators have entered, the protection cost is

too large relative to the post-entry payo¤, and hence the next imitator to enter does so

without paying for protection. These imitators thus engage in a waiting game and delay

entry in the hope that another imitator enters before them.

The survey evidence we mentioned earlier points to large variations across sectors of

the propensity to patent. We can then use our previous results to characterize how pro�ts

vary as a function of the protection technology (cp and ci) and how they compare to pro�ts

under patents. Unfortunately, we do not currently have data on protection technologies,

be it their cost or the extent of protection they confer, to check even informally the

validity of our predictions. We nevertheless point out that, according to surveys of

managers (Cohen et al. 2000), the sectors for which examples of protection technologies

come most readily to mind, electronic components and semiconductors, are amongst the

sectors where patents are judged to be least e¤ective.2

We characterize how payo¤s of the innovator vary with cp for a given level of ci. We

�nd an interesting pattern characterized by discontinuities where pro�ts decrease and

then discontinuously jump upwards. A somewhat loose intuition for this pattern is that

as cp increases and crosses certain thresholds, the number of imitators who attempt to

enter in the preemption phase decreases by one unit, to the bene�t of the innovator. As a

consequence, for a given value of ci and a given level of pro�ts from patents, the range of

values of cp such that innovators choose not to patent can take the form of a disconnected

set of intervals, suggesting that empirical work needs to be done with particular care.

We also examine a di¤erent dimension of protection that appears essential in practice.

Knowledge is often di¤used through scientists�mobility, so investing in protection can be

seen in this light as paying key researchers su¢ ciently high wages so as to prevent them

from leaving the �rm. We capture this idea in a stylized variant of our model where we add

competition for researchers following imitation. We show that the results are very close

to the results of our base model, except that the cost of protection becomes endogenous

in this setting. We view this as providing a micro foundation for the protection cost cp.

There is now a relatively large theoretical literature on how there can be innovation

in the absence of patents (see e.g., Boldrin and Levine (2002, 2007, 2008)). What dif-

ferentiates our paper is our focus on strategic protection measures such as technology

complexity, an aspect that is entirely ignored by such a literature despite its empirical

relevance. For instance, Maurer and Scotchmer (2002) as well as Henry and Ponce (2011)

221.3 percent for electronic components and 26.7 for semiconductors. Note that the software industry
is not part of the survey.
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emphasize trading of knowledge as a source of post-innovation rents rather than complex-

ity. In another vein, Anton and Yao (1994, 2002) analyze how a �nancially-constrained

innovator with an innovative idea can earn substantial post-innovation rents even if her

idea can be expropriated when revealed to either of two �rms capable of commercializing

it. In turn, Baccara and Razin (2007) analyze the incentives to disclose ideas when there

is possibly more than one innovator with the same idea and patenting is not feasible.

There is also a literature on the choice between patenting and secrecy, as pioneered by

Gallini (1992). Note that we attempt to explain more broadly strategic choices outside

patents, of which secrecy is just one example. Furthermore, the mechanisms and questions

examined are signi�cantly di¤erent from ours. Horstmann, MacDonald and Slivinski

(1985) insist on the signaling dimension of patents in an environment where innovators

have private information on the value of imitation for potential imitators, whereas Gallini

(1992) is interested in analyzing the optimal trade-o¤between patent length and breadth.

Kultti et al. (2007) deal with the comparison between patenting and secrecy in a setting

with multiple independent discoveries and where the idea becomes public under secrecy

with a certain exogenous probability. Anton and Yao (2004) is closer to our work in the

sense that the innovator can take strategic actions to decrease competition even when she

chooses secrecy. Indeed, the innovator can choose a level of disclosure: more disclosure

signals a better innovation and thus makes the imitator less aggressive in the product

market. In our paper, the strategy available to the innovator to deter imitation is of a

di¤erent kind, and furthermore we insist on the importance of dynamics.

Our paper also contributes to the literature on entry games with an in�nite horizon

of play. Our game exhibits a theoretically interesting pattern of a series of preemption

games followed by a waiting game. Our approach towards analyzing continuous-time

preemption games builds upon Fudenberg and Tirole (1985), except that we have more

than two players (possibly) mixing over more than two actions. The existence of equilib-

rium coordination failures directly relates our work to that of Dixit and Shapiro (1986),

Cabral (1993, 2004), Vettas (2000) and Bertomeu (2009). Vettas (2000) is of particular

relevance because he �nds the remarkable result that the payo¤ expected by an incum-

bent �rst increases then decreases as more �rms become active in the market. A similar

nonmonotonicity result is derived in our setting, even though we allow �ow pro�ts to

strictly decrease in the number of �rms active in the market, unlike Vettas (2000). Our

focus on continuous time allows us to dispense with his assumption, showing that his

insights carry over to settings in which decisions can be made very often.

We conclude our discussion of the related literature by observing that it is not usual

to �nd entry timing games that display both preemption and waiting motives as play

unfolds. Important exceptions are Sahuguet (2006) and Park and Smith (2008). Our

preemption-then-waiting result resembles that in Sahuguet�s (2006) analysis of volun-

teering for heterogeneous tasks under incomplete information about others�preferences.
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Besides our focus on complete information, we di¤er from his analysis in several other di-

mensions, especially in the questions analyzed (i.e., public good provision vs. innovation

protection and imitation).

The remainder of the paper is organized as follows. In Section 2 we introduce the

model. In Section 3 we solve for the equilibrium entry and protection decisions. In

Section 4 we draw conclusions on the level of pro�ts of the innovator in the absence of

patents and discuss speci�c examples. In Section 5 we examines protection of knowledge

through restraining worker mobility. All proofs are presented in the appendix.

2 Model

We analyze a discrete-time game that lasts in�nitely many periods of length � > 0 each.

The time variable is denoted by t = 0;�; 2�; :::. All players have the same per-period

discount factor ��. We will focus on the case in which � is positive but converges to

zero, i.e., the continuous-time limit of the game.

The game involves one innovator and n�1 � 2 (ex ante identical) potential imitators.
Prior to the start of the game, the innovator has discovered a new technology. The

imitators can then decide in each period whether to imitate or stay out of the market an

additional period. We consider the dynamics of imitation of this technology. The cost of

imitation depends on the strategic choices made by the innovator and the imitators who

previously entered. In any period t, we refer to the players who have already entered the

market as "insiders", whereas we refer to the imitators who have not yet entered as the

"outsiders".

The innovator at time t = 0 and the imitators upon entry need to decide whether to

invest in protection. Protection technologies are characterized by two parameters ci and

cp. We denote cp > 0 for the one-time cost that needs to be incurred to achieve protection.

In any period, if the innovator and all insiders incurred the protection cost cp > 0, the

outsiders who decide to enter need to incur imitation cost ci > 0. This one-time cost ci
gives instantaneous access to the same technology. However, if one of the insiders did not

pay cp upon entry, then imitation becomes costless for all outsiders. We assume that the

costs cp and ci remain �xed throughout the game, in particular they are independent of

the number of �rms active in the market.

In each period, an outsider can therefore choose among three actions:

� to imitate and pay the protection cost, an action denoted by p

� to imitate and not pay the protection cost, an action denoted by u

� not to imitate and wait another period, an action denoted by w
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Per-period pro�ts depend on the number of �rms who have entered. We denote �j
for the per-period individual pro�t if j 2 f1; :::; ng �rms (including the innovator) hold
the technology.3 Denoting the rate at which pro�ts are discounted by �rms by r, let

�j � �j=r represent the value of a perpetual stream of discounted pro�ts collected by a

�rm when a total of j 2 f1; :::; ng �rms hold the technology and no further entry takes
place. We assume �j and thus �j are decreasing.

We mostly focus, in particular in Section 3, on the case where �n > ci. This cor-

responds to a situation where all �rms will eventually enter the market: even if n � 1
�rms are already on the market and all the insiders and the innovator paid the protection

cost cp, imitation is still pro�table. Note that this is a priori the worst-case scenario for

innovation in the absence of legal protection since the protection technology does not

o¤er much of a guarantee. At the end of the section, we consider the case �n < ci and

show that the result are very similar, up to a notational change.

We allow for mixed strategies and focus on symmetric Markov Perfect Equilibria

(MPE), where the state corresponds to the number of �rms who hold the technology.

The focus on symmetric (mixed-strategy) equilibria can appear restrictive. However, as

Farrell and Saloner (1988) and Bolton and Farrell (1990) convincingly argue, decentral-

ized coordination mechanisms involving anonymous players cannot be properly captured

by asymmetric equilibria in which (asymmetric) roles are very well de�ned among players.

In addition, play based on mixed strategies can be interpreted as play arising in a game

in which each player has private information about some disturbance a¤ecting her �nal

payo¤.4 As pointed out by Cabral (1993), coordination failures occur under this inter-

pretation not because of randomization but because players have incomplete information

about others�payo¤s.

Given our restriction on Markovian play, we use the following notation throughout:

at the start of a period with k outsiders left to enter, we denote:

� the expected discounted pro�ts of an insider by Ik

� the expected discounted pro�ts of an outsider if she decides to enter by Ok

3 The dynamics of protection and imitation

In this section we mainly focus on the characterization of the equilibria, in the case where

�n > ci (we consider the other case at the end of the section). To help the reader through

the arguments, we �rst sketch the shape of the equilibrium. The �niteness of the pool of

3To avoid introducing several e¤ects that would obscure the message of the paper, we assume that
the �ow pro�ts earned do not depend on whether the protection cost was incurred or not. In other
words, making the technology harder to reverse engineer does not directly a¤ect the willingness to pay
of consumers or production costs.

4This is the well-known puri�cation argument in Harsanyi (1973).
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potential imitators allows us to use backward induction when solving the in�nite-horizon

game, so we explain the reasoning by working backwards as well.

In the �nal subgames, when many �rms are already active, the protection cost cp
appears large compared to the expected pro�ts on the market. The next entrant will

thus enter without any protective measure, thereby creating an incentive for the remaining

imitators to delay imitation in the hope of free riding on the e¤orts of the next to enter.

We actually �nd a critical number of outsiders J such that if the number of outsiders is

strictly less than J , they engage in a waiting game and delay entry.

In earlier subgames with at least J outsiders, there is an incentive for imitators to

enter quickly, preempt the others by protecting their technologies and bene�t from the

subsequent imitation delay. However, there is a risk of miscoordination were all imitators

to enter simultaneously. This creates the conditions for a preemption game. In such a

game, at least one outsider will enter right away (and several could in fact enter simul-

taneously). If the number of outsiders is still not below J following this wave of entry,

another preemption game is played, and so on and so forth until the number of outsiders

is �nally smaller than J . Overall, we see that the pattern is a series of preemption games

followed by a waiting game. Below, we make these arguments formal.

3.1 Solving the subgames with less than three outsiders

We note that in any subgame in which at least one of the insiders did not pay the

protection cost upon entry, all outsiders immediately imitate the technology at no cost.

Thus in the following discussion, we exclusively focus on subgames in which all insiders

paid cp upon entry.

The last entrant

We begin our analysis by considering those subgames in which just one imitator is left

to enter the market. Since �n > ci, the last outsider enters immediately without paying

cp. The expected pro�t of an insider in such a subgame is I1 = �n. The expected pro�t

of the outsider is O1 = �n � ci.

Two imitators left to enter

We now consider the subgames with only two outsiders. The outsider who enters

�rst needs to incur cost ci, but knows that, regardless of whether or not she pays the

additional protection cost, the remaining outsider will enter immediately. It is then clear

that action p (entering and paying the protection cost) is strictly dominated.

Therefore, the �rst entrant does not choose protection, and the second entrant incurs

no imitation cost. This creates the conditions for a waiting game where both players mix

between entering without paying the protection cost and waiting. Both players prefer to
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be the second entrant, but also do not want to wait excessively as they lose pro�ts every

period. As is standard in such games (if stationary), in the limit when � converges to

zero, the entry time of each imitator converges to an exponential distribution.

Lemma 1 In subgames with two outsiders, the only symmetric MPE is such that both
outsiders mix between actions u (entering without paying the protection cost) and w (wait-

ing another period). As � converges to zero, the entry time of each outsider converges

to an exponential distribution with parameter �2, where �2 � r(�n� ci)=ci. The expected
pro�t of each outsider is O2 = �n � ci, whereas each of the insiders expects to gain
I2 = �2�n�2 + (1� �2)�n, where �2 � r=(r + 2�2).

The expected payo¤ of an outsider at the beginning of these subgames is O2 = �n�ci
since she is indi¤erent between all entry times, including entering immediately. On the

contrary, the insiders expect signi�cant pro�ts since they will earn per-period pro�ts �n�2
until the time of �rst entry, which is exponentially distributed (with hazard rate 2�2).5

Three imitators left to enter

Before studying the complete dynamics, it is useful to understand in detail the resolu-

tion of subgames with three outsiders left. All players know that in any period, if a single

outsider enters and pays the protection cost, then the remaining two imitators will play

a waiting game. In such a game, we established in Lemma 1 that insiders earn expected

pro�ts of I2 = �2�n�2 + (1� �2)�n.
Thus, we �rst note that, if I2 � cp � ci � �n � ci, playing action p is (weakly)

dominated by u, that is, outsiders will never pay the protection cost. The condition can

be equivalently expressed as cp � c�2 � �2(�n�2 � �n). According to the same logic as
in the previous section, the three imitators will then engage in a waiting game. We show

in Lemma 2 that the individual entry time then follows an exponential distribution with

parameter �3 � r(�n � ci)=(2ci).
On the contrary, if cp < c�2, preemptively entering and paying the protection cost

becomes very attractive if the two other outsiders do not enter. There is however a risk

of coordination failure were all outsiders simultaneously to enter and pay cp. This cre-

ates the conditions for a preemption game described in Lemma 2. As the time between

two consecutive periods shrinks, outsiders mix between p and w, that is, between en-

tering and paying the protection cost and waiting. Entry occurs almost instantaneously

with probability one, and simultaneous entry of several outsiders occurs with positive

probability.

5Indeed, the entry time of each individual imitator follows an exponential of parameter �2, and thus
the time of �rst entry is an exponential of parameter 2�2 since it is the minimum of two exponential
random variables.
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Lemma 2 In subgames with three outsiders, as � converges to zero:

(i) If cp � c�2, the three outsiders mix between actions u and p. The entry time

of each outsider converges to an exponential distribution with parameter �3, where �3 �
r(�n�ci)=(2ci). Furthermore, the expected pro�t of each outsider is O3 = �n�ci, whereas
each of the insiders expects to gain I3 = �3�n�3 + (1� �3)�n, where �3 � r=(r + 3�3).
(ii) If instead cp < c�2, the three outsiders start playing a preemption game as soon

as this subgame begins. The limiting distribution is such that outsiders play w and p

with a probability bounded away from zero, and the payo¤ of the outsiders converges to

O3 = �n�ci, whereas the payo¤ of the insiders converges to I3 = �3(1)I2+(1��3(1))�n,
where �3(1) is the probability of a single outsider entering.

6

Lemma 2 has a very natural interpretation. If the protection cost is relatively high, it

will not be paid upon entry, and therefore all outsiders wait in the hope that one of them

will move �rst without paying cp. On the contrary, if the protection cost is low enough,

it will be incurred upon entry. The problem is then one of coordination. All outsiders

would like to be the only �rm to enter and then enjoy payo¤ I2 while the others engage in

a waiting game, but no one has an interest in paying the protection cost if other outsiders

choose to enter at the same time.

3.2 Subgames with more than three imitators left to enter

The ideas uncovered in the subgames with three outsiders partially extend to the sub-

games with a larger number of outsiders. In particular, if cp is relatively large, the players

will end up playing a waiting game.

In what follows, let c�k � �k(�n�k � �n), where �k � r=(r + k�k). We show in the

following lemma that in the subgame with k � 3 outsiders, if cp � c�k�1, players mix

between waiting and entering without protection and the entry time is exponentially

distributed. A key part of the induction argument is that fc�kgn�1k=2 is a monotonically

increasing sequence.7 This implies that, when cp � c�k�1, if one outsider chooses to

enter by paying the protection cost, the k � 1 remaining outsiders will then engage in a
waiting game, since cp > c�k�2. Intuitively, the incentive to avoid paying the protection

cost becomes more intense as fewer imitators remain inactive: as k decreases, the pro�t

stream to be earned following entry becomes relatively smaller and the waiting game is

expected to last less (note that �n�k is increasing in k, whereas k�k is decreasing).

Lemma 3 In the subgame with k 2 f3; :::; n� 1g outsiders, if cp � c�k�1, the k outsiders
mix between actions u and w. The entry time of each outsider converges as � goes to

6See expression (7) for the speci�c formula for �3(1).
7Note that �k = (k � 1)ci=(k�n � ci) is increasing in k, since ci < �n implies that d�k=dk =

ci(�n � ci)=(k�n � ci)2 > 0. Taking into account that both �k and �n�k � �n are positive, the fact
that �n�k and �k are both increasing in k then yields that c

�
2 < c

�
3 < ::: < c

�
n�1.

9



zero to an exponential distribution with parameter k�k, where �k � r(�n�ci)=((k�1)ci).
The expected pro�t of each outsider is Ok = �n � ci, whereas each of the insiders expects
to gain Ik = �k�n�k + (1� �k)�n, where �k � r=(r + k�k).

We now consider the more complex case with k � 3 outsiders and cp < c�k�1. It

is essential for our purposes to de�ne J , the critical number of outsiders such that a

waiting game is played if the number of outsiders is strictly less than J (i.e., in subgames

in which the number of imitators left to enter equals 2; :::; J � 1). Formally, we have
J = inffk � 3 : cp < c�k�1g, where J = n if it is not well-de�ned. Note that J is a

step function of cp ranging from 3 to n. We will now show that for k � J , a series

of preemption games takes place. A priori, the players mix between the three available

actions, w, p and u.8

Recall that we are interested in equilibria where players can react instantaneously to

each others actions, i.e in situations where the time � between successive play is negligi-

ble.9 In what follows, we will not be deriving the exact play in a symmetric equilibrium

for small values of � but consider a continuous-time approximation of equilibrium play

that is arbitrarily close to the true outcome.

More speci�cally, the approach will be the following. For a given period length �, let

�a;k(�) � 0 be the probability with which each outsider plays action a 2 fw; p; u)g when
k outsiders are left to enter. Also, let Va;k(�) denote the outsider�s payo¤ from choosing

action a given that the k�1 other players are mixing over actions with probability �a;k(�)
in all subgames with k outsiders. In equilibrium, the mixing probabilities �a;k(�) for

a 2 fw; p; ugmust be such that outsiders are indi¤erent between all three actions and such
that these are indeed probabilities (i.e. Vp;k(�) = Vu;k(�) = Vw;k(�), �a;k(�) 2 (0; 1)
and

P
a2fw;p;ug �a;k(�) = 1). What we will do is to solve for the solution of this system

for � = 0, what we call the continuous-time approximation of the equilibrium outcome,10

and we will show that this solution exists and is unique. Given that the value functions

Va;k(�)(a 2 fw; p; ug) are continuous in � and in the probabilities, this will be a close

approximation of the equilibrium outcome for small enough values of �.

To illustrate further this method, consider the case of three players solved in the

proof of Lemma 2. In that case we solved explicitly, for a small �xed value of �, for the

probabilities �a;3(�), a 2 fw; p; ug (see (5) and (6) in the appendix). In that case, we
8We will show when proving Lemma 4 that action u is chosen, but with vanishing probability as �

goes to zero.
9As emphasized by Fudenberg and Tirole (1991) when dealing with preemption games, a continuous-

time version of the game cannot be directly used, and one is forced either to use approximations based
on discrete-time games or to properly expand strategy spaces to accommodate for such approximations,
as done by Fudenberg and Tirole (1985).
10Formally, what we mean by (continuous-time) approximation of the equilibrium is a set of admissible

mixing probabilities �a;k (a 2 fp; u; wg) satisfying the following property: for any (small) � > 0, there
exists �� such that � < �� implies that j�a;k(�) � �a;kj < �, where �a:k(�) is the exact equilibrium
play.
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see from the solution presented in the proof of Lemma 2, that taking the limit of all the

probabilities as � converges to zero (as we did) leads to the same solution as directly

solving the system consisting of equations (2)-(4) for � = 0, as was to be expected due

to the continuity of the system. From now on �a;k and Va;k denotes �a;k(�) and Va;k(�)

for � = 0.

We formally show in the proof of Lemma 4 below that the symmetric MPE can be

approximated for small enough values of � by an equilibrium where the action of entering

without protection is played with essentially zero probability, i.e., �u;k � 0. Thus, in the
approximation we consider, the players will essentially mix just between actions w and

p. We denote �k � �p;k for the individual probability of entry (so we have �w;k � 1� �k).
Given k outsiders, the payo¤ to choosing action p (gross of cp and ci) is given by

Vp;k =

k�1X
l=0

C lk�1(�k)
l(1� �k)k�1�lIk�1�l,

where C lk�1 =
�
k�1
l

�
denotes the binomial coe¢ cient indexed by k � 1 and l. The value

to an outsider of paying the protection cost when entering depends on how many other

outsiders simultaneously enter. If l other outsiders enter, the outsider participates in the

next period as an insider in a subgame with k � 1 � l outsiders. Her expected gain in
this case is thus Ik�1�l (the value of being an incumbent with k � 1� l outsiders).
Each of the k outsiders will mix between p and w so as to leave others indi¤erent

between these two actions, which yields that

Vp;k � cp � ci = �n � ci,

since it can be shown that an outsider�s payo¤ to waiting is Vw;k = �n � ci for � = 0.

Letting Ik�1�l � Ik�1�l � �n and

Fk(�) �
k�1X
l=0

C lk�1 �
l(1� �)k�1�l Ik�1�l,

the indi¤erence condition can be equivalently written as:

Fk(�k) = cp. (1)

Thus, we have in subgames with k imitators left to enter (and such that cp < c�k�1) that

the approximate mixing probability (provided it exists) must solve Fk(�k) = cp. Largely

inspired by Vettas (2000), we now exploit the recursive nature of the problem and the

properties of Fk(�). We show that the symmetric MPE of the game can be approximated
for small values of � by an equilibrium such that outsiders mix between actions p and w
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with strictly positive probabilities. Furthermore, in this approximation, the probability

of playing action p in equilibrium decreases as the number of outsiders decreases.

The main properties of the Fk(�) functions, for k 2 fJ; :::; n � 1g, are presented in
Figure 1.

Figure 1: F5(�) (solid curve), F4(�) (dashed curve) and F3(�) (thick solid curve) plotted

for n = 6, cp = 0:0017, ci = 0:02 and �j = (j + 1)�2 (J = 3 under these assumptions)

It holds that FJ(�) is strictly decreasing in �, with FJ(0) > cp > FJ(1). There is

thus clearly a unique solution to FJ(�) = cp, namely �J . This is intuitive: when k = J ,

following entry by at least one outsider, preemptive motives disappear and a waiting

game is played thereafter (by de�nition of J). The length of such a waiting game is

determined by the number of other outsiders who enter. Given our previous �nding

that the continuation payo¤ of an insider is lower in a waiting game played by fewer

outsiders, the best scenario is if no one else enters (� = 0), whereas the worst scenario is

if everyone else enters (� = 1). The randomization performed in equilibrium is somewhere

in between.

For k > J , the pattern is slightly di¤erent. In these cases Fk(�) is not everywhere

decreasing in �. Unlike the case in which k = J , larger � does not make lower continuation

payo¤s more likely. Indeed, it can be shown (see proof of Lemma 4) that the continuation

payo¤ of an insider (net of �n) has an inverted-U shape as a function of k: In�1 < In�2 <

::: < IJ < IJ�1 and IJ�1 > IJ�2::: > I0 = 0. So Fk(�) also has an inverted-U shape as a

function of �. Furthermore, we can show that Fk(0) > cp > Fk(1), for all k > J .

There is additional structure that can be exploited. In particular, Fk+1(�) starts o¤
below Fk(�), reaches its maximum when crossing Fk(�) and then remains above Fk(�). A
direct consequence is that the equilibrium �k is increasing in k, an intuitive property.

In these preemption games, players want to rush to enter to become one of the insiders

during the waiting game that will likely follow. There is however a risk of excessive entry

ex post. In a subgame where many players have already entered, and hence k is close to
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J , this risk becomes particularly severe, and the players in equilibrium therefore chose to

enter with a lower probability. The following lemma formalizes all these ideas.

Lemma 4 In subgames with k 2 fJ; :::; n � 1g outsiders, if cp < c�k�1, then, for small

enough �, the symmetric MPE can be approximated by the following equilibrium:

(i) Outsiders mix only between actions p and w, and the probability �k of playing p is

uniquely given by the solution to Fk(�k) = cp.

(ii) �k is increasing in k.

(iii) Quasi-instantaneous entry by at least one outsider occurs.

We have therefore fully characterized the dynamics of imitation and protection in the

case where �n > ci. Our results are summarized in the following proposition where we

describe the equilibrium path of imitation:

Proposition 1 When �n > ci, in the continuous time limit of the game, the symmetric
MPE exhibits the following properties: there exists a number of entrants J 2 f3; :::; ng
such that, if the innovator initially paid cp:

1. At least J outsiders quasi-instantaneously imitate and pay the protection cost

2. The remaining outsiders, if there are more than one, delay imitation for a random

length of time and do not pay for protection upon imitation

3. After entry of one of them, all the remaining outsiders immediately imitate

We show below that these results partially extend to the case where ci � �n, a

situation that for large enough values of n approximates free entry. In particular, there

exists a critical value J 0 such that if the number of outsiders is larger or equal to J 0,

outsiders mix between actions p and w and at least J 0 quasi instantaneously enter. The

main di¤erence is that if the number of outsiders is less than J 0, no further entry takes

place whereas in the case ci < �n, all players played a waiting game. We derive the value

of J 0 below.

In situations where ci � �n, action u is always dominated by w if all insiders have

paid cp, since playing u yields payo¤�n� ci � 0. Letting c0k � �n�k� ci in what follows,
J 0 is then de�ned by J 0 � inffk � 3 : cp < c0k�1g (with J 0 = n if the de�nition is

vacuous), so that subgames with k � J 0�1 outsiders exhibit no further entry.11 Lemmas
1-4 are then directly applicable by simply letting ci = �n and rede�ning c�k and J as

c�k � �n�k � ci and J 0 respectively. Hence, the case in which ci � �n corresponds to

that in which imitation delays in subgames without preemption features are in�nitely

long. Proposition 1 then applies accounting for this new notation and the fact that the

imitation delay after the initial preemptive imitation phase is in�nite.

11Since it holds that �n�(J0�1) � ci > cp � �n�(J0�2) � ci by de�nition of J 0
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4 When and if to patent

We can use the results of the previous section to draw important implications on incentives

to innovate. We �rst show that our model and the mechanism we consider can explain why

innovation �ourished in certain sectors even when patents were not available. Second,

by introducing explicitly the option to patent, we can provide an explanation for the

variations across sectors in patenting rates.

4.1 High pro�ts outside patents

Even though we consider an environment a priori very unfavorable to innovators, where

in particular imitation is instantaneous, our �rst result shows that pro�ts of innovators

can be very high even when patents are not available.

Proposition 2 In the continuous-time limit of the game, the equilibrium payo¤ of the

innovator can be arbitrarily close to �1��2. This happens for technologies that are such
that cp # �2 and either ci � �n or ci " �n.

Interestingly, the maximum pro�t �1��2 is attained for a protection technology that
is expensive (cp = �2) and potentially does not perform very well (ci close but less than

�n).

The intuition behind this result for ci < �n is as follows: the fact that the protection

technology is expensive (cp � �2) means that, upon entry, imitators do not use it. Thus,
as soon as the �rst imitator enters, the knowledge necessary to reproduce the technology

enters the public domain and all remaining imitators enter for free. This creates a strong

incentive for all imitators to try to free-ride on other imitators�e¤orts. The incentive to

enter �rst converges to zero when ci approaches �n and thus waiting is in�nite and the

innovator�s payo¤ converges to �1. Of course, she has to pay a protection cost that, in

the most favorable case, is equal �2. For such a technology, the payo¤ to the innovator

is thus high even in environments with no legal protection.12

Our model can thus explain why innovation �ourished in certain sectors where patent

protection was not available. Consider the software industry. Until recently, software was

not covered by patents and it was common for inventors to obfuscate the code: in other

words, transforming the readable source code into code di¢ cult to use directly. Today,

various techniques are available and appear to be relatively cheap (low cp). But this

was not always the case and our theory could help explain why, even though patents did

not apply, this was nevertheless an industry characterized by relentless innovation (see

Boldrin and Levine (2007)).

12The case ci � �n is equivalent to ci " �n as in both cases the imitation delays are in�nitely long.
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There is unfortunately no data available on the level of cp for di¤erent technologies.

Note that potentially several techniques can simultaneously be used by �rms. For in-

stance, �rms might not only invest in technologies making reverse engineering hard, but

might also pay to keep their researchers from moving to other �rms (something we ex-

plicitly consider in section 6). This might signi�cantly raise protection costs and make it

more likely that the conditions of Proposition 2 are satis�ed.

4.2 Explaining variations in patenting rates across sectors

We discussed in the introduction the evidence showing large variations across sectors in

the choice between patents and other means of protection, such as secrecy. Our theory

provides a plausible explanation for these sectorial variations.

Let us �rst examine how the pro�ts of the innovator vary with the characteristics of

the protection technology when patents are not chosen. We plot in Figure 2, for a given

value of ci, how the innovator�s payo¤ (net of the protection cost) varies with cp. We will

explain the intuition for the observed pattern for the case ci < �n, the other case being

equivalent given an appropriate notational change.

Figure 2: I5 � cp plotted against cp for n = 6, ci = 0:02 and �j = (j + 1)�2

The pattern observed in Figure 2 is typically found for di¤erent speci�cations of

parameters. First, when cp is less than c�2, the net pro�ts of the innovator initially

increases and then decreases with cp until cp reaches c�2. Second, the behavior in the

following intervals (c�k�1; c
�
k) (for 3 � k � n � 2) is the following: the pro�ts of the

innovator decrease and reach �n as cp approaches the upper bound of the interval. Third,

when cp goes above that upper bound we observe a discrete upward jump. Finally, when

cp is above c�n�2, net pro�ts are linearly decreasing in cp.

The key to understanding these e¤ects is to notice that within an interval (c�k�1; c
�
k),

the value of J (the critical number of �rms such that a waiting game starts) remains

�xed. Within such an interval, an increase in cp generates two opposing forces. On the
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one hand, clearly an increase in cp directly decreases the payo¤ of the innovator as he

has to pay a higher protection cost. On the other hand, an increase in cp decreases the

probability of excessive entry in the preemption phase.

The second e¤ect can be understood as follows. When cp is smaller than the upper

bound of the interval, outsiders imitate in each period of the preemption phase with

some probability. Excessive entry above J thus happens with positive probability, at a

cost for the innovator. As cp increases outsiders in any preemption subgame coordinate

their actions better and better. As cp gets close to the upper bound of the interval,

the mixing probability in any subgame of the preemption phase converges to zero as the

gains from entering before the others becomes small. The probability that at least two

outsiders simultaneously enter in the same period converges even faster to zero. Thus,

the outsiders perfectly coordinate their entry, and in equilibrium exactly J enter quasi

instantaneously in a sequential manner.13 So, as cp increases, this second e¤ect increases

the pro�ts of the innovator.

Figure 2 suggests that the �rst e¤ect dominates only at the start of the �rst interval;

in the other intervals, the second e¤ect dominates. Note that if cp � c�n�1, there is no

preemption phase so only the �rst e¤ect plays a role and pro�ts linearly decrease with

cp. The previous discussion also allows us to explain why pro�ts converge to �n at the

upper bounds of the intervals (c�k�1; c
�
k). Because of the almost perfect coordination we

highlighted when cp approaches c�k, the gross pro�ts of the innovator In�1 are equal to

the pro�ts when k outsiders remain, Ik. Since c�k = Ik � �n, Ik � cp and hence In�1 � cp
both go to �n if cp is close to the upper limit of the interval.

Figure 2 also clearly illustrates a discrete upward jump in the innovator�s net payo¤

as cp passes just above c�k. Although the value of cp is quite similar on both sides of the

threshold, the critical value J increases by one unit as soon as this threshold is crossed.

This discretely increases IJ�1, which means that imitation delays involve more �rms and

hence being an insider is more valuable. This favors the innovator, but the downside is

that the potential entrants �nd entry more attractive and choose to enter with higher

probability than when cp is just below c�k, thus leading to more miscoordination. However,

as our previous discussion suggests, this faster rate of imitation does not completely

dissipate pro�ts.

Some of the results highlighted in Figure 2 are stated formally in the following lemma

proved in the appendix:

Lemma 5 Fix an interval (c�k�1; c
�
k) for 2 � k � n � 1 (with c�1 � 0 and c�n�1 � 1).

Then the following properties hold:

13Note that in Fudenberg and Tirole (1985) coordination failures do not occur on the equilibrium
path even if players randomize independently, as in our case when cp is close to the upper bound of the
interval.
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(i) As cp converges to c�k from below (2 � k � n � 2), net pro�ts for the innovator
converge to �n from above

(ii) As cp converges to 0 from above, net pro�ts for the innovator converge to �n from

above

(iii) As cp decreases starting from c�n�2, net pro�ts for the innovator fall linearly

We are in now in a position to discuss the choice of whether to patent or not depending

on the characteristics of protection technologies that vary by sector. To discuss this

point we explicitly introduce a measure �P of pro�ts under patents. Typically patents

are imperfect (e.g., imitators can invent around the patented innovation), are limited in

length, and take a long time to be obtained, so one would expect �P to be signi�cantly

lower than �1. Given a level of �P , we illustrate below in Figure 3 and Proposition 3 the

set of values of cp such that patenting is not pursued.

Proposition 3 If �P > �1 � �2, �rms will patent their innovations. If �P < �1 � �2,
there exist values of ci and cp such that �rms choose secrecy over patenting. Furthermore,

this can take the form of a disconnected set of intervals.

Our results suggest that variations in the popularity of patents across sectors might

be explained by variations in protection technologies available. Admittedly, the results

of Proposition 3 highlight discontinuities and suggest that empirical work should be done

with particular care. This is illustrated in the graph below: if �P is high, patents are

always preferred. For intermediate values of �P , patents will be chosen only for high

values of cp. However, as shown in the graph, for low �P , the values of cp such that

innovators choose not to patent forms a set of disconnected intervals.

Figure 3: Patenting vs. Nonpatenting (thick portions of the horizontal axis represent

values of cp for which nonpatenting is preferred over patenting)

It is hard to provide even anecdotal evidence in support of the prediction of Proposi-

tion 3 since data on cp and ci does not exist. It is however interesting to pay attention
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to the sectors in which patents are judged to be least e¤ective according to surveys of

managers (Cohen et al. 2000), such as electronic components and semiconductors (the

software industry is not part of the survey). These are also the sectors in which protection

technologies can be most commonly observed. For instance, hardware obfuscation is a

technique by which the description or the structure of electronic hardware is modi�ed to

intentionally conceal its functionality, making it signi�cantly more di¢ cult to reverse en-

gineer.14 We also observe technologies for sale that allow protection of integrated circuits

from reverse engineering.15 The fact that these sectors are characterized by lower rates

of patenting is is coherent with our predictions if we consider that other sectors do not

have access to such technologies. Note also that our results highlight that, even if the

technologies previously mentionned appear not to be very technically e¢ cient, they can

still generate high level of pro�ts for innovators.

5 Extension to stochastic protection

In the base model, we took an extreme view of protection technologies. If one of the

initial entrants did not pay the protection cost cp, the cost of imitation for the remaining

outsiders fell to zero. We �rst note that assuming that the imitation cost falls not to zero

but to an intermediate positive value, does not change qualitatively any of the conclusions.

In this section we take a slightly di¤erent view of the role of protection. Not paying for

protection allows the outsiders to know what research path to follow to reverse engineer

the innovation, although reverse engineering remains costly. On the contrary, paying for

protection, means that outsiders, if they choose to reverse engineer need to follow an

uncertain research path that could potentially fail.

Speci�cally, we assume that, if all active �rms have paid cp, any of the remaining

imitators has probability qi 2 (0; 1) of successfully imitating by incurring cost ci such
that ci < qi�n. If at least one of the active �rms did not pay cp, then any imitator can

imitate with probability one by just paying the imitation cost ci. We assume that any �rm

that chooses to imitate and fails can never imitate afterwards, unless some subsequent

imitator is successful at imitating and does not pay the protection cost (in which case the

imitator who failed can imitate with probability one by just repaying ci).16 We assume

that all �rms observe whether a �rm is successful at imitating or not whenever she tries

to imitate.
14There are other techniques, some cryptography-based.
15An example is given by the United States patent 7128271, described as �a semiconductor integrated

circuit having a reverse engineering protection part that can be easily implemented�.
16The case in which an imitator that fails at imitating can still try imitating at any later period can

be shown to be equivalent to our base model (in fact, letting qi = 1 is without loss of generality in terms
of equilibrium strategies). Note that the assumption that an imitator that fails cannot imitate unless
someone else does without protection can re�ect the fact that imitators typically have preferred research
paths and we implicitly assume that if the preferred path is not successful, other paths are too costly.
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For tractability reasons, we consider the case n = 3, and we will let k denote the

number of imitators who do not know their imitation capabilities yet. In turn, K will

denote the current number of imitators that tried and failed to imitate in the past. As

usual, equilibrium play in subgames in which some �rm became active without paying cp
are trivial: all other imitators, regardless of whether they failed in the past at imitating,

enter with probability one right after such a �rm enters. Henceforth, we pay attention to

subgames in which all active �rms have paid cp, and we work backwards. We obtain the

following result, where we let c1 = qi(�2 � �3):

Proposition 4 In the subgames where no outsider has yet attempted to reverse engineer
(k = 2), we have:

� if cp > c1, both outsiders mix between u and w every period and the �rst outsider
to play u is not excluded from the market if he is not successful initially

� if (1� qi)c1 � cp < c1, both outsiders mix between u and w and the �rst outsider to
play u is excluded from the market if he is not successful initially

� if cp < (1� qi)c1, both outsiders mix between p and w

The intuition for this result is the following. First consider a subgame where a single

imitator attempted to imitate and failed (k = K = 1). Clearly, the imitator who never

tried to imitate in the past enters right away. She pays cost cp if and only if qi�2 � cp �
qi�3, i.e cp < c1. This condition re�ects the idea that protection is only worth it if

guaranteeing duopoly rather than triopoly pro�ts in case of success, justi�es paying the

protection cost.

Working backwards, we �nd that if cp > c1, both outsiders mix between u and w,

knowing that the �rst to play u will, in the event that she initially fails, still have another

chance if the later imitator is then successful since she will not pay for protection. If

(1 � qi)c1 � cp < c1, we show in the appendix that both outsiders still mix between u

and w but, in case of failure, the �rst imitator is excluded from the market. In both of

these cases the innovator collects rents from the initial delay. Note that outsiders initially

delay entry in the hope of free riding on the other outsider�s reverse engineering e¤ort if

she is successful, a similar motivation as in our baseline model.

In the last case, cp < (1 � qi)c1, we show that �rms also play a waiting game that
bene�ts the innovator, but mix between p and w rather than between u and w. Intu-

itively, protection is somewhat costly and can be avoided if the other �rm happens to

(successfully) imitate �rst, so there is an incentive to wait so that the other �rm incurs

the protection cost in the �rst place (i.e., �rms free-ride on the protection cost, not the

imitation cost).
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6 Paying for researchers to stay

In the previous sections we focused on cases where the innovator and the initial imita-

tors could protect themselves from further imitation by making their technology hard

to reverse engineer. However, knowledge of how to reproduce the technology is often

embodied in the researchers who developed it. Another key dimension of protection is

therefore o¤ering wages su¢ ciently high so that these key researchers have less incentives

to leave the �rm. In the current section we examine the dynamics of wages in settings

involving imitation. We show that this is a way of making the �xed protection cost cp
endogenous.

There is a growing literature examining the mobility of scientists and the associated

di¤usion of knowledge. Lewis and Yao (2006), in a situation where some ideas developed

in one �rm can be potentially more useful in another, show how allowing ex ante for

mobility of researchers can be optimal from the innovating �rm�s point of view. Kim and

Marschke (2005) examine a model where innovators can choose between patenting and

secrecy and show, both theoretically and empirically, that patents become more attractive

when there is a high risk of scientists leaving with �rms secrets. Franco and Mitchell

(2008) compare situations where clauses restraining worker mobility can be included in

contracts to cases where this is illegal.17 The novelty of our approach is that it allows us

to study fully dynamic aspects of employment in situations where �rms can imitate in

two distinct ways: by doing in-house research or by poaching a scientist from a di¤erent

�rm.18

We modify our model in the following way to address the question. We suppose that

there are n + 1 �rms. Firm j is considered to be a pair composed of a �nancier fj and

a researcher rj whose value outside the industry under consideration is normalized to

zero. As in our previous model, the game starts with a �rm, labeled 1, having innovated.

Researcher r1 therefore has the knowledge of how to reproduce the invention. A �rm who

has not yet imitated and decides to do so can do it in two ways. She can hire a researcher

of a previously successful �rm or use her in-house researcher, who is uninformed and can

develop the invention at cost ci.

We consider a simple model for the hiring process. After a �rm has successfully

developed an invention or successfully imitated, a second-price auction for the researcher

is run between this �rm and all the remaining outsiders. The winning bidder hires the

worker and pays the second-highest bid. We suppose furthermore that if the winning

bidder is the current employer of the researcher, then this researcher will stay with the

17They �nd that the so-called "covenant not to compete" can explain the initial advantage of Massa-
chusetts�Route 128 and the subsequent overtaking by the Sillicon Valley.
18Note that contrary to most papers in the literature, a notable exception being Franco and Mitchell

(2008), we focus on a case where the creation of a spin-out by a researcher leaving the �rm decreases
total pro�ts, i.e it does not create a di¤erentiated product, although this case could be considered in our
framework.
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�rm forever.19 Thus, in that case, the �rms not having yet imitated can only do so

through in-house research at cost ci.

We present the results in the case in which ci < c�2 so as to illustrate the main intuition

(results are similar for ci � c�2).

Proposition 5 Suppose that ci < c�2. If the number of outsiders:

(i) is at least as large as 4, one of the outsiders wins the auction and pays the researcher

c�2 + ci

(ii) is equal to 3, one of the outsiders wins the auction and pays the researcher some

amount between c�2 and c
�
2 + ci

(iii) is equal to 2, the researcher stays with the current employer for an amount between

0 and c�2 and the remaining two outsiders play a waiting game

(iv) is equal to 1, the researcher moves for a zero wage

Furthermore, the pro�ts of the innovator are �2�n�2+(1��2)�n, where �2 � r=(r+
2�2), and the original researcher accumulates salaries of at least c�2 + (n� 3)(c�2 + ci).

We �rst observe that the timing of imitation is the following: n � 2 �rms quickly
enter in a sequential manner by winning the auction and hiring the informed researcher.

At this point, when only 2 imitators are left, the last �rm having entered will pay a

su¢ ciently high bonus so as to win the auction and keep the researcher within the �rm.

The remaining two imitators can thus only enter by conducting in-house research at cost

ci and will wait to do so in the hope that their competitor does it before them and that

they can subsequently hire the informed researcher at a zero wage.

We note that this path of entry is very similar to the one identi�ed in the general

model of section 3 for the case cp < c�2. In that case a series of preemption games were

played and when two imitators were left, they played a waiting game with the same

speed of entry �2. The main di¤erence is that in the current setting we do not have the

uncoordinated preemption phase. Outsiders still have an incentive to enter quickly, but

the auction solves the mis-coordination problem characterizing preemption games, since

the auction determines a unique winner.

Proposition 5 can be seen as providing a microeconomic foundation for our assumption

of a �xed protection cost. Indeed, as long as the number of outsiders is greater than

four, the imitators who enter pay a premium of c�2 above the imitation cost ci, premium

that can be interpreted as the cost of protection. The intuition is the following: the

19A natural interpretation of this assumption is that the current �rm is participating in the bidding
to make the researcher sign a non-competition clause (a covenant not to compete).
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early imitators, by paying the premium c�2, are purchasing the right to bene�t from the

imitation delay that arises in the waiting game. The order of entry among them does not

in�uence their expected pro�ts since with the auction there is no mis-coordination. All

the initial entrants therefore pay the same price for entry ci + c�2.

We characterize the level of bonuses on the equilibrium path. Naturally, as the number

of remaining imitators decreases, the bonus that the researcher obtains decreases. We

note that neither the innovator, nor the imitators, attempt to keep their researcher until

only two imitators are left. The intuition is as follows: the innovator and the initial

imitators are free riding on the protection e¤ort of the antepenultimate entrant. In

previous subgames, there is no point in trying to keep the researcher since the remaining

imitators will in any case try to rush to enter, and if they cannot do it by hiring a

researcher, they will do it through in house research. Keeping the researcher has even

a negative e¤ect on expected pro�ts since it opens the way to a preemption game with

excessive entry due to the risk of mis-coordination.

7 Conclusion

In this paper we show that considering the dynamics of investment in protection technolo-

gies can generate high rents for the innovators outside of patents and can help explain the

observation that a large share of innovators choose secrecy over patenting. Surprisingly,

the protection technologies that yield the highest returns for the innovator are expensive

and do not protect very well. We also show that our model has implications for the large

sectorial variations in patenting rates and for the patterns of employment in innovative

industries.

We believe our model and results could be the basis for interesting empirical work.

At the very least it underlines the need for more comprehensive data on two dimensions.

First, little is still known on the cost of reverse engineering inventions, and how these

costs vary by industry. Second, little information is available on protection technologies,

their cost, the level of protection they confer. Although there is a large body of anecdotal

evidence showing that technological protection is commonly used, there is no systematic

measurement allowing for more detailed empirical analysis.

Finally, we want to suggest that our model can also contribute to the understanding

of the path of di¤usion of innovations. Starting with the seminal paper by Griliches

(1957), numerous papers have documented the fact that the pattern of adoption of new

technologies is typically S-shaped: slow initial adoption is followed by a quick acceleration

and then slowing down.20 If we view the process of imitation as a process of adoption

20There are numerous papers proposing a theoretical explanation for this pattern of adoption. Some
are non strategic and often based on models of di¤usion of information. Others consider �rms that are
strategic in their adoption decisions (Reinganum, Fudenberg and Tirole (1985), Ruiz Aliseda and Zemsky
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of a technology, our paper provides a di¤erent theoretical foundation for the delay in

adoption.21 Firms wait to adopt in the hope that the technology will enter the public

domain at some point. Of course the path is more a step function than a smooth S-shape.

We could however imagine introducing uncertainties, for instance in the time needed to

obtain an invention after having paid the imitation cost, that could generate a smoother

path. This could be the object of interesting future work.

(2006)).
21Note that the empirical literature is not explicit about what is the process of adoption of a technology,

whether it is purchasing from the inventor or whether it comes through imitation.
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Appendix

Proof of Lemma 1. Fudenberg and Tirole (1991) show that the unique symmetric

equilibrium of the discrete-time war of attrition with short period lengths converges to

the unique symmetric equilibrium of the war of attrition in continuous time. This leads

us to prove the result using the continuous-time version of the game directly.

Counting from the date at which the subgame is �rst reached, let us consider the

expected payo¤ of an outsider if she chooses to imitate at time � 2 given that the other

outsider chooses her imitation time according to an atomless and gapless distribution

F2(�) with full support on [0;1) and density f2(�). Given that the other �rm has made

an unknown draw from F2(�), a �rm who enters at � 2 expects to gain

bV2(� 2) = Z �2

0

�ne
�rsdF2(s) +

Z 1

�2

(�n � ci)e�r�2dF2(s).

In a mixed-strategy Nash equilibrium, the �rm should be indi¤erent among all possible

imitation times, which formally means that we should have that dbV2(� 2)=d� 2 = 0 for all
� 2 � 0. Straightforward di¤erentiation using the fact that

R1
�2
dF2(s) = 1�F2(� 2) yields

that
dbV2(� 2)
d� 2

= e�r�2 [cif2(� 2)� r(�n � ci)(1� F2(� 2))].

Letting h2(� 2) � f2(� 2)=(1 � F2(� 2)) denote the hazard rate of F2(�) and equating
dbV2(� 2)=d� 2 to zero yields that the hazard rate is constant and equal to h2(� 2) =
r(�n � ci)=ci, so F2(� 2) = 1 � e��2�2, where �2 � r(�n � ci)=ci. Given that a prob-
ability distribution is exponential if and only if its hazard rate is constant, the individual

entry time follows an exponential distribution with parameter �2 = r(�n � ci)=ci.
Furthermore, since a �rm is indi¤erent among all the pure strategies played with

positive density, the expected gain of an outsider converges to O2 = �n � ci (payo¤ to
imitating immediately).

We have shown that both outsiders make independent draws from an exponential dis-

tribution with the same hazard rate �2, so the time b� of �rst entry must be exponentially
distributed with parameter 2�2. The expected payo¤ for an insider is therefore given by:

I2 =

Z 1

0

�Z b�
0

�n�2e
�rsds+

Z 1

b� �ne
�rsds

�
2�2e

�2�2b�db� .
Integrating and letting �2 � r=(r + 2�2) yields that:

I2 = �2�n�2 + (1� �2)�n.

Proof of Lemma 2. (i) As indicated in the main text, action p is weakly dominated
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if cp � c�2, so the outsiders mix every period between u and w. Counting from the date

at which the subgame is �rst reached, suppose that two outsiders draw their time of

imitation with an unprotected technology using an atomless and gapless distribution

function F3(�) with full support on [0;1). Denoting these (random) draws by s and s0,
we have that the expected payo¤ of an outsider if she imitates at time � 3 with probability

one (conditional upon no other outsider imitating earlier) is

bV3(� 3) =

Z �3

0

�ne
�rsf3(s)(1� F3(s))ds+

Z �3

0

�ne
�rsf3(s

0)(1� F3(s0))ds0

+(1� F3(� 3))2(�n � ci)e�r�3.

Because it must hold that dbV3(� 3)=d� 3 = 0 for all � 3 � 0, straightforward computations
show that we must have h3(� 3) � f3(� 3)=(1�F3(� 3)) = r(�n�ci)=(2ci). Hence, F3(� 3) =
1�e��3�3, where �3 � r(�n�ci)=(2ci). Each outsider expects to gain O3 � �n�ci (sincebV3(� 3) = �n � ci for � 3 = 0). In turn, the fact that the time at which imitation takes

place is exponentially distributed with parameter 3�3 yields that the payo¤ expected by

the insiders is

I3 = �3�n�3 + (1� �3)�n,

where �3 � r=(r + 3�3).
(ii) We now consider the case cp < c�2. In principle, �rms will mix using the three

actions available to each of them, namely w, p and u. We denote �a;k � 0 the probability
with which one of the outsiders plays action a when k outsiders remain to enter. We

let Va;k denote the outsider�s payo¤ when following action a 2 fw; p; ug. In a mixed-
strategy equilibrium in which outsiders play stationary strategies, we must have that

Vw;3 = Vp;3 = Vu;3, where

Vp;3 = �
2
w;3(�n�2�+ I2�

�)+2�w;3(1� �w;3)(�n�1�+�n��)+ (1� �w;3)2�n� ci� cp (2)

Vu;3 = �
2
w;3(�n�2�+�n�

�) + 2�w;3(1� �w;3)(�n�1�+�n��) + (1� �w;3)2�n � ci (3)

and

Vw;3 = �
2
w;3(Vw;3�

�) + 2�w;3�p;3O2�
� + (�w;3 + �p;3 + 1)�u;3�n�

� + �2p;3(�n � ci)��. (4)

Because Vp;3 = Vu;3, it holds after using the fact that �w;3 � 0 that

�w;3 =

r
cp

(I2 � �n)��
. (5)

Using the working hypothesis that cp < c�2 � I2 � �n yields that
cp

(I2 � �n)��
< ���, so

�w < 1 for � > 0 close enough to zero.
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Because �u;3 = 1 � (�w;3 + �p;3) and O2 = �n � ci, the expression for Vw;3 can be
rewritten as follows:

Vw;3 =
(1� �2w;3)�n � �p;3(�p;3 + 2�w;3)ci

��� � �2w;3
.

Equating Vu;3 and Vw;3 yields the value for �p;3 � 0 after some manipulations:

�p;3 =

s
ci � (1� ��)B�n ���w;3(1� ���2w;3)C

��ci
� �w;3, (6)

where: B = ��(2� �w;3)�3w;3 + (1� �w;3)2 and C = 2�n�1(1� �w;3) + �w;3�n�2
Using the fact that I2 � �n = �2(�n�2 � �n), we �nd for small � > 0 that

�w;3 �
r

cp
�2(�n�2 � �n)

,

�p;3 � 1�
r

cp
�2(�n�2 � �n)

,

and

�u;3 � 0;

that is action u is played with positive but vanishing probability.

We now determine payo¤s. To make exposition notationally simpler, let us normalize

to zero the date at which the subgame with three outsiders starts. Givenm periods of play

between time 0 and some �xed time t > 0, it holds that the probability that no outsider

has imitated and protected her technology once time t has elapsed is (�w;3)
3m = (�w;3)

3t=�

(sincem = t=�), which converges to zero as� converges to zero for any arbitrarily chosen

t > 0. We then must have that there is probability one that at least one outsider will

imitate and protect her technology (almost) instantaneously. In words, outsiders correlate

their actions as � goes to zero even though they randomize independently.

We conclude the proof by characterizing the probability distribution over entry out-

comes at (normalized) time 0 as well as equilibrium payo¤s. Because the probability of

no entry at any point in time is (1� �p;3)3, it holds that the probability that at least one
outsider enters is 1� (1��p;3)3. Conditional upon at least one outsider entering, we then
have that

�3(3) = (�p;3)
3=(1� (1� �p;3)3),

�3(2) = 3(1� �p;3)(�p;3)2=(1� (1� �p;3)3),

and

�3(1) = 3(1� �p;3)2�p;3=(1� (1� �p;3)3), (7)
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where �k(l) denotes the probability that l � 1 outsiders enter simultaneously at 0 given
that there are k � l of them. We �nally observe that an outsider�s continuation payo¤
at the beginning of these subgames is approximately O3 = �n � ci (since Vp;3 = Vu;3 =
Vw;3 � �n � ci for small enough � > 0). Since I1 = I0 = �n, the expected payo¤ earned
by an insider is approximately

I3 = �3(1)I2 + (1� �3(1))�n.

Proof of Lemma 3. We prove the result by induction. Lemma 2 established the

result for k = 3, so it only remains to prove that it holds for k � 4 whenever it is true
for k � 1. So suppose that the result holds for k � 1, and consider the subgames with k
outsiders when cp � c�k�1.
Let us focus on an outsider�s incentive to play p. Since c�j < c

�
k�1 (see proof in main

text) for all j < k � 1, he knows when choosing action p that p being simultaneously
chosen by l � 0 other imitators will result in the remaining outsiders playing a waiting
game (by the induction hypothesis). Clearly, the highest payo¤ that can be achieved is

the one attained when no other outsider enters simultaneously, i.e., when l = 0. Thus, the

highest payo¤ she can obtain by entering and paying the protection cost is Ik�1�cp�ci =
�k�1�n�k+1 + (1 � �k�1)�n � cp � ci. Since cp � c�k�1 implies Ik�1 � cp � ci < �n � ci,
it then follows that no outsider must be willing to enter by paying the protection cost in

subgames with k outsiders.

The k outsiders will therefore mix between waiting and entering without protection.

Counting from the date at which the subgame is �rst reached, let us suppose that the

outsiders draw their time of imitation with an unprotected technology using an atomless

and gapless distribution function Fk(�) with full support on [0;1). We then have that the
expected payo¤ of an outsider if she imitates at time � k with probability one (conditional

upon no other outsider imitating earlier) is

bVk(� k) = (k � 1)Z �k

0

�ne
�rsfk(s)(1� Fk(s))ds+ (1� Fk(� k))k�1(�n � ci)e�r�k .

In order for such an outsider to be indi¤erent between all the possible imitation times, it is

easy to show that we must have that Fk(� k) = 1�e��k�k , where �k � r(�n�ci)=((k�1)ci).
Each of the outsiders expects to gain Ok � �n � ci (since bVk(� k) = �n � ci for � k = 0).
In addition, because the time at which the �rst imitation takes place is exponentially

distributed with parameter k�k, the expected pro�t of an insider is given by

Ik = �k�n�k + (1� �k)�n,

where �k � r=(r + k�k).
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Proof of Lemma 4. As explained in the main text, we solve for the approximation

of the equilibrium outcome, taking directly the solution for a time period of length� = 0.

We show this result in a number of steps

Step 1: �u;k = 0.
We show this result by induction. For � = 0, we have

Vu;J = �n � ci

and

Vw;J = Pr[Xw;J = J � 1; Xp;J = 0; Xu;J = 0] Vw;J +
J�1X
m=1

J�1�mX
l=0

Pr[Xw;J = J � 1� l �m;Xp;J = l; Xu;J = m] �n +

J�1X
l=1

Pr[Xw;J = J � 1� l; Xp;J = l; Xu;J = 0] OJ�l,

where Pr[Xw;k; Xp;k; Xu;k] denotes the probability that Xw;k outsiders choose w, Xp;k

outsiders choose p and Xu;k outsiders choose u. We know, that for all k < J , a waiting

game is played and, according to Lemma 3, Ok = �n� ci, so the system of equations can
be rewritten as

Vu;J = �n � ci

and

Vw;J = Pr[Xw;J = J � 1; Xp;J = 0; Xu;J = 0] Vw;J +
(1� Pr[Xw;J = J � 1; Xp;J = 0; Xu;J = 0]) �n �
J�1X
l=1

Pr[Xw;J = J � 1� l; Xp;J = l; Xu;J = 0] ci

In a mixed-strategy equilibrium, an outsider must be indi¤erent between all actions played

with positive probability, so we must have Vu;J = Vw;J , which implies that

J�1X
l=1

Pr[Xw;J = J�1�l; Xp;J = l; Xu;J = 0] = (1�Pr[Xw;J = J�1; Xp;J = 0; Xu;J = 0]) = 1.

This holds if and only if

J�1X
l=0

Pr[Xw;J = J � 1� l; Xp;J = l; Xu;J = 0] = 1,

hence we get that �u;J = 0. Furthermore, this implies that OJ = �n�ci, and the property
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is therefore true for k = J . The reasoning follows exactly the same lines for larger values

of k. We can therefore use the notation adopted in the main text where �k � �p;k
Step 2: �k is the unique solution to Fk(�k) = cp.
Consider �rst the "last preemption game", i.e., the subgame where J outsiders are

left to enter. As shown in the main text, the indi¤erence between actions p and w is

de�ned by

FJ(�J) = cp,

where

FJ(�) =
J�1X
l=0

C lJ�1 �
l(1� �)J�1�l IJ�1�l.

Note that following entry by at least one outsider, a waiting game is played (by de�nition

of J). The speed is determined by the number of other outsiders who enter. Note that

according to Lemma 3, IJ�1�l = �J�1�l(�n�(J�1�l)��n) = c�J�1�l. We showed previously
that c�k is an increasing function of k. So we have IJ�1 > IJ�2 > ::: > I0, and it can be

immediately observed that FJ(�) is a strictly decreasing function of �. Indeed, increasing

� shifts the distribution to states where the payo¤ is lower.

Furthermore, J = inffk � 3 : cp < c�k�1g implies that FJ(0) = IJ�1 = c�J�1 > cp.

Since FJ(1) = I0 = 0 and FJ(�) is a continuous and strictly decreasing function, it then

follows that the equation FJ(�) = cp has a unique solution �J 2 (0; 1).
We now work recursively with Fk+1(�) for k � J . We use the following key properties

of Fk+1(�) proven below:

� Property 1:
@Fk+1
@�

(�) = (
k

1� �)(Fk(�)� Fk+1(�)).

� Property 2:
@Fk+1
@�

(0) > 0.

� Property 3:
Ik = Fk+1(�k).

From Properties 1 and 2, we can conclude that Fk+1(�) is increasing at zero, reaches

a maximum when Fk+1(�) and Fk(�) cross and is then decreasing. Furthermore, we

know that Fk+1(1) = I0 = 0. So to establish that Fk+1(�) = cp has a unique solution

it is su¢ cient to show that Fk+1(0) > cp. To prove it, note that we have Fk+1(0) =

Ik, and Property 3 implies that Ik = Fk+1(�k), so it holds that Fk+1(0) = Fk+1(�k).

Because Fk+1(�) is increasing at zero according to Property 2, the unique maximum

must be reached somewhere between 0 and �k. According to Property 1, we know that

Fk+1(�) > Fk(�) for � � �k, and therefore Fk+1(�k) > Fk(�k). Taking into account that
Fk+1(0) = Fk+1(�k), as we just showed, and that Fk(�k) = cp, it follows that Fk+1(0) > cp.
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Step 3: (i) follows directly from steps 1 and 2. We also showed above that Fk+1(�) >

cp for � 2 (0; �k), so we must that have �k < �k+1, which proves (ii). Finally (iii) can be
shown as in the proof of Lemma 2.

To conclude the proof we show that properties 1-3 state above do hold:

Property 1 We have that

Fk(�) =
k�1X
l=0

C lk�1 (�)
l(1� �)k�1�l Ik�1�l

and

Fk+1(�) =
kX
l=0

C lk (�)
l(1� �)k�l Ik�l. (8)

So we can establish that

Fk(�)� Fk+1(�) =
k�1X
l=0

C lk�1 (�)
l(1� �)k�1�l Ik�1�l �

kX
l=0

C lk (�)
l(1� �)k�l Ik�l

=
kX
l=1

C l�1k�1 (�)
l�1(1� �)k�l Ik�l �

kX
l=1

C lk (�)
l(1� �)k�l Ik�l � (1� �)k Ik.(9)

Consider

@Fk+1
@�

(�) =
kX
l=0

C lk
�
l(�)l�1(1� �)k�l � (k � l)(�)l(1� �)k�l�1

�
Ik�l

=
kX
l=0

C lk (�)
l�1(1� �)k�l�1(l � k�) Ik�l

=

kX
l=1

C lk (�)
l�1(1� �)k�l�1(l � k�) Ik�l � k(1� �)k�1Ik, (10)

so that

@Fk+1
@�

(�) =
kX
l=1

lC lk (�)
l�1(1��)k�l�1 Ik�l�k

kX
l=1

C lk (�)
l(1��)k�l�1 Ik�l�k(1��)k�1Ik.

Given that C l�1k�1 = lC
l
k=k, using (9) yields:

@Fk+1
@�

(�) = (
k

1� �)(Fk(�)� Fk+1(�)), (11)

as claimed.
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Properties 2 and 3 We have that

@Fk
@�
(�) =

k�1X
l=0

C lk�1
�
l(�)l�1(1� �)k�1�l � (k � 1� l)(�)l(1� �)k�l�2

�
Ik�1�l

=
k�1X
l=1

C lk�1 (�)
l�1(1� �)k�l�2 [l � (k � 1)�] Ik�1�l � (k � 1)(1� �)k�2Ik�1,

so
@Fk
@�
(0) = �(k � 1)(Ik�1 � Ik�2) (12)

for k � J + 1.
Denote now bIk(�) for the expected payo¤ to an insider when there are k outsiders

who choose to enter with probability � (the expectation being conditional upon at least

one outsider entering). Then

bIk(�) = kX
l=1

C lk
(�)l(1� �)k�l
1� (1� �)k Ik�l, (13)

so straightforward manipulations yield:

(1� (1� �)k) bIk(�) =
kX
l=1

C lk (�)
l(1� �)k�l Ik�l

=
kX
l=0

C lk (�)
l(1� �)k�l Ik�l � (1� �)k Ik

= Fk+1(�)� (1� �)k Ik.

If there existed a unique �k satisfying Fk(�k) = cp, then we would have bIk(�k) = Ik, so
using the previous equality for � = �k would yield

(1� (1� �k)k) Ik = Fk+1(�k)� (1� �k)k Ik,

that is, an insider�s expected payo¤ (net of �n) when k outsiders remain to enter would

satisfy

Ik = Fk+1(�k) (14)

if a unique �k satisfying Fk(�k) = cp existed.

Because we know that there exists a unique �J satisfying FJ(�J) = cp, it simply

remains to prove that
@Fk
@�
(0) > 0, that is, Ik�1 < Ik�2 for k � J +1, which follows from

working recursively on k as in Vettas (2000).22

22Notice that expressions (4a), (5a) and (6)-(9) in Vettas (2000) are equivalent to expressions (1), (14),
(8) for � = 0, (11), Fk(1) = 0 < cp, and (12), respectively. Note that the expression that turns out to be
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Proof of Proposition 1. Proposition 1 directly follows from Lemmas 1-4.

Proof of Proposition 2. Let ci < �n. If cp � �2, then J = n and

In�1 � cp = �n�1�1 + (1� �n�1)�n � cp.

Note that In�1 � cp is decreasing in cp for cp � �2, whereas it increases in ci < �n. In
particular, cp # �2 and ci " �n implies that In�1 � cp converges to �1 � �2 from below

(since �n�1 " 1). When ci � �n, cp � �2 implies that J 0 = n, so In�1 � cp = �1 � cp,
which implies that In�1 � cp converges to �1 � �2 as cp # �2.
Proof of Lemma 5. Let cp 2 [c�J�2; c�J�1) for some integer J between 3 and n, and

consider the subgames with k � J outsiders.
(i) Working backwards, we �rst show that cp " c�J�1 implies that one, and only one,

of the k � J outsiders enters, even though each of them chooses action p with negligible

probability (i.e., �k # 0 as cp " c�J�1 for all k � J). Given k = J outsiders, the probability
that one outsider enters conditional upon at least one of them entering equals

�J(1) =
J�J(1� �J)J�1
1� (1� �J)J

.

Since �J # 0 as cp " c�J�1, it follows from L�Hôpital�s rule that

lim
cp"c�J�1

�J(1) = 1�
(J � 1)�J
1� �J

= 1,

so one, and only one, outsider (out of the J existing ones) enters as cp " c�J�1. This also im-
plies that IJ = IJ�1, so it also follows that �J+1 # 0 as cp " c�J�1, with limcp"c�J�1 �J+1(1) =

1 and IJ+1 = IJ = IJ�1. Iteration then yields for all k � J that �k # 0 as cp " c�J�1,
with limcp"c�J�1 �k(1) = 1 and Ik = IJ�1, so outsiders enter quasi-instantaneously by pay-

ing cp in a sequential and coordinated manner, with each having the same probability

of entry as any other outsider in any subgame in which k � J . Because these results

hold for any arbitrary value of J and Ik = IJ�1 = c�J�1 for all k � J , we have that

limcp"c�J�1(In�1 � cp) = 0 regardless of the value taken by J , so In�1 � cp = �n.
Having shown that the innovator�s net pro�ts In�1 � cp converge to �n as cp " c�J�1

for any integer value of J between 3 and n, we now prove that the convergence is from

above by showing that the innovator�s net pro�t has a negative derivative as cp " c�J�1.
In subgames in which k � J , we showed (see (13) noticing that bIk(�k) = Ik) that an

equivalent in our setting to (10) in Vettas (2000) (namely, Fk+1(0) > Ik) actually holds with equality,
and hence it is redundant based on the expression in (8) evaluated at � = 0.
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insider�s continuation payo¤ (net of �n) satis�es the recursive equation

Ik =

kX
l=1

C lk
(�k)

l(1� �k)k�l
1� (1� �k)k

Ik�l,

since at least one of them enters immediately. Noticing that �k is an (implicit) function

given by Fk(�k) = cp and that �k # 0 as cp " c�J�1, we have that

@Ik
@cp

=

kX
l=1

C lk
(�k)

l(1� �k)k�l
1� (1� �k)k

�
@Ik�l
@cp

�
+

kX
l=1

C lk(
l(�k)

l�1(1� �k)k�1�l
1� (1� �k)k

� k(�k)
l(1� �k)k�1�l

(1� (1� �k)k)2
)Ik�l

�
@�k
@cp

�
.

Making (repeated) use of L�Hôpital�s rule, it follows that

@Ik
@cp

����
cp"c�J�1

= C1k
1

k

 
@Ik�1
@cp

����
cp"c�J�1

!
�
�
C1k
(k � 1)
2k

Ik�1 � C2k
1

k
Ik�2

� 
@�k
@cp

����
cp"c�J�1

!

=

 
@Ik�1
@cp

����
cp"c�J�1

!
� (k � 1)(Ik�1 � Ik�2)

2

 
@�k
@cp

����
cp"c�J�1

!
,

where
@�k
@cp

����
cp"c�J�1

=

 
dFk(�k)

d�k

����
�k#0

!�1
< 0,

since the derivative of Fk(�) is negative for � = �k.

Let k = J and notice that @IJ�l=@cp = 0 for all l � 1 as well as that

@�J
@cp

����
cp"c�J�1

= � 1

(J � 1)(IJ�1 � IJ�2)
,

so
@IJ
@cp

����
cp"c�J�1

=
1

2
.

It follows that
@(IJ � cp)
@cp

����
cp"c�J�1

= �1
2
< 0.

Let now k = J + 1, so that

@IJ+1
@cp

����
cp"c�J�1

=
@IJ
@cp

����
cp"c�J�1

� J(IJ � IJ�1)
2

 
@�J+1
@cp

����
cp"c�J�1

!
.
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Because
@IJ
@cp

����
cp"c�J�1

=
1

2

and
@�J+1
@cp

����
cp"c�J�1

=
1

J(IJ � IJ�1)
,

it follows that
@(IJ+1 � cp)

@cp

����
cp"c�J�1

= �1.

Iteration yields that
@Ik
@cp

����
cp"c�J�1

= �J + 1� k
2

,

so
@(Ik � cp)
@cp

����
cp"c�J�1

< 0

for all k � J , which proves that the payo¤ achieved by the innovator if she pays the

protection cost is decreasing in cp whenever cp is a bit smaller than c�J�1 (where J can be

any integer between 3 and n).

(ii) We now show that In�1 � cp converges to �n from above as cp # 0. To show
this result, note that the fact that �k " 1 as cp # 0 yields after some straightforward
manipulations that

@Ik
@cp

����
cp#0

= �kI1

 
@�k
@cp

����
cp#0

!
.

Because
@�k
@cp

����
cp#0

=

 
dFk(�k)

d�k

����
�k"1

!�1
= � 1

(k � 1)I1
,

we then have that
@(Ik � cp)
@cp

����
cp#0

=
k

k � 1 � 1 > 0

for any arbitrary k. In particular, it holds for k = n � 1, which shows that the payo¤
achieved by the innovator if she pays the protection cost is increasing in cp for small

values of cp.

(iii) Follows trivially from the fact that cp � c�n�2 implies J = n.
Proof of Proposition 3. The �rst part follows directly from Proposition 2. For the

second part, an example is given in Figure 3, and more generally the result can be shown

for small enough �P using Lemma 5. To this end, let 
(�P ) � fcp > 0 : In�1� cp > �Pg
denote the set of values for cp such that paying cp is preferred by the innovator over a

patent that yields payo¤ �P . Because �k (k = J; :::; n� 1) and In�1 � cp are continuous
in cp within any subinterval, it then holds from the properties stated in Lemma 5 that
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(�P ) is nonconvex for values of �P close enough to �n.

Proof of Proposition 4. We start with the subgames in which k = 1 and K 2
f0; 1g. Clearly, the imitator who never tried to imitate in the past enters right away.
She pays cost cp if and only if qi�3�K � cp � qi�3. Letting cK � qi(�3�K � �3), where
c1 > c0 = 0, we have that cp � cK implies that the imitator enters without paying

cp, and hence the K imitators who attempted to imitate in the past (but failed) enter

right away. The payo¤ expected by the imitator who never tried imitation in the past is

O1(K) = qi�3�ci, whereas the payo¤ to insiders is I1(K) = qi�3+(1�qi)�2�K . In turn,
cp < cK implies that the imitator pays cp when entering, and hence the K imitators that

attempted to imitate in the past can never enter. The payo¤ expected by the imitator

who never tried imitation in the past is O1(K) = qi�3�K � cp� ci, whereas the payo¤ to
insiders is I1(K) = qi�3�K + (1� qi)�2�K .
We now examine the subgames in which k = 2 and hence K = 0. If any of the two

imitators tries to imitate one of the protected technologies, she knows that the rival will

try imitating with probability one right after she moves. We distinguish two situations,

depending on whether cp � c1 is nonnegative or not.
When cp � c1, if one of the imitators fails in imitating, her continuation payo¤ will

be qi(�3� ci), since the other one will try to immediately imitate without paying cp and
she will succeed with probability qi. It is easy to show that �rms can never mix between

the three actions; indeed, the fact that cp > (1� qi)c1 implies that p is strictly dominated
by u.23 It is then standard to show that the two imitators play a waiting game in which

the hazard rate with which each chooses action u is

b�2 =
r[qi(�3 � ci) + (1� qi)qi(�3 � ci)� (1� qi)ci]

(1� qi)qici

= r(
�3
ci
� 1)( 1

1� qi
+ 1)� r

qi
,

which is positive because
�3
ci
>
1

qi
. An imitator�s expected payo¤ is O2(0) = qi�3 + (1�

23Suppose that one of the imitators chooses actions u, p and w with respective probabilities �u,�p and
�w. The fact that �w = 1 � (�p + �u) implies then that the other imitator gains a higher payo¤ by
choosing u rather than p for any (feasible) values of �u,�p and �w. To prove this, note that the payo¤ to
choosing action u is

Vu = qi�3 + (1� qi)[�uqi(�3 � ci) + �wqi(�3 � ci)]� ci,

whereas the payo¤ to choosing action p is

Vp = qi[�u(qi�3+(1�qi)�2)+�p(qi�3+(1�qi)�2)+�w(qi�3+(1�qi)�2)]+(1�qi)[�uqi(�3�ci)+�wqi(�3�ci)]�ci�cp.
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qi)qi(�3 � ci)� ci, whereas an insider�s expected continuation payo¤ is

bI2(0) = �1 � 2b�2qi(2� qi)
r + 2b�2 (�1 � �3).

When instead it holds that cp < c1, if one of the imitators fails in imitating, her

continuation payo¤ will be 0, since the other one will try to immediately imitate by

paying cp. It is easy to show that we cannot have an equilibrium in which imitators mix

between p and u. So suppose �rst that they mix between u and w. Then it can be shown

that they choose the timing at which to follow action u from an exponential distribution

with hazard rate b�02 = r(qi�3 � ci)
(1� qi)(qi�2 � cp)

.

An imitator�s expected payo¤ is qi�3 � ci, whereas an insider�s continuation payo¤ is

bI 02(0) = �1 � 2b�02qi(2� qi)
r + 2b�02 (�1 � �2)�

2b�02qi
r + 2b�02 (�2 � �3).

Choosing p yields qi[qi�3 + (1 � qi)�2] � ci � cp, which is smaller than qi�3 � ci if and
only if (1� qi)qi(�2 � �3) < cp.
Suppose now that �rms mix between p and w. Then they choose to take action p at

a time drawn from an exponential distribution with hazard rate

b�002 = r(qi(qi�3 + (1� qi)�2)� ci � cp)
qicp

,

and each �rm expects to earn qi[qi�3 + (1 � qi)�2] � ci � cp, whereas an insider earns
continuation payo¤

bI 002 (0) = �1 � 2b�002q2i
r + 2b�002 (�2 � �3)�

2b�002qi(2� qi)
r + 2b�002 (�1 � �2).

Choosing u yields qi�3 � ci, which is smaller than qi[qi�3 + (1 � qi)�2] � ci � cp if and
only if (1� qi)qi(�2 � �3) > cp.
To sum up, cp < (1 � qi)c1 implies that imitators mix between p and w and there

is delay from which the innovator bene�ts:24 intuitively, protection is somewhat costly

and can be avoided if the other �rm happens to (successfully) imitate �rst, so there is an

incentive to wait so that the other �rm incurs the protection cost in the �rst place (i.e.,

24The fact that cp > 0 can be easily shown to imply that conditional on the other imitator choosing p
with probability one, the payo¤ to the other �rm choosing w (i.e., qi(qi�3� ci)+(1� qi)(qi�2� cp� ci))
is always greater than the payo¤ to choosing p (i.e., qi(qi�3 + (1 � qi)�2) � ci � cp). So there can be
no symmetric equilibrium in which both imitators choose action p with probability one even if cp is
arbitrarily close to zero.

36



�rms free-ride on the protection cost, not the imitation cost). Also, nobody can bene�t

from the innovation going to the public domain, unlike our base model. In equilibrium,

the innovator�s payo¤ is bI 002 (0)� cp, where
bI 002 (0) = �1 � 2b�002q2i

r + 2b�002 (�2 � �3)�
2b�002qi(2� qi)
r + 2b�002 (�1 � �2).

In turn, (1 � qi)c1 � cp < c1 implies that imitators mix between u and w knowing

that the imitator that chooses u will be excluded from the market if she fails at imitating

and the rival succeeds afterwards, whereas c1 � cp implies that �rms mix between u and
w knowing that the imitator that chooses u will not be excluded from the market if she

fails and the rival succeeds afterwards. (What is remarkable is that this holds even if

ci = 0.) The innovator�s payo¤ when (1� qi)c1 � cp < c1 is bI 02(0)� cp, where
bI 02 = �1 � 2b�02qi

r + 2b�02 (�2 � �3)�
2b�02qi(2� qi)
r + 2b�02 (�1 � �2).

When cp � c1, the innovator�s payo¤ is bI2(0)� cp, where
bI2(0) = �1 � 2b�2qi(2� qi)

r + 2b�2 (�1 � �3).

In short, for any value of cp, the innovator can always bene�t from an imitation delay,

even if imitation is not costly, because imitators have an incentive either to free-ride

on the protection cost or to bene�t from the lack of protective measures by the other

imitator.

Proof of Proposition 5. We solve the model by backwards induction, using the

notation Ok for the expected payo¤ of an outsider in a subgame with k outsiders left, Ik
for the payo¤ of an insider who entered in one of the previous subgames and I lk for the

payo¤ of the insider who just entered (called the "last insider", hence the superscript).

We work backwards as usual, so we consider the di¤erent subgames that may arise.

Suppose that k = 1. Then, regardless of the bidding outcome, the outsider will enter,

so the insider bids his valuation, zero, and the outsider gets the researcher at a zero wage.

Continuation payo¤s are: I1 = I l1 = �n and O1 = �n.

Suppose that k = 2. The subgame starts with an auction between the last insider and

the two outsiders. To determine the strategies in this auction, we need to determine the

payo¤s in the subsequent subgames. We �rst study the subgame following an outcome

of the auction such that the last insider won the bidding in the previous subgame. In

this class of subgames, all researchers have signed a non-competition clause, there are

therefore two outsiders who can only enter by doing the research in-house by paying

cost ci. This leads to a war of attrition as in section 3 since ci < c�2. Payo¤s are then
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I2 = I l2 = �2�n�2 + (1 � �2)�n for the insiders and O2 = �n � ci for outsiders. If
an outsider won the bidding, then according to the previous step, the payo¤s of all the

players are �n.

We now examine the bidding strategies. The last insider gets �2�n�2+(1��2)�n�w
if he wins with bid w, and �n if he loses. A weakly dominant strategy in a second-price

auction is for the insider to bid his valuation c�2 (where c
�
2 = I2 � �n = �2(�n�2 � �n)).

An outsider gets �n �w if he wins with bid w, but he gets �n � ci if he loses to the last
insider and �n if he loses to the other outsider. Since c�2 > ci , the insider by bidding his

valuation c�2, wins and pays price between 0 and ci, payo¤s are I2 = �2�n�2+(1��2)�n,
I l2 2 [I2 � ci; I2] and O2 = �n � ci.
Suppose that k = 3. We �rst study the subgame following an outcome of the auction

such that the last insider won the bidding in the previous subgame. In that subgame,

the outsiders can only enter by paying ci (in-house research). When an outsider does

imitate, he becomes the last insider in the next subgame and gets I l2 � ci, which is at
least I2 � 2ci. If one of the competing outsiders enters, he gets O2 = �n � ci. Given
that c�2 > ci implies I2 � 2ci > O2 = �n � ci, this leads to a preemption motive and the
expected payo¤ of the outsiders in such a subgame is �n � ci. Furthermore, the insiders
obtain an expected payo¤ strictly less than I2 (since there is a risk of miscoordination).

Thus, when we examine the bidding strategies, we see that the last insider knows that

if he wins the bidding he gets a payo¤ strictly less than when he loses (and gets I2). As

a result, he always bids zero. The outsiders then bid their valuation v, that is, they bid

v = I l2 �O2 2 [c�2; c�2 + ci], so we have I3 = I l3 = I2 and O3 = 1
3
(I l2 � v) + 2

3
O2 = O2.

Suppose that k = 4. We �rst study the subgame following an outcome of the auction

such that the last insider won the bidding in the previous subgame. When an outsider

imitates, he becomes the last insider in the next subgame and gets I l2 � ci, which equals
I2 � 2ci. If one of the competing outsiders enters, he gets O2 = �n � ci. Given that
c�2 > ci, this leads to a preemption motive and the expected payo¤ of the outsiders in

such a subgame is �n� ci and the insiders obtain an expected payo¤ strictly less than I2
(since there is a risk of miscoordination). Thus, when we examine the bidding strategies,

we see that the last insider gets a payo¤upon winning the auction that is strictly less than

what he gets if he loses (namely, I2). Thus, he always bids zero. In turn, the outsiders

bid their valuation: v0 = I l3 � O3 = c�2 + ci. We have for insiders I4 = I l4 = I2, and for
outsiders O4 = 1

4
(I l3 � v0) + 3

4
O3 = O3 = �n � ci.

The result can be easily shown by induction for k > 4.
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