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ABSTRACT 

Finite sample performance of small versus large scale dynamic 
factor models* 

We examine the finite-sample performance of small versus large scale 
dynamic factor models. Our Monte Carlo analysis reveals that small scale 
factor models out-perform large scale models in factor estimation and 
forecasting for high levels of cross-correlation across the idiosyncratic errors 
of series belonging to the same category, for oversampled categories and, 
especially, for high persistence in either the common factor series or the 
idiosyncratic errors. Using a panel of 147 US economic indicators, which are 
classified into 13 economic categories, we show that a small scale dynamic 
factor model that uses one representative indicator of each category yields 
satisfactory or even better forecasting results than a large scale dynamic 
factor model that uses all the economic indicator 
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1 Introduction

Aruoba, Diebold and Scotti (2009) considered that comparative assessments of forecasts

from �small data�versus �big data�dynamic factor models was a good place to develop

further empirical analyses for the same economy and time period. On the one hand, small

data forecasts have been computed from di¤erent enlargements of the Stock and Watson

(1991) single-index small scale dynamic factor model (SSDFM). Recent examples of

are Mariano and Murasawa (2003), Nunes (2005), Aruoba, Dieblod and Scotti (2009),

Aruoba and Dieblod (2010), and Camacho and Perez Quiros (2010). The Philadelphia

Fed business conditions index is also contructed using this approach. In these studies, the

strict factor models are estimated by maximum likelihood using the Kalman �lter under

the assumption of having non cross-correlated idiosyncratic errors.

On the other hand, big data forecasts have been computed from various sophistications

of the seminal Stock and Watson (2002a) principal components estimator, which combine

the information of many predictors. Recent examples of forecasts from the so-called large

scale dynamic factor models (LSDFM) are Forni, Hallin, Lippi and Reichlin (2005),

Giannone, Reichlin and Small (2008), and Angelini et al. (2011). The Chicago Fed

National Activity Index (CFNAI) is also developed under this approach.1 The approximate

factor models suggested in these papers lead to asymptotically consistent estimates when

the number of variables and observations tends to in�nity, under the assumptions of weak

cross-correlation of the idiosyncratic components and that the variability of the common

component is not too small.

Relatively, much more theoretical attention has recently been devoted to large scale

factor models by stressing that strict factor models rely on the tight assumption that the

idiosyncratic components are cross-sectionally orthogonal. However, including time series

in empirical applications to compute factors from large panels frequently supposes facing

non-negligible costs as well. According to Boivin and Ng (2006), the large data sets used

by LSDFM are typically drawn in practice from a small number of broad categories (such

as industrial production, or monetary and price indicators). Since the idiosyncratic errors

1Notably, in November 2011 the real-time monthly average of the Philadelphia Fed index was positive

(0.01) while the Chicago Fed index was negative (-0.37).
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of time series belonging to a particular category are expected to be highly correlated, the

assumption of weak correlation among the idiosyncratic components is more likely to fail

as the number of time series of this category increases. In addition, the good asymptotic

properties suggested by the theory may not hold in many empirical applications when the

number of variables and observations is relatively small.2

The impact of this potential clash between the asymptotically good properties of

LSDFM suggested by the theory and their actual forecasting performance obtained in

empirical applications has rarely been addressed. Among the exceptions, Stock and Wat-

son (2002b) �nd deterioration in the performance of large scale (static) factor models

when the degree of serial correlation and (to a lesser extent) heteroskedasticity among

idiosyncratic errors are large and when serial correlation of factors is high. Boivin and Ng

(2006) use large scale (static) factor models to show that including series that are highly

correlated with those of the same category does not necessarily mean outperforming mod-

els that exclude these series. Boivin and Ng (2006) for the US and Caggiano, Kapetanios,

and Labhard (2009) for some Euro area countries estimate large scale (static) factor mod-

els of di¤erent dimensions to show that factors extracted from pre-screened series often

yield satisfactory or even better results than using larger sets of series. Notably, their

preferred data sets sometimes include one-�fth of the original set of indicators. Bai and

Ng (2008) �nd improvements over a baseline large scale (static) factor model by estimating

the factors using fewer, but more informative, predictors. Banbura and Runstler (2011)

use a large scale (dynamic) model to show that forecast weights are concentrated among

a relatively small set of Euro area indicators. Finally, Banbura and Mondugno (2010) �nd

that a LSDFM applied to a small (14 series) dataset outperforms the forecasts obtained

from medium (46 series) and large (101 series) datasets.

Of all these works, the one closest to our approach is that of Boivin and Ng (2006),

although we di¤er from these authors in many aspects. First, our purpose is not to

determine the optimal number of variables from a large dataset to be used in a large

2Recently, Boivin and Ng (2006) for US and Banbura and Runstler (2011) for the Euro area have shown

that the predictive content of empirical large scale factor models is contained in the factors extracted from

as few as about 40 series.
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scale factor model. In contrast, we try to shed some light on the issue of which is the

optimal strategy when dealing with a forecasting problem, either to start from a simple

small scale factor model that reasonably selects the indicators (and which is enlarged if

necessary) or to deal with a large scale factor model whose dimension can be selectively

reduced to eliminate the redundant information.3 Second, Boivin and Ng (2006) consider

static models, while we compare dynamic speci�cations. In particular, we consider the

large scale dynamic factor model of Giannone, Reichlin and Small (2008) while they use

the large scale static factor model of Stock and Watson (2002a). The use of dynamic

instead of static factor models is an important distinctive feature of our analysis since

we address to what extent persistence in the factors and in the idiosyncratic shocks may

a¤ect the accuracy of our di¤erent factor model speci�cations. Third, we assess in depth

the e¤ects on factor models of using time series which are extracted from separate groups

of macroeconomic indicators. Boivin and Ng (2006) use the word �categories� to refer

to di¤erent sectors in the economy (prices, production, etc..) but they classify the data

according to their correlation or their heteroskedastic behavior. In contrast, we concentrate

on assessing the e¤ects on the estimation of the factors and forecasting of dealing with

data which are extracted from separate sectors. In addition, we examine the e¤ects of

dealing with cross-correlation across sectors and within each sector.

Within this context, our paper develops simulations in which we try to mimic di¤erent

empirical forecasting scenarios. The �rst scenario is the case in which an analyst uses

SSDFM to estimate the factors and to compute the forecasts from a small number of

pre-screened series which are the main (less noisy) indicators of the di¤erent categories

of data. In the second scenario, the analysis is developed from a SSDFM which uses a

less accurate pre-screening set of indicators that includes the series exhibiting the highest

averaged correlation with respect to the other series included in the same category. In

the �nal scenario, the analysis is conducted with a LSDFM that uses a large scale data

set generated by including additional series in each category under the assumption that

3The LSDFM requires a su¢ ciently large number of time series to achieve its statistical properties. In

this sense, a SSDFM cannot be viewed as a particular case of a LSDFM but as a di¤erent estimation

strategy.
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the additional series are �ner disaggregations of the main indicator with which they are

correlated.

Using averaged squared errors, we propose a Monte Carlo analysis to evaluate the

accuracy of these three forecasting proposals to estimate the factors and to compute out-

of-sample forecasts of a target variable. We �nd that adding indicators that bear little

information about the factor components does not necessarily lead LSDFM to improve

upon the forecasts of SSDFM . In fact, we show that when the additional time series are

too correlated with the indicators already included in some categories, forecasting with

many predictors performs worse than forecasting from a reasonably pre-screened dataset,

especially when the categories are not highly correlated. In addition, SSDFM outperform

LSDFM in factor estimation and forecasting for high levels of cross-correlation across

the idiosyncratic errors of series from the same category, for oversampled categories and,

especially, for high persistence in either the common factor series or the idiosyncratic error.

The comparative performance of small versus large scale dynamic factor models is ex-

amined using the set of 147 US monthly macroeconomic indicators suggested by Stock and

Watson (2002b). The time series included in the dataset are classi�ed by these authors

into 13 economic categories such as real output, prices, and employment. In an out-of-

sample exercise, we examine the accuracy of a large scale dynamic factor model that uses

the 147 indicators versus a small scale dynamic factor models that uses one representative

of each category to forecast the Industrial Production Index (IPI) at di¤erent short-term

horizons. The empirical results obtained from actual data are in concordance with those

obtained from generated data. A SSDFM that uses the 13 time series exhibiting the

highest averaged correlation with respect to the series of the same category yields sat-

isfactory or even better forecasting results than a LSDFM that uses the 147 economic

indicators.

This paper proceeds as follows. Section 2 describes both small and large scale dynamic

factor models. Section 3 presents the design details of the simulation exercise, i.e. how

to generate the main series of each category and the �ner disaggregations. Section 4

shows the main �ndings in the comparison between SSDFM and LSDFM for di¤erent

parameter values. Section 5 describes the main results of our empirical application. Section
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6 concludes.

2 Dynamic factor models

Large and small scale factor models can be represented in a similar general framework.

Let yt be a scalar time series variable to be forecasted and let Xt = (X1t; :::; XNt)
0, with

t = 1; :::; T , be the observed stationary time series which are candidate predictors of yt. If

we are interested in one-step-ahead predictions, the baseline model can be stated as

yt+1 = �0 + �
0Xt +

pX
j=1


jyt�j+1 + �yt+1; (1)

where � = (�1; :::; �N )
0, and �yt+1 is a zero mean white noise.

Since estimating this expression becomes impractical as the number of predictors in-

creases, it is standard to assume that each predictor Xit has zero mean and admits a factor

structure:

Xit = �
0
iFt + �it; (2)

for the ith cross-section unit at time t, i = 1; :::; N , �i = (�i1; :::; �ir)
0, and t = 1; :::; T . In

this framework, the r�1 vector Ft contains the r common factors, �i the r factor loadings,

�it = �0iFt the common components, and �it the idiosyncratic errors. In vector notation

the model can be written as

Xt = �Ft + �t; (3)

where � = (�ij) is the N � r matrix of factor loadings and �t is the vector of N idio-

syncratic shocks. In the related literature, it is standard to assume that the vectors Ft

and �t are serially and cross-sectionally uncorrelated unobserved stationary processes.
4

In contrast to static factor models, the dynamics of the common factors are supposed to

follow autoregressive processes. Although it is very easy to generalize, let us assume that

the factors follow a simple V AR(1) process

Ft = AFt�1 + ut; (4)

4 In this framework the common factor is supposed to generate most of the cross-correlation between

the series of the data set fXitgNi=1:
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where A is the r� r matrix of coe¢ cients, with E[ut] = 0 and E[utu0t] = �u. In addition,

�t is also assumed to follow a simple stationary V AR(1) process with mean zero:

�t = C�t�1 + vt; (5)

where vt is serially uncorrelated with E[vt] = 0 and E[v0tvt] = �v.5 Then, the target

variable yt can be forecasted through the common factors by

yt+1 = �0 + �
0Ft +

pX
j=1


jyt�j+1 + eyt+1: (6)

Finally, let us call the model a small scale dynamic factor model (SSDFM) when N is

�xed and small and T is large, and a large scale dynamic factor model (LSDFM) when

both N and T are large. In addition, although we leave the data to select the number of

factors in the empirical exercise, let us focus the analysis in the case where there is only

one factor.

2.1 Small scale dynamic factor models

The baseline model is the single-index dynamic factor model of Stock and Watson (1991)

which can be written in state-space form. Accordingly, the autoregressive parameter A, the

vector of the N loading factors �, and the (N �N) covariance matrix of the idiosyncratic

shocks �v, can be estimated by maximum likelihood via the Kalman �lter.6 Let ht be the

(N + 1) vector ht = (F 0t;�
0
t)
0, Ij be the identity matrix of dimension j, and 0j be the vector

of j zeroes. Hence, the measurement equation can be de�ned as

Xt = Hht + et; (7)

where

H =
�
� IN

�
; (8)

and et is a vector of N zeroes. In addition, the transition equation can be stated as

ht+1 = Fht + wt; (9)

5Although assuming V AR(p) dynamics for the factors and the idiosyncractic components is straight-

forward, it would complicates notation.
6For identi�cation purposes, �u is usually assumed to be one.
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where the (N + 1�N + 1) matrix F is

F =

0@ A 0
0
N

0N C

1A ; (10)

and wt = (ut; v0t) with zero mean and covariance matrix

Q =

0@ �u 0

0 �v

1A : (11)

In the standard way, the Kalman �lter also produces �ltered and smoothed inferences

of the common factor: fF stjtg
T
t=1 and fF stjT g

T
t=1. These inferences can be used in the

prediction equation (6) to compute OLS forecasts of the variable yt+1:

2.2 Large scale dynamic factor models

To estimate the factors in the large scale framework, we use the quasi-maximum likelihood

approach suggested by Doz, Giannone and Reichlin (2007). In this method, the estimates

of the parameters are obtained by maximizing the likelihood via the EM algorithm, which

consists of an iterative two-step estimator. In the �rst step, the algorithm computes an

estimate of the parameters given an estimate of the common factor. In the second step,

the algorithm uses the estimated parameters to approximate the common factor by the

Kalman smoother. At each iteration, the algorithm ensures higher values of the log-

likelihood of the estimated common factor, so it is assumed that the process converges

when the slope between two consecutive log-likelihood values is lower than a threshold.7

Using an initial set of time series fXitgNi=1, the (i+ 1)-th iteration of the algorithm is

de�ned as follows. Let us assume that �i, Ai and �ix are known. Let F
i
t be the common

factor which is the output of the Kalman �lter from the i-st iteration. The updated

estimates of �, A, and �x can be obtained from

�i+1 = E[\XtF i0t ](E[\F itF i0t ])
�1; (12)

Ai+1 = E[\F itF i0t�1](E[ \F it�1F i0t�1])
�1; (13)

�i+1x = E[[Xi
t�
i0
t ]: (14)

7 In practice, we consider a threshold of 10�4.
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The estimates of the expectations can be obtained from

E[[XtF 0t ] =
1

T

TX
t=1

XtF
i0
t ; (15)

where the series fF it gTt=1 is the factor estimated at the iteration i. In addition, since

E[FtF
0
t ] = E[FtF

i0
t ]+E[fFt�F i0t gfFt�F i0t g0], and E[fFt�F i0t gfFt�F i0t g0] is the variance

of the estimated common factor, then denoting the variances by fVtgTt=1, the expectation

E[FtF
0
t ] can be estimated by

E[\F itF i0t ] =
1

T

TX
t=1

(F itF
i0
t + Vt): (16)

Following a similar reasoning, E[FtF 0t�1] = E[FtF
i0
t�1] + E[fFt � F i0t gfFt�1 � F i0t�1g0]; and

the last expectation which we denote as fCtgTt=2 can be estimated by the Kalman �lter.

Then, the expectation E[FtF 0t�1] can be estimated by

E[\F itF i0t�1] =
1

T

TX
t=1

(F itF
i0
t�1 + Ct): (17)

The matrix �v is estimated as the diagonal matrix whose principal diagonal is given by:

�̂x = diag(
1

T

TX
t=1

Xt(Xt � �iF it )0): (18)

These estimates can be used again in the Kalman �lter to compute the factors F i+1t . The

algorithm, which starts with the static principal components estimates of the common

factors F 0t and their factor loadings �
0, is repeated until the quasi-maximum likelihood

estimates of the parameters are obtained. These can easily be used to compute the esti-

mates of the common factor fFtjT gTt=1 using the Kalman smoother, treating the idiosyn-

cratic errors as uncorrelated both in time and in the cross section.8 Finally, as in the case

of SSDFM , the forecasts of yt+1 are estimated by OLS regressions on (6).

3 Designing the simulation study

According to the estimation of the dynamic factor models described in the previous sec-

tion, the empirical applications that use these factor models will perform worse than
8The algorithm requires small number of iterations to converge. In our simulations, we only required 3

or 4 iterations to converge.
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theoretically expected when facing data problems that invalidate the assumptions seem-

ingly guaranteed by the theory. In the case of SSDFM , the larger the covariance among

idiosyncratic errors, the less accurate the estimations are expected to be. With respect to

the empirical performance of LSDFM , the models�accuracy deteriorates when the aver-

age size of the common component falls, when the number of observations is not large on

either the cross-section or on the time dimensions, and when the possibility of correlated

errors increases as more series are included in the model, which is very common in prac-

tice since the data are usually drawn from a small number of broad categories.9 In this

section, we perform Monte Carlo simulations to assess the extent to which the violation of

the theoretical assumptions behind SSDFM and LSDFM a¤ects both the consistency

of factor estimation and the accuracy of forecasts.

3.1 Forecasting scenarios

The �rst scenario mimics the case in which forecasters develop a reasonable pre-screening

of the set of potential indicators and apply SSDFM to obtain predictions from a reduced

number of selected indicators. In particular, we assume that the analyst searches for

the representative indicators of each economic category by screening out the noisier time

series of each category. However, the analyst usually does not know which are the least

noisy indicators from each category and some noisy indicators can be erroneously included

to compute the forecasts. To evaluate the e¤ects of forecasting from a less accurate pre-

screened set of indicators, we also consider the forecasting scenario of computing SSDFM

forecasts from a small number of noisier indicators which are the series of each category

that exhibits the highest average correlation with the other series included in the same

category. In this case, we assume di¤erent degrees of correlation across representative

series of di¤erent categories.

The second forecasting scenario mimics the case of forecasters who include a large

number of indicators and apply LSDFM to compute predictions. In this case, the analyst

9Moench, Ng and Potter (2009) develop an interesting analysis by using dynamic hierarchical factor

models. The comparison between these type of models and the traditional large and small scale models

used in this paper is left for further research.
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does not carry out any pre-screening of the initial set of indicators which are also assumed

to belong to a reduced set of di¤erent categories. In addition, the indicators that belong to

each category are assumed to exhibit di¤erent degrees of correlation with the representative

indicators of these categories.

3.2 Generating small data sets

To simplify the analysis, we assume that the small data set, fXs
itg
N;T
i;t=1; with N = 10,

is generated from one common factor only. First, given the parameters A and �u; we

generate the series of the common factor fFtgTt=1 by

Ft = AFt�1 + ut: (19)

In the empirical applications, Ft usually represents the �state of the economy� or the

�business cycle�. In this case, futgTt=1 are random numbers which are drawn from a

normal distribution with zero mean and variances �u = 1. To examine the dependence of

the results on the persistence of the factor, we allow for di¤erent values for the parameter

A = 0:1; 0:5; and 0:75.

Second, we assume that the idiosyncratic errors follow autoregressive processes. For

particular values of the coe¢ cient matrix C, and �v, we generate the series �t = (�1t; :::; �Nt)
0,

from

�t = C�t�1 + vt: (20)

In this case, vt = (v1t; :::; vNt)
0, and fvitgN;Ti;t=1 are random numbers which are drawn from

a normal distribution with zero mean and variance-covariances matrix �v. To simplify

simulations, the autoregressive coe¢ cients matrix C will be diagonal with two possible

values c = 0:1 and c = 0:75 in all the elements of the main diagonal. In addition, to

examine the e¤ects of the errors cross-correlation, the covariance matrix will take di¤erent

values across the simulations. In particular, let us consider a given value for the parameter

�s and generate the vector
�!� s = (1; �s; �2s; :::; �9s)0: Then, the matrix �v can be viewed as

11



the Toeplitz matrix constructed from vector �!� s as

�v =

0BBBBBBBBB@

1 �s �2s : : : �9s

�s 1 �s : : : �8s

�2s �s 1 : : : �7s
...

...
...

. . .
...

�9s �8s �7s : : : 1

1CCCCCCCCCA
: (21)

As can be deduced from this expression, parameter �s represents the maximum correlation

between the error terms of two series and controls the correlation across categories of data.

In the simulations, the values of this parameter will be �s = 0; 0:1; 0:5; and 0:75.

Finally, in the simulations � will be a column vector of N ones. Then, fFtgTt=1, and

f�tgTt=1 is used in

XS
t = �Ft + �t; (22)

to obtain simulations of XS
t , with X

S
t = fXs

itgTt=1, for i = 1; :::; 10.

Therefore, each of the ten series XS
it included in X

S
t could be intuitively interpreted

as ten economic sectors which depend on two components. The �rst component, Ft, is

common to the ten categories and is usually interpreted as the business cycle, and exhibits

di¤erent levels of persistence which are measured by A. The second component, �it, refers

to sectorial or idiosyncratic components which also have di¤erent levels of persistence

(measured by c) and across-categories cross-correlation (measured by �s).
10

3.3 Generating large data sets

As mentioned above, for the large data set fX l
jtg

M;T
j;t=1, with M = 100, we assume that

the ten series generated in the previous section, XS
t , represent the main indicators of

each of ten di¤erent categories of data. Accordingly, we add an error term representing

the idiosyncratic error of the speci�c series of each category to each of the ten time series

fXs
itg
N;T
i;t=1 for N = 10. These errors are called fwiktg10;10;Ti;k;t=1 where i represents the category,

10For simplicity and clarity in the exposition, we present our main results with only one factor. Con-

sidering more than one factor is trivial but, although the results are of the same nature, the computation

time for the simulations increases dramatically. Nevertheless, we address the possibility of estimating more

than one factor in Section 4.
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and k represents the series within the category. These errors are assumed to be serially

correlated and cross-correlated with all the series existing within their respective category.

Hence, the large data set is generated by

X l
ikt = X

s
it + wikt; (23)

where i = 1; :::; 10, k = 1; :::; 10, and wit = (wi1t; :::; wi10t)
0 is the vector of idiosyncratic

errors which is generated by

wit = Dwit�1 + e
l
it: (24)

In this expression, feliktg
10;10;T
i;k;t=1 are random numbers drawn from a normal distribution

with zero mean and covariance matrix �w which is the Toeplitz matrix constructed from

vector �!� l as in (21), where �l = 0; 0:1; 0:5; and 0:75. Therefore, parameter �l controls the

correlation within each of the categories of data. The autoregressive coe¢ cients matrix D

is diagonal with constant values of d = 0:1 and d = 0:75 in the main diagonal.

According to expressions (22), (23), and (24), each series of the large data set can be

decomposed as follows

X l
ikt = �iFt + �

l
ikt; (25)

where �likt = �it + wikt. Then, the idiosyncratic components �likt are composed of a

common error inside the categories, �it, which could be cross-correlated among di¤erent

categories, and a speci�c error term, wikt, which could be correlated with series from the

same category. Finally, putting together the series along all the categories, we have the

large data set

X l
t=
�
X l
1;1;t; X

l
1;2;t; :::; X

l
1;10;t; X

l
2;1;t; X

l
2;2;t; :::; X

l
2;10;t; :::; X

l
10;1;t; X

l
10;2;t; :::; X

l
10;10;t

�0
:

(26)

As in the case of small data sets, the generated time series can be interpreted as

economic indicators that have been generated as the sum of two components: the common

factor, Ft, and the idiosyncratic component, �likt. However, in the case of large data sets

the time series also depend on the within-category cross-correlation (measured by �l) and

by the within category autocorrelation (measured by d).
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3.4 Generating the target series

Finally, we generate the series to be predicted in a simple scenario. To simplify simulations,

we consider that forecasting with factors and one lagged value of the time series is dy-

namically complete. Hence, the series yt is generated from the following factor-augmented

regression

yt+1 = �
0Ft + 
yt + eyt; (27)

where � is one, eyt is a white noise process, with �ey = 1. Parameter 
, which measures

the autocorrelation of the target series, is assumed to take the values of 0, 0:3, 0:5 and

0:8.

4 Simulation results

In each replication, j, we estimate the small and large scale factor models and compute

the accuracy of these models to infer the factor by using the Mean Squared Error over the

J = 1000 replications

MSEi =
1

J

JX
j=1

1

T

TX
t=1

(Fjt �QF ijtjT )
2; (28)

for i = s in the case of the small data set and i = l in the case of the large data set. In

this expression, Q is the projection matrix of the true common factor on the estimated

common factor.11 In addition, we compare the out of sample forecasting accuracy of

SSDFM and LSDFM by computing the errors in forecasting one step ahead the target

series generated. Let b� and b
 be the OLS estimates of the parameters given by equation
(27) using the common factor series and the values of y up to period T: Then, we construct

the one-step-ahead forecast of yjT+1 by using the relation byijT+1 = b�F ijtjT + b
yjT . In this
way, one can de�ne the Mean Squared one-step-ahead Forecast Errors of model i as

MSFEi =
1

J

JX
j=1

(yjT+1 � byijT+1)2: (29)

According to the forecasting scenarios described above, we callMSEsp; MSE
s
r ,MSE

l,

MSFEsp, MSFE
s
r , and MSFE

l the mean across replications of the MSE and MSFE

11We need the projection matrix since the common factors are estimated up to a signal transformation.
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which are computed from a SSDFM that uses the 10 pre-screened (least noisy) series of

each category (superscript s, subscript p), from a SSDFM that uses 10 representative

(highly correlated) series of each category (superscript s, subscript r), and from a LSDFM

that uses the 100 time series of the large scale simulation exercise (superscript l).

4.1 Factor estimates

Let us start the analysis of the simulations by using MSEs to examine the relative ac-

curacy of the models to infer the factors. For easier facilitate understanding, we describe

how the results are presented in the tables. First, the results in Tables 1 to 3 are classi�ed

according to di¤erent values of the autoregressive coe¢ cient of the common factor (coef-

�cient A). This coe¢ cient takes the value of 0:1 (low correlation) in Table 1, the value of

0:5 (medium correlation) in Table 2 and the value of 0:75 (high correlation) in Table 3.

Second, each of these tables shows the accuracy of the models for di¤erent values of the

cross correlation within (measured by �l) and across (measured by �s) categories. The �rst

block of results refers to the case when the only cross-correlation presented in the idiosyn-

cratic components is due to series that belong to the same category, which occurs when

�s = 0, while the following blocks of results examine the e¤ects of progressively increasing

the correlation across categories to 0:1, 0:5 and 0:75. Within each of these blocks, the

tables report the models�accuracy in inferring the common factor when the correlation

within categories, which is measured by �l, increases from 0 to 0:1, 0:5 and 0:9. Third, the

�rst three columns of the tables refer, respectively, to MSEs from dynamic factor models

which use the set of ten less noisy indicators in a SSDFM (results labelled as MSEsp), or

the set of ten series that exhibit the highest correlation within each category in a SSDFM

(results labelled as MSEsr), or the complete set of 100 indicators in a LSDFM (results

labelled as MSEl), respectively. Fourth, it is a common practice in large scale factor

models to represent each category by di¤erent numbers of time series and frequently some

categories might be over represented.12 We address the e¤ects of over sampling in the last

12Typically, the number of series of disaggregated industrial production indicators is somewhat higher

than the number of time series included in other categories. Signi�cant examples are Stock and Watson

(2002a, 2002b), Giannone et al. (2008), and Angelini et al. (2011).
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two columns of these tables. For this purpose, we simulate ten categories of data but with

20 series instead of 10 in the �rst category, 5 series instead of 10 in the second and third

categories, and, as before, the 10 series of the other 7 categories.13 Fifth, in Tables 1 to

3, we assume that the idiosyncratic components and the within categories errors have low

serial correlation (values of c = d = 0:1), that the sample is small (T = 50), and that there

is only one common factor in the estimation.14 The robustness of the results when for

higher serial correlation in errors, larger samples, and numbers of common factors selected

as in Bai and Ng (2002), are analyzed in Tables A1 to A6 in the Appendix.

A small summary of the main results follows. Overall, all the tables show that the

reasonably pre-screened SSDFM that uses the less noisy indicators presents smallerMSE

than all the other speci�cations (MSEsp < MSEsr and MSE
s
p < MSEl). This is an

important result since it implies that a good preselection in the categories is very di¢ cult

to beat even if the alternatives use a lot of information from a big number of times series.

This result holds for all the possible assumptions about the dynamics of the shocks, about

the dynamics of the factors, about the presence of within categories correlations, and

to a lesser extent about the across categories correlations. The reasonably pre-screened

SSDFM is only beaten when the correlation across categories is extremely high and all

the other dynamic problems, such as persistence in the factor, persistence in shocks, or

within categories correlation do not appear in the analysis.

Notably, the tables also show that even in the case in which the pre-screened less

noisy series are not available, there are still valuable gains when the variables are pre-

selected to estimate a SSDFM with those series of each category that exhibit the highest

correlation with the of the same category. The relative performance of SSDFM with the

representative highly correlated series and the LSDFM , show that the former improves

upon the latter (MSEsr < MSEl) when the persistence of the factor and the within

categories correlation increase.

13The accuracy of SSDFM from the least noisy indicators does not depend on the number of series that

are included in each category since the model only uses the common component of each category. Hence,

the tables only show MSEs
r .and MSE

l.
14 In their simulations, Stock and Watson (2002b) consider that T is large when it is greater than 100,

that T is small when it is smaller than 50, and that T is very small when it is equal to 25.
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These results are in line with some recent �ndings proposed in the related literature.

First, our �ndings are in line with those of Stock and Watson (2002b). Using large scale

static factor models, these authors �nd some deterioration on the quality of the factor

estimates when the degree of serial correlation in the factor and in the idiosyncratic errors

is high, even when the number of variables and observations is large. This coincides with

the �nding that we show in Tables 2 and 3, which report the results of increasing inertia

in the simulated common factor, with A ranging from 0:1 (almost no serial correlation) in

Table 1 to 0:5 (moderate correlation) in Table 2 and to 0:75 (high correlation) in Table

3. Although our results con�rm the deterioration in factor estimation of all the factor

models, the relative losses are not uniformly distributed across the models. When the serial

correlation of the factor increases, the relative gains of pre-screening over representative

series in SSDFM still hold at similar rates, except for the case of very large correlation

across categories, where the relative gains attenuate. Notably, the MSEs also highlight

the signi�cant losses in the relative accuracy of LSDFM with respect to SSDFM as

the inertia of the common factor increases. In fact, when A = 0:75 the SSDFM from

the representative (highly correlated) series of each category outperforms LSDFM in all

scenarios.

Second, our results are in concordance with those of Boivin and Ng (2006) who suggest

that the large scale (static) factor estimates are adversely a¤ected by cross-correlation

in the errors and by oversampling.15 The MSEs displayed in Tables 1 to 3 suggest

that none of the two versions of SSDFM is beaten by LSDFM when the correlation

across categories is high. In addition, the e¤ects of using oversampled categories in factor

analysis are analyzed in the last two columns of these tables, which report the MSEs

of estimating the factor from the representative series from each category SSDFM and

the large scale LSDFM , which uses the 10 unbalanced sets of indicators described above.

Overall the LSDFM with unbalanced categories performs worse than the LSDFM with

balanced categories, especially when the correlation across categories is small. Again, the

relatively better accuracy of noisy SSDFM with respect to the oversampled LSDFM is

15Recall that our benchmarks are di¤erent. They focus on choosing the optimal number of variables in a

large scale (static) factor model instead of on comparing small versus large scale dynamic factor estimation.
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more evident when the low correlation across categories is combined with high correlation

within categories and high persistence of the factor.

The tables that try to examine the robustness of our results to di¤erent assumptions are

included in the Appendix and are labelled as Tables A1 to A6. To begin with, Tables A1 to

A4 examine the e¤ects of increasing the serial correlation of the idiosyncratic components

on the factor models. In particular, the e¤ects of having higher autocorrelations of the

series speci�c shock (measured by d) are analyzed in Tables A1 and A2 whereas the e¤ects

of assuming higher autocorrelations of the category speci�c shocks (measured by c) are

analyzed in Tables A3 and A4. Tables A1 and A2 show the MSEs of the models when

the serial correlation of the idiosyncratic component is assumed to grow from d = 0:1 to

d = 0:75 in two scenarios, when the serial correlation of the factor is low (A = 0:1 in

Table A1) and when it is high (A = 0:75 in Table A2). The MSEs reported in the tables

show that increasing the serial correlation in the idiosyncratic components contributes

to deteriorating the overall performance of the models even more than when the serial

correlation of the factor increases. For example, while Table 1 shows that when �l = 0,

�s = 0:75, and A = d = 0:1, the MSE
s
p is 0:35, Table A1 shows that the MSE increases

to 0:50 when d = 0:75. On comparing Table 3 and Table A2, we obtain that increasing

d from 0:1 to 0:75 leads the MSE to increase from 0:40 to 0:75 when A = 0:75. In

addition, the tables show a better accuracy of a SSDFM that uses the 10 representative

series versus a LSDFM that uses the 100 series when there is high serial correlation

in the idiosyncratic components. This result reveals that the large scale model is more

negatively a¤ected by the increase of the serial correlation than the small scale model.

Finally, the tables also show that the relatively larger negative e¤ects of increasing the

correlation of the idiosyncratic components in the large scale model are magni�ed in the

case of oversampled categories.

Tables A3 and A4 analyze the role of the serial correlation of the shock of each category,

which is measured by the parameter c. This parameter is allowed to increase from c = 0:1

to c = 0:75 when the serial correlation of the factor is low (A = 0:1 in Table A3) and when

it is high (A = 0:75 in Table A4). Interestingly, the MSEs of the small scale models do

not change signi�cantly. However, the MSEs of the large scale model exhibited relatively
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better accuracy than when the serial correlation of the idiosyncratic component increases.

Consequently, the representative series SSDFM only outperform the large scale LSDFM

for high levels of serial correlation of the common factor.

The role of the number of observations in the performance of factor models under

di¤erent values is examined in Tables A5 and A6. According to the theory, in the absence

of the typical data problems which are accounted for by our simulations and that usually

appear in empirical applications, the larger the time series the better the expected per-

formance of LSDFM with respect to SSDFM . This theoretical result is documented in

Table A5 where the reported MSEs show that under low serial correlation of the factor

and low correlation of the idiosyncratic errors, the accuracy of the small scale model that

uses the least noisy indicators with respect to the large scale model diminishes, and the

large scale model outperforms the small scale model that uses the ten representatives that

exhibit the largest correlation with the series of each category. However, the tables also

show that when the serial correlation of the factor increases, SSDFM clearly outperforms

LSDFM regarding the way in which the small set of indicators is selected. Interestingly,

the tables also reveal that the relative losses in accuracy due to oversampling in LSDFM

are still large when the sample size increases. In fact, although Table A6 shows that the

accuracy of large scale models deteriorates further when facing data problems, Table A5

reveals that the unsatisfactory empirical performance of oversampled large scale models

still holds even in the absence of these data problems.

As a �nal remark, it is worth noting that the number of factors has been restricted

to one according to the data generating process. However, the generation of time series

in di¤erent categories with high within-category and across-category correlation may lead

this assumption to be too restrictive.16 To evaluate the e¤ect of this potential restriction

in the accuracy of LSDFM in estimating the factor, we leave the large scale model to

select the number of factors according to the procedure described in Bai and Ng (2002),

where the maximum number of factor is 11. Tables A7 and A8 report the MSEl and

the averaged number of estimated factors across the 1000 replications both in the case

16Although the datasets have been generated from one seminal factor, estimating the model from highly

correlated indicators of di¤erent categories could require more than one factor.
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of balanced sets of categories and in the case of oversampled categories. According to

the previous discussion, the tables reveal that the higher the correlation within categories

the larger the number of estimated factors since the high correlation in each category is

interpreted by the model as if the series belonging to this category shared a common factor.

Notably, although selecting the number of factors increases the accuracy of LSDFM , the

gains are not su¢ ciently large to qualitatively alter the results obtained in this section.

4.2 Forecasting accuracy

This section examines how close the one-step-ahead out-of-sample forecasts based on the

estimated factors from small and large scale dynamic factor models are to the target

series which has been generated by (27). Part of the forecast performance analysis has

already been developed in the previous section since, in absence of autocorrelation in the

target series (measured by 
), the forecast performance is expected to increase when the

discrepancy between the actual and the estimated factors diminishes.17 Accordingly, this

section examines the e¤ects of di¤erent values of 
 ranging from 0 (no inertia) to 0:8

(high degree of time series dependence) on forecast performance. In addition, the section

also addresses the e¤ects of the data problems outlined above on the the relative forecast

performance of small versus large scale dynamic factor models.

Tables 4 to 6 evaluate the ability of factor models in forecasting.18 As in the case

of factor estimates, the relative forecasting accuracy of small versus large scale dynamic

factor models is examined under di¤erent scenarios and the Monte Carlo simulations allow

for di¤erent degrees of cross-correlation across (�s from 0 to 0:5) and within (�l from 0

to 0:9) categories. Table 4 shows the MSFE of the models when the factor exhibits low

correlation (A = 0:1) while Tables 5 and 6 display theMSE of the models when the factor

autocorrelation increases to medium (A = 0:5) and to high (A = 0:75), respectively.

The robustness analysis can be conducted through Tables A9 to A14 in the Appendix.

Tables A9 and A10 display theMSFE of the models when the autocorrelation of the series

17Note that the variance of the errors has been normalized �ey = 1.
18To save space, the tables that show the in-sample forecast analysis were omitted. In addition, the

tables that show the forecast analysis have been simpli�ed. Larger versions of these tables are available

from the authors upon request.
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speci�c shock increases to d = 0:75, Tables A10 and A11 show the e¤ects of increasing the

sample size to T = 150, and Tables A12 and A13 analyze the forecasting accuracy when

the number of common factors is selected, as Bai and Ng (2002) describe.19

Overall, the tables show that the typical data problems lead to similar e¤ects on the

forecasting ability of the models to those observed in the analysis of factor estimation.

Hence, when the time series are over correlated, with the indicators already included in

some categories, the factor or the idiosyncratic components are persistent, or some cate-

gories are oversampled, forecasting with many predictors performs worse than forecasting

from a representative series dataset, especially when the categories are not highly cor-

related. The strategy of reasonably pre-selecting the indicators to be used by SSDFM

almost unambiguously outperforms LSDFM and SSDFM from representative chosen

indicators. When the data problems become large, SSDFM using representatives series

of each category leads to lower MSFE than LSDFM .

However, these results depend heavily on the magnitude of the autocorrelation of the

target variable since it tends to mitigate the forecasts loses of those models which are more

contaminated with data problems. That is, the models that exhibits larger deteriorations

in factor estimation due to data problems present smaller increases in MSFE when the

autocorrelation of the target variable increases. The intuition is clear: the larger the

autocorrelation of the target variable the smaller the weights of the factor in forecasting

the time series and the lower the e¤ect on forecasting of inappropriate factor estimation.

For example, Tables 1 to 3 show the sharp deterioration in factor estimation of LSDFM

when the inertia of the factor and the within and across categories correlation became

large. In particular, if the set of parameters that measure the data problems changes from

�s = 0, �l = 0, A = 0:1 to �s = 0:5, �l = 0:9, A = 0:75, the tables reveal that the accuracy

of the factor estimation moves from MSEl = 0:12 to MSEl = 0:56 which implies a 366%

increase. However, under the same change in the set of parameters, the forecast accuracy

moves from MSFEl = 1:14 to MSFEl = 1:55 when 
 = 0 which implies a 36% increase

19The tables that examine the e¤ects of higher category-speci�c autocorrelation, measured by c are

omitted to save space. The results are similar to those obtained when the series-speci�c autocorrelation,

measured by d, increased in Tables A9 and A10.
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and to MSFEl = 1:40 when 
 = 0:8, which implies a 23% increase only.

5 Empirical analysis

To shed some empirical light on this statement, this section examines the forecasting

accuracy of small versus large scale dynamic factor models by using the dataset that

comprises the 147 monthly macroeconomic indicators used in a balanced panel factor

estimation by Stock and Watson (2002a) for the US economy.20 The variables, which

are available over the sample 1959:01-1998:12 are standardized and transformed to induce

stationarity following their indications.

5.1 Preliminary analysis of data

According to Stock and Watson (2002a), Table 7 classi�es the data in 13 di¤erent cate-

gories: (1) real output and income (series 1�19); (2) employment and hours (series 20-44);

(3) retail and manufacturing trade (series 45-53); (4) consumption (series 54-58); (5) hous-

ing starts and sales (series 59-65); (6) inventories (series 66-76); (7) orders (series 77-92);

(8) stock prices (series 93-99); (9) exchange rate (series 100-104); (10) interest rates (105-

119); (11) money and credit (series 120-126); (12) price indexes (series 127-144); (13)

Average hourly earnings (series 145-146).21. This table also displays the name of the cat-

egories in column 1 and the number of the series included in each category in column 2.

Since there are more series from some categories than others, the problem of oversampling

outlined in the simulations may apply in this example.

According to the motivation of the paper, the time series included in each category are

expected to be very collinear. Hence, it would be reasonable to conjecture that dozens of

variables in a large scale model, including sectorial ones, might not all be useful to improve

the forecasting accuracy and that it might be worth focusing on some key variables in a

small scale model. In fact, the larger the correlation within the series of the same category

20Although the unbalanced panel proposed by Stock and Watson (2002a) included 215 time series, we

concentrate on the 147 time series that form the balanced panel.
21The last category, labelled miscellaneous, has been omitted from the empirical analysis since it included

only one series.
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that we �nd, the more likely to fail is the assumption of weak correlation across the

idiosyncratic components in large scale dynamic factor models that ensured the asymptotic

statistical properties to be held in this empirical exercise. To gauge the potential problem,

Table 7 also shows in the third column the averaged correlation across the series of each

category. Overall, the categories contains very collinear indicators which exhibit averaged

correlations of more than 0:5 in the cases of housing starts and sales and exchange rates

and of more than 0:4 in the cases of real output and income, consumption, stock prices,

and interest rates.

Besides, the name of the series that exhibit the largest averaged correlation with the

series of each category is displayed in the fourth column of Table 7. These series can

be considered as the representative series of each category. The last column of Table 7

reports the magnitudes of these averaged correlations. Overall, the representative series

exhibit averaged correlations with the series of the same category of more than 0:5, and

in some cases the correlations rise to 0:70 in the case of exchange rates and to 0:74 in

the case of housing starts. Interestingly, when �ner disaggregations of sectorial data are

included in a category, the representative series of the category usually refers to the total

(non disaggregated) indicator.

In addition, it is of great interest in this paper to examine the correlation across the

indicators of di¤erent categories. If the correlations are not absorbed by the factor, the risk

of the required absence of cross-correlation across the idiosyncratic components of small

scale factor models grows dramatically when the empirical correlations are very large. For

this purpose, Table 8 displays the correlation across the thirteen representative series of

the di¤erent categories. The high correlation coe¢ cients reported in the table for some

pairs of categories indicate that there is a high collinearity between these categories. As

expected, the highest correlations appear between industrial production and employment

(correlation of 0:64) and between manufacturing and trade sales and orders (correlation

of 0:60).
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5.2 Forecasting accuracy

In this paper we consider two real (industrial production and nonagricultural employment)

and two nominal (consumer and producer price indexes) target series, each of which is

called Yt. Accordingly, we investigate the accuracy of the di¤erent speci�cations of dy-

namic factor models to forecast industrial production using the following multi-step ahead

forecasting procedure described in Stock and Watson (2002a)

yht+h = �0 +
mX
i=0

�
0
j
bFt�i + vX

j=0


jzt�j + "
h
t+h: (30)

In this equation, yht+h is the h-step ahead covariance stationary transformation of the

original series Yt, where yht+h = ln(Yt+h=Yt), bFt�i is the i-lagged (i = 0; 1; :::;m) value of the
(r�1) vector of estimated factors, and zt�j is the j-lagged (j = 0; 1; :::; v) value of the 1-step

ahead covariance stationary transformation of Yt, where zt = ln(Yt=Yt�1). Expressions �
0
j

and 
j refer to the standard parameters of autoregressive processes. The term "ht+h is a

homoskedastic martingale di¤erence sequence with respect to the set of information at

time t. Finally, in line with previous studies in forecasting with empirical factors, our

model is allowed to choose values of m lying between 1 and 6 and v lying between 1 and

12 based upon the BIC selection criterion. In large scale factor speci�cations, r is either

imposed as one or selected as Bai and Ng (2002) describe.

The pseudo real-time forecasting exercise begins with data from 1959:3-1970:1. Using

this sample, m, v, and (in some cases) r are chosen, and an h period ahead forecast is

formed by using values of the regressors at 1970:1 to give yh1970:1+h. Then, the sample

is updated by one period, the factors and the forecasting models (including m, v, and,

in some cases, r) are re-estimated, and an h-month forecast for 1970:1+h is computed

(for h = 1 it would be 1970:2, for h = 6 1970:7 and for h = 12 1971:1). The forecasting

procedure continues iteratively until the �nal forecast yh1998:12 which is made using data

until 1998:11 for h = 1, 1998:6 for h = 6 and 1997:12 for h = 12: In each iteration, the

root of the squared deviation of h-ahead forecasts from actual data are computed and the

average of these �gures is labeled as RMSFE(h).

To investigate the bene�ts of forecasting with the two di¤erent versions of dynamic

factor models, we consider a forecast competition of di¤erent di¤usion index forecasts
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from small and large scale datasets. The �rst competitor is a simple autoregressive model

which is obtained when �sj = 0 in (30). The second competitor is an autoregressive model

that is enlarged with the factors obtained from a large scale dynamic factor model applied

to the 146 economic indicators. The number of factors included in the analysis is either

imposed as one or selected by using the Bai and Ng (2002) criterion. The third competitor

is an autoregressive model that is enlarged with the factors obtained from a small scale

dynamic factor model applied to the 13 representative indicators, which are the series of

each category that exhibit the highest averaged autocorrelation. In the case of small scale

factor models, the number of factors is also either imposed as one or selected by BIC.22

To facilitate comparisons, Tables 9 and 10 report the root mean square forecast errors

relative to the autoregressive models. Hence, an entry less than one indicates that the

di¤usion index forecast is superior to the autoregressive univariate forecast. According

to Stock and Watson (2002a), regarding the factor model and the forecasting horizon

used in the analysis, the di¤usion index forecasts generally improve over the benchmark

univariate forecasts. However, the forecasting accuracy largely depends on the number of

factors included in the analysis. For example, Table 9 shows that when only one factor

is included in the di¤usion index forecasts, the relative mean squared errors are always

greater than 0.9, which implies that the factor forecasts are only slightly more accurate

than the univariate autoregressive forecasts. To gauge this property, Figure 1 plots the h-

step ahead growth of Industrial Production (IP), yht+h over the sample 1970:01-1998:12-h.

As expected, the persistence of the series increases with h, and the correlation is 0:37 when

h = 1, and 0:96 when h = 12. When h = 12, the high persistence of the target variable is

better captured by the �rst factor of the small scale model (correlation of 0:98) than by

the �rst factor of the large scale model (correlation of 0:66). For easier comparisons, the

�rst two factors of SSDFM and LSDFM are plotted in Figures 2 and 3.

Accordingly, the performance of factor models that determines the number of factors

required in the factor estimation is much better than when the number of factor is re-

stricted to one, especially when the forecasting horizon becomes large. Notably, Table 9

22 In the simulation exercise, we knew that the true number of factors was one. In the empirical appli-

cation, we found that the data are better characterized by using two factors.
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con�rms the results obtained by the simulation study conducted throughout the paper.

There may be a similar forecast e¢ ciency either when constructing the di¤usion index

forecasts from a small scale dataset that includes a representative (highly correlated) time

series from each category or from a large scale dataset that contains larger, but redundant,

information about the factors. Although none of the factor models systematically perform

better than the other, the factor forecasts accuracy of the small scale model that uses 13

representative indicators is similar to (or, in many cases, better than) that obtained when

the forecasts of industrial production and employment are computed from a large scale

model that uses the 146 indicators

The results for nominal variables are presented in Table 10. As in the case of forecasting

real variables, the di¤usion index forecasts of the consumer price index and the producer

price index for �nished goods that are computed from small scale factor models uniformly

outperform the forecasts for those nominal variables computed from large scale factor

models when the number of factors is selected from the data. Regarding the forecast

horizon, the small scale factor model consistently performs better than the large scale

factor model when the number of factors used in the analysis are selected from the data,

with relative performance improving as the horizon increases.

6 Conclusions

Two versions of dynamic factor models have received growing attention in the recent

forecasting literature: the dynamic factors that use large datasets, and the dynamic factors

which use a small number of indicators that has been preselected reasonably. However,

the problem of systematically selecting many series from very many series that face the

typical data problems associated with empirical applications is still developing.

In this paper, we propose simulations which mimic di¤erent scenarios of empirical

forecasting, where the list of series, which are extracted from di¤erent economic categories,

is �xed (rather than tending to in�nity), and potentially greater cross-correlation and

serial correlation may appear among idiosyncratic components than those warranted by

the theory. Accordingly, our Monte Carlo analysis allows for indicators which belong to
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di¤erent categories of data and whose idiosyncratic components show cross-correlation

within and across categories in addition to serial correlation. We also allow for categories

which are oversampled. Finally, the simulations examine the accuracy of small versus

large data sets under di¤erent degrees of serial correlation in the factor.

To gauge the problem, we compare the forecast accuracy of a large scale factor model

that uses the information provided by a large dataset with that of a small scale factor

model that uses information from one representative of each category and the time series

with large averaged correlation with the series of the same category. We �nd that adding

data that have little information on the factor components does not necessarily lead large

scale dynamic factor models to improve upon the forecasts of small scale dynamic factor

models. In fact, we show that when the additional data are over correlated with data

from some categories which are already included in factor estimation, forecasting with

many predictors performs worse than forecasting from a reasonably pre-screened dataset,

especially when the categories are not highly correlated. This result is stronger in the

case of high persistence of the common factor, in the case of high serial correlation of the

idiosyncratic components, in the case of using noisy series, and in the case of oversampled

categories. In these cases, even arbitrarily selecting one time series from each category

and using the resulting dataset in a small scale dynamic factor model outperforms the

forecasts from large scale dynamic factor models. In these situations, our results suggest

that it may be better to discard some redundant data even if such data are available.

Using the 147 indicators that form the balanced panel used by Stock and Watson (2002a),

we illustrate these results for US data.
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Table 1. Common factor estimation (T=50, c=0.1, d=0.1, A=0.1) 

 
 

Same number of series in each category Oversampling one category 
Correlation within  

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.101 0.195 0.124 0.191 0.149 

0.1 0.101 0.192 0.125 0.191 0.151 

0.5 0.101 0.196 0.139 0.190 0.166 

0.9 0.101 0.195 0.185 0.192 0.320 

Correlation across categories ρs=0.1 

0 0.116 0.207 0.139 0.204 0.159 

0.1 0.116 0.205 0.141 0.204 0.162 

0.5 0.116 0.205 0.152 0.203 0.175 

0.9 0.116 0.206 0.197 0.202 0.310 

Correlation across categories ρs=0.5 

0 0.223 0.289 0.236 0.285 0.235 

0.1 0.223 0.286 0.239 0.284 0.234 

0.5 0.223 0.286 0.246 0.284 0.243 

0.9 0.223 0.287 0.281 0.284 0.300 

Correlation across categories ρs=0.75 

0 0.350 0.383 0.350 0.382 0.346 

0.1 0.350 0.380 0.349 0.383 0.344 

0.5 0.350 0.381 0.359 0.376 0.346 

0.9 0.350 0.377 0.376 0.378 0.376 

 

Notes. The values of ρs determine the cross-correlation of the idiosyncratic shocks 

between series from different categories, and the values of ρl determine the cross-

correlation of the idiosyncratic shocks between series from the same category. T is the 

sample size. Parameters A and c measure the serial correlation of the factor and the 

idiosyncratic shocks, respectively. The Mean Squared Errors of the models uses the 10 

representative series of each category, the model that uses the 10 series with higher 

correlation with others of each category and the model that uses all the 100 series, all of 

which are denoted by s

pMSE , s

rMSE , and lMSE , respectively. 
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Table 2. Common factor estimation (T=50, c=0.1, d=0.1, A=0.5) 
 
 

Same number of series in each category Oversampling one category 
Correlation within  

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.100 0.191 0.175 0.190 0.202 

0.1 0.100 0.190 0.175 0.188 0.200 

0.5 0.100 0.192 0.190 0.188 0.217 

0.9 0.100 0.191 0.236 0.187 0.350 

Correlation across categories ρs=0.1 

0 0.115 0.204 0.191 0.201 0.207 

0.1 0.115 0.203 0.191 0.201 0.208 

0.5 0.115 0.204 0.206 0.200 0.229 

0.9 0.115 0.203 0.250 0.199 0.340 

Correlation across categories ρs=0.5 

0 0.227 0.293 0.294 0.290 0.290 

0.1 0.227 0.291 0.297 0.288 0.289 

0.5 0.227 0.291 0.305 0.290 0.304 

0.9 0.227 0.291 0.343 0.288 0.368 

Correlation across categories ρs=0.75 

0 0.372 0.399 0.414 0.403 0.409 

0.1 0.372 0.400 0.415 0.405 0.415 

0.5 0.372 0.407 0.430 0.402 0.422 

0.9 0.372 0.400 0.450 0.402 0.448 

Notes. See notes for Table 1. 
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Table 3. Common factor estimation (T=50, c=0.1, d=0.1, A=0.75) 
 
 

Same number of series in each category Oversampling one category 
Correlation within  

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.097 0.182 0.382 0.180 0.395 

0.1 0.097 0.182 0.384 0.180 0.427 

0.5 0.097 0.183 0.397 0.181 0.429 

0.9 0.097 0.182 0.444 0.180 0.525 

Correlation across categories ρs=0.1 

0 0.112 0.195 0.398 0.192 0.417 

0.1 0.112 0.195 0.400 0.193 0.421 

0.5 0.112 0.196 0.413 0.194 0.428 

0.9 0.112 0.195 0.459 0.191 0.559 

Correlation across categories ρs=0.5 

0 0.230 0.290 0.510 0.289 0.515 

0.1 0.230 0.291 0.512 0.286 0.506 

0.5 0.230 0.291 0.524 0.288 0.524 

0.9 0.232 0.289 0.565 0.286 0.574 

Correlation across categories ρs=0.75 

0 0.406 0.425 0.644 0.432 0.650 

0.1 0.406 0.425 0.646 0.430 0.652 

0.5 0.406 0.425 0.655 0.426 0.680 

0.9 0.406 0.425 0.688 0.427 0.711 

Notes. See notes for Table 1. 
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Table 4. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.1) 

 
Same number of series in each 

category 

Oversampling one 

category Correlation within 

categories ρl 

Persistency of the 

target series γ 
s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.107 1.215 1.14 1.171 1.161 

 0.3 1.101 1.202 1.161 1.218 1.199 

 0.8 1.086 1.172 1.099 1.178 1.173 

0.9 0 1.107 1.354 1.341 1.378 1.558 

 0.3 1.101 1.146 1.129 1.166 1.286 

 0.8 1.086 1.273 1.235 1.318 1.459 

Correlation across categories ρs =0.5 

0 0 1.197 1.280 1.198 1.371 1.342 

 0.3 1.200 1.248 1.237 1.324 1.321 

 0.8 1.154 1.222 1.156 1.288 1.238 

0.9 0 1.197 1.324 1.314 1.248 1.239 

 0.3 1.200 1.320 1.300 1.441 1.425 

 0.8 1.154 1.320 1.319 1.394 1.407 

Notes. The estimated model is 11 ++ ++= ytttt eyFy γβ . See notes for Table 1. 

 

 

 

Table 5. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.5) 

 
Same number of series in each 

category 

Oversampling one 

category Correlation within  

categories ρl 

Persistency of the 

target series γ 
s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.169 1.299 1.248 1.279 1.27 

 0.3 1.121 1.203 1.184 1.289 1.292 

 0.8 1.222 1.363 1.343 1.411 1.36 

0.9 0 1.169 1.300 1.377 1.302 1.415 

 0.3 1.121 1.313 1.335 1.306 1.413 

 0.8 1.222 1.328 1.306 1.204 1.307 

Correlation across categories ρs =0.5 

0 0 1.220 1.290 1.249 1.291 1.286 

 0.3 1.299 1.357 1.349 1.433 1.399 

 0.8 1.218 1.382 1.351 1.374 1.297 

0.9 0 1.220 1.259 1.275 1.238 1.276 

 0.3 1.299 1.395 1.397 1.397 1.445 

 0.8 1.218 1.357 1.372 1.293 1.345 

Notes. See notes for Tables 1 and 4. 
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Table 6. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.75) 
 

Same number of series in each 

category 

Oversampling one 

category Correlation within  

categories ρl 

Persistency of the 

target series 

γ s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.133 1.275 1.343 1.213 1.388 

 0.3 1.132 1.216 1.347 1.212 1.396 

 0.8 1.151 1.345 1.408 1.27 1.419 

0.9 0 1.133 1.201 1.387 1.273 1.417 

 0.3 1.132 1.212 1.316 1.205 1.388 

 0.8 1.151 1.243 1.363 1.27 1.455 

Correlation across categories ρs =0.5 

0 0 1.329 1.371 1.493 1.414 1.516 

 0.3 1.373 1.449 1.514 1.498 1.597 

 0.8 1.315 1.379 1.462 1.454 1.502 

0.9 0 1.329 1.401 1.549 1.378 1.462 

 0.3 1.373 1.410 1.517 1.428 1.605 

 0.8 1.315 1.326 1.393 1.231 1.388 

Notes. See notes for Tables 1 and 4. 
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Table 7. Data description 
 

Category name 
Number 

of 

series 

Averaged 

cross-

correlation 

Representative series of the 

category 

Highest 

averaged cross-

correlation 

1. Real output and income 19 0.422 Industrial production: total index 0.570 

2. Employment and hours 25 0.323 
Employees on nonagricultural 

Payrolls: total 
0.475 

3. Real retail, 

manufacturing and trade 

sales 
9 0.381 Manufacturing & trade: total 0.623 

4. Consumption 5 0.403 Personal consumption expend, total 0.640 

5. Housing starts and sales 7 0.559 
Housing starts: total farm & 

nonfarm 
0.740 

6. Real inventories and 

inventory-sales ratios 
11 0.272 

Manufacturing & trade inventories: 

total 
0.426 

7. Orders and unfilled 

orders 
16 0.363 

Mfg new orders: mfg industries 

with unfilled orders 
0.435 

8. Stock prices 7 0.476 
S&P's common stock price index: 

composite 
0.635 

9. Exchange rates 5 0.515 
United States effective exchange 

rate 
0.701 

10. Interest rates 15 0.427 

Spread US treasury bills, secondary 

market 10-years and federal fund 

rate 
0.517 

11. Money and credit 

quantity aggregates 
7 0.286 Money stock: M2 0.345 

12. Price indexes 18 0.214 Cpi-u: all items 0.288 

13. Average hourly 

earnings 
2 0.313 

Average hourly earnings of 

production workers: manufacturing 
0.313 

Total 146  13  

 

Notes. The dataset, the definition of the thirteen categories, and the distribution of the 

indicators across these categories follows Stock and Watson (2002a). The representative 

series of each category is the economic indicator that exhibits the largest averaged 

correlation with the series of the same category. The last column reports these 

correlations. 
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Table 8. Correlation across categories 

 

 

Notes. The entries refer to the correlations between pairs of representative series of each 

category. See notes for Table 7. 
 

 

 

 

 

 

 

 

 cat 1 cat 2 cat 3 cat 4 cat 5 cat 6 cat 7 cat 8 cat 9 cat 10 cat 11 cat 12 cat 13 

cat 1 1.00 0.64 0.52 0.19 0.32 0.18 0.39 -0.01 0.09 0.19 -0.06 0.03 0.16 

cat 2 - 1.00 0.43 0.19 0.50 0.32 0.27 -0.04 -0.01 0.09 -0.02 0.04 0.06 

cat 3 - - 1.00 0.48 0.26 0.08 0.61 0.13 0.04 0.17 -0.07 -0.01 0.03 

cat 4 - - - 1.00 0.14 -0.11 0.23 0.17 0.03 0.14 -0.03 -0.05 -0.06 

cat 5 - - - - 1.00 0.20 0.20 0.01 -0.16 0.07 -0.05 0.03 0.01 

cat 6 - - - - - 1.00 -0.01 -0.13 -0.06 -0.12 -0.05 -0.02 -0.01 

cat 7 - - - - - - 1.00 0.02 0.06 0.08 -0.04 0.11 0.07 

cat 8 - - - - - - - 1.00 -0.05 0.16 0.10 -0.02 -0.02 

cat 9 - - - - - - - - 1.00 -0.10 -0.12 -0.04 -0.02 

cat 10 - - - - - - - - - 1.00 0.01 -0.01 0.02 

cat 11 - - - - - - - - - - 1.00 0.01 0.05 

cat 12 - - - - - - - - - - - 1.00 -0.04 

cat 13 - - - - - - - - - - - - 1.00 
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Table 9. Forecasting real variables  
 

 Industrial production Nonagricultural employment 

 Forecast horizon  Forecast horizon 

 h=1 h=6 h=12 h=1 h=6 h=12 

Forecast method RMSFE(h) RMSFE(h) 

AR 0.007  0.031 0.049 0.002  0.009 0.017 

 Relative (to the AR) RMSFE(h) Relative (to the AR) RMSFE(h) 

LSDFM, r=1 0.90 0.92 0.97 0.88 0.92 0.91 

SSDFM, r=1 0.96 0.96 0.92 0.92 0.89 0.86 

LSDFM, r* 0.87 0.66 0.52 0.84 0.79 0.65 

SSDFM with r* 0.87 0.73 0.52 0.91 0.78 0.63 

 

Notes. The sample period is 1959:03-1998:12 and the out-of-sample forecast period is 

1971:01-1998:12. The competing models are the autoregressive model, and the 

autoregressive model extended with factors. The LSDFM is applied to the 146 indicators 

and the SSDFM is applied to the 13 representative series of each category that exhibit the 

largest average autocorrelation with the series of the same category. In some cases, the 

number of factors is restricted to r=1, while in others the optimal number of factors r* is 

determined by using Bai and Ng (2002) in large scale models and by using BIC in small 

scale models.  
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Table 10. Forecasting nominal variables  
 

 Consumer price index Producer price index 

 Forecast horizon  Forecast horizon 

 h=1 h=6 h=12 h=1 h=6 h=12 

Forecast method RMSFE(h) RMSFE(h) 

AR 0.002 0.010 0.021 0.008 0.026 0.046 

 Relative (to the AR) RMSFE(h) Relative (to the AR) RMSFE(h) 

LSDFM, r=1 0.98 0.81 0.75 0.87 0.87 0.90 

SSDFM, r=1 0.99 0.80 0.75 0.94 0.91 0.90 

LSDFM, r* 1.02 0.94 0.87 1.14 1.00 0.97 

SSDFM with r* 0.99 0.92 0.86 1.00 0.95 0.88 

 

Notes. See notes for Table 9.  
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Figure 1. Industrial production 
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Notes. The h step ahead growth of Industrial production (IP) is )/ln( tht

h

ht IPIPy ++ = . The 

sample is 1970:01-1998:12-h. 

 

Figure 2. Factors estimated from the small scale model 
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Notes. The figure plots the first two factors obtained from SSDFM applied to the 

thirteen representative categories by using data from 1959:03 to 1998:11. 
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Figure 3. Factors estimated from the large scale model 
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Notes. The figure plots the first two factors obtained from LSDFM applied to the 147 

indicators by using data from 1959:03 to 1998:11 
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APPENDIX 

 

Table A1. Common factor estimation (T=50, c=0.1, d=0.75, A=0.1) 
 

 

Same number of series in each category Oversampling one category 
Correlation within 

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.101 0.278 0.145 0.278 0.167 

0.9 0.101 0.276 0.296 0.276 0.410 

Correlation across categories ρs=0.75 

0 0.346 0.421 0.356 0.421 0.349 

0.9 0.346 0.422 0.426 0.422 0.431 

Notes. See notes for Table 1. 
 

 

 
 

 

Table A2. Common factor estimation (T=50, c=0.1, d=0.75, A=0.75) 
 

 

Same number of series in each category Oversampling one category 
Correlation within 

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.097 0.357 0.418 0.357 0.437 

0.9 0.097 0.352 0.548 0.352 0.631 

Correlation across categories ρs=0.75 

0 0.378 0.563 0.669 0.563 0.660 

0.9 0.379 0.560 0.754 0.560 0.754 

Notes. See notes for Table 1. 
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Table A3. Common factor estimation (T=50, c=0.75, d=0.75, A=0.1) 
 

 

Same number of series in each category Oversampling one category 
Correlation within 

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.169 0.265 0.317 0.272 0.382 

0.9 0.172 0.265 0.518 0.263 0.604 

Correlation across categories ρs=0.75 

0 0.503 0.506 0.538 0.508 0.534 

0.9 0.503 0.505 0.591 0.510 0.596 

Notes. See notes for Table 1. 
 

 
 

 

 

Table A4. Common factor estimation (T=50, c=0.75, d=0.75, A=0.75) 
 

 

Same number of series in each category Oversampling one category 
Correlation within 

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.251 0.470 0.507 0.482 0.558 

0.9 0.251 0.461 0.696 0.496 0.833 

Correlation across categories ρs=0.75 

0 0.751 0.820 0.885 0.843 0.874 

0.9 0.749 0.819 0.964 0.845 0.961 

Notes. See notes for Table 1. 
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Table A5. Common factor estimation (T=150, c=0.1, d=0.1, A=0.1) 
 

 

Same number of series in each category Oversampling one category 
Correlation within  

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation across categories ρs=0 

0 0.095 0.175 0.108 0.176 0.134 

0.9 0.094 0.176 0.161 0.175 0.333 

Correlation across categories ρs=0.75 

0 0.350 0.376 0.340 0.375 0.333 

0.9 0.350 0.377 0.370 0.375 0.364 

Notes. See notes for Table 1. 

 

 

 

 

 

Table A6. Common factor estimation (T=150, c=0.75, d=0.75, A=0.1) 
 

 

Same number of series in each category Oversampling one category 
Correlation within  

categories ρl s
pMSE

 s

rMSE  lMSE
 s

rMSE
 lMSE

 

Correlation error term Series of SSDFM: ρs=0 

0 0.092 0.168 0.195 0.168 0.218 

0.9 0.092 0.169 0.252 0.169 0.314 

Correlation across categories ρs=0.75 

0 0.409 0.427 0.487 0.427 0.477 

0.9 0.409 0.428 0.531 0.429 0.523 

Notes. See notes for Table 1. 
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Table A7. Common factor estimation (T=50, c=0.1, d=1, A=0.1).  
 

 

Same number of series in each category Oversampling one category Correlation 

within  

categories ρl r̂  
lMSE  r̂  lMSE

 

Correlation across categories ρs=0 

0 3.33 0.119 1 0.147 

0.9 10.89 0.140 1.84 0.196 

Correlation across categories ρs=0.75 

0 2.60 0.326 1.20 0.350 

0.9 10.89 0.288 2.84 0.363 

Notes. The number of common factors is selected as in Bai and Ng (2002). The values 

of r̂ are the averaged number of estimated number of factors across replications. See 

notes for Table 1. 

 

 

 

 

Table A8. Common factor estimation (T=50, c=0.1, d=1, A=0.75).  
 

 

Same number of series in each category Oversampling one category Correlation 

within  

categories ρl r̂  
lMSE  r̂  lMSE

 

Correlation across categories ρs=0 

0 2.39 0.380 1 0.404 

0.9 10.88 0.403 1.89 0.455 

Correlation across categories ρs=0.75 

0 2.58 0.621 1.24 0.643 

0.9 10.86 0.587 2.06 0.667 

Notes. See notes for Tables 1 and A7. 
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Table A9. Forecasting accuracy (T=50, c=0.1, d=0.75, A=0.1) 
 

Same number of series in each 

category 

Oversampling one 

category Correlation within  

categories ρl 

Persistency of the 

target series γ 
s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.184 1.257 1.213 1.255 1.236 

 0.3 1.190 1.265 1.217 1.263 1.238 

 0.8 1.194 1.274 1.205 1.273 1.227 

0.9 0 1.184 1.409 1.402 1.409 1.491 

 0.3 1.190 1.415 1.413 1.415 1.497 

 0.8 1.194 1.431 1.415 1.431 1.493 

Correlation across categories ρs =0.5 

0 0 1.270 1.416 1.302 1.415 1.303 

 0.3 1.277 1.422 1.310 1.420 1.310 

 0.8 1.277 1.434 1.302 1.425 1.301 

0.9 0 1.270 1.439 1.439 1.434 1.487 

 0.3 1.277 1.446 1.449 1.442 1.496 

 0.8 1.277 1.457 1.453 1.455 1.496 

Notes. See notes for Table 4. 
 

 

Table A10. Forecasting accuracy (T=50, c=0.1, d=0.75, A=0.75) 
 

Same number of series in each 

category 

Oversampling one 

category Correlation within  

categories ρl 

Persistency of the 

target series γ 
s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.327 1.572 1.587 1.582 1.630 

 0.3 1.335 1.579 1.579 1.586 1.619 

 0.8 1.343 1.597 1.547 1.596 1.584 

0.9 0 1.327 1.590 1.753 1.580 1.841 

 0.3 1.335 1.587 1.737 1.574 1.828 

 0.8 1.343 1.591 1.724 1.580 1.861 

Correlation across categories ρs =0.5 

0 0 1.509 1.603 1.680 1.617 1.713 

 0.3 1.493 1.589 1.653 1.600 1.688 

 0.8 1.532 1.631 1.629 1.644 1.672 

0.9 0 1.509 1.598 1.771 1.597 1.857 

 0.3 1.493 1.573 1.743 1.579 1.827 

 0.8 1.532 1.624 1.747 1.644 1.872 

Notes. See notes for Table 4. 
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Table A11. Forecasting accuracy (T=150, c=0.1, d=0.1, A=0.1) 
 

Same number of series in each 

category 

Oversampling one 

category Correlation within  

categories ρl 

Persistency of the 

target series γ 
s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.083 1.169 1.099 1.165 1.131 

 0.3 1.086 1.174 1.103 1.171 1.136 

 0.8 1.087 1.178 1.105 1.176 1.139 

0.9 0 1.096 1.182 1.161 1.184 1.328 

 0.3 1.099 1.186 1.165 1.189 1.331 

 0.8 1.098 1.189 1.167 1.192 1.328 

Correlation across categories ρs =0.5 

0 0 1.209 1.274 1.221 1.267 1.225 

 0.3 1.213 1.279 1.225 1.273 1.229 

 0.8 1.213 1.281 1.227 1.276 1.232 

0.9 0 1.209 1.277 1.268 1.276 1.305 

 0.3 1.213 1.282 1.272 1.281 1.309 

 0.8 1.213 1.287 1.276 1.286 1.313 

Notes. See notes for Table 4. 
 

 

Table A12. Forecasting accuracy (T=150, c=0.1, d=0.1, A=0.75) 
 

Same number of series in each 

category 

Oversampling one 

category Correlation within  

categories ρl 

Persistency of the 

target series γ 
s
pMSFE

 s
rMSFE  lMSFE

 s
rMSFE  lMSFE

 

Correlation across categories ρs =0 

0 0 1.019 1.101 1.085 1.117 1.100 

 0.3 1.021 1.101 1.082 1.118 1.097 

 0.8 1.028 1.107 1.092 1.123 1.105 

0.9 0 1.088 1.179 1.205 1.182 1.267 

 0.3 1.091 1.185 1.206 1.187 1.267 

 0.8 1.098 1.195 1.210 1.195 1.276 

Correlation across categories ρs =0.5 

0 0 1.228 1.300 1.315 1.297 1.319 

 0.3 1.231 1.303 1.311 1.301 1.316 

 0.8 1.237 1.317 1.318 1.314 1.322 

0.9 0 1.228 1.305 1.365 1.303 1.386 

 0.3 1.231 1.312 1.363 1.310 1.382 

 0.8 1.237 1.322 1.372 1.320 1.393 

Notes. See notes for Table 4. 
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Table A13. Forecasting accuracy (T=50, c=0.1, d=0.1, A=0.1).  
 

Same number of series in 

each category 
Oversampling one category Correlation within  

categories ρl 

Persistency of the 

target series γ lMSFE  lMSFE
 

Correlation across categories ρs =0 

0 0 1.335 1.252 

 0.3 1.328 1.246 

 0.8 1.303 1.229 

0.9 0 1.515 1.339 

 0.3 1.518 1.335 

 0.8 1.510 1.332 

Correlation across categories ρs =0.5 

0 0 1.426 1.367 

 0.3 1.418 1.361 

 0.8 1.415 1.359 

0.9 0 1.732 1.439 

 0.3 1.721 1.432 

 0.8 1.696 1.419 

Notes. The number of common factors is selected as in Bai and Ng (2002). See notes for 

Table 4. 

 

 

Table A14. Forecasting accuracy (T=150, c=0.1, d=0.1, A=0.75).  
 

Same number of series in 

each category 
Oversampling one category Correlation within  

categories ρl 

Persistency of the 

target series γ lMSFE  lMSFE
 

Correlation across categories ρs =0 

0 0 1.491 1.446 

 0.3 1.470 1.423 

 0.8 1.448 1.395 

0.9 0 2.023 1.608 

 0.3 1.986 1.586 

 0.8 1.931 1.556 

Correlation across categories ρs =0.5 

0 0 1.632 1.540 

 0.3 1.609 1.518 

 0.8 1.595 1.513 

0.9 0 1.928 1.610 

 0.3 1.881 1.589 

 0.8 1.857 1.584 

Notes. See notes for Tables 4 and A13. 
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