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ABSTRACT 

Markov-switching dynamic factor models in real time* 

We extend the Markov-switching dynamic factor model to account for some of 
the specificities of the day-to-day monitoring of economic developments from 
macroeconomic indicators, such as ragged edges and mixed frequencies. We 
examine the theoretical benefits of this extension and corroborate the results 
through several MonteCarlo simulations. Finally, we assess its empirical 
reliability to compute real-time inferences of the US business cycle. 
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1 Introduction

The late 2000s was the most sustained economic slump the United States has weathered

since World War II. One of the lessons that this Great Recession left to economists was that

policymakers and business people, who had become accustomed to the serene conditions of

the Great Moderation, have dramatically increased their interest in determining as quickly

as possible whether the economy has su¤ered from a business cycle phase shift. In this

context, time-series models, which are able to automatize the increasing complexity of the

signal extraction problem in economics, help the economic agents to perform and update

their real-time views of the developments in economic activity. These models deal with

economic indicators that share the two properties of the business cycle documented early

by Burns and Mitchell (1946): their signals about economic developments are spread over

the di¤erent aggregates and they exhibit business cycle asymmetries.

Diebold and Rudebusch (1996) were the �rst to suggest a uni�ed model that captures

these two business cycle features from a set of economic indicators. They argued that

comovements among the individual economic indicators can be modelled by using the

linear coincident indicator approach described in Stock and Watson (1991), while the

existence of two separate business cycle regimes can be modelled by using the Markov-

switching speci�cation advocated by Hamilton (1989). Integrating these approaches, Kim

and Yoo (1995), Chauvet (1998) and Kim and Nelson (1998) combined the dynamic-factor

and Markov-switching frameworks to propose di¤erent versions of statistical models which

simultaneously capture both comovements and regime shifts. Camacho, Perez-Quiros and

Poncela (2011) �nd that the fully non-linear multivariate speci�cation outperforms the

�shortcut�of using a linear factor model to obtain a coincident indicator which is then used

to compute the Markov-switching probabilities. Recently, Chauvet and Hamilton (2006),

Chauvet and Piger (2008), and Hamilton (2011) have examined the empirical reliability

of these models in computing real-time inferences of the US business cycle states.

The �rst important limitation of these Markov-switching dynamic factor models (MS-

DFM) is that they were originally designed to deal with balanced panels of business

cycle indicators. This crucial assumption means MS-DFM exhibit several drawbacks when
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applied to the (timely) day-to-day monitoring of economic activity in real time. The �rst

drawback is related to the ragged ends that characterize the real-time data sets and which

stem from the typical lack of synchronicity in the daily �ow of macroeconomic information.

Not accounting for this publication pattern would imply that the users of traditional MS-

DFM who develop early assessments of economic developments from balanced panels of

data will unavoidably incur one of the two following substantial costs. The �rst appears

when the forecasts are made from the latest available balanced panel. In this case, the

forecasts lose the latest and most valuable information contained in the promptly issued

indicators at the time of the assessments. The second is that of being late when the

analysts decide to wait until all the business cycle indicators become available and the

inferences are then actually referred to the past.

The second limitation of the traditional MS-DFM has to do with combining informa-

tion of di¤erent frequencies. This is an important limitation since some of the typical

economic indicators that are observed to infer business cycle states are available at quar-

terly frequency while others are available at monthly frequency only. For example, the

National Bureau of Economic Research (NBER) Dating Committee acknowledges that

recessions are de�ned as signi�cant declines in economic activity normally visible in real

Gross Domestic Product (GDP), which is available quarterly, and real income, employ-

ment, industrial production, and wholesale-retail sales, which are available monthly. Re-

cently, Aruoba and Diebold (2010) have used linear dynamic factor models to account for

mixed frequencies by bridging the four monthly indicators with the quarterly GDP series

which is the most comprehensive measure of economic activity. According to their results,

mixing frequencies in MS-DFM is an interesting �eld to explore. However, combining

monthly and quarterly frequencies in this nonlinear framework typically leads to the curse

of dimensionality problem. For instance, while the likelihood of a two-state DFM that only

accounts for monthly indicators can be approximated by running two parallel Kalman �l-

ters in the simplest case, adding a quarterly indicator implies evaluating 25 = 32 parallel

Kalman �lters in the same simplest case.

To overcome these limitations, the primary goal of this paper is to adapt the MS-

DFM to account for the speci�c features that characterize the real-time monitoring of the
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business cycle. Our extension of these models allows economic agents that track business

cycle developments to use whatever business cycle economic indicator, regardless of their

publication delays and their frequency. Based on the linear extension of dynamic factor

models proposed by Mariano and Murasawa (2003), our procedure deals with missing

observations by using a time-varying nonlinear Kalman �lter. Whenever the data is not

observed, the missing observations are replaced by random draws from a variable whose

distribution cannot depend on the parameter space that characterizes the Kalman �lter.

The corresponding row is then skipped in the Kalman recursion and the measurement

equation for the missing observation is set to the random choice.

In this context, our paper provides several contributions to the existing literature.

First, we show how the incoming information provided by new releases of promptly pub-

lished economic indicators help to improve the inference about the business cycle. In

addition, we show evidence that the expected increase in performance accuracy is larger

for less noisy indicators. Second, we point out that MS-DFM that use monthly indica-

tors with quarterly indicators are also a good strategy for improving their business cycle

performance. However, the accuracy gains diminish when the quality of the monthly indi-

cators already included in the analysis is high or when additional quarterly indicators are

noisy. In these cases, the gains from using quarterly as well as monthly indicators may

be deceptively lower than expected. Third, we con�rm these theoretical results by Monte

Carlo experiments, which help us to measure the magnitude of the gains from dealing with

ragged ends and mixing frequencies. Fourth, we examine the ability to infer business cycle

probabilities from some approximations that substantially reduce the curse of dimension-

ality problem when dealing with quarterly and monthly indicators in MS-DFM. Finally,

we use a real-time data set to show that our extension of the MS-DFM leads to improve-

ments in computing real-time business cycle inferences compared with forecasting from

balanced and/or lagged panels of indicators. This is especially the case when interpreting

the signals of business cycle phase shifts in the �rst months after the turning points.

The structure of this paper is organized as follows. Section 2 assesses the real-time

features of the data�ow. Section 3 examines the relative performance gains of dealing

with ragged ends and mixing frequencies through a Monte Carlo experiment. Section 4
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illustrates these results for US real-time data by using the four constituent monthly series

of the Stock-Watson coincident index and quarterly GDP. Section 5 concludes.

2 Assessing the real-time features of the data

In this section, we analyze the role of the real-time data features that characterize the

real-time data�ow in the MS-DFM business cycle forecasting performance.

2.1 Model features

Our framework is the single-index Markov-switching dynamic factor model proposed in

the mid-nineties by Kim and Yoo (1995), Chauvet (1998) and Kim and Nelson (1998)

that incorporates both comovements and business-cycle shifts into a statistical model.

The model postulates that a vector of N economic indicators, yt = (y1;t; :::; yN;t)0, which

are hypothesized to move contemporaneously with the overall economic conditions, can

be decomposed as the sum of two components. The �rst component is an unobserved

scalar time series variable, ft, that accounts for the common comovements. The second

component is the N �1 time series vector ut, that represents the idiosyncratic movements

in the series. This suggests the formulation:

yt = � ft + ut; (1)

where � = (�1; �2; :::; �N )0 is the vector of factor loadings. The main identifying assump-

tion in the model expresses the core notion that the comovements of the multiple time

series arise from the single common component. This is achieved by assuming that ut and

ft are mutually uncorrelated at all leads and lags. The remaining statistical properties of

ut are stated below.

To account for the business cycle asymmetries, it is assumed that the dynamic behavior

of the factor is governed by an unobserved regime-switching state variable, st. Within this

framework, one can label st = 0 and st = 1 as the expansion and recession states at time

t. In addition, it is standard to assume that the state variable evolves according to an

irreducible 2-state Markov chain whose transition probabilities are de�ned by

p(st = jjst�1 = i; st�2 = h; :::; It�1) = p(st = jjst�1 = i) = pij ; (2)
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where i; j = 0; 1 and It is the information set up to period t, i.e., y1; :::;yt: The state

variable is assumed to interact with the factor as described by the following speci�cations

which exhibit increasing complexity:

(i) The common factor is a regime-switching mean

ft = �st : (3)

Although it is a tight assumption, which will be relaxed below, ut is assumed to be a

multivariate white noise with mean equal to 0 and covariance diagonal matrix �u =

diag
�
�21; �

2
2; :::; �

2
N

�0
. In this case, the common factor is not random when st and the

population parameters are known. The density function of the k-th variable, yk;t, does

not depend explicitly on lagged values of the state variable and, conditional on the state,

the covariance matrix of the observed time series does not have a factor structure. All the

dynamics of the model are generated by the common regime switches.

(ii) The common factor is governed by a regime-switching mean plus a noise

ft = �st + at; (4)

where at is a white-noise process of zero mean and variance �2a, and ut is de�ned as in (i). In

this case, the knowledge of st and the population parameters still leaves some uncertainty

about the common factor that comes from the common shocks at. The density function

of yk;t does not depend explicitly on lagged states either. Conditional on the state, the

variance matrix of the observed series can be decomposed as the sum of a reduced rank

matrix plus a diagonal matrix. Finally, the dynamic behavior of the model comes from

the common switch.

(iii) The common factor follows an autoregressive process with switching intercept

ft = �st + �1ft�1 + :::+ �pft�p + at; (5)

and ut is de�ned as in (i). In this case, although the density function of yk;t does not

depend on lagged states, besides the dynamics implied by the common switch there is

additional serial correlation given by the dependence of the common factor on its own

lags. Conditional on the state, the variance and lagged covariance matrices have a factor

structure.
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(iv) The common factor is given by an autoregressive process with switching mean

ft = �st + �1

�
ft�1 � �st�1

�
+ :::+ �p

�
ft�p � �st�p

�
+ at; (6)

and ut is as in case (i). The dynamic behavior of the factor depends on the common

switch and the serial dependence of the common factor on its own lags. Now, the density

function of yk;t depends explicitly on not only the current state but on lagged states too.

(v) The common factor is given by (4) but ut is allowed now to exhibit serial but not

cross correlation. In this case, although all the common dynamics are induced by the

common switch, there might be additional serial correlation which is not common across

variables that is captured by the AR structure of the idiosyncratic components. This is

the case that we consider in the empirical analysis.

Several additional considerations from these models deserve further comments. First,

to illustrate the main theoretical results, but keeping the analytical calculations as simple

as possible, we assume that the order of all the autoregressive processes is always 1. Second,

we remove from the analysis more complicated models that may come from using factors

given by (5) or (6), where ut is allowed to exhibit serial correlation, since they complicate

the analytical results without adding new insights. Third, we consider models where the

density function of yk;t depends only on the current state and models where the density

depends on lagged states as well. Finally, besides the correlation induced by the common

switch, we also consider the correlation induced by autoregressive parameters that might

be common or speci�c to each observed series.

2.2 Ragged ends

Ragged ends typically appear in real-time data vintages due to the unsynchronized publi-

cation of economic indicators by the statistical agencies. Since it implies handling unbal-

anced panels, the analyst who uses MS-DFM to infer the state of the business cycle in real

time faces the inference problem under di¤erent alternatives, which are considered in the

following example. Let us assume that an analyst is trying to compute inferences about

the probability of recession from the monthly indicators income, employment, industrial

production and sales on the 15th day of month t+2. Recall that income and sales exhibit
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publication delays of one and two months, respectively.

The �rst alternative is to compute the business cycle inferences from the balanced

panels. In this context, either the inferred probabilities at t + 2 are actually referring

to the past, prob(st = 1jIt), or the probabilities are actually obtained with a delay of

two months, since they can only be computed at t+ 4, [prob(st+2 = 1jIt+2)]t+4, when the

statistical agencies publish the latest releases for those indicators that exhibit publication

lags and the panels become balanced. However, neither of these strategies is very useful

in practice. In the �rst case, the economic agents are forced to adopt their decisions at

t+2 as if the economic conditions were identical to those that occurred at t. In the second

case, business people are exposed to su¤ering from the dangers of business cycle phase

shifts occurring during the waiting times t+ 2 and t+ 3. Accordingly, this alternative is

not considered in the paper.

The second alternative is to compute forecasts for t + 2 from the latest available

balanced panel at t. Since the probabilities quickly collapse to their ergodic values, it

typically implies that one can badly infer the current state in real time. In our example,

computing recession probabilities on the 15th day of month t + 2 would require two-

period-ahead forecasts from the complete panel which contains information up to t, i.e.,

prob(st+2 = 1jIt). Let us assume that p00 = 0:9 and p11 = 0:7, which are the percentage

of quarters classi�ed as expansions that are followed by expansions and the percentage of

quarters classi�ed as recessions that are followed by recessions in the period 1959.3-2010.3

by the NBER, respectively. Let us also assume that prob(st = 1jIt) = 1, i.e., the economy

is de�nitely in recession at t. In this case, the recession probability inferred at t+ 2 using

the information available up to t, becomes

prob(st+2 = 1jIt) =
1X
i=0

p1ipi1prob(st = 1jIt) (7)

or a coin �ip probability of 0:52 only. Hence, the probability generated at t + 2 with

information up to t is only consistent with a non de�nitive suspicion that a recession

remains, although no additional information has been incorporated either in t + 1 or in

t+ 2.

To understand the bene�ts of our method, it is worth recalling that on the 15th day
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of month t in the previous example, sales is only available up to t, income is available

up to t + 1, and industrial production and employment are available up to t + 2. Hence,

informative news about turning points occurring from t to t+2 such as dramatic changes in

stock markets, in economic policies, in the �nancial system or wars and natural disasters,

would be re�ected in the incoming publication of the business cycle indicators and would

help the economic agents to form clearer signals about the current state of the business

cycle than the probability predicted with data up to t. According to this example, using

at t+ 2 the marginal information published at t+ 1 and t+ 2 that help to improve upon

the inferred probability prob(st+2 = 1jIt) up to prob(st+2 = 1jIt+2) would require the

MS-DFM to deal with unbalanced panels.

The previous example describes a very realistic empirical situation since, regardless

of the economic region considered in the business cycle analysis, some frequently used

hard data usually exhibit publication lags of up to two months. Although the two-month

publication delay will be treated carefully in the simulations and in the empirical analysis,

to simplify the theoretical analysis we consider publication lags of one month only.1

We distinguish two cases in the analysis of how the upcoming information can help the

models to compute business cycle inferences: models with switching intercepts and models

with switching means. Both have been used in the literature. For instance, the MS-DFM

with switching intercepts was used by Kim and Yoo (1995), Chauvet (1998) and Chauvet

and Hamilton (2006), while the MS-DFM with switching means was used by Kim and

Nelson (1998) and Chauvet and Piger (2008).

2.2.1 First arrival at t+ 1 in a model with switching intercept

In a broad sense, we consider a model as a MS-DFM with switching intercepts if the

probabilistic density function of each indicator yk;t depends explicitly on the current

state, st, but not on its lags. It simpli�es the estimation of the nonlinear model and the

inference about the state probabilities. Cases (i) to (iii) belong to this type of MS-DFM.

Let us assume that the analyst is restricted to using balanced panels, as in traditional

MS-DFM. Using the information It obtained before the �rst arrival of new information at

1The extension to larger lags is conceptually easy.
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t+ 1, her best guess of the probability of being in a certain state at t+ 1 is the one step

ahead forecast of that probability

prob(st+1 = jjIt) =
1X
i=0

prob(st = ijIt)pij : (8)

For example, for the numbers of the example described above, these state probabilities

are prob(st+1 = 0jIt) = 0:3 and prob(st+1 = 1jIt) = 0:7:

However, let us assume now that the analyst uses the generalization of MS-DFM

proposed in this paper which incorporates the information provided by some promptly

published business cycle indicator, yk;t+1, that exhibits no publication lags. In this case,

the analyst can incorporate this information as it arrives and update her belief of being

in a certain state at t+ 1 as

prob(st+1 = jjIt; yk;t+1) =
f(yk;t+1jst+1 = j; It)

f(yk;t+1jIt)
prob(st+1 = jjIt): (9)

Using the new information helps the analysts if it raises the ability to increase the true

signals. This implies that it should increase the probability of a given state when the

economy is actually in that state. For instance, let us assume that the economy is in

recession at t + 1, i.e., st+1 = 1,2 and that 0 < prob(st+1 = jjIt) < 1:3 Hence, the

partial information provided by yk;t+1 is helpful to reduce false signals when prob(st+1 =

1jIt; yk;t+1) > prob(st+1 = 1jIt) if st+1 = 1; which occurs whenever

f(yk;t+1jst+1 = 1; It) > f(yk;t+1jIt): (10)

Using the total law of probabilities, if st+1 = 1 the condition in (10) would be

f(yk;t+1jst+1 = 1; It) > f(yk;t+1jst+1 = 1; It)prob(st+1 = 1jIt)+f(yk;t+1jst+1 = 0; It)prob(st+1 = 0jIt);

(11)

which, rearranging terms, leads to

f(yk;t+1jst+1 = 1; It) > f(yk;t+1jst+1 = 0; It): (12)

2Of course, we obtain the analogous results for the probability of expansion if we assume that the true

state is st+1 = 0:
3 It is straightforward to check that if prob(st+1 = jjIt) = 1, then prob(st+1 = jjIt; yk;t+1) = 1; j = 0; 1:
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As Hamilton (2011) illustrates for univariate processes, the condition about the proba-

bilities can be viewed as a condition about the height of the conditional densities of the

observed variable.

To interpret this condition easily in the particular cases of switching intercepts, it is

simple to show that for conditional Gaussian densities with equal variance in both states

and assuming that �1 < �0 (i.e., the average growth rate is lower in recessions than in

expansions), the condition in MS-DFM is satis�ed if

(yk;t+1 � �k�1)2 < (yk;t+1 � �k�0)2 (13)

for cases (i) and (ii), and if �1 < �0, it is satis�ed if

(yk;t+1 � �kf (1)t+1jt)
2 < (yk;t+1 � �kf (0)t+1jt)

2 (14)

for case (iii). In the last expression, f (i)t+1jt = �i + �ftjt is the conditional expectation of

the common factor given st+1 = i and the observed series up to time t, where i = 0; 1,

and ftjt = E(ftjIt) is the conditional expectation of the common factor given the observed

series up to time t: These conditions tell the analyst that, to decide whether a particular

value of yk;t+1 is helpful in knowing the probability of being in state 1 in st+1 when the

economy actually is in that state, it helps to compute the squared forecast errors of yk;t+1

associated to each of the states and to check if the squared forecast error associated to

st+1 = 1 is smaller than the squared forecast error associated to st+1 = 0.

In addition, the conditions can also be interpreted by using the classi�cation rules

obtained in linear discriminant analysis with equal variances in both groups. After some

straightforward algebra in the last two expressions, it is easy to show that if st+1 = 1,

then using yk;t+1 is helpful to reduce false signals when

yk;t+1 < �k
(�0 + �1)

2
(15)

for cases (i) and (ii), and

yk;t+1 < �k

�
�0 + �1
2

+ �ftjt

�
(16)

for case (iii). In this case, incorporating the new information yk;t+1 is helpful to infer the

state st+1 = 1 if the new observation is lower than the average between the means in the

two states.
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In practice, the two density functions that appear in (12) may overlap and the con-

dition does not hold for all possible values of yk;t+1. In these cases, even when the

true state is st+1 = 1, it might happen that for some (usually high) values of yk;t+1,

f(yk;t+1jst+1 = 1; It) < f(yk;t+1jst+1 = 0; It). This might lead to a false signal detec-

tion since the probability for st+1 = 1 decreases when yk;t+1 is observed. Accordingly,

the usefulness of yk;t+1 to compute business cycle inferences must be evaluated on aver-

age. Taking natural logarithms, the condition in (12) implies that using the incoming

information helps in inferring recession probabilities in actual recessions when

ln f(yk;t+1jst+1 = 1; It)� ln f(yk;t+1jst+1 = 0; It) > 0: (17)

Now, taking into account all possible outcomes of yk;t+1 for the true state st+1 = 1, the

expected value of the di¤erence between the two conditional densities under conditional

Gaussianity is given by the Kullback-Leibler divergenceZ
ln
f(yk;tjst+1 = 1; It)
f(yk;tjst+1 = 0; It)

f(yk;t+1jst = 1; It)dyk;t+1: (18)

The next proposition, which is based on the concept of conditional entropy, quanti�es the

potential advantage of adding the advanced business cycle signal provided by the promptly

published indicator yk;t+1.

Proposition 1 Assume the factor model given by (1) for the observed series and the

common factor considered in cases (i) to (iii). Under conditional Gaussianity, the gains

in t+ 1 from using the observed yk;t+1 to infer the business cycle, given by the Kullback-

Leibler (KL) divergence of f(yk;t+1jst+1 = 1; It) with respect to f(yk;t+1jst+1 = 0; It) are

KL(i) =
�2k(�0 � �1)2

2�2k
; (19)

KL(ii) =
�2k(�0 � �1)2

2(�2a�
2
k + �

2
k)
; (20)

KL(iii) =
�2k(�0 � �1)2
2�2k;t+1jt

; (21)

where �2k;t+1jt is the conditional one step ahead error variance of yk;t+1, which has been

assumed to be the same in both states.
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Proof: The proof is given in the Appendix.

These expressions imply that if there are separate business cycles regimes in the sense

that �1 6= �0, �0 6= �1, and �2a < 1, and if the new information provided by the early

published indicator is informative in the sense that �k 6= 0, �2k <1, and �2k;t+1jt <1, then

the divergence is strictly positive. This implies that the incoming information provided by

an informative new release of the k-th economic indicator is always expected to be useful

to improve upon the inference about the business cycle at time t+ 1.

It is worth emphasizing that although the Gibbs inequality guarantees that the di¤er-

ence in the conditional densities is always positive, this proposition quanti�es the magni-

tude of the change in the conditional entropy and measures the averaged business cycle

information content of yk;t+1. Basically, the information content of yk;t+1 increases with

the di¤erence between the within-state means and with the ability of the new issue to cap-

ture this information in the model, which is given by the conditional signal-to-noise ratio
�2k

�2
k;t+1jt

. In particular, the proposition shows that the greater the signal �2k, and the lower

the one step ahead noise variance �2k;t+1jt, the larger the expected gains from observing

yk;t+1.

Regarding the noise of the signals, the three models consider state-independent vari-

ance of the observed indicator, i.e.,
�
�
(j)
k

�2
= �2k; j = 0; 1. This also implies that

the conditional one step ahead forecast error variance of yk;t+1 is state-independent,�
�
(j)
k;t+1jt

�2
= �2k;t+1jt; j = 0; 1. In this context, it is worth emphasizing that �2k;t+1jt

does not denote here the variance of the Gaussian mixture at t + 1jt but the variance of

either of the components of the mixture at t+ 1jt, which is given by

�2k;t+1jt = �2k
�
�2Ptjt + �

2
a

�
+ �2k; (22)

where Ptjt = E
�
ft � ftjtjIt

�2. However, the results can be easily generalized to the case of
di¤erent variances across states.

The previous results can also be extended to the case where several business cycle

indicators are published with very short delay and therefore are available at t + 1. For

this purpose, let yk;t+1 be the subvector of available indicators at t + 1, and let �t+1jt

be the variance-covariance matrix of the one step ahead forecast errors of this subvector.
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In addition, let �k be the subvector of factor loadings that corresponds to the series in

yk;t+1, and let � be the autoregressive parameter that drives the common factor dynamics.

Under Gaussianity of the conditional densities, incorporating the incoming information of

the subvector yk;t+1 in the model will increase accuracy in detecting a recession when

(yk;t+1 ��k(�0 + �ftjt))0��1t+1jt(yk;t+1 ��k(�0 + �ftjt))

> (yk;t+1 ��k(�1 + �ftjt))0��1t+1jt(yk;t+1 ��k(�1 + �ftjt)): (23)

Hence, the new data incorporate informational content if the Mahalanobis distance be-

tween the new (corrected of serial dynamics) data to the conditional expectation in state

0 is greater than the distance of the data to the conditional expectation in state 1.

After some straightforward algebra, it can be shown that the condition is achieved

whenever

�0k�
�1
t+1jtyk;t+1 <

�1 + �0
2

�0k�
�1
t+1jt�k: (24)

Using the notation of linear discriminant analysis, the condition holds when the scalar

variable xt+1 = �0yk;t+1 is closer to m1 = �0�k�1 than to m0 = �0�k�0, where � =

��1t+1jt�k (�1 � �0) : If the new information is very volatile, meaning that �t+1jt is large or

the two intercepts are not far enough from each other, the new information may increase

the misclassi�cation rate.

To evaluate (21) for all possible outcomes of the subvector yk;t+1 when the true state is

st+1 = 1; we proceed as in the scalar case and compute the corresponding Kullback-Leibler

divergence. The results are given in the following proposition.

Proposition 2 Assume the factor model given by (1) with the common factor given as

in (iii). Under conditional Gaussianity, the gain in t+ 1 from observing the subvector of

k variables yk;t+1, given by the Kullback-Leibler divergence of f(yk;t+1jst+1 = 1; It) with

respect to f(yk;t+1jst+1 = 0; It), is given by

KL =
(�0 � �1)2

2
�0k�

�1
t+1jt�k; (25)

where �t+1jt is the conditional variance-covariance matrix of the one step ahead forecast

error of yk;t+1, which is the same in both states, and �k is the subvector of factor loadings

that corresponds to the series in yk;t+1:

14



Proof: The proof is given in the Appendix.

Notice that the expressions for the other two cases can be easily obtained from case

(iii) by imposing � = 0, and �i = �i; i = 0; 1 in case (ii), and by imposing the additional

restriction var(at)=0 in case (i).

2.2.2 First arrival at t+ 1 in models with switching mean

Now, instead of allowing the intercept term of the common component to be regime

dependent, we allow the mean of the factor to be regime dependent. In this case, yt+1

depends not only on st+1 but also on the lagged business cycle states. Case (iv) belongs

to this type of MS-DFM.

To keep the analysis as simple as possible, we assume that yt is generated by (1),

where ut is assumed to be a multivariate white noise with mean equal to 0 and covariance

diagonal matrix �u = diag
�
�21; �

2
2; :::; �

2
N

�0
, and ft is given by (6). The model can be

expressed as

yt = ��st + ��(ft�1 � �st�1) +�at + ut: (26)

It is worth noting that the density function of yt depends explicitly not only on st but

also on its �rst lag st�1.

The forecasted probability of being in state j at t+1 computed from a MS-DFM which

is restricted to using a balanced panel of indicators with information It, is computed from

prob(st+1 = jjIt) =
1X
i=0

prob(st+1 = j; st = ijIt): (27)

However, if the information of an early published economic indicator yk;t+1 is incorporated

into the model by using the generalization of the MS-DFM proposed in this paper, the

inference about the state probabilities is computed from

prob(st+1 = jjIt; yk;t+1) =
1X
i=0

f(yk;t+1jst+1 = j; st = i; It)

f(yk;t+1jIt)
prob(st+1 = j; st = ijIt); (28)

The di¤erence between (27) and (28) is given by the ratio of conditional densities that

premultiplies the joint probabilities in (28) and that equals one in (27).
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For a particular point evaluation of the performance of yk;t+1 in separating the two

states, under the assumption of conditional Gaussianity and state-independent one-step-

ahead error variances, a su¢ cient condition for prob(st+1 = jjIt; yk;t+1) > prob(st+1 =

jjIt; ) when st+1 = j is given by

f(yk;t+1jst+1 = j; st = i; It) > f(yk;t+1jIt); (29)

for i = 0; 1. Hence, yk;t+1 exhibits informational content when including its new informa-

tion in the model if it tends to favor the particular path (i; j), with i being the state at

t and j the state at t+ 1. In particular, we say that yk;t+1 favors the path (i; j) if under

conditional Gaussianity

(yk;t+1 � �k�j � ��k(f
(i)
tjt � �i))

2 < (yk;t+1 � �k�m � ��k(f
(l)
tjt � �l))

2 (30)

for all pairs (l;m) 6= (i; j); i; j; l;m = 0; 1; where f (n)tjt = E(ftjst = n; It). As in the case of

switching intercepts, the condition implies that yk;t+1 exhibits informational content when

it increases the forecasting performance of the model within the true state.

The condition can also be interpreted by using classi�cation rules. After some straight-

forward algebra, the condition ensuring that yk;t+1 has informational content to compute

business cycle inferences can be stated as

yk;t+1 < �k
�j + �(f

(i)
tjt � �i) + �m + �(f

(l)
tjt � �l)

2
; (31)

which takes into account the direct dependence of yk;t+1 on st+1 and the state from which

the economy arrives.

This result can also be extended to the case of yk;t+1 being a subvector of yt+1, instead

of one single time series only. Under Gaussianity of the conditional densities and state-

independent variances, the subvector of promptly published economic indicators yk;t+1

exhibits informational content to infer the states st = i and st+1 = j if

(yk;t+1 ��k�j � ��k(f
(i)
tjt � �i))

0��1k;t+1jt(yk;t+1 ��k�j � ��k(f
(i)
tjt � �i))

< (yk;t+1 ��k�m � ��k(f
(l)
tjt � �l))

0��1k;t+1jt(yk;t+1 ��k�m � ��k(f
(l)
tjt � �l)):(32)

Hence, it is worth using the generalized MS-DFM that accounts for ragged ends when

the Mahalanobis distance between the new data, corrected of idiosyncratic dynamics, for

(st; st+1) = (i; j) is lower than for any other pair (st; st+1) 6= (i; j).
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The overall informational content of using promptly published indicators can also be

computed by integrating over all its possible outcomes. As in the case of common factors

with switching intercepts, the averaged better performance can be measured by taking

natural logarithms of the conditional densities ratio and integrating according to the true

distribution that appears in the true path, st = i; st+1 = j. The Kullback-Leibler diver-

gence becomes in this caseZ
ln
f(yk;t+1jst+1 = j; st = i; It)

f(yk;t+1jIt)
f(yk;t+1jst+1 = j; st = i; It)dyk;t+1: (33)

However, a new problem appears here since it implies evaluating the integral when the

distribution is a mixture. In the spirit of Harrison and Stevens (1976) and Peña and

Guttman (1989) we use the �collapsing�method that approximates a mixture of Gaussians

by one Gaussian with the same mean and variance of the mixture.4

In the context of entropy calculations, this problem has been treated in Hershey and

Olsen (2007). We bene�t from their method to approximate the entropy of a mixture of

Gaussians to deal with the following proposition.

Proposition 3 Assume the factor model given by (1) for the observed series and the

common factor considered in case (iv). Under conditional Gaussianity, the gain in t + 1

from observing yk;t+1, given by the Kullback-Leibler divergence of f(yk;t+1jst+1 = j; st =

i; It) with respect to f(yk;t+1jIt) can be approximated by

KL(iv) =
1

2
ln
e�2k;t+1jt
�2k;t+1jt

(34)

=
1

2
ln

0@1 + 1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2
1A ; (35)

where y(i;j)k;t+1jt = E(yk;t+1jst+1 = j; st = i; It); i; j = 0; 1; is given by

y
(i;j)
k;t+1jt = �k�j � ��k(f

(i)
tjt � �i); (36)

with f (i)tjt = E(ftjst = i; It), and eyk;t+1jt and e�2k;t+1jt are the mean and variance of the
4The collapsing approach has also been used in the context of Markov-switching algorithms by Kim

(1994), among others.
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mixture given by

eyk;t+1jt =

1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)y(i;j)k;t+1jt; (37)

e�2k;t+1jt = �2k;t+1jt +
1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2: (38)

Proof: The proof is given in the Appendix.

Proposition 3 quanti�es the prediction or information content of yk;t+1 for the type

of models considered in (iv).5 It depends on the dispersion of the observed data and the

probability associated to each possible path.

Finally, we consider case (v) where the common factor is given as in (4), but each

idiosyncratic component is an autoregressive process of order one,

ut = 	ut + �t; (39)

where var(�t) = diag(�21; :::; �
2
N ) and 	 = diag( 1; :::;  N ): In this case, a particular path

(i; j) is favored on average when the true state is precisely (i; j) if a similar condition to

(33) holds. The next proposition quanti�es the prediction or information content of yk;t+1.

Proposition 4 Assume the factor model given by (1) for the observed series and the

common factor considered in case (v). Under conditional Gaussianity, the gain in t+1 from

observing yk;t+1, given by the Kullback-Leibler divergence of f(yk;t+1jst+1 = i; st = j; It)

with respect to f(yk;t+1jIt), can be approximated by

KL(v) =
1

2
ln
e�2k;t+1jt
�2k;t+1jt

(40)

=
1

2
ln

0@1 + 1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2
1A (41)

where y(i;j)k;t+1jt = E(yk;t+1jst+1 = j; st = i; It); is the conditional mean of yk;t+1 given the

path (st = i; st+1 = j)

y
(i;j)
k;t+1jt = �k�j �  k�k(yk;t � �i)

5Note that the conditional variance of the one step ahead predictions, �2k;t+1jt, given the path (st =

i; st+1 = j); i; j = 0; 1, is the same for the four possible paths.
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and eyk;t+1jt and e�2k;t+1jt are the mean and variance of the mixture, respectively, given by
eyk;t+1jt =

1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)y(i;j)k;t+1jt; (42)

e�2k;t+1jt = �2k;t+1jt +
1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2: (43)

2.3 Mixing frequencies

Recently, Aruoba and Diebold (2010) extracted an economic activity index from a linear

dynamic factor model that uses four monthly indicators, employment, industrial produc-

tion, real personal income less transfers and real manufacturing and trade sales, along

with a quarterly indicator, GDP. Although they explicitly left for further research the

assessment of the possible presence of regime-switching in the factors that are extracted

from dynamic factor models, the treatment of mixing frequencies within MS-DFM is not

straightforward. This section analyzes the peculiarities of its implementation in the MS-

DFM setup.

Quarterly series that refer to stocks can easily be converted into monthly observations

since they simply refer to quantities which are measured at a particular time and do not

require any time restriction. Accordingly, these series can be treated as observed the month

that they are issued and as unobserved otherwise. However, �ow variables like GDP are

measured during some time periods and must be temporally aggregated. Within linear

frameworks, Mariano and Murasawa (2003) describe a time aggregation of �ow variables

which is based on the notion that quarterly time series can be viewed as sums of underlying

monthly series in the corresponding quarter. Let us assume that arithmetic means can

be approximated6 by geometric means.7 Hence, quarter-on-quarter growth rates (gt) of

quarterly series are weighted averages of the monthly-on-monthly past growth rates (xt)

6Other approaches in the literature which try to skip the approximation are not exempt of problems.

The exact nonlinear �lter of Proietti and Moauro (2006) involves approximations in its own and the exact

linear �lter of Aruoba, Diebold and Scotti (2009) assumes all indicators to be polynomial trends.
7The approximation is not very restrictive in practice. For example a constant growth of 1% each month

in a particular quarter (annual growth of more than 12%), would imply a di¤erence between arithmetic

and geometric means of less than 0:4 percentage points.
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of the (assumed to be known) monthly series in levels

gt =
1

3
xt +

2

3
xt�1 + xt�2 +

2

3
xt�3 +

1

3
xt�4: (44)

This expression accounts for the two characteristics of mixed processes. The �rst

characteristic is time dependence. It appears since the processes are linear combinations

of present and past monthly random variables xt that depend on present and lagged

hidden discrete state variables st; :::; st�k. The second characteristic is the presence of

missing values. It appears since the monthly series of quarterly growth rates gt is only

available once every three monthly outcomes.

The �rst challenge of time dependence is to determine the lag order k in st�k that is

required to correctly specify the probability distribution function of the given time series.

To simplify the analysis, let us assume that there is only one quarterly indicator which

is the �rst component of the vector of economic indicators. Let us also assume that the

quarterly indicator has a loading factor equal to one and that its idiosyncratic component

is a white noise with variance �21. In this case, the monthly growth rates are xt = ft+u1t.

Finally, we simplify the analysis by assuming that ft = �st + at, with at � N(0; �2a), and

that �st = �i if st = i, i = 0; 1: Then, xtjst is distributed according to

f(xtjst = i) =
1p
2��2

exp

�
�(xt � �i)

2

2�2

�
; (45)

with i = 0; 1, and �2 = �2a + �
2
1.
8 Therefore, xt is a mixture of two Gaussian densities

f(xt) =
2X
i=1

�if(xtjst = i); (46)

where �i is the unconditional probability of being in state i.

According to (44), the common factor a¤ects the underlying monthly series of con-

temporaneously and lagged quarterly GDP growth rates. Since the monthly GDP growth

xt can be in either of the two states i = 0; 1 (expansion or recession), and the monthly

series of quarterly growth gt is a linear combination of xt and four lags, the process needs

to account for up to 25 = 32 di¤erent business cycle paths. For this purpose, we follow

8Again, we are assuming regime-independent variances. It is easy to skip this assumption.
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Hamilton (1989), to de�ne s�t as the Markov process that accounts for these paths

s�t = 1 if st = 0; st�1 = 0; :::; st�4 = 0;

s�t = 2 if st = 1; st�1 = 0; :::; st�4 = 0;

s�t = 3 if st = 0; st�1 = 1; :::; st�4 = 0;
...

s�t = 32 if st = 1; st�1 = 1; :::; st�4 = 1:

The Gaussian conditional probability density function of gt given s�t is given by

f(gtjs�t = j) =
1p
2��2�

exp

�
�(gt � �(s

�
t = j))2

�2�

�
; (47)

where j = 1; 2; :::; 32,

�(s�t = 1) =
1

3
�0 +

2

3
�0 + �0 +

2

3
�0 +

1

3
�0 = 3�0;

�(s�t = 2) =
1

3
�1 +

2

3
�0 + �0 +

2

3
�0 +

1

3
�0 =

1

3
�1 +

8

3
�0;

...

�(s�t = 32) =
1

3
�1 +

2

3
�1 + �1 +

2

3
�1 +

1

3
�1 = 3�1; (48)

and

�2� =
19

9
�2: (49)

Hence, the density of gt is

f(gt) =

32X
j=1

��jf(gtjs�t = j); (50)

where ��j is the unconditional probability of being in the j-th state out of the 32 di¤erent

states.

One immediate implication of these expressions is that the empirical applications of

this simple model to infer real-time business cycle probabilities will su¤er from the curse

of dimensionality problem. And the curse of dimensionality problem could be magni�ed

in practice when not all the dynamics of the time series xt rely on a changing mean �st . In

these cases, the common factor includes up to p lags, xt depends on st; st�1; :::; st�p, and

gt depends on st; :::; st�4; :::; st�p�4: This results in more complex algorithms that should

account for up to 2p+5 di¤erent business cycle paths.
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One simpli�cation strategy, which has been used by Chauvet (1998) in the context

of MS-DFM that use only monthly indicators, consists of approximating the switching

mean model by a switching intercept model. This strategy would simplify the algorithm

considerably since it would need to account for 32 only di¤erent states regarding the lag

length of the autoregressive process. In this paper, we go even further. In Section 3 we

present the results of a simulation study where we assess the performance of approximating

the model that uses 32 di¤erent states by a simplifying version that uses only 2 di¤erent

states. i.e., we evaluate the performance of assuming the density of the quarterly indicator

as if it only relied on the two initial states

f(gt) =

2X
i=1

�if(gtjst = i): (51)

According to our results, we conclude that this approximation is quite accurate in many

empirical situations.

The second characteristic of mixed processes is that quarterly series exhibit two missing

observations within each quarter. Since these missing data and the absence of the latest

releases due to data publication delays can both be treated in a similar manner in the

context of MS-DFM, the next subsection describes a method to �ll both gaps and to

produce inferences of unobserved series using a nonlinear Kalman �lter.

2.4 Dealing with missing data

The presence of both ragged ends and mixing frequencies generate missing data in dynamic

factor models. We extend the procedure described by Mariano and Murasawa (2003),

which deals with missing observations within linear DFM, to the Markov-switching setup.

Following these authors, our proposal is based on �lling in the missing observations with

random numbers that are extracted from a random variable whose distribution is inde-

pendent of the model parameters and rewriting the measurement equation appropriately

to get that the nonlinear Kalman �lter skips the random numbers. We show that the pa-

rameters that maximize the likelihood and the inferences about the business cycle states

are achieved as if all the variables were observed.

Without loss of generality, we focus on dealing with missing data in the t-th observation
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of a quarterly indicator which is the �rst variable of a set of monthly indicators.9 Let � be

the vector that includes all the unknown model parameters, and let the quarterly indicator

gt be the �rst component of the vector of time series yt, i.e., y1;t = gt. Let us de�ne the

variable

y+1;t :=

8<: y1;t if y1;t is observable

zt otherwise

9=; ; (52)

where zt is a random variable whose distribution is independent of �, for instance, zt �

N(0; �2z). Let � be the vector of parameters associated to the density function of zt

and f(zt;�) the density function of zt. To skip the row corresponding to nonobserved

variables from the Kalman recursion, the measurement equation simply discards the row

corresponding to the �rst variable which is set to the random draw whenever it is not

observed. Accordingly, no modi�cations of the nonlinear algorithm used to estimate MS-

DFM are needed apart from considering the time varying Kalman �lter to zero out the

missing observations.

To check that the method works in the Markov-switching setup, let us show that the

estimates of � that maximize the likelihood function when missing data are replaced by zt

are the estimates that also maximize the likelihood function of the observed data. For this

purpose, let y+t = (y
+
1;t; y2;t; :::; yN;t)

0 and consider the joint density function of (y+1 ; :::;y
+
T ):

Since f(zt;�) does not depend on �, the likelihood can be written as

f(y+1 ; :::;y
+
T ;�; �) = f(y1; :::;yT ;�)

Y
t2A

f(zt;�); (53)

where A � f1; :::; Tg is the subset of missing observations for y1;t. Taking logs, it is

very easy to see that regardless the values of zt, the argument that maximizes the log of

f(y+1 ; :::;y
+
T ;�) must also maximize the log of f(y1; :::;yT ;�).

In addition, let us show that the �ltered probabilities that are obtained from observed

and missing data fy+t gTt=1, prob(st = ijI+t ), do not depend on zt either. For this purpose,

let us consider the simplifying constraints that xt = �1ft+u1t, where ft = �st+at, and u1t

is white noise. In this case, the probability distribution can be approximated by a mixture

9The procedure described in this section can be easily extended to other situations. Examples are

several missing data at time t and missing data in the monthly indicators.
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of 32 Gaussian densities.10 Let I+t be the information set generated by (y
+
1 ; :::;y

+
t ). Let

prob(st�1 = l; st�2 = m; st�3 = n; st�4 = ojI+t�1) (54)

be the set of state probabilities which are computed at t � 1.11 If we denote the states

of s�t that contain st = i as C = fj 2 f1; :::; 32gjst = ig, it is easy to obtain the �ltered

probability of a given state i by adding these probabilities

prob(st = ijI+t ) =
X
j2C

prob(s�t = jjI+t ): (55)

Each of these 16 terms is given by

prob(s�t = jjI+t ) =
f(y+t ; s

�
t = jjI+t�1)

f(y+t jI+t�1)
: (56)

To begin with, let us assume that y1;t is observed. Although we will show that this is

actually the case, let us also assume that prob(s�t = jjI+t�1); j = 1; :::; 32, does not depend

on fz1; :::; zt�1g. In this case, y+t = yt and the posterior probabilities can be computed as

prob(s�t = jjI+t ) =
f(ytjs�t = j; I+t�1)prob(s

�
t = jjI+t�1)

32X
k=1

f(ytjs�t = k; I+t�1)prob(s
�
t = kjI+t�1)

; (57)

with

f(ytjs�t = j; I+t�1) =
1r

(2�)N
����j

tjt�1

��� expf�
1

2
(yt�yjtjt�1)

0
�
�j
tjt�1

��1
(yt�yjtjt�1)g; (58)

where yjtjt�1 is the one step ahead forecast of yt given information up to time t � 1 if

s�t = j, and �jtjt�1 is its variance-covariance matrix. In addition, for each state s
�
t = j

prob(s�t = jjI+t�1) = pljprob(st�1 = l; st�2 = m; st�3 = n; st�4 = ojI+t�1); (59)

where j; l;m; n; o 2 f0; 1g: Hence, on plugging (58) and (59) in (57), the desired �ltered

probabilities of a particular regime are obtained by using (55). Finally, one can also

compute the next input needed by the algorithm as

prob(st = i; st�1 = l; st�2 = m; st�3 = njI+t ) =

=
2X
o=1

p(st = i; st�1 = l; st�2 = m; st�3 = n; st�4 = ojI+t ): (60)

10The generalization to processes of larger orders is straightforward.
11The initial probabilities can be set, for instance, to the ergodic probabilities or to 1=16:

24



for given i; l;m; n. Notice that prob(s�t = jjI+t ) does not depend on zt.

Let us assume now that y1;t is not observed. In this case, y+t = (zt; y2;t; :::; yN;t)
0 =

(zt;y
�0
t )

0, where y�t are the observed variables at t. Then, since zt does not depend on the

remaining variables in the model, the posterior probabilities can be computed as

prob(s�t = jjI+t ) =
f(y�t ; s

�
t = jjI+t�1)f(zt)
f(y�t jI+t�1)

(61)

=
f(y�t js�t = j; I+t�1)prob(s

�
t = jjI+t�1)f(zt)

32X
k=1

f(y�t js�t = k; I+t�1)prob(s
�
t = kjI+t�1)f(zt)

(62)

=
f(y�t js�t = j; I+t�1)prob(s

�
t = jjI+t�1)

32X
k=1

f(y�t js�t = k; I+t�1)prob(s
�
t = kjI+t�1)

; (63)

which does not depend on zt.

3 Monte Carlo simulations

In this section, we set up several Monte Carlo experiments to study how the real time

features of incoming data might a¤ect the relative empirical performance of traditional

MS-DFM, which are constrained to working with balanced panels of data, with respect to

our extension of MS-DFM, which are able to deal with ragged ends and mixing frequencies.

For this purpose, we generate a total of M = 1000 sets of N idiosyncratic components

umt of length T 0 = T + J , where T = 200 refers to the in-sample data, and J = 10 refers

to the forecasting period. In the simulations, the time series are generated with equal

variances �2i = �2. The dynamics of these idiosyncratic time series are assumed to follow

autoregressive processes of order one with autoregressive parameters equal to 0:3.

In addition, we generateM = 1000 dummy variables bmt of zeroes and ones of length T
0

which are used to simulate di¤erent sequences of expansions (bmt = 0) and recessions (b
m
t =

1). To ensure that the dummies share the US business cycle properties, we assume that

bmt follows Markov chains with p00 = 0:9 and p11 = 0:7. According to the NBER Business

Cycle Dating Committee, these transition probabilities coincide with the percentage of

quarters classi�ed as expansions that are followed by expansions and the percentage of
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quarters classi�ed as recessions that are followed by recessions in the period 1959.3-2010.3.

Then, we generateM = 1000 common factors, fmt , that follow Markov-switching processes

by using the business cycle sequences bmt to classify the business cycle states, by assuming

within state means of �0 = 1 and �1 = �1, and by setting �2a = 1. Finally, using loading

factors equal to one for all the series, we add the idiosyncratic components to the switching

mean factors to generate M = 1000 sets of N time series fymt g
T 0

t=1.

To examine the e¤ects of dealing with ragged ends in computing the real-time business

cycle inferences, let us assume that an analyst faces the inference problem by assuming

that there is one publication lag in four out of the set of N indicators used in the analysis.

To complete the analysis, the simulations are also computed when these four indicators

exhibit two publication lags. To examine the e¤ect of the quality of the indicators in the

forecasting accuracy, the series are generated with the same but increasing idiosyncratic

variance �2 of 0:5; 1:5, and 4:5. To analyze the role of N , the total number of indicators

used in the analysis is 5 and 7.

Let us assume that the analyst wants to infer the probability of recession at T +j, with

j = 0; 1; :::; J , from the set of N indicators under two di¤erent scenarios. The �rst scenario

consists of using traditional MS-DFM to infer recession probabilities at T + j with the

(as large as possible) amount of information disposable at T + j. In this case, the analyst

faces two alternatives. The �rst alternative is to forecast from the latest available balanced

panel of N indicators. Hence, she has to compute one-step-ahead forecasts to obtain

prob(sT+j = 1jIT+j�1) and two-step-ahead forecasts to obtain prob(sT+j = 1jIT+j�2)

from the set of N indicators when there are one and two periods of publication lags,

respectively.

The second scenario consists of using our extension of MS-DFM that is able to deal with

ragged ends. In this case, the inferences can be computed from the N indicators even when

four of them are not available at T + j, i.e., the analyst can compute prob(sT+j = 1jI+T+j),

where I+T+j refers to information provided by the set ofN�4 promptly published indicators

up to T + j and the 4 delayed indicators up to T + j � h, with h = 1; 2. In this case, the

variance of the N � 4 indicators that are published timely is 1:5, and the variance of the

4 delayed indicators is allowed to change from 0:5 to 1:5; and 4:5. The role of the number
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of indicators is examined by allowing N to change from 5 to 7.

For each m-th replica, we quantify the ability of these estimation procedures to detect

the actual state of the business by computing the Forecasting Quadratic Probability Score

(FQPS):

FQPSi =
1

M

MX
m=1

1

J

T+JX
j=1

(pmT+j;i � bmt+j)2: (64)

In this expression, i = I in the case of traditional MS-DFM that forecast from the latest

available balanced panel and i = II in the case of our extension of MS-DFM that is able

to deal with ragged ends. Hence, the measure is the average over theM replications of the

mean squared deviation of the di¤erent types of inferences from the generated business

cycles.

Table 1 displays the FQPS statistics when four indicators exhibit one and two (in

brackets) publication lags. According to the results outlined in Section 2, the table shows

that using the incoming information as it is available early helps to increase the accuracy

of the models. For example, let us focus on the case of computing inferences from N = 5

indicators when four of them exhibit a one-period publication delay in the case �2 =

1:5. When the one-step ahead probability forecasts are computed from the balanced set

of �ve indicators with one lag of publication delay, the inferences computed from the

traditional MS-DFM exhibit FQPSI of 0:167. However, the table shows that using one

timely available indicator and four indicators with one lag of publication delay within a

MS-DFM that allows ragged ends to be dealt with substantially improves the business

cycle inferences, since the FQPSII falls to 0:133. In addition, the accuracy gains of

accounting for ragged ends increase when the publication delay is two months (FQPSI of

0:190 vs FQPSII of 0:133).

Notably, the sharp increases in the forecasting accuracy detected below are achieved

by using only one timely published indicator. When the number of promptly available

indicators increases, the inferences computed from the model that accounts for ragged

ends also outperform those computed from the model that computes probability forecasts

from the complete set of indicators (FQPSI of 0:163 vs FQPSII of 0:107), especially when

the indicators exhibit larger publication delays (FQPSI of 0:187 vs FQPSII of 0:107).

27



The entries displayed in Table 1 show that the ability to compute business cycle in-

ferences from larger models crucially depends on the signal-to-noise ratio of the early

available indicators. The last column of the table shows that FQPSII rises from 0:103

to 0:107 and 0:110 when the idiosyncratic variance increases from 0:5 to 1:5 and 4:5. In

spite of this comment, it is worth pointing out that the relatively better performance of

the MS-DFM that deals with ragged ends is maintained when the indicators exhibit larger

signal-to-noise ratios. As the idiosyncratic variance increases, the corresponding FQPSI

of the models that cannot deal with ragged ends shown in the second column of the table

also rises from 0:158 to 0:163 and 0:175.

Finally, to examine the role of using indicators with di¤erent frequencies to compute

business cycle inferences, we develop the following Monte Carlo experiment. We generate

M = 1000 sets of N = 4 �monthly� indicators of length T = 200 and �2 = 4:5, and

M = 1000 business cycle dummies, as described above. For each simulation we generate

1 �quarterly�indicator which is provided with the publication characteristics of quarterly

data: the indicator is observed only once each three observations (only the last observation

is available each quarter and the �rst two are missing data), and its quarterly growth rates

are weighted averages of the monthly past growth rates as described in (44). The role of

the quality of the quarterly indicator is analyzed by allowing its idiosyncratic variance to

change from 0:5 to 4:5.

To isolate the e¤ect of mixing frequencies from the ragged ends e¤ect, the time series are

generated in this case under the assumption that there is no publication delay. Accordingly,

the analysis is restricted to examining the in-sample accuracy of a MS-DFM that uses

only the balanced panel of monthly indicators compared with a MS-DFM that uses both

monthly and quarterly indicators. For this purpose, we compute the Quadratic Probability

Score (QPS)

QPS =
1

M

MX
m=1

1

T

TX
t=1

(pmt � bmt )2; (65)

which can be interpreted as an in-sample FQPS.

Table 2 suggests that two features of our analysis of mixing frequencies in MS-DFM

are noteworthy. First, the enlarged MS-DFM that uses four monthly indicators and one
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quarterly indicator uniformly outperforms the MS-DFM that is restricted to using the

four monthly indicators only. In addition, we �nd that the higher the quality of the

quarterly indicator, the larger the relative performance gains of using mixing frequencies.

In particular, the QPS falls from 0:157 to 0:143 when the quarterly indicator is as noisy

as the four monthly indicators (�2 = 4:5), and to 0:121 when the quarterly indicator is

less noisy (�2 = 0:5) than the monthly indicators.

Second, approximating the time-consuming model that uses the 32 states actually

required by a fast simplifying version that uses only the 2 initial states does not lead to

in large performance declines, especially when the quarterly indicator is as noisy as the

four monthly indicators. In particular, although the 32-state model reduces the QPS by

about 21% with respect to the 2-state approximation (from 0:153 to 0:121) when �2 = 0:5,

the magnitude of the reduction falls to only about 5% when �2 = 4:5. Noticeably, the

fast approximation provided by the 2-state model still performs better than the model

that uses the monthly indicators only. In this sense, we can conclude that if monthly

and quarterly indicators exhibit similar idiosyncratic noises then the fast approximation

obtained from the 2-state model is able to capture the business cycle inferences with a

similar accuracy to the 32-state model.

4 Empirical application

The purpose of this section is to examine the relative empirical performance of our modi�ed

MS-DFM, which is able to deal with ragged ends and mixed frequencies, with respect to

traditional MS-DFM, which are restricted to use balanced panels of data. For this purpose,

we use an updated version of the data set used earlier in a linear context by Aruoba and

Diebold (2010).

4.1 In-sample analysis

The four monthly indicators used in the empirical analysis are monthly industrial produc-

tion index, nonfarm payroll employment, personal income less transfer payments and real

manufacturing and trade sales. Although the latest available data set was downloaded on
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January, 15th 2011, the balanced panel of four monthly indicators only includes data from

1967.01 to 2010.11, since income is only available up to December 2010 and sales is only

available up to November 2010.

Since the seminal proposal of Diebold and Rudebusch (1996), the behavior of these

series is assumed to follow the comovements and asymmetries that Burns and Mitchell

(1946) designated as the key business cycle features. Following their lines, we �t a MS-

DFM to the balanced panel of one hundred times the change in the natural logarithm of

these four macroeconomic variables.12 The maximum likelihood estimates of this monthly

model, which are displayed in the top panel of Table 3, show that the estimates of the

signal-to-noise ratios agree with the magnitudes used in the simulation experiments. In

particular, the highest values of the simulated signal-to-noise ratios are achieved by in-

dustrial production, the medium values by employment, and the lowest values by sales

and income. In addition, the estimates show that the factor loadings are positive and

statistically signi�cant. Hence, the indicators are positively correlated with the estimated

common factor. In line with this statement, Figure 1 shows that the coincident index

describes a behavior that closely agrees with the NBER-designated US business cycles.13

Notably, the maximum likelihood estimates reported in the top panel of Table 4 also

show that the transition probabilities are very persistent (p00 = 0:98; p11 = 0:85) and that

the within-state means are separate from each other (�0 = 0:32; �1 = �2:00). Figure 2,

which plots the probabilities that the coincident indicator is in recession based on currently

available information along with shaded areas that represent periods dated as recessions

by the NBER, shows that the �ltered probabilities are in striking agreement with the

professional consensus as to the history of US business cycles. According to the theory

and the Monte Carlo simulations, Table 4 shows that when the particular features of real-

time inferences are omitted, the high quality of the indicators used in the model leads

to a very good in-sample business cycle performance (QPS = 0:049). From the results

suggested by Camacho et al. (2011), we do not expect to �nd large improvements in the

12According to Stock and Watson (1991), all the linear autoregressive processes are estimated with two

lags. According to Camacho and Perez Quiros (2007), the nonlinear factor is estimated with no lags.
13 In the empirical analysis, we take it as given that the NBER correctly identi�es the dates of business

cycle turning points.
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historical (or in-sample) business cycle performance of enlarged models, due to the high

quality of the indicators already included in the model.

Recently, Aruoba and Diebold (2010) proposed a linear DFM to construct a real ac-

tivity economic indicator which is based on these four monthly indicators along with

quarterly real GDP. Our extension of MS-DFM allows us to obtain nonlinear estimates

and business cycle inferences from this data set that contains business cycle indicators

with monthly and quarterly frequencies. Interestingly, Table 3 shows that the maximum

likelihood estimates that refer to the monthly series and the common factor are similar

to the estimates obtained when GDP is excluded from the model.14 The dynamics of the

common factor, which is plotted in Figure 3, is also in close agreement with the dynamics

of the estimated common factor obtained from the model that excludes GDP. In addition,

the �ltered probabilities that the coincident indicator is in the negative growth rate, which

are plotted in Figure 4, also show remarkable success in matching the NBER reference

dates. The QPS of the model that uses quarterly GDP data is 0:048, which shows that

the mixed frequency model exhibits slightly better overall performance than the model

that uses monthly indicators only.

However, Table 4 also shows that the reductions in QPS increase by up to 5% (from

0:454 to 0:430) when the analysis is restricted to the �rst month after a phase shift.

It is remarkable to note that the reductions reach 20% (from 0:222 to 0:171) when the

analysis refers to the �rst period of an expansion. Accordingly, we conclude that although

the monthly indicators are quite informative about the historical US business cycle, the

quarterly GDP issues are very helpful for improving upon the business cycle performance

at business cycle phase shifts, especially to detect the exit of recessions accurately.

4.2 Real-time analysis

The previous in-sample analysis has been conducted with data of the most recent vintage.

However, the real-time data can be deceptively less helpful in monitoring the real activity

than the in-sample evaluations developed in the previous section using �nally revised

14According to the results of the Monte Carlo experiment, we include GDP in the approximated 2-state

model.
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datasets. On the one hand, it has been argued in the related literature (see, for example,

Diebold and Rudebusch, 1991) that the good performance of the end-of-sample vintages in

examining the empirical performance of econometric models may be spurious, in the sense

that the data actually available in real time include economic time series that are subject

to revision and that the economic relationships may change over time. In our case, the

measures of production, employment and sales are typically subject to substantial revisions

that sometimes occur years after the o¢ cial �gures are �rstly released. On the other hand,

the in-sample analysis does not allow the researchers to evaluate the e¤ects of managing

the lack of synchronicity that characterizes the daily �ow of macroeconomic information

in the early assessments of the economic developments.

To perform a more realistic assessment of the actual empirical reliability of the MS-

DFM, we evaluate their real-time performance at tracking the US business cycles in real

time through a data set that consists of vintages obtained from January 15, 1976 to

February 15, 2011. That is, the inferences are computed at each month t over the past

35 years that covers the period December, 1976 to January, 2011 by using only the data

that would have been available at the middle of the month that follows the particular

month in which the inference is computed. This is accomplished by estimating the models

on recursively increasing samples of data vintages and evaluating the evidence for a new

turning point at the last month of each sample. Hence, the real-time analysis does not

include the data revisions that were not available at the time the model would have been

used and has to manage with incomplete data sets at the time of each inference.

To clarify understanding, let us recall the stylized publication calendar of the economic

indicators used in the real-time analysis. At the end of month t, Industrial Production is

published on the 15th of the month t+ 1; Non-farm Employees is published on the 8th of

the month t+ 1, Real Personal Income is published on the 27th of the month t+ 1, Real

Manufacturing and Trade Sales is published on the 27th of the month t+ 2,15 and GDP,

is published on the 15th of t + 2, whenever t is March, June, September or December.

To simplify the real-time analysis, we consider that the real time inferences are computed

on the 15th of each month, where employment and industrial production are available

15The nominal indicator is published on the 14th of t+ 2.
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for the previous month. On this day, of month t + 1, we infer the probabilities of being

in a recession at t, prob(st = 1jIt), with industrial production and employment up to t,

personal income up to t� 1, and real sales up to t� 2.

According to our theoretical and Monte Carlo results, the business cycle probabilities

are inferred from di¤erent alternative strategies. The �rst strategy, called strategy A,

consists of computing inferences from traditional MS-DFM which can only account for

balanced datasets. This implies that the model cannot use either quarterly series or

the information provided by the early published indicators since the dataset must be

constrained to �nish at t� 2. Within this strategy, the inferences can be computed from

one of the two following alternatives. In the �rst alternative, called strategy A1, the

inferences computed at t� 2 are considered as the prevailing business cycle conditions for

period t, i.e., the probabilities prob(st = 1jIt) are approximated by [prob(st�2 = 1jIt�2)]t.

In the second alternative, called strategy A2, the probabilities at t are computed by

projecting the estimated probabilities for period t� 2 to the current state by multiplying

latest inferences by the transition matrix, prob(st = 1jIt�2).

Strategies A1 and A2 clearly miss the extremely valuable information about the cur-

rent business cycle that is provided by the early published indicators. In particular, these

inferences miss the data of personal income at t � 1, and industrial production and em-

ployment at t � 1 and t. To overcome this drawback, the business cycle inferences are

computed in strategy B by using the extensions of MS-DFM proposed in this paper. Fi-

nally, the inferences are computed in strategy C by enlarging the model with GDP in the

2-state approximation of MS-DFM with the mixed frequencies described in Section 2.

Figures 5, 6, 7, and 8, which plot the real-time �ltered probabilities estimated from

strategies A1, A2, B, and C, respectively, help us to assess the empirical performance of

the di¤erent strategies in real time. As expected, when the analysis is developed in real

time the �gures show a signi�cant deterioration in the models�performance with respect

to the in-sample results. Although the in-sample �ltered probabilities plotted in Figures

2 and 4, which are computed from �nally revised data, provide unequivocal jumps in

probabilities that marked the start and the end of the US business cycle phases, the real-

time probabilities plotted in Figures 5 to 8 produce noisier and less accurate signals of the
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business cycle.

However, the �gures also show that there is a signi�cant improvement in business

cycle forecasting accuracy when the MS-DFM is allowed to deal with ragged ends and, to a

lesser extent, to deal with mixing frequencies. To evaluate these forecasting improvements,

Table 5 displays the results of the out-of-sample FQPS for the four di¤erent strategies.

According to our theoretical and Monte Carlo results, strategies B and C provide much

better forecasting accuracy than strategies A1 and A2, with a reduction in FQPS of more

than 35% when it is computed for the entire sample used in the real-time analysis. The

comparison of FQPS in the case of strategy B (FQPS = 0:066) and strategy C (FQPS =

0:079) reveals that the model that uses monthly indicators outperforms the model that

is enlarged with GDP. However, as occurred in the in-sample analysis, the business cycle

forecasting improvements of the model that mixes monthly and quarterly indicators come

from its ability to identify the business cycle around turning points, especially when the

analysis is concentrated on the beginning of expansions. In particular, using the quarterly

GDP along with the four monthly indicators in the �rst month after the phase shifts to

compute business cycle inferences reduces the FQPS about 11% (from 0:684 to 0:612),

and more than 41% (from 0:437 to 0:255) when the analysis is restricted to the �rst month

after the troughs.

5 Concluding remarks

Real-time data usually display the feature of ragged ends, which means that end-of-sample

observations of time series are missing and only released with a time-lag. The asynchro-

nous publication releases limit the empirical bene�ts of Markov-switching dynamic factor

models in monitoring the day-to-day economic developments since models are restricted

to dealing with balanced data vintages and cannot manage all the relevant new releases

as they arrive. In practice, the business cycle inferences computed from these models are

either available only with a delay of several months or they are computed as forecasts of

past inferences.

From the point of view of monitoring business cycle conditions, we show in the paper
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that there is no reason to be late or to disregard the relevant information provided by the

latest �gures of promptly issued indicators. We theoretically show that when the economic

indicators are carefully selected to have large signal-to-noise ratios in the Kalman �lter

used to compute business cycle inferences the increase in the accuracy of business cycle

identi�cation becomes substantial.

The extension of dynamic factor models with regime switches proposed in this paper is

the missing piece of this puzzle. Following the linear proposal of Mariano and Murasawa

(2003), the method is based on a nonlinear Kalman �lter to �ll in the gaps of the non-

synchronous �ow of data releases in an e¢ cient manner. By means of several Monte Carlo

experiments we quantify the magnitude of the accuracy improvements provided by our

proposal over traditional methods. According to the theory, the improvements basically

depend on the quality of the indicators used in the analysis.

In addition, traditional Markov-switching dynamic factor models cannot deal with

business cycle indicators of di¤erent -typically monthly and quarterly- frequencies. In this

paper, we also show how to mix monthly and quarterly indicators to infer the business

cycle phases. We show that quarterly data can in practice be treated as monthly data

that exhibit missing monthly observations within each quarter. Accordingly, the nonlinear

state-space framework proposed to deal with ragged ends can also be used to combine

business cycle indicators of di¤erent frequencies. This means we can consider our proposal

as an extension of the linear method proposed by Aruoba and Diebold (2010).

In the empirical application considered in this paper we �nd that our theoretical �nd-

ings are borne out. We use a real-time collection of data vintages which are updated

monthly using only the information that would have been available at each month over

the last 35 years. The vintages use the �ve key indicators which conform to the de�nition

of a recession provided by the NBER Business Cycle Dating Committee, which de�nes a

recession as �a signi�cant decline in economic activity spread across the economy, normally

visible in real GDP, real income, employment, industrial production, and wholesale-retail

sales�. We obtain substantial improvements in our extension of Markov-switching dy-

namic factor models which produce real-time business cycle probabilities that track the

business cycle accurately, with pronounced drops corresponding to the NBER-designated
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recessions.

6 Appendix

Proof of Proposition 1:

Recall that the conditional density of yk;t+1jt is given by

f(yk;t+1jtjst+1 = i; It) =
1q

2��2t+1jt
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where i = 0; 1, �2t+1jt is the variance of the density function of yk;t+1jst+1 = i; which is

the same in both states, It is the information set at t assumed state independent, and
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The desired expressions (19) to (21) are obtained noting that f (i)t+1jt = �i; in cases (i) and

(ii) but f (i)t+1jt = �i+�ftjt in case (iii), and that �2k;t+1jt = �2k in case (i), �
2
k;t+1jt = �2k+�

2
a

in case (ii), and �2k;t+1jt = �2k + �2k(�
2Ptjt + �2a) in case (iii), where ftjt and Ptjt are the

mean and variance when estimating the common factor with information up to time t:

Proof of Proposition 2:

To evaluate the information content of yk;t+1jt when it is a subvector m�1 of observed

variables, note that for i = 0; 1
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f(yk;t+1jtjst+1 = i; It) =
1�p

2�
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where �k;t+1jt is the variance of yk;tjst+1 = i; It which for all factor model speci�cations

we have assumed to be the same in both states i = 0; 1 and f (i)t+1jt = E(ft+1jst+1 = i; It):

Using the notation in Cover and Thomas (2006) for the multiple integral, then
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Z �
2y0k;t+1�

�1
k;t+1jt�k

�
f
(1)
t+1jt � f

(0)
t+1jt

��
f(yk;t+1jst = 1; It)dyk;t+1

+
1

2

Z ��
f
(0)
t+1jt

�2
�
�
f
(1)
t+1jt

�2�
�0k�

�1
k;t+1jt�kf(yk;t+1jst = 1; It)dyk;t+1

=
1

2

�
�0k�

�1
k;t+1jt�k2f

(1)
t+1jt

�
f
(1)
t+1jt � f

(0)
t+1jt

��
+
1

2

��
f
(0)
t+1jt

�2
�
�
f
(1)
t+1jt

�2�
�0k�

�1
k;t+1jt�k

=
1

2

�
f
(0)
t+1jt � f

(1)
t+1jt

�2
�0k�

�1
k;t+1jt�k

=
1

2
(�0 � �1)2�0k��1k;t+1jt�k

which is the desired expression.

Proof of Proposition 3:

First, note that for the models considered in case (iv)

f(yk;t+1jst+1 = j; st = i; It) =
1q

2��2k;t+1jt

exp

 
� 1

2�2k;t+1jt

�
yk;t+1jt � y

(i;j)
k;t+1jt

�2!

where y(i;j)k;t+1jt = E(yk;t+1jst+1 = j; st = i; It); is given by

y
(i;j)
k;t+1jt = �k�j � ��k(f

(i)
tjt � �i)

and f (i)tjt = E(ftjst = i; It), is given by the "collapsing" method

f
(i)
tjt =

P1
h=0 prob(st�1 = h; st = ijIt)f (h;i)tjt

prob(st = ijIt)
;

and �2k;t+1jt is the variance of the conditional one-step-ahead prediction errors of yk;t+1

given the path (st; st+1) = (i; j): Note that it is the same for all the conditional densities
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(22). The Gaussian mixture can be approximated by a single Gaussian with mean and

variance given by eyk;t+1jt and e�2k;t+1jt, respectively
eyk;t+1jt =

1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)y(i;j)k;t+1jt

e�2k;t+1jt = �2k;t+1jt +
1X
i=0

1X
j=0

prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2: (66)

Then

KL(iv) =

Z
f(yk;t+1jst+1 = j; st = i; It) ln

f(yk;t+1jst+1 = j; st = i; It)

f(yk;t+1jIt)
dyk;t+1

=
1

2

Z
f(yk;t+1jst+1 = j; st = i; It) ln

e�2k;t+1jt
�2k;t+1jt

dyk;t+1

+
1

2

Z
f(yk;t+1jst+1 = j; st = i; It)

0B@�yk;t+1jt � eyk;t+1jt�e�2k;t+1jt
2

�

�
yk;t+1jt � y

(i;j)
k;t+1jt

�2
�2k;t+1jt

1CA dyk;t+1(67)

=
1

2
ln
e�2k;t+1jt
�2k;t+1jt

=
1

2
ln
�2k;t+1jt +

P1
i=0

P1
j=0 prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2

�2k;t+1jt

=
1

2
ln

0@1 + P1
i=0

P1
j=0 prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2

�2k;t+1jt

1A :

since the integral of the square di¤erences to the mean of the process weighted by the

density function is, by de�nition, the variance of the distribution, that divided by itself is

equal to 1. Therefore the integral in (67) is just zero. The desired result is then obtained

substituting the variance of the mixture e�2k;t+1jt by its expression given in (66).
Proposition 4:

Note that in case (v) the k observed series is given by

yk;t+1 = �kft+1 + uk;t+1

where

ft+1 = �st+1 + at+1

uk;t+1 =  kuk;t + �k;t+1:
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For stationary AR(1) processes, we can rewrite uk;t+1 =
�k;t+1
1� kL

where L is the lag operator

such that Lxt = xt�1: Therefore

yk;t+1 = �kft+1 +
�k;t+1
1�  kL

= �kft+1 � �k kft +  kyk;t + �k;t+1

and y(i;j)k;t+1jt = E(yk;t+1jst+1 = j; st = i; It) = �k�j � �k k�i +  kyk;t: Proceeding as in

proposition 3, the Gaussian mixture can be approximated by a single Gaussian with mean

and variance given by eyk;t+1jt and e�2k;t+1jt, respectively in Proposition 4. Then
KL(v) =

Z
f(yk;t+1jst+1 = j; st = i; It) ln

f(yk;t+1jst+1 = j; st = i; It)

f(yk;t+1jIt)
dyk;t+1

=
1

2

Z
f(yk;t+1jst+1 = j; st = i; It) ln

e�2k;t+1jt
�2k;t+1jt

dyk;t+1

+
1

2

Z
f(yk;t+1jst+1 = j; st = i; It)

0B@�yk;t+1jt � eyk;t+1jt�2e�2k;t+1jt �

�
yk;t+1jt � y

(i;j)
k;t+1jt

�2
�2k;t+1jt

1CA dyk;t+1

=
1

2
ln
e�2k;t+1jt
�2k;t+1jt

=
1

2
ln
�2k;t+1jt +

P1
i=0

P1
j=0 prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2

�2k;t+1jt

=
1

2
ln

0@1 + P1
i=0

P1
j=0 prob(st+1 = j; st = ijIt)(y(i;j)k;t+1jt � eyk;t+1jt)2

�2k;t+1jt

1A :

39



References

[1] Aruoba, B., Diebold, F., and Scotti, C. 2009. Real-time measurement of business

conditions. Journal of Business and Economic Statistics 27: 417-427.

[2] Aruoba, B., and Diebold, F. 2010. Real-time macroeconomic monitoring: Real activ-

ity, in�ation, and interactions. American Economic Review: Papers and Proceedings

100: 20-24.

[3] Burns, A., and Mitchell, W. 1946. Measuring business cycles. National Bureau of

Economic Research, New York.

[4] Camacho, M., and Perez Quiros, G. and Poncela P. 2011. Extracting nonlinear signals

from several economic indicators. Mimeo.

[5] Camacho, M., and Perez Quiros, G. 2007. Jump-and-rest e¤ect of U.S. business cycles.

Studies in Nonlinear Dynamics and Econometrics 11(4): article 3.

[6] Chauvet, M. 1998. An econometric characterization of business cycle dynamics with

factor structure and regime switches. International Economic Review 39: 969-96.

[7] Chauvet, M., and Hamilton, J. 2006. Dating business cycle turning points in real time.

In Nonlinear Time Series Analysis of Business Cycles, eds. C. Milas, P. Rothman,

and D. Van Dijk. Amsterdam: Elsevier Science, pp. 1-54.

[8] Chauvet, M., and Piger, J. 2008. A comparison of the real-time performance of busi-

ness cycle dating methods. Journal of Business and Economic Statistics 26: 42-49.

[9] Cover, T. and Thomas, J. 2006. Elements of information theory.Wiley, New Jersey.

[10] Diebold, F., and Rudebusch, G. 1991. Forecasting output with the composite leading

index: A real-time analysis. Joumal of the American Statistical Association 86: 603-

610.

[11] Diebold, F., and Rudebusch, G. 1996. Measuring business cycles: A modern perspec-

tive. Review of Economics and Statistics 78: 67-77.

40



[12] Hamilton, J. 1989. A new approach to the economic analysis of nonstationary time

series and the business cycles. Econometrica 57: 357-384.

[13] Hamilton, J. 2011. Calling recessions in real time. International Journal of Forecasting

27: 1006-1026.

[14] Harrison, P. J. and Stevens, C.F. 1976. Bayesian forecasting. Journal of the Royal

Statistical Society, Ser. B 38: 205-247.

[15] Hershey, J.R. and Olsen, P. A. 2007. Approximating the Kullback-Leibler divergence

between Gaussian mixture models, in: IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2007, vol.4, pp. IV-317�IV-320.

[16] Kim, C. 1994. Dynamic linear models with Markov-switching. Journal of Economet-

rics 60: 1-22.

[17] Kim, C., and Nelson, C. 1998. Business cycle turning points, a new coincident in-

dex, and tests of duration dependence based on a dynamic factor model with regime

switching. Review of Economics and Statistics 80: 188-201.

[18] Kim, C., and Yoo, J.S. 1995. New index of coincident indicators: A multivariate

Markov switching factor model approach. Journal of Monetary Economics 36: 607-

630.

[19] Mariano, R., and Murasawa, Y. 2003. A new coincident index os business cycles based

on monthly and quarterly series. Journal of Applied Econometrics 18: 427-443.

[20] Peña, D., and Guttman, I. 1989. Optimal collapsing of mixture distributions in Robust

Recursive Estimation. Communications in Statistics, Theory and Methods 18: 817-

834.

[21] Proietti, T. and Moauro, F. 2006. Dynamic factor analysis with non-linear temporal

aggregation constraints. Appl. Statist. 55: 281-300.

[22] Stock, J., and Watson, M. 1991. A probability model of the coincident economic in-

dicators. In Leading Economic Indicators: New Approaches and Forecasting Records,

edited by K. Lahiri and G. Moore, Cambridge University Press.

41



 42 

Table 1. Analysis of ragged ends in MS-DFM 

 

 Balanced panels Unbalanced panels 

� σ2
 

5 7 1+4 3+4 

0.5 
0.159 

(0.186) 

0.158 

(0.184) 

0.125 

(0.126) 

0.103 

(0.104) 

1.5 
0.167 

(0.190) 

0.163 

(0.187) 

0.133 

(0.133) 

0.107 

(0.107) 

4.5 
0.201 

(0.202) 

0.175 

(0.193) 

0.145 

(0.145) 

0.110 

(0.110) 

 

Notes. � is the number of indicators σ2 is the variance of their idiosyncratic components. In 

balanced MS-DFM, entries show the average over the replications of the averaged squared 

deviation of one- and two- (in brackets) step-ahead filtered probabilities of low-mean state 

from the 1000 generated business cycle sequences. In MS-DFM with unbalanced panels, 1 

and 3 variables with variance 1.5 are assumed to be timely available when the inference is 

computed and 4 indicators with variance 0.5, 1.5 and 4.5 are published with one- and two-

month lags. 

 

 

 

Table 2. Analysis of mixing frequencies 

 

 4 monthly and 1 quarterly 4 monthly 

Variance of quarterly series  Number of 

states σ2
=0.5 σ2

=4.5  
2 states 0.153 0.154 0.157 

32 states 0.121 0.143 No needed 

 

Notes. The variance of the monthly idiosyncratic components is equal to 4.5. The variance 

of the quarterly idiosyncratic variable is σ2 = 0.5 and 4.5. We also consider the possibility 

of not including the quarterly variable. The entries show the average over the replications 

of the averaged squared deviation of in-sample filtered probabilities of low-mean state 

from the 1000 business cycle sequences generated.  

 

 

 



 43 

Table 3. Maximum likelihood estimates 

 

Monthly  

  IP Empl Inc Sales GDP 

λi 

0.69 

(0.03) 

0.42 

(0.02) 

0.28 

(0.04) 

0.46 

(0.03) 
 

φ1 

-0.18 

(0.08) 

0.24 

(0.03) 

-0.20 

(0.02) 

-0.34 

(0.04) 
 

φ2 
-0.16 

(0.08) 

0.54 

(0.04) 

-0.05 

(0.04) 

-0.15 

(0.05) 
 

Indicators 

2

iσ  
0.26 

(0.04) 

0.27 

(0.02) 

0.85 

(0.03) 

0.57 

(0.03) 
 

µ1 µ2 
2
*a

σ  p00 p11 
Factor 0.32 

(0.07) 

-2.00 

(0.20) 
1 

0.98 

(0.01) 

0.85 

(0.05) 

Monthly and quarterly 

  IP Empl Inc Sales GDP 

λi 

0.67 

(0.03) 

0.42 

(0.02) 

0.29 

(0.04) 

0.48 

(0.03) 

0.30 

(0.02) 

φ1 

-0.07 

(0.07) 

0.24 

(0.03) 

-0.21 

(0.02) 

-0.37 

(0.04) 

0.024 

(0.40) 

φ2 
-0.07 

(0.07) 

0.54 

(0.04) 

-0.06 

(0.04) 

-0.17 

(0.05) 

-0.57 

(0.22) 

Indicators 

2

iσ  
0.55 

(0.04) 

0.51 

(0.02) 

0.91 

(0.03) 

0.73 

(0.03) 

0.47 

(0.15) 

µ1 µ2 
2
*a

σ  p00 p11 
Factor 0.29 

(0.07) 

-2.00 

(0.21) 
1 

0.98 

(0.01) 

0.83 

(0.06) 
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Table 4. In-sample (1967.01-2010.11) empirical performance 
 

 

 
MS-DFM 

M 

MS-DFM 

M+Q 

Total 0.049 0.048 

Turning points 0.454 0.430 

Troughs 0.222 0.171 

 

Note. Entries labelled as “total” refer to QPS statistics. In the case of entries labelled as 

“turning points”, the QPS is computed by using the first month after the phase shifts. In the 

case of entries labelled as “troughs”, the QPS is computed by using the first month of the 

expansions.  

 

Table 5. Real-time (1976.10-2010.11) empirical performance 

 

 

 

MS-DFM 

Strategy 

A1 

MS-DFM 

Strategy 

A2 

MS-DFM 

Strategy B 

MS-DFM 

Strategy C 

Total 0.099 0.100 0.066 0.079 

Turning points 0.783 0.675 0.684 0.612 

Troughs 0.627 0.428 0.437 0.255 

 

Note. Entries labelled as “total” refer to FQPS statistics. In the case of entries labelled as 

“turning points”, the FQPS is computed by using the first month after the phase shifts. In 

the case of entries labelled as “troughs”, the FQPS is computed by using the first month of 

the expansions. The forecasting strategies are defined in the text. 
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Notes. Shaded areas correspond to recessions as documented by the NBER. 

Figure 1. In-sample common factor from 4 monthly indicators

Notes. Shaded areas correspond to recessions as documented by the NBER. 
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Figure 2. In-sample filtered recession probabilities from 4 monthly indicators
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Notes. Shaded areas correspond to recessions as documented by the NBER. 

Figure 3. In-sample common factor from 4 monthly and 1 quarterly indicators

Notes. Shaded areas correspond to recessions as documented by the NBER. 
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Figure 4. In-sample filtered recession probabilities from 4 monthly and 1 quarterly indicators
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Figure 5. Real time probabilities at t-2 (plotted in t)  with information of 4 monthly indicators up to t-2

Notes. Shaded areas correspond to recessions as documented by the NBER. The figure plots the 

probabilities of recession in real time in period t using a balanced panel with published 

information in t-2 and inferring, using the transition probability matrix, the probability of being 

in recession in t. This is called in the text strategy A1.
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Figure 6. Real time probabilities at t with information of 4 monthly indicators up to t-2 

Notes. Shaded areas correspond to recessions as documented by the NBER. The figure plots the 

probabilities of recession in real time in period t using a balanced panel with published 

information in t-2 and using those probabilities as if they were probabilities in period t. This is 

called in the text strategy A2.
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Figure 7. Real time probabilities at t with information of 4 monthly indicators up to t

Note: Shaded areas correspond to recessions as documented by the NBER. The figure plots the 

probabilities of recession in real time in period t using an unbalanced panel with published 

information in t and inferring, using the transition probability matrix updated with partial 

information, , the probability of being in recession in t. This is called in the text strategy B.
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Figure 8. Real time probabilities at t with information of 4 monthly indicators up to t plus GDP series

Notes. Shaded areas correspond to recessions as documented by the NBER. The figure plots the 

probabilities of recession in real time in period t using an unbalanced panel with published 

information in t, including GDP series, and inferring, using the transition probability matrix 

updated with partial information, , the probability of being in recession in t. This is called in the 

text strategy C.

48


	DP8866prelims
	MARKOV-SWITCHING DYNAMIC FACTOR MODELS IN REAL TIME

	MS-DFM-ragged_6_all

