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switching costs might have two types of anti-competitive effects: first, higher 
switching costs imply a slower transition to a symmetric market structure and 
a slower rate of decline for average prices; and second, if firms are sufficiently 
asymmetric, an increase in switching costs also leads to higher current prices. 
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turns fiercer and in the long-run, switching costs have a pro-competitive effect. 
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1 Introduction

Many products and technologies exhibit switching costs (i.e., costs that customers must bear

when they adopt a new product or technology). For example, switching costs arise when

there is limited compatibility between an old product (or technology) and a newly adopted

one. In this case, the speci�c investments that a customer may have incurred in relation to

the utilization of the old product (or technology) may fully or partially depreciate. When

compatibility is highly valued by customers, they are discouraged from changing products.

Customers face a potential lock-in e¤ect which confers market power to the �rm. As the

history of past choices a¤ects future product choice or technology adoption decisions, market

share is a valuable asset. The incentives to exploit current customers (by charging high

prices) and to increase market share (by o¤ering low prices) are countervailing. A priori, it

seems that the net e¤ect of switching costs on the nature of dynamic price competition is

unclear. Nonetheless, the conventional wisdom distilled from the literature seems to suggest

that switching costs are anti-competitive (see Klemperer (1995) and Farrell and Klemperer

(2007) for a survey of this literature). In this paper, we show that when switching costs

are not too high so that switching takes place in equilibrium, this conventional wisdom is

partially incorrect- at least, in steady state or when �rms are su¢ ciently symmetric.

We develop a continuous-time dynamic equilibrium model with switching costs and show

that, in a relatively simple Markov Perfect equilibrium, the dominant �rm concedes mar-

ket share by charging higher prices to current customers. In the short-run, switching costs

might have two types of anti-competitive e¤ects: �rst, higher switching costs imply a slower

transition to a symmetric market structure and a slower rate of decline for average prices;

and second, if �rms are su¢ ciently asymmetric, an increase in switching costs also leads to

higher prices. However, as market structure becomes more symmetric, price competition

turns �ercer and in the long-run, switching costs have a pro-competitive e¤ect. However, if

there are obstacles that stop �rms from becoming su¢ ciently symmetric, the anti-competitive

e¤ects of switching costs might prevail.

This paper is organized as follows. In Section 2 we review the relevant literature on the

subject and relate it to our results. In Sections 3 and 4 we introduce and analyze a dynamic

pricing model with switching costs in order to characterize the evolution of market structure

and prices. In Section 5, we extend the basic model by allowing for asymmetric switching

costs across �rms. In Section 6 we discuss the limitations of the model, and we conclude in

Section 7.

2 Switching costs: pro-competitive or anti-competitive?

Klemperer (1987a) and (1987b) are the �rst published works that aimed to analyze the impact

of switching costs on the nature of price competition. In these papers, the author developed
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a two-period model in which, in the �rst period, consumers choose a product (or technology)

for the �rst time. In the second period, consumers may choose a di¤erent product in which

case they face switching costs. In equilibrium, prices follow a pattern of �bargains�followed

by �rip-o¤s�. To circumvent the potential �end of horizon�e¤ect in these two-period models,

in�nite-horizon models in which �rms face overlapping generations of consumers have been

analyzed (Farrell and Shapiro (1988), Padilla (1995) and To (1995)).

In all of these papers, �rms face a trade-o¤ between maximizing current versus future

pro�ts. Maximizing current pro�ts calls �rms to exploit their loyal consumers (�harvesting�

e¤ect), whereas maximizing future pro�ts calls �rms to decrease current prices in order to

attract new customers (�investing�e¤ect). The previous papers concluded that the former

e¤ect dominates, so that switching costs have anti-competitive e¤ects.

However, these analyses omitted an equally important e¤ect: the fact that switching costs

a¤ect current market competition even in a static setting. This e¤ect was hidden in these

models by the lack of switching in equilibrium (either by assumption, or because switching

costs were assumed very large).

Instead, if switching takes place, �rms want to attract new consumers, not just to exploit

them in the future, but also as a source of current pro�ts. This e¤ect, which Arie and Grieco

(2011) refer to as the �compensating� e¤ect, mitigates the �harvesting� e¤ect, and fosters

more competitive outcomes.

To understand �rms�pricing incentives, it is useful to interpret switching costs as a �rm-

subsidy when consumers are loyal to the �rm (i.e., the �rm can a¤ord raising its price by

the value of the switching cost without loosing consumers). Similarly, switching costs are

analogous to a �rm-tax when consumers are switching to the �rm�s product (i.e., the �rm has

to reduce its price by the amount of the switching cost in order to attract new consumers).

Hence, for a large �rm (which has more loyal consumers than consumers willing to switch

into its product), the net e¤ect of switching costs is that of a subsidy, whereas for a small

�rm the net e¤ect of switching costs is that of a tax. Therefore, if we just focus on the static

e¤ects, an increase in switching costs implies that the large �rm becomes less aggressive while

the small �rm becomes more so. In the short-run, this translates into an increase in prices.

However, in a dynamic setting, the investing e¤ect induces �rms to reduce current prices,

thus suggesting that the net e¤ect of switching costs on equilibrium prices might be ambigu-

ous. In this paper we show that the issue of which of the three e¤ects �whether harvesting,

compensating or investing �dominates critically depends on the degree of market share asym-

metries. If �rms are symmetric, the compensating and harvesting e¤ects cancel out. As the

investing e¤ect is the only e¤ect that remains, an increase in switching costs reduces prices. In

contrast, if �rms are very asymmetric, the compensating e¤ect barely mitigates the harvesting

e¤ect, so that an increase in switching costs leads to higher prices.

It turns out that, in steady state, �rms become symmetric precisely because in previous

periods the dominant �rm priced less aggressively than the smaller one. This implies that
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long-run equilibrium prices decrease with switching costs (as long as this value is small enough

so as to allow for switching in equilibrium).

There is recent a string of papers showing that switching costs can be pro-competitive as

they lead to lower prices (Cabral (2008) and (2010), Dubé et al. (2009), Doganoglu (2010),

Arie and Grieco (2011), and Rhodes (2011)).1 While most of the theoretical literature appeals

to price discrimination to show that switching costs can lower prices, Arie and Grieco (2011)

identify another channel which is common to our model: if consumers switch in equilibrium,

then a �rm may lower price to partially o¤set the costs of consumers that are switching to

the �rm. Rhodes (2011) also arrives at similar conclusions using an overlapping generations

model. Our paper, which was developed independently from Arie and Grieco (2011) and

Rhodes (2011), di¤ers from theirs in its modelling assumptions. Notably, they develop a dis-

crete time model with very general functional assumptions whereas we derive our conclusions

from a simpler continuous time model. This makes our model more tractable, allowing to

shed light on the pricing dynamics and the properties of the equilibria both at and before

steady state.

We close this section by referring to the literature addressing the interplay between switch-

ing costs and price discrimination (in our model, �rms cannot price discriminate). With price

discrimination, �rms may charge low prices to new customers (in order to steal customers

from competitors) and high prices to existing customers (to exploit switching costs). Chen

(1997) shows that proportional increases in switching costs increase equilibrium pro�ts, which

is consistent with the view that switching costs are anti-competitive. However, Cabral (2008)

shows that a small increase in the switching cost (from a cost of zero) reduces average price, a

result that is in line with our characterization of the dynamic pricing equilibrium (Proposition

1).

3 The Model

We consider a market in which two �rms, say 1 and 2, compete to provide a service which

is demanded continuously over time. Firms have identical marginal costs normalized to zero.

We assume a unit mass of in�nitely lived consumers. In each period, each consumer chooses

the service provided by one of the two �rms. A consumer�s maximum willingness to pay

for �rm i�s service in period t is v + �i;t, where �i;t is a random term for unobserved factors,

which we assume i:i:d: across sellers and periods. This idiosyncratic shock implies that, even

though consumers are identical ex-ante, they become heterogenous ex-post, thus introducing

1There are also numerical and empirical papers. For instance, by means of a numerical testbed, Dubé

et al. (2009) show that depending upon the magnitude of switching costs, switching may indeed occur in

equilibrium and that the net e¤ect on prices is ambiguous. In an empirical paper, Viard (2007) �nds that

lower switching costs (i.e. number portability) led to lower prices for toll-free services.
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horizontal di¤erentiation across �rms.2 The utility for a consumer currently served by �rm

i 2 f1; 2g at time t > 0 is given by

ui;t = v + �i;t � pi;

where pi is the price charged by �rm i 2 f1; 2g. We assume that v is su¢ ciently large so that
consumers always demand the service from one of the two �rms, i.e., the market is covered.

Given current prices, consumers may switch incurring a cost s
2
. Throughout the paper,

we will assume that s is su¢ ciently small so as to guarantee that there will switching in

equilibrium. In particular, we assume s 2
�
0; 3

5

�
: Consumers decide myopically so that a

consumer that is currently served by �rm j would opt for �rm i provided that

ui;t �
s

2
= v + �i;t � pi �

s

2
> uj;t = v + �j;t � pj: (1)

Assuming that �i;t � �j;t is uniformly distributed in [�1
2
; 1
2
],3 the probability that a randomly

chosen customer served by �rm j switches to �rm i, qji, is given by

qji = Pr
�
�j;t � �i;t < �

s

2
� pi + pj

�
:

A consumer that is currently served by �rm i maintains this relationship if

ui;t = v + �i;t � pi > uj;t �
s

2
= v + �j;t � pj �

s

2
�

Hence, the probability qii that a randomly chosen customer already served by �rm i maintains

this relationship is:

qii = Pr
�
�i;t � �j;t > �

s

2
+ pi � pj

�
:

Assuming that pi � pj 2
�
�1
2
(1� s); 1

2
(1 + s)

�
so that qji and qii belong to (0; 1) (i.e.,

there is switching in both directions) we have:

qji =
1

2
(1� s)� pi + pj

qii =
1

2
(1 + s)� pi + pj:

Note that qii � qji re�ects the fact that for given prices it is more likely to retain customers
than to steal them from the rival.

Let xi(t) denote �rm i�s market share at time t > 0. Since the collection f�i;t � �j;t : t > 0g
is i:i:d:, �rm i�s expected market share at time t+ 1 can be expressed as:

xi(t+ 1) = qiixi(t) + qji(1� xi(t))
= xi(t) [qii � qji] + qji:

2A similar speci�cation is used in Cabral (2008) and Arie and Grieco (2011). Biglaiser et al. (2010)

introduce heterogeneity across consumers by allowing for heterogenous switching costs.
3Results are robust to perturbing this distributional assumption. Details available upon request.
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Or equivalently,

xi(t+ 1)� xi(t) = xj(t)qji � xi(t)(1� qii);

i.e., the net change in market share is equal to the expected number of customers that �rm i

steals from �rm j, minus the customers that �rm j steals from �rm i. To develop a continuous

time model, qji and 1�qii are interpreted as the rate at which switching between �rms occur.
Hence, in an in�nitesimal time interval dt > 0:

xi(t+ dt)� xi(t) = xj(t)qjidt� xi(t)(1� qii)dt;

where the �rst and second terms respectively represent the gain and the loss of consumers,

i.e., those switching from �rm j to �rm i; and vice-versa. The pro�ts accrued by �rm i in the

time interval [t; t+ dt) are �i = pixi(t+ dt)dt.

Under the assumption that both q21 and q11 belong to (0; 1), we have:

x1(t+ dt)� x1(t)
dt

= �x1(t)(1� s) +
1� s
2

� p1 + p2: (2)

In the limit, as dt! 0; we obtain:

_x1(t) = �x1(t)(1� s) +
1� s
2

� p1 + p2;

and the rates at which pro�ts are accrued can be written as:

�1 = p1

�
x1(t)s+

1� s
2

� p1 + p2
�

�2 = p2

�
�x1(t)s+

1 + s

2
+ p1 � p2

�
:

3.1 Dynamic Equilibrium

Given the assumption of full market coverage, payo¤ relevant histories are subsumed in the

state variable x1 2 [0; 1]. Assume a discount rate � > 0. A stationary Markovian pricing

policy is a map pi : [0; 1] ! [0; 1
2
]. We restrict our attention to the set of continuous and

bounded Markovian pricing policies, say P. For a given strategy combination (pi; pj) 2 P � P
and initial condition, x1(�) 2 [0; 1] and � <1, the value function is de�ned as

V
(pi;pj)
i (x1(�)) =

Z 1

�

e��t�i(pi(x1(t)); pj(x1(t)); x1(t))dt:

A stationary Markovian strategy combination (p�i ; p
�
j) 2 P � P is a Markov Perfect equilib-

rium (MPE) i¤

V
(p�i ;p

�
j )

i (x1(�)) � V
(pi;p

�
j )

i (x1(�));

for all pi 2 P ; i 2 f1; 2g and x1(�) 2 [0; 1] and � <1.
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4 Analysis

As we shall show, when switching costs are not too high, the tension between the �harvest-

ing�e¤ect (exploit loyal customers via high prices), the �compensating�e¤ect (attract new

customers via low prices to increase current sales) and the �investing� e¤ect (attract new

customers via low prices to increase future sales) leads to more competitive prices in the

long-run. However, in the short run, the degree of market share asymmetries will determine

which of these e¤ects dominates.

4.1 Static Setting

To understand pricing incentives in the long run, let us �rst characterize equilibrium pricing

in the static setting. This allows to isolating the harvesting and compensating e¤ects from

the investing e¤ect, as the latter only arises in the dynamic setting. The �rst order conditions

in the static setting are:

@�1
@p1

= x1s+
1� s
2

� 2p1 + p2 = 0

@�2
@p2

= �x1s+
1 + s

2
+ p1 � 2p2 = 0;

from which we derive the best reply functions:

RS1 (p2) = 1
2

�
p2 + s

�
x1 � 1

2

�
+ 1

2

�
RS2 (p1) = 1

2

�
p1 � s

�
x1 � 1

2

�
+ 1

2

�
:

Adding switching costs does not alter the fact that prices are strategic complements; that is,

a �rm optimally responds to a rival�s price increase by increasing its own. Figure 1 below

plots �rms�best reply functions for two values of switching costs.

The large �rm (e.g., �rm 1) has more to gain by increasing the price and exploit its loyal

consumers (more than half) than it has to lose by reducing the price to attract its rival�s loyal

consumers (less than half). Hence, the large �rm behaves less aggressively than the small

one, i.e., RS1 (p) > R
S
2 (p).

Solving for equilibrium prices we obtain

pS1 (x1) = s
3

�
x1 � 1

2

�
+ 1

2

pS2 (x1) = � s
3

�
x1 � 1

2

�
+ 1

2
�

Suppose x1 > 1
2
. The equilibrium price of the large �rm exceeds that of its smaller

competitor,

pS1 � pS2 =
2

3
s

�
x1 �

1

2

�
> 0:

As a consequence, the large �rm loses customers in favour of its smaller competitor, but it

still remains large.

The following lemma summarizes the comparative statics of equilibrium outcomes in the

static setting as switching costs s increase:
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p1

p2

p1’

p2’

R1
s(p)

R2
s(p)

Figure 1: Firms�best replies in the static setting for low (thin lines) and high (thick lines)

swicthing costs s

Lemma 1 In a static setting:
(i) If market shares are asymmetric, an increase in switching costs s raises the price

charged by the large �rm, reduces the price charged by the small �rm, increases the average

market price, and makes market shares even more asymmetric.

(ii) If market shares are symmetric, switching costs have no e¤ect on equilibrium outcomes.

When �rms�market shares are asymmetric, i.e., x1 > 1
2
; an increase in switching costs

s implies an outward shift in the large �rm�s best reply function and an inward shift in the

small �rm�s best reply function (see Figure 1). In other words, switching costs make the large

�rm less aggressive and the small �rm more so. As already noted, this is consistent with the

view that switching costs can be interpreted as a subsidy for the large �rm and a tax for the

small one.

Since, as s increases, the shifts in �rms� best replies are of the same magnitude, the

equilibrium point moves down to the right, i.e., the price of the large �rm goes up while

the price of the small �rm goes down. Given that the price charged by the large �rm has a

stronger impact on the average market price, an increase in s implies that the average price

in the market also goes up. This corresponds to the conventional wisdom according to which

prices are increasing in switching costs. It also follows that an increase in s enlarges the price

di¤erential, so that market shares become even more asymmetric.

Last note that if �rms were symmetric, i.e., x1 = 1
2
; switching costs would have no impact

on equilibrium outcomes in a static setting.
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4.2 Dynamic Setting

We are now ready to characterize equilibrium pricing in the dynamic setting.

Proposition 1 The unique Markov Perfect Equilibrium in a¢ ne pricing strategies is:4

pD1 (x1) = pS1 (x1) +
1
3
(�2 � 2�1)

pD2 (x1) = pS1 (x1) +
1
3
(2�2 � �1)

with �1 = ax1+b > ��2 = �ax1+b > 0; where a 2 (0; s2) is the smallest root of the quadratic
equation

2a2 � 3
�
2 + �� 7

9
s

�
a+

2

3
s2 = 0; (1)

and

b =
1

1 + �

3� s
3

�s
3
+
a

2

�
:

Proof. See the appendix.

In the proof we make use of the notion of a Hamiltonian (see Dockner et al. (2000)), that

is:

Hi = e
��t[�i + �i _x1];

for i 2 f1; 2g ; where �i = @Vi
@x1

is the co-state variable. A necessary condition for optimality

is:
@�i
@pi

= ��i
@ _x1
@pi

;

which captures the inter-temporal trade-o¤s inherent in equilibrium pricing: i.e., marginal

revenue equals the (marginal) opportunity cost (value loss) associated with market share

reduction. This condition gives rise to a sort of �instantaneous�best reply functions:

RD1 (p2) = 1
2

�
p2 + s

�
x1 � 1

2

�
+ 1

2

�
� �1

2

RD2 (p1) = 1
2

�
p1 � s

�
x1 � 1

2

�
+ 1

2

�
+ �2

2
�

These can also be expressed as

RD1 (p2) = RS1 (p2)� �1
2

RD2 (p1) = RS2 (p1) +
�2
2
�

Therefore, as compared to the static setting, �rms�best reply functions in the dynamic setting

shift in, thus implying that equilibrium prices are lower. This is a direct consequence of the

�investing e¤ect�: �rms compete more aggressively to attract new customers as these will

become loyal, and thus valuable, in the future.

4Other MPE in non-linear strategies may exist. However, a complete characterization of MPE is beyond

the scope of this paper.
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In the dynamic setting, it is still true that the large �rm behaves less aggressively than

the small one, i.e., RD1 (p) > R
D
2 (p) ; thus implying that the large �rm�s equilibrium price is

higher than that of the small �rm,

pD1 � pD2 =
2

3
(s� a)

�
x1 �

1

2

�
> 0:

As compared to the static setting, the large �rm�s best reply function has shifted in by a

larger amount, �1
2
, than that of the small one, ��2

2
(recall that �1 > ��2). This derives from

the fact that the investing e¤ect is stronger for the large �rm than for the small one: attracting

new customers today is more valuable for the large �rm, given that the price it charges to

its loyal consumers is higher. It follows that the price di¤erential, while still positive, is now

smaller than in the static setting, i.e., pD1 � pD2 < pS1 � pS2 :

Concerning dynamics, the fact that the large �rm has the higher price implies that the

large �rm concedes market share in favour of the smaller one. Therefore, �rms�asymmetries

fade away over time. In particular, the equilibrium state dynamics are described by:

_x1(t) = �x1(t)(1� s) +
1� s
2

� pD1 + pD2

= �
�
x1(t)�

1

2

��
1� s+ 2a

3

�
< 0;

whose solution is:

x1(t) = x1(0)e
�(1� s+2a

3 )t +
1

2
�

Furthermore, as the large �rm loses market share, its incentives to price high diminish, so

that competition becomes more intense. Hence, the average price in the market is decreasing

over time. In detail, let p(t) = p1(x1(t))x1(t)+p2(x1(t))x2(t) denote the average price charged

in the market. It follows that:

_p(t) =

��
@p1
@x1

� @p2
@x1

�
x1 + (p1 � p2)

�
_x1 +

@p2
@x1

_x1

=

�
@p1
@x1

x1 + (p1 � p2) +
@p2
@x1

(1� x1)
�
_x1

=

�
4

3
(s� a)

�
x1 �

1

2

��
_x1 < 0:

Note that in steady state �rms become symmetric, as limt!1 x1(t) =
1
2
; and that both

�rms�equilibrium prices converge to their lowest level,

lim
t!1

pi(t) =
1

2
� a
3
� 1
9

3� s
1 + �

�s
3
+
a

2

�
:

These results are summarized next:

Lemma 2 In a dynamic setting:
(i) Firms�market shares become more symmetric over time, and they become fully sym-

metric in steady state.

(ii) The average market price is decreasing over time, and it is thus lowest in steady state.
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4.3 What is the e¤ect of switching costs?

We end this section by performing comparative statics of equilibrium outcomes as switching

costs s increase. We start by focusing on equilibrium prices charged by the two �rms at a

given point in time before reaching the steady state:

Lemma 3 Out of steady state:
(i) An increase in s reduces the price charged by the small �rm.

(ii) There exists bx1 > 1=2 such that an increase in s reduces the price charged by the large
�rm if and only if x1 < bx1:
(iii) An increase in s enlarges the price di¤erential.

(iv) There exists ex1 > bx1 such that an increase in s reduces the average market price if
and only if x1 < ex1:
Proof. See the Appendix.

When switching costs increase, price choices re�ect two countervailing incentives. Just as

we described in the static setting, an increase in s changes the harvesting and compensating

e¤ects, inducing the large (small) �rm to price less (more) aggressively. However, in a dynamic

setting, a higher s also implies a greater value of attracting customers so as to increase future

pro�ts (investing e¤ect).

For the small �rm, all three e¤ects point to the same direction. Accordingly, the price

charged by the small �rm unambiguously decreases in the switching cost s. In contrast, the

large �rm faces countervailing incentives as s increases. Since the incentives to charge higher

prices today are greater the larger the �rm�s market share, there exists a critical market sharebx1 below (above) which the investing (harvesting) e¤ect dominates, so that the price charged
by the large �rm decreases (increases) in s.

As an illustration, Figure 2 depicts the price charged by the two �rms as a function of the

switching cost s for di¤erent values of the large �rm�s market share. As it can be seen, the

price charged by the large �rm decreases in s for low values of x1 but increase in s for high

values of x1: In contrast, the price charged by the small �rm is always decreasing in s: In all

cases, the vertical distance between the prices charged by the two �rms widens up as s goes

up.
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Figure 2. Prices charged by the large �rm (thick lines) and small �rm (thin lines) as a

function of the switching cost s; assuming � = 5 and x1 = 0:6 (solid); x1 = 0:65 (dots);

x1 = 0:8 (dash), and x1 = 0:9 (circles)

As s increases, the average price changes as follows:

@p (t)

@s
=
@ (p1 � p2)

@s
x1 + (p1 � p2)

@x1
@s

+
@p2
@s
�

The �rst term is positive given that an increase in s enlarges the price di¤erential. However,

the second and third terms are negative. Hence, the sign of the e¤ect of s on average prices

is ambiguous. In particular, an increase in s leads to a reduction in the average price only

when �rms are su¢ ciently symmetric, i.e., if x1 < ex1. Note that ex1 > bx1 as x1 < bx1 is a
su¢ cient condition for the average price to go down in s; as both �rms�prices are decreasing

in s (part (ii) of the Lemma). In sum, an increase in switching costs might be pro-competitive

or anticompetitive depending on whether �rms are more or less symmetric. Figure 3 provides

numerical support to this claim.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.48

0.50

0.52

0.54

s

p(t)

Figure 3. Average price as a function of the switching cost s; assuming � = 5 and

x1 = 0:6 (solid); x1 = 0:65 (dots); x1 = 0:8 (dash), and x1 = 0:9 (circles)

The fact that the price di¤erential across �rms goes up in s (part (iii) of the Lemma)

implies that higher switching costs also slow down the transition to a symmetric market

12



structure, and hence lead to a lower rate of decline in average prices. This can be seen as

an anti-competitive e¤ect of switching costs in the short-run, which arises regardless of the

degree of �rms�asymmetries. The following Lemma summarizes the e¤ect of switching costs

on the equilibrium dynamics.

Lemma 4 An increase in switching costs s :
(i) reduces the rate of decline of average prices and

(ii) delays the transition to the steady state.

Proof. See the appendix.

Nonetheless, in the long-run, switching costs are pro-competitive: the higher the switching

cost, the lower the equilibrium price in steady state. Indeed, in steady state, once �rms have

become fully symmetric, only the investing e¤ect plays a role. Hence, an increase in s,

which increases the future value of current sales, makes competition �ercer and thus lowers

equilibrium prices.

Lemma 5 In steady state, increasing switching costs reduce prices.

5 Asymmetric Switching Costs

In this section we consider the case in which switching costs are asymmetric. More speci�cally,

customers switching from �rm 1 to �rm 2 incur a cost s
2
, s 2 (0; 3

5
), while customers switching

in the other direction bear no cost. As before we assume hat �i;t� �j;t is uniformly distributed
in [�1

2
; 1
2
]. The probability that a randomly chosen customer served by �rm 2 switches to

�rm 1, q21, and the probability that a randomly chosen customer already served by �rm 1

maintains this relationships, q11; are now given by

q21 = Pr (�2;t � �1;t < �p1 + p2)
q11 = Pr

�
�1;t � �2;t > �

s

2
+ p1 � p2

�
:

Assuming that p1 � p2 2
�
�1
2
(1� s); 1

2
(1 + s)

�
so that q21 and q11 belong to (0; 1) (i.e., there

is switching in both directions) we have:

q21 =
1

2
� p1 + p2

q11 =
1

2
(1 + s)� p1 + p2:

We revisit our discrete choice model so that the di¤erence equation (2) is now

x1(t+ dt)� x1(t)
dt

= q21 � x1(t)(1� q11 + q21)

=
1

2
� p1 + p2 � x1(t)

�
1� s

2

�
:

13



In the limit as dt! 0 we obtain:

_x1 = �x1(t)
�
1� s

2

�
+
1

2
� p1 + p2:

The instantaneous rate at which revenue accrues for �rms 1 and 2 can be expressed as:

�1 = p1

�
x1(t)

s

2
+
1

2
� p1 + p2

�
�2 = p2

�
�x1(t)

s

2
+
1

2
� p2 + p1

�
:

5.1 Analysis

In the static setting, �rms�best reply functions are:

RS1 (p2) = 1
2

�
p2 +

s
2
x1 +

1
2

�
RS2 (p1) = 1

2

�
p1 � s

2
x1 +

1
2

�
�

Therefore, equilibrium prices are,

pS1 (x1) =
s

6
x1 +

1

2

pS2 (x1) = �s
6
x1 +

1

2
�

Note that �rm 1, which is protected by switching costs, prices less aggressively regardless of

whether it is large or not, i.e., regardless of whether x1 > 1
2
or x1 < 1

2
:

In the following result we revisit the structure of dynamic equilibrium pricing policies.

Proposition 2 The a¢ ne pricing strategies5

pD1 (x1) = pS1 (x1) +
1
3
(�2 � 2�1)

pD2 (x1) = pS1 (x1) +
1
3
(2�2 � �1);

with �1 = ax1+b > ��2 = �ax1+b > 0; where a 2 (0; s2) is the smallest root of the quadratic
equation

2a2 � 3
�
2 + �� 11

18
s

�
a+

a2

3
= 0;

and

b =
1

1 + �

�s
3
+
a

2

�
;

are a Markov Perfect Equilibrium.

5Other MPE in non-linear strategies may exist. However, a complete characterization of MPE is beyond

the scope of this paper.
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Proof. See the appendix.

In this case, the equilibrium dynamics are:

_x1 =
�s
2
� 1
�
x1 +

1

2
� 2
3

�s
2
� a

�
x1

= �(1� 1
3
(
s

2
+ 2a))x1 +

1

2
�

The solution is

x1(t) = x1(0)e
�(1� 1

3
( s
2
+2a))t +

1

2� 1
3
(s+ 4a)

�

Since a < s
2
we have 0 < s+4a

3
< s < 3

5
and the long-run market share is:

lim
t!1

x1(t) =
1

2� 1
3
(s+ 4a)

2
�
1

2
;
5

7

�
�

In the long-run, the asymmetric structure of the switching costs allows the �rm from which

it is costly to switch (i.e., �rm 1) to maintain (or attain) a degree of market dominance

while charging higher prices. To see why this is the case, recall that switching in both

directions always takes place (some customers switch to �rm 1, the higher priced �rm, due

to unobservable factors). Hence, once customers switch to �rm 1 they are in a certain sense

�locked-in�. The level of asymmetry in the long-run structure of market shares is increasing

in the magnitude of the switching cost, and the more asymmetric �rms are the higher the

level of steady state prices. This conclusion, which contrasts with our previous result, shows

that asymmetric switching costs might have anticompetitive e¤ects by creating or reinforcing

�rm dominance.

6 Discussion: Limitations of the Model

In our model customers are assumed to behave myopically. However, more sophisticated

customers, who aim to maximize their total discounted consumption surplus over the in�nite

horizon, may abstain from switching when they correctly anticipate price increases in the fu-

ture. These sophisticated customers would likely be more demanding than myopic customers

when switching to the large �rm, knowing that its future prices will be higher than those of

the smaller �rm. For the opposite reason, they would require a smaller instantaneous surplus

gain when switching to the smaller �rm. It is true that the smaller �rm will not need to price

as aggressively in the short-run in order to steadily gain market share. However, the former

e¤ect is likely to dominate, thus implying that the speed of convergence to the steady state

is faster with sophisticated than with myopic consumers.

In the long-run however, when �rms have become fully symmetric, both �rms charge

equal prices. Hence, maximizing instantaneous surplus is equivalent to maximizing total

discounted surplus over the in�nite horizon. In other words, the presence of sophisticated

15



consumers will speed up convergence but will have no impact on the long-run equilibrium.

Thus, the qualitative features of Proposition 1 are likely to be preserved.

On the contrary, the results of Proposition 2 are likely to be signi�cantly a¤ected by the

incorporation of more sophisticated customers. The qualitative nature of the equilibrium in

that proposition indicates that in the long-run, the �rm from which it is costly to switch

attains market dominance while charging higher prices. Evidently, sophisticated customers

would be less likely to switch in anticipation of such �rip-o¤�.

A second limitation of this model pertains to our assumption of no-growth in demand.

In a growing market, the qualitative implications of switching costs are likely to di¤er from

those presented in this paper. With a relatively low discount factor and signi�cant market

growth, the �investing�e¤ect dominates the �harvesting�and �compensating�e¤ects in the

short-run, so that switching costs may end up inducing aggressive pricing in the short-run

and less competitive outcomes in the long-run. A formalization of this intuition is the subject

of future work.

7 Conclusions

Many information technology products and technologies exhibit switching costs (i.e., costs

that customers must bear when they adopt a new product or technology). Typically, switching

costs arise when there is limited compatibility between an old product (or technology) and

a newly adopted one. In this paper, we have analyzed the e¤ect of switching costs on the

nature of dynamic price competition.

We have shown that switching costs can be pro-competitive when the magnitude of switch-

ing costs is not too high and �rms are not too asymmetric. In a Markov Perfect equilibrium,

the dominant �rm concedes market share by charging higher prices to current customers in

the short-run. As market structure becomes more symmetric, price competition becomes

�ercer. The average price charged in the market is decreasing over time and in the long-run

equilibrium prices are decreasing in the magnitude of switching costs.

However, before steady state is reached, switching costs have an ambiguous e¤ect on mar-

ket prices. When �rms are su¢ ciently asymmetric, an increase in switching costs implies

that the large �rm behaves less aggressively in order to exploit its customer base. It is only

when �rms become su¢ ciently symmetric over time that the investing e¤ect dominates, thus

leading to lower prices in markets with higher switching costs. Therefore, from a policy

perspective, the presence of switching costs should raise more concerns in concentrated in-

dustries, or in those markets in which asymmetries in switching costs constitute an obstacle

for the convergence to a symmetric market structure.
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Appendix: Proofs

Proof of Proposition 1

The Hamiltonians are

Hi = e
��t[�i + �i _x1]

for i 2 f1; 2g. The Hamiltonians are strictly concave so that �rst order conditions for MPE
are also su¢ cient (see Dockner et al. (2000)),

@Hi

@pi
= 0

�@Hi

@x1
� @Hi

@pj

@pj
@x1

= _�i � ��i

for i 2 f1; 2g. These respectively lead to:

p1 =
1

2

�
p2 + s

�
x1 �

1

2

�
+
1

2
� �1

�
(A.1)

�sp1 + (1� s)�1 � (p1 + �1)
@p2
@x1

= _�1 � ��1 (A.2)

p2 =
1

2

�
p1 � s

�
x1 �

1

2

�
+
1

2
+ �2

�
(A.3)

sp2 + (1� s)�2 � (p2 � �2)
@p1
@x1

= _�2 � ��2� (A.4)

Equations (A.1) and (A.3) are �rms�best reply functions. Using them we can obtain equi-

librium prices,

p1 =
s

3

�
x1 �

1

2

�
+
1

2
+
1

3
(�2 � 2�1)

p2 = �s
3

�
x1 �

1

2

�
+
1

2
+
1

3
(2�2 � �1)�
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Thus,
@p2
@x1

= �@p1
@x1

= �s
3
�

Substituting into (A.2) and (A.4) we obtain

2s

3
p2 + (1�

2s

3
)�2 = _�2 � ��2

�2s
3
p1 + (1�

2s

3
)�1 = _�1 � ��1�

We solve this system of di¤erential equations by the method of undetermined coe¢ cients.

Assume �i = aix1 + bi for i 2 f1; 2g. Substitution into the last equation yields

�2s
3

�
s
3
(x1 � 1

2
) + 1

2
+ 1

3
(a2x1 + b2 � 2a1x1 � 2b1)

�
+ (1� 2s

3
)(a1x1 + b1)

=

a1 _x1 � �(a1x1 + b1)
=

a1
�
�x1(1� s) + 1�s

2
� p1 + p2

�
� �a1x1 � �b1

=

a1
�
�x1(1� s) + 1�s

2
� 2s

3
(x1 � 1

2
) + �1+�2

3

�
� �a1x1 � �b1

=

a1
�
�x1(1� s) + 1�s

2
� 2s

3
(x1 � 1

2
) + a1x1+b1+a2x1+b2

3

�
� �a1x1 � �b1�

This results in the following two equations:

�2
9
s2 +

2

9
s(2a1 � a2) + (1�

2s

3
)a1 = �(1�

s

3
)a1 +

1

3
(a1 + a2)a1 � �a1 (A.5)

�s
3
(1� s

3
)� 2s

9
(b2 � 2b1) + b1(1�

2s

3
) =

1

3
(b1 + b2)a1 +

a1
2
(1� s

3
)� �b1 (A.6)

In a similar fashion, we obtain two additional equations:

�2
9
s2 +

2

9
s(2a2 � a1) + (1�

2s

3
)a2 = �(1�

s

3
)a2 +

1

3
(a1 + a2)a2 � �a2 (A.7)

s

3
(1� s

3
) +

2s

9
(2b2 � b1) + b2(1�

2s

3
) =

1

3
(b1 + b2)a2 +

a2
2
(1� s

3
)� �b2 (A.8)

Thus, substracting (A.5) from (A.7) we get:�
1� s

3
� 1
3
(a1 + a2) +

2

9
s+ 1� 2s

3
+ �

�
(a1 � a2) = 0�

Hence, a1 � a2 = 0. Let a1 = a2 = z; we solve the quadratic equation implicit in (A.5):

g(z) =
2

3
z2 �

�
2 + �� 7

9
s

�
z +

2

9
s2 = 0�
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Note that since g(0) > 0 and g( s
2
) < 0, a solution a 2 (0; s

2
) exists. Then (A.6) and (A.8)

imply b2 = �b1 and from (A.8):

b1 =
1

3

3� s
1 + �

�s
3
+
a

2

�
�

Last, we note that given the assumption s < 3
5
the pricing policies satisfy:

p1(x1)� p2(x1) =
2

3
(s� a)

�
x1 �

1

2

�
2
�
�1� s

2
;
1� s
2

�
;

so that q0; q1 2 (0; 1).

Proof of Lemma 2

We �rst note that implicit di¤erentiation in (1) yields:

@a

@s
=

4s+ 7a

9(2 + �)� 7s� 12a 2 (0; 1)�

(i) Using this result, it is straightforward to see that @p2
@s
< 0: Taking derivatives,

@p2
@s

= �1
3

��
1� @a

@s

��
x1 �

1

2

�
+
@a

@s

�
�1
3

1

1 + �

�
2

3

�s
3
+
a

2

�
+
�
1� s

3

��1
3
+
1

2

@a

@s

��
�

(ii) Taking derivatives,

@p1
@s

=
1

3

��
1� @a

@s

�
x1 �

1

2

�
1 +

@a

@s

��
�1
3

1

1 + �

�
2

3

�s
3
+
a

2

�
+
�
1� s

3

��1
3
+
1

2

@a

@s

��
�

The second term is negative, while the sign of the �rst term cannot be determined in general.

Solving for x1, expression above is positive if and only if

x1 > bx1 = 1�
1� @a

@s

� � 1

1 + �

�
2

3

�s
3
+
a

2

�
+
�
1� s

3

��1
3
+
1

2

@a

@s

��
+
1

2

�
1 +

@a

@s

��
�

The fact that bx1 > 1
2
follows since @p1

@s
is weakly increasing in x1 and

@p1
@s
< 0 for x1 = 1

2
;

as the �rst term becomes �@a
@s
< 0:

(iii) It follows from the fact that the price di¤erential pD1 � pD2 is directly proportional to
s� a and, as shown above, @a

@s
< 1:

(iv) The proof is provided in the main text.

Proof of Lemma 3

(i) It follows from the fact that _p(t) is inversely proportional to s � a and, as shown above,
@a
@s
< 1: (ii) The transition to the steady state occurs at a rate which is inversely proportional

to s+2a
3
; and as shown above, @a

@s
> 0�
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Proof of Lemma 4

Steady-state prices are

lim
t!1

pi(t) =
1

2
� a
3
� 1
9

3� s
1 + �

�s
3
+
a

2

�
�

Taking derivatives w.r.t. s;

�1
3

@a

@s
+
1

9

1

1 + �

�
1

6
(3a+ 4s� 6)� (3� s) 1

2

@a

@s

�
�

Note 3a + 4s � 6 < 0 if a < �4
3
s + 2: This condition is satis�ed since a < s

2
and s < 3

5
� It

thus follows that expression above is negative.

Proof of Proposition 2

As in the proof of proposition 1, the Hamiltonians are

Hi = e
��t[�i + �i _x1];

for i 2 f1; 2g. First order conditions (which in this case due to concavity are also su¢ cient)
are:

@Hi

@pi
= 0

�@Hi

@x1
� @Hi

@pj

@pj
@x1

= _�i � ��i�

The �rst order conditions lead to:

p1 =
1

2

�
p2 +

s

2
x1 +

1

2
� �1

�
(B.1)

�s
2
p1 + (1�

s

2
)�1 � (p1 + �1)

@p1
@x1

= _�1 � ��1 (B.2)

p2 =
1

2

�
p1 �

s

2
x1 +

1

2
+ �2

�
(B.3)

s

2
p2 + (1�

s

2
)�2 � (p2 � �2)

@p2
@x1

= _�2 � ��2� (B.4)

Here, (B.1) and (B.3) imply, the equilibrium prices are of the form:

p1 =
s

6
x1 +

1

2
+
�2 � 2�1

3

p2 = �s
6
x1 +

1

2
+
2�2 � �1

3
�

Substituting into (B.2) and (B.4) we obtain

2s

3
p2 + (1�

2s

3
)�2 = _�2 � ��2

�2s
3
p1 + (1�

2s

3
)�1 = _�1 � ��1�
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We solve using method of undetermined coe¢ cients. Assume �i = aix1 + bi for i = 1; 2.

Substitution into the last equation yields

�2s
3

�
s
6
x1 +

1
2
+ 1

3
(a2x1 + b2 � 2a1x1 � 2b1)

�
+ (1� 2s

3
)(a1x1 + b1)

=

a1 _x1 � �(a1x1 + b1)
=

a1
�
�x1(1� s

2
) + 1

2
� p1 + p2

�
� �a1x1 � �b1

=

a1
�
�x1(1� s

2
) + 1

2
� 2s

6
x1 +

�1+�2
3

�
� �a1x1 � �b1

=

a1
�
�x1(1� s

2
) + 1
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This results in the following two equations:
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In a similar fashion, we obtain two additional equations:
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As in the proof of proposition 1, we can show that a1 = a2 and b1 = �b2. Let a1 = a2 = z;
we solve the quadratic equation implicit in (B.5):
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and from (B.6) we obtain
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It follows that
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Note that
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