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Abstract

We develop a tractable dynamic model of productivity growth and technology spillovers that
is consistent with the emergence of real world empirical productivity distributions. Firms can
improve productivity by engaging in in-house R&D, or alternatively, by trying to imitate other
firms’ technologies subject to limits to their absorptive capacities. The outcome of both strate-
gies is stochastic. The choice between in-house R&D and imitation is endogenous, and based
on firms’ profit maximization motive. Firms closer to the technological frontier have less imita-
tion opportunities, and tend to choose more often in-house R&D, consistent with the empirical
evidence. The equilibrium choice leads to balanced growth featuring persistent productivity dif-
ferences even when starting from ex-ante identical firms. The long run productivity distribution
can be described as a traveling wave with tails following Zipf’s law as it can be observed in the
empirical data. Idiosyncratic shocks to firms’ productivities of R&D reduce inequality, but also
lead to lower aggregate productivity and industry performance.

Key words: innovation, growth, quality ladder, absorptive capacity, productivity differences,
spillovers
JEL: O40, E10

1. Introduction

Many empirical studies report large and persistent productivity differences not only across coun-

tries [e.g. Durlauf, 1996; Durlauf and Johnson, 1995; Feyrer, 2008; Quah, 1993, 1996, 1997], but

also across firms and plants within narrow sectors [Baily et al., 1992]. A prominent explanation

for these productivity differences is that they stem from differences in technological knowledge

[see, e.g. Doms et al., 1997]. On the one hand, part of these differences in technological know-

how originate from a large variation in R&D investments across firms and the diverse outcomes

of these R&D activities [Coad, 2009; Cohen and Klepper, 1992, 1996; Cohen et al., 1987]. On the

other hand, their size and persistence are evidence of a slow knowledge diffusion between firms

[Eeckhout and Jovanovic, 2002; Geroski, 2000; Stoneman, 2002].
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acknowledges financial support from the ERC Advanced Grant IPCDP-229883.
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Even though an increasingly globalized world and the successive advancement of communi-

cation technologies should make it easier for technological improvements to spillover from one

firm to another (or from one country to another), technology adoption still involves many chal-

lenging features, which consolidate technological gaps between firms, industries and countries.

Technology adoption is closely related to the R&D activities of firms. In the course of their re-

search activities firms can develop the ability to assimilate and exploit other existing technologies

and thereby increase their “absorptive capacities”[Cohen and Levinthal, 1989; Kogut and Zander,

1992; Nelson and Phelps, 1966].1 However, there exist limitations to their absorptive capacities.

If a technology is too advanced compared to the current technological level of the firm it becomes

difficult or even impossible to imitate it [Powell and Grodal, 2006].2

In this paper we propose a theory that combines process of technology development through

in-house R&D and the imitation of external technological knowledge by taking into account

limitations in a firm’s absorptive capacity that eventually gives rise to persistent productivity

differences among firms. The model is shown to reproduce some empirical regularities concerning

the productivity distributions of firms at both an aggregate and disaggregated levels, as well as

their evolution over time. In particular, we analyze a large data set containing information about

more than six million firms in the period between 1992 to 2005. We find that the productivity

distributions over these firms exhibit power-law tails over all periods of time. A similar observation

for a single point in time has been made in Corcos et al. [2007]; Di Matteo et al. [2005]. Moreover,

we observe an increasing trend in the average productivity. The growing distribution of firms can

then be describes in terms of a “traveling wave”.

The model economy is a Schumpeterian (quality ladder) growth model, in the spirit of

Acemoglu et al. [2006], where differentiated intermediate goods are produced by monopolisti-

cally competitive firms. Firms producing different varieties have heterogenous productivities that

change stochastically over time. The key assumptions is that there are technological spillovers

across firms producing different intermediates. More specifically, a firm producing variety i can

try to imitate the technology used by a firm producing variety j whenever the opportunity arises.

A distinctive feature of our model is that firms make endogenous decisions of whether to undertake

in-house R&D (innovation) or to imitate other firms’ technologies. The success of the imitation

strategy depends on the availability of better technologies (which depends on the endogenous

distribution of productivity) and their absorptive capacities. Starting from ex ante identical

firms our model generates heterogeneous productivity distributions with power-law tails. Thus,

evolving theoretical productivity distributions obey Zipf’s law at both tails (for small and large

values) consistent with the empirical observation.3 Moreover, the theoretical distribution evolves

1Although entry, exit and reallocation are important determinants of aggregate productivity growth, entry and
exit account for only 25% of total productivity growth [Acemoglu, 2009, Chap. 18]. Therefore, a successful theory
of economic growth should aim at understanding not only the process of innovation and selection across firms, but
also the determinants of investments in technology adoption.

2There exists a vast literature on barriers to technology adoption. Some of the more recent contributions
include Acemoglu et al. [2010]; Acemoglu and Zilibotti [2001]; Aghion et al. [2005]; Barro and Sala-i Martin [1997];
Eaton and Kortum [2001]; Hall and Jones [1999]; Howitt [2000].

3Zipf’s law is also observed for distributions of several other economic variables of interest (e.g. firm size) in
numerous empirical studies [e.g. De Wit, 2005; Gabaix, 1999; Saichev et al., 2009].

2



endogenously over time as a “traveling wave” with stable shape. The endogenous innovation-

imitation choice is crucial for the result. If the population of firms consisted of a fixed proportion

of innovators and imitators, the limiting distribution would feature an ever increasing variance

of productivities across firms. The intuition for our main result is simple: firms that are close

to the frontier do fresh innovation, driving the movement of the productivity frontier. Firms

lagging behind choose to imitate and the probability of successful imitation is increasing with the

distance to the frontier. This prevents that an ever growing gap emerges between more and less

successful firms.

Tractability is aided by two simplifying assumptions. First, there are no sunk costs and

firms can switch instantaneously across innovation-imitation strategies. Thus, although firms

are fully rational and maximize the present value of their profits, their optimal choice can be

expressed in terms of a repeated static maximization problem. Second, we introduce the natural

assumption that idiosyncratic firm-specific shocks affect the comparative advantage of firms in

performing in-house R&D relative to imitation (more precisely, the shock affects the productivity

of implementing successful in-house innovations). Firms are assumed to make the period choice

between in-house innovation and imitation after the shocks have been realized. This assumption

allows us to provide an analytic characterization of the long-run productivity distributions for

the limit case in which the variance of the shocks is sufficiently large to drive the choice between

innovation and imitation, irrespective of the state of technology of the firm. In such a case,

we can attain a complete characterization including a proof of existence for the traveling wave

solution. In the polar opposite case of no shocks we can also achieve characterization of the

long run distribution, but need to make certain functional assumptions on the shape of the

distribution. A numerical analysis reveals that the log-productivity distribution is a traveling

wave with exponential tails also for intermediate cases. In summary, the assumption that firms

are subject to productivity shocks to R&D turns out to be inessential, except for allowing us to

prove analytically the traveling wave result in particular cases.

The explicit formulation of firms’ R&D behavior distinguishes our model from previous

ones in the literature. Early contributions focusing on firm size and growth rate distributions

like Gibrat [1931]; Pareto [1896]; Simon [1955] as well as more recent ones by Fu et al. [2005];

Stanley et al. [1996] do not take into account R&D decisions of firms. Ensuing models such as

Klette and Kortum [2004]; Luttmer [2007] explicitly model firms’ R&D effort decisions but do

not incorporate the trade off firms face between making an innovation in-house or copying it

from another firm. In particular, Luttmer [2007] proposes a model of combined innovation and

imitation with entry and exit dynamics which generates firm size distributions that are consistent

with empirical evidence. In his model, there is an exogenous (stochastic) productivity growth

of incumbent firms that spills over to entrants that can imitate the technology of existing firms.

The theoretical mechanism is different from ours, since in Luttmer [2007] firms face no choice

between innovation and imitation. From an empirical standpoint, Luttmer’s model explains the

emergence of a Zipf’s law for large firm sizes (right power tail), whereas our model captures the
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power law behavior for both small and large productivities.4 Acemoglu and Cao [2010] construct,

as we do, a Schumpeterian model and also obtain Zipf’s law for large firm sizes. In their model,

incumbent firms engage in incremental innovations, while entry is associated with radical inno-

vations and creative destruction (i.e., the successful entrant replaces the incumbent). Similar to

Luttmer [2007], their model does not feature an endogenous choice of the R&D strategy. Relative

to these papers, our paper shares with Acemoglu and Cao [2010] the implication that large pro-

ductivity gains are due to R&D and productivity improvements introduced by incumbent firms,

which is consistent with the empirical evidence. In addition, our model is consistent with the

empirical evidence that firms closer to the technology frontier engage in more R&D investments

[see Griffith et al., 2003].

Alvarez et al. [2008]; Lucas [2008] and Lucas and Moll [2011] study models of technology

diffusion using the framework of Eaton and Kortum [1999]. Each producer draws from a random

sample of firms and “copies” the technology of the firm with which it is matched whenever the

latter has a better technology. These papers are related to our work, and explore dimensions

that we do not consider – for instance, Lucas and Moll [2011] focus on the trade-off in the use

of time between production and imitation and on the effects of progressive taxation. Relative

to our contribution, these authors do not take into account limitations in the ability of firms to

imitate external knowledge nor do they model explicitly the strategic decisions of firms whether

to undertake in-house R&D or to copy other firms. Because in their model firms can only copy

from existing firms (or ideas), the equilibrium dynamics would converge in the long run to a

mass point corresponding to the productivity level of the most productive firm. To avoid such a

degenerate long-run distribution, they assume that there exists at least one firm with unlimited

productivity. This is not necessary in our model, since firms that are close to the technology

frontier choose endogenously to innovate (i.e., draw from an exogenous productivity distribution)

rather than to imitate. This yields an endogenous growth engine.5

Ghiglino [2011] constructs a search-based growth model where firm-level technologies are

embodied in patents and new technologies are invented through building on already existing

patents. Similar to our model, this model also generates Zipf’s law distributed productivity

distributions, however, the underlying process does not focus on the endogenous decision of firms

whether to innovate or imitate, but rather the recombination of existing technologies into novel

ones.

The paper is organized as follows. The empirical analysis of firm productivities is given in

Section 2. The model of firm R&D behavior is introduced in Section 3 and the evolution of

the productivity distributions generated by this model is analyzed in Section 4. In Section 6 we

analyze the conditions affecting inequality and the growth rate of the economy. Section 5 provides

4Atkeson and Burstein [2010] also study the role of innovations by incumbents and the interactions with entrants,
but focus mostly on the trade implications.

5Lucas and Moll [2011] consider an environment in which firms make full dynamic choices. Our framework has
the advantage of yielding analytical solutions, while they rely on simulations. However, our simplifying assumptions
do no come without costs, as the decision to innovate-imitate has in reality obvious dynamic implications that our
stylized model misses. We regard the two contributions as complementary, each being better suited to different
aims.
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a calibration of the model’s parameters. In Section 7 we conclude. The proofs of all propositions

and corollaries can be found in Appendix C. A number of possible extensions of the model is

given in Appendix D.

2. Empirical Productivity Distributions

In this section, we present some empirical results about the productivity distribution across firms.

We emphasize three features that are consistent with our theory. First, the distribution of high-

productivity firms is well described by a power-law. Second, the distribution of low-productivity

firms is also well approximated by a power-law, although this approximation is less accurate,

arguably due to noisy data at low productivity levels. Third, the distribution is characterized by

a constant growth rate over time, where both the right and the left power-law are fairly stable.

This implies that the evolution over time of the productivity distribution can be described as a

“traveling wave”. While the first property is well known [see e.g. Corcos et al., 2007], the second

and the third have not been emphasized in the literature.

We compute the empirical productivity levels of firms using the Amadeus database provided

by Bureau van Dijk. We extract a data set which contains a total of 5, 216, 989 entries from

European firms in the years from 1992 to 2005.6 We use a balanced subsample of all firms for the

years 1995 to 2003 7 We further include only western European countries8, since the predictions

of our theory are about equilibrium growth properties. Eastern European economies were at the

start of a transition into capitalism in the early 90’s.9

The productivity of each firm is estimated using a production function approach. We assume

a Cobb-Douglas technology

Yit = AitC
a
itL

b
itM

c
ituit, (1)

where Yit denotes the value added of firm i at time t, Ait is (total factor) productivity, Cit its

capital in fixed assets, Lit its labor force in number of employees, Mit its cost of materials and uit

is an error term.10 The estimation of Ait follows the method introduced by Levinsohn and Petrin

[2003].11 Descriptive statistics of the estimated productivities grouped year-wise can be seen in

6These are firms for which data is available for the all the variables from the list: value added, operating revenue,
fixed assets, number of employees, cost of materials and cost of employees. These were data points from 1, 413, 487
firms.

7We choose the time span 1995 to 2003 for the balanced panel because, these are the years with a substantial
number of firms for which data exists in all years (more than 200, 000). In this balanced panel are 52, 837.

8The countries we define as western European are Austria, Belgium, Switzerland, Germany, Denmark, Spain,
Finland, France, Britain, Greece, Ireland, Iceland, Italy, Liechtenstein, Luxembourg, Monaco, Malta, Netherlands,
Norway and Sweden.

9In total there are 49, 022 firms in the balanced panel of western European firms, with data available in every
year from 1995 to 2003. These are firms from Belgium (3, 842), Switzerland (91), Germany (1), Spain (14, 934),
Finland (21), France (17, 892), Italy (12, 094), and Netherlands (147).

10These variables are represented by Amadeaus variables value added, fixed assets, number of employees and
costs of materials. The other variables are used for robustness checks only.

11The parameters a, b, c in Equation (1) are assumed to be larger than zero and uit is a positive error term.
Taking logs delivers the regression equation

log Yit = logAit + a logCit + b logLit + c logMit + ǫit. (2)
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Figure 1: (Top) Probability density functions P (A) (pdf), (Bottom) cumulative distribution function F (A) (cdf)
and complementary cumulative distribution function G(A) (ccdf) of total factor productivity for the years 1995
(blue) to 2003 (red) for western European countries. Dashed lines show power-law fits. The bold black line
represents the year 2002. Cf. Table 1) for the fitted exponents.

Table 2 in Appendix E.

The top panel in Figure 1 shows the empirical probability density functions P (A) (pdf)

over firms for each year considered.12 The bottom panel in Figure 1 shows the corresponding

cumulative distribution functions (cdf) F (A), and, respectively, the complementary cumulative

distribution function (ccdf) G(A) = 1 − F (A) for the same time period.13 We observe that the

left and right tails of the distributions are well approximated by power-laws P (A) ∝ eρA for small

A and P (A) ∝ e−λA for large A, where one notes a fatter left tail (cf. Table 1).14

The dashed lines in Figure 1 indicate fits for tail exponents for the year 2002, and Table 1

shows the estimated values for ρ and λ. From Table 1 we observe that the exponents remain

relatively stable over the years of observation: The estimated right tail exponents is around

λ = 3.32 and left tail exponent is around ρ = 1.46.

Moreover, we observe a slight rightward shift in empirical distributions over the years of

observation. The descriptive statistics of Table 2 in Appendix E show a yearly increase in the

average productivity. We find that average productivity grows exponentially with time at a

We use the STATA implementation levpet explained in Petrin et al. [2004] to estimate the Cobb-Douglas parameters
of Equation (2). We gained â = 0.075, b̂ = 0.705. According to Petrin et al. [2004] we estimate the productivity of
firm i at time t by

Âit = exp
(

log Yit − â logCit − b̂ logLit

)

=
Yit

C â
itL

b̂
it

. (3)

12Density functions are computed on the basis of histograms of the number of firms on 100 logarithmic bins
spread over the range of all data points.

13Both cumulative distribution functions are shown in Figure 1 as the vector of sorted total factor productivity
values on the abscissa versus a vector with the frequencies (in regular steps of 1/N) on the ordinate. Data points
are less dense at the extremes.

14The fit of the left tail (ρ̄) is performed as a linear regression on the logarithmic data on both axes for all values
of the cumulative distribution function below the geometric mean of the corresponding sample. The fit of the right
tail (λ̄) is performed as a linear regression on the logarithmic data on both axes for all values of the complementary
cumulative distribution function above the arithmetic mean of the corresponding sample. For the power law tails
of the pdf (as the derivative of the cdf) it consequently holds: λ = λ̄+ 1 and ρ = ρ̄− 1.
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year λ >mean(A) R2(λ) ρ <geomean(A) R2(ρ)

1995 3.41 32.8% 0.99 1.17 48.7% 0.98
1996 3.42 33.3% 0.99 1.39 49.4% 0.98
1997 3.41 34.1% 1.00 1.44 49.9% 0.97
1998 3.40 33.5% 0.99 1.52 50.0% 0.98
1999 3.29 32.5% 1.00 1.53 50.9% 0.97
2000 3.07 30.1% 1.00 1.54 51.3% 0.97
2001 3.29 31.7% 0.99 1.59 50.3% 0.98
2002 3.34 32.4% 1.00 1.54 50.5% 0.98
2003 3.23 31.0% 1.00 1.39 50.7% 0.97

average 3.32 1.46

Table 1: Fitted values according to the description in Footnote 14. The estimated power law exponents for the
right and left tail of the probability density function λ and ρ. The percentage of firms on which the regression is
computed is shown as well as the corresponding coefficient of determination R2.

rate ν.15 We further perform a KPSS test for trend stationarity of average log-productivity

[Kwiatkowski et al., 1992]. Based on our estimated productivity values we cannot reject the null

hypothesis of trend stationarity in our panel of average log-productivity.16 We then compute the

average log-productivity ν from the data by estimating the parameters of an exponential growth

function on a measures of central tendency per year Ā(t) = exp(νt+const.). Exponential growth

of productivity corresponds to linear growth of log-productivity log Ā(t) = νt + const.. From

our sample we estimate ν = 0.0227 (see also Appendix E). This corresponds to a yearly average

growth of productivity of 2.3%.

The above empirical analysis indicates that the evolution of the distribution of productivity of

firms over time has a stable shape17 with an exponentially growing average and power-law tails.

We refer to such a distribution as a traveling wave. The traveling wave is characterized by three

parameters: the right tail exponent λ, the left tail exponent ρ and a growth rate ν.

In the next sections we will introduce a model which is able to generate “traveling wave”

productivity distribution consistent with our empirical observations.

3. The Model

3.1. Environment

A unique final good, denoted by Y (t), is produced by a representative competitive firm using

labor and a set of intermediate goods xi(t), i ∈ N = {1, 2, . . . , N}, according to the production

15Arithmetic and geometric mean productivity per year are shown in Figure 12 in Appendix E on a semi-
logarithmic plot.

16We compute a p-value of 0.0549 with a critical value of the corresponding test statistic given by 0.1434 at a 5%
significance level. We also perform an Im-Pesaran-Shin unit-root panel data test which favors the hypothesis that
a nonzero fraction of the log-productivity estimates for the firms represent stationary processes [see also Im et al.,
2003]. Other panel data tests for stationarity typically assume that the number of years of observation is much
larger than the number of firms and thus do not apply to our data set.

17“Stable shape” means that at any point in time the distribution is the same up to location and scale parameters.
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function

Y (t) =
1

α
L1−α

N∑

i=1

(ǫi (t)Ai(t))
1−α xi(t)

α, α ∈ (0, 1),

where xi(t) is the economy’s input of intermediate good i at time t, Ai(t) is the technology level

of sector i at time t, and ǫi (t) is a productivity shock [cf. Bloom, 2009].18 We normalize the labor

force to unity, L = 1. The final good Y (t) is used for consumption, as an input to R&D and also

as an input to the production of intermediate goods. The profit maximization program yields the

following inverse demand function for intermediate goods,

pi(t) =

(
ǫi (t)Ai(t)

xi(t)

)1−α

,

where the price of the final good is set to be the numeraire.

Each intermediate good i is produced by a technology leader which can produce the best

quality of the input at the unit marginal cost. The leader is subject to the potential competition of

a fringe of firms that produce the same input at the constant marginal cost χ, where 1 < χ ≤ 1/α.

A higher value of χ indicates less competition. Bertrand competition implies that technology

leaders monopolize the market, and set the price equal to the unit cost of the fringe, pi(t) = χ,

and sell at that price the equilibrium quantity xi(t) = χ− 1
1−α ǫiAi(t). The profit earned by the

incumbent in any intermediate sector i will then be proportional to the productivity in that sector

πi(t) = (pi(t)− 1)xi(t) = ψǫi (t)Ai(t), (4)

where ψ ≥ χ−1
α χ− 1

1−α which is monotonically increasing in α and decreasing in χ. In equilibrium,

output is proportional to aggregate productivity as follows

Y (t) =
1

α
χ− α

1−α

N∑

i=1

ǫi (t)Ai(t) =
1

α
χ− α

1−αA,

where aggregate productivity is A(t) =
∑N

i=1 ǫi (t)Ai(t).

3.2. Technological Change

The productivity of each intermediate good i ∈ N is assumed to take on values along a quality

ladder with rungs spaced proportionally by a factor Ā > 1. Productivity starts at Ā0 = 1 and the

subsequent rungs are Ā1, Ā2, Ā3, . . . . Firm i, which has achieved ai productivity improvements

then has productivity Ai = Āai .19

18See Section 4.3 for a more detailed discussion.
19Consider a firm with productivity A(t) = Āa at time t and assume that its productivity at time t + ∆t is

A(t+∆t) = Āa+1. The productivity growth rate g of the firm at time t is then

g =
A(t+∆t)−A(t)

A(t)
=

Āa+1 − Āa

Āa
= Ā− 1,

and thus 1 + g = Ā.

8



ai ai + 1 ai + 2 ai + 3

a

η1 η2 η3

Figure 2: Illustration of the innovation process of firm i with log-productivity logAi = ai log Ā = ai (setting
log Ā = 1). With probability η1 firm i makes one productivity improvement and advances by one log-productivity
unit, with probability η2 firm i makes two productivity improvements and advances by two log-productivity units,
etc..

Firm i’s productivity Ai ∈ {1, Ā, Ā2, . . . } grows as a result of technology improvements, either

undertaken in-house (innovation) or due to the imitation and absorption of the technologies of

other firms. The technology comes from firms in other sectors that were successful in innovating

in their area of activity [Fai and Von Tunzelmann, 2001; Kelly, 2001; Rosenberg, 1976]. In each

time interval [t, t+∆t), ∆t > 0, a firm i is selected at random and decides either to imitate another

firm or to conduct in-house R&D, depending on which of the two gives it higher expected profits.20

3.2.1. Innovation

If firm i conducts in-house R&D at time t then it makes η(t) productivity improvements and its

productivity changes as follows

Ai(t+∆t) = Āai(t)+η(t) = Ai(t)Ā
η(t). (5)

η(t) ≥ 0 is a nonnegative integer-valued random variable with a certain distribution. Let us

denote ηb = P(η(t) = b) for b = 0, 1, 2, . . . to quantify the distribution. It holds
∑∞

b=0 ηb = 1.

From the productivity growth dynamics above we can go to an equivalent system by changing

to the normalized log-productivity ai(t) = logAi(t)/ log Ā. Then the in-house update map in

Equation (5) is given by

ai(t+∆t) = ai(t) + η(t). (6)

In the following we will consider log-productivity to be always normalized by log Ā. An illustration

of this productivity growth process can be seen in Figure 2. Note that log-productivity undergoes

a simple stochastic process with additive noise, while productivity follows a stochastic process

with multiplicative noise, with the stochastic factor being the random variable Āη. In the limit

of continuous time we obtain a geometric Brownian motion for productivity [Saichev et al., 2009,

pp. 9].

20We will explain in more detail the innovation and imitation process in Section 4.
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3.2.2. Imitation

In the case of imitation, firm i with productivity Ai(t) selects another firm j ∈ N at random

and attempts to imitate its productivity Aj(t) as long as Aj(t) > Ai(t) which is equivalent to

aj(t) > ai(t). Conditional on firm i selecting a firm j with higher productivity, firm i tries to

climb the rungs of the quality ladder which separates it from aj(t). We assume that each rung

is climbed with success probability q. Moreover, the attempt finishes after the first failure. This

reflects the fact that knowledge absorption is cumulative and the growth of knowledge builds on

the already existing knowledge base [Kogut and Zander, 1992; Weitzman, 1998].

Taking the above mentioned process of imitation more formally, firm i’s productivity changes

according to

Ai(t+∆t) = Ai(t)Ā
κ = Āai(t)+κ, (7)

where κ is a random variable which takes values in {0, 1, 2, . . . aj(t) − ai(t)} and denotes the

number of rungs to be climbed towards aj(t). The distribution of κ depends on the distance

aj(t)− ai(t) and is quantified as

Pi(κ = k|ai(t), aj(t)) =







qk(1− q) if 0 ≤ k < aj(t)− ai(t),

qk if k = aj(t)− ai(t),

0 otherwise.

(8)

Note, that it hold
∑∞

k=0 P (κ = k) = 1, as necessary. For q = 0 it holds Ai(t + ∆t) = Ai(t), for

q = 1 it holds Ai(t +∆t) = Aj(t) while for 0 < q < 1 it holds that Ai(t) ≤ Ai(t +∆t) ≤ Aj(t).

This motivates us to call the parameter q a measure of the absorptive capacities of the firms. The

higher q, the better firms are able to climb rungs on the quality ladder.

Switching to normalized log-productivity in Equation (7) we obtain21

ai(t+∆t) = ai(t) + κ. (9)

An illustration of this imitation process can be seen in Figure 3.

4. Evolution of the Productivity Distribution

In this section, we analyze the evolution of the productivity distribution. We first establish some

useful notation. Then, we analyze characterize the equilibrium dynamics of the productivity

distribution.

21If firm i with log-productivity ai(t) attempts to imitate firm j with log-productivity aj(t) > ai(t) then
the expected log-productivity i obtains is given by Et [ai(t+∆t)|ai(t) = a, aj(t) = b] =

∑b−a−1
c=0 (a + c)(1 −

q)qc + bqb−a = a + q 1−qb−a

1−q
. If q < 1 and b is much larger than a, the following approximation holds:

Et [ai(t+∆t)|ai(t) = a, aj(t) = b] ≈ a + q
1−q

. In this case, the log-productivity firm i obtains through imita-
tion does not depend on the log-productivity of firm j but only on its success probability q. However, it depends on
the log-productivity of firm j if aj(t) is close to ai(t). The latter becomes effective for example for firms with a high
productivity when there are only few other firms remaining with higher productivities which could be potentially
imitated.

10



ai ai + 1 ai + 2 aj

a

q q 1 − q

Figure 3: Illustration of the imitation of log-productivity aj of firm j through firm i with log-productivity ai,
where the log-productivity of firm i is logAi = ai log Ā = ai (setting log Ā = 1). Firm i successfully imitates two
log-productivity units (with probability q2) but fails to imitate the third log-productivity unit (with probability
1− q). It then ends up with a log-productivity of ai + 2.

4.1. Characterization of the Productivity Dynamics

Consider the distribution of normalized log-productivity a ≡ logA in the population of N ∈
N firms over time. Recall that normalized log-productivity only takes values in the set S =

{1, 2, . . . , amax} with amax ∈ N ∪ {∞}. This set can be finite when there exists a maximum

attainable log-productivity amax or equal to the integers S = N when amax = ∞. Let Pa(t)

indicate the fraction of firms having log-productivity a ∈ S at time t ∈ T . Thus, the row vector

P (t) = (P1(t) P2(t) . . . Pa(t) . . . ) represents the distribution of log-productivity at time t. It holds

that Pa(t) ≥ 0 and
∑∞

a=1 Pa(t) = 1. In what follows we may omit for simplicity either a or t in

the arguments of Pa(t) whenever it is no source of confusion.

Our dynamics of innovation and imitation induces a discrete time, discrete space Markov chain
(
(PN (t))t∈T

)∞
N=N0

, where the chain indexed by N takes on values in the state space (simplex)

PN = {P ∈ R
|S|
+ : N · P ∈ Z

|S|,
∑

a∈S Pa = 1} indicating the fraction of firms with a certain

log-productivity a ∈ S. At times t ∈ T = {0,∆t, 2∆t, . . . }, with ∆t = 1/N , exactly one firm

in the population of N firms is selected at random and given the opportunity to introduce a

technology improvement (through either innovation or imitation, as discussed in the following

sections). The conditional probability Tab : PN → R
|S|×|S|
+ that a firm with log-productivity a

switches to log-productivity b at time t is given by

Tab(P ) = P

(

PN (t+∆t) = P +
1

N
(eb − ea)

∣
∣
∣
∣
PN (t) = P

)

,

where ea ∈ R
|S| is the standard unit basis vector corresponding to log-productivity a ∈ S. The

transition probabilities of our Markov chain (PN (t))t∈T are then given by

P
(
PN (t+∆t) = P + z

∣
∣PN (t) = P

)

=







PaTab(P ) if z = 1
N (eb − ea), a, b ∈ S, a 6= b,

1−∑b∈S
∑

b 6=a PaTab(P ) if z = 0,

0 otherwise.

With these definitions we able to derive the differential equation governing the evolution of the
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productivity distribution by using the following proposition:

Proposition 1. Consider the Markov chain (PN (t))t∈T with a transition matrix T(P ) which is
Lipschitz continuous in P . Then in the limit of a large number of firms N , the evolution of the
log-productivity distribution P (t) is given by the differential equation

∂P (t)

∂t
= P (t)(T(P )− I), (10)

for some initial distribution P (0) : S → [0, 1].

One can show that there exists a unique solution to Equation (10) which is continuous in the

initial conditions P (0).22

The theory employed to derive Equation (10) does not hold for discontinuous transition ma-

trices T(P ) (a scenario we will encounter in Section 4.3.2), and so we need to generalize the

dynamics of P (t) to differential inclusions (set-valued differential equations). This is done in the

following proposition:

Proposition 2. Consider the Markov chain (PN (t))t∈T with transition matrix T(P ). Define
V (P ) = P (t)(T(P )− I) and let

V̄ (P ) =
⋂

ε>0

cl
(
conv

(
V
(
{P ′ ∈ R

S
+ : ‖P − P ′‖ ≤ ε}

)))

the closed convex hull of all values of V that obtain vectors P ′ arbitrarily close to P . Then in the
limit of a large number N of firms, the evolution of the log-productivity distribution P (t) is given
by the differential inclusion

∂P (t)

∂t
∈ V̄ (P (t)),

for some initial distribution P (0) : S → [0, 1].

A solution is still guaranteed to exist in this case, however, it might not be unique.23

In the following sections, we derive the matrix T(P ) with elements Tab(P ), a, b ∈ S, under

the individual firms’ laws of motion associated with innovation in Equation (6) and imitation in

Equation (9), respectively. First, in Section 4.2, we consider a world where R&D strategies are

exogenous with a fixed fraction of innovators and imitators. The purpose of this section is to

contrast against the general case in which these strategies are endogenous and based on profit

maximizing behavior. Moreover, in the exogenous case, one can show that the log-productivity

distribution of the population of the firms engaging in in-house R&D converges to a normal

distribution with increasing variance over time (cf. Proposition 3). However, we do not observe

such a divergence in the variance of empirically observed productivities in Section 2. In a more

realistic model, it is therefore necessary to allow firms to engage in both, innovation and imitation,

22Observe that Equation (10) can be solved for a function Pa(t) that is continuous in a ∈ R+. The resulting
solution trajectory coincides with the one for discrete values of a if we evaluate it only at the discrete points a ∈ S,
because the evolution of P (t) at the discrete values of a is independent of any values not coinciding with the
discrete ones. Hence, in the following, we will consider P (t) being continuous in both time t and log-productivity
a. Accordingly, we will replace the derivative with respect to time in Equation (10) with a partial derivative.

23We refer the reader to Sandholm [2010, Appendix 6.A] for more discussion.
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to advance their productivity levels. This is the case we are going to discuss in the subsequent

Section 4.3, where the general model is introduced.

4.2. Exogenous Innovation-Imitation Strategies

We analyze in this section the evolution of the productivity distribution in a world where R&D

strategies are exogenous with a fixed fraction of innovators and imitators. We consider three

cases: in Section 4.2.1 all firms engage in in-house R&D, in Section 4.2.2 all firms try to imitate

and in Section 4.2.3 some firms always do in-house R&D, while others always imitate.

4.2.1. Innovation Only

In this section, we assume that all firms engage in in-house R&D. More formally, this is the

equilibrium outcome when firms have no absorptive capacity for imitation (corresponding to

q = 0). As a firm with log-productivity a tries to innovate, the probability that it obtains a

log-productivity b > a is T in
ab = ηb−a. We assume that the random variable η has a maximal

achievable value of m log-productivity units. Then, the probability distribution of η is defined by

the row vector (η0 η1 . . . ηm), with ηb representing the probability to increase the productivity by

b units and η0 = 1−∑m
b=1 ηb. We can then introduce the transition matrix due to in-house R&D

Tin =










η0 η1 . . . ηm 0 . . .

0 η0 η1 . . . ηm 0

0 η0 η1 . . .
. . .

...
. . .

. . .
. . .

. . .










.

From Proposition 1 it follows that the evolution of the log-productivity distribution in Equation

(10) in the limit of large N is given by

∂P (t)

∂t
= P (t)(Tin − I).

This is a diffusion equation with a positive drift due to stochastic productivity improvements from

in-house R&D. Thus, the log-productivity approaches a Gaussian shape in the limit of time t, due

to the central limit theorem. Mean and variance rise linearly with t as the following propostion

states.

Proposition 3. If E[η] > 0 and q = 0 then the log-productivity distribution approaches a nor-
mal distribution N (tµη, tσ

2
η), for large t, with µη = E[η] and σ2η = Var(η). The productiv-

ity distribution converges to a log-normal distribution with mean µA = etµη+
1
2
tσ2

η and variance

σ2A =
(

etσ
2
η − 1

)

e2tµη+tσ2
η .

The important finding of Proposition 3 is that the variance of the log-productivity distribution

increases over time.

13



4.2.2. Imitation Only

Next, we consider the polar opposite case when firms have no independent capacity to innovate

through in-house R&D, and can only introduce technological progress through imitating other

firms’ technologies. This is the case if ηi = 0 for i ≥ 1. The long-run outcome is easy to guess: all

firms will converge to the same productivity level, equal to the largest productivity in the initial

distribution. However, the analysis of this case is instructive, since it provides key insights for

the general case with both innovation and imitation.

As a firm with log-productivity a tries to imitate other firms, the probability that it obtains

a log-productivity b > a is given by24

T im
ab (P ) = qb−aPb + qb−a(1− q)Pb+1 + qb−a(1− q)Pb+2 + . . .

= qb−a

(

Pb + (1− q)
∞∑

k=1

Pb+k

)

= qb−a (Pb + (1− q)(1− Fb)) , (11)

with F being the cumulative distribution of P as defined by Fb =
∑b

c=1 Pc. For b < a, the firm

prefers not to imitate, thus T im
ab (P ) = 0. The staying probability for b = a is thus T im

aa (P ) =

1−∑b>a T
im
ab (P ).

Observe that the transition matrix Tim with elements given by Equation (11) for the imitation

process is interactive.25 It depends on the current distribution of log-productivity P (t) and it is

given by

Tim(P ) =










S1(P ) q(P2 + (1− q)(1− F2)) q2(P3 + (1− q)(1− F3)) . . .

0 S2(P ) q(P3 + (1− q)(1− F3)) . . .

0 0 S3(P )
. . .

...
...

. . .
. . .










,

with Sa(P ) ≡ 1−∑∞
b=a+1T

im
ab (P ) = 1−∑∞

b=a+1 q
b−a (Pb + (1− q)(1− Fb)). Following Proposi-

tion 1, the evolution of the log-productivity distribution in the limit of large N is given by

∂P (t)

∂t
= P (t)(Tim(P (t))− I). (12)

From Equation (12) we can derive a differential equation governing the evolution of the cumulative

log-productivity distribution.

Proposition 4. Assume firms cannot innovate in-house (η0 = 1 and ηi = 0, for all i ≥ 1), then
in the limit of large N , the evolution of the cumulative log-productivity distribution F (t) is given

24The first term in the first line of Equation (11) considers the case of a firm with log-productivity a observing a
firm with log-productivity b at random and successfully climbing the b− a rungs separating them, which happens
with probability qb−a. The second term considers the case that a firm with log-productivity a observes a firm with
log-productivity b+1, successfully climbs b− a rungs (with probability qb−a) but fails to climb the last rung (with
probability 1− q). And so on. See also Figure 3.

25For an interactive Markov chain the transition probabilities depend on the current distribution [Conlisk, 1976].
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by

∂Fa(t)

∂t
= Fa(t)

2 − Fa(t) + (1− q)(1− Fa(t))
a−1∑

b=0

qbFa−b(t), a ∈ S, (13)

for some initial distribution F (0) : S → [0, 1].

The boundary conditions are lima→1 Fa(t) = 0 and lima→∞ Fa(t) = 1. Consider an initial

distribution Fa(0) with finite support. Then there exists a maximal initial log-productivity am

such that Fa(0) = 1 for all a ≥ am. From Equation (13) we see that for all a ≥ am it must hold

that ∂Fa(t)
∂t = 0 and so Fa(t) = 1 for all t ≥ 0. In contrast, for all a < am and q > 0 there exists a

positive probability that a firm with log-productivity b > a is imitated, leading to a decrease in

Fa(t). Eventually, we then have that

lim
t→∞

Fa(t) =







0, if a < am,

1, if a ≥ am.
(14)

Note, that Equation (14) is equivalent to limt→∞ Pam(t) = 1. Thus all probability mass concen-

trates at am in the course of time. Note also that in the special case of q = 1 we recover the

knowledge growth dynamics analyzed by Lucas [2008].26

4.2.3. Innovation and Imitation

Finally, we consider the evolution of the productivity distribution in a world where R&D strate-

gies are exogenous with a fixed fraction of innovators and imitators. Since R&D strategies are

exogenous, we observe that the dynamics of the innovators always follows the dynamics of the

case of pure in-house R&D in Section 4.2.1. From our previous discussion, we know that for

these firms we obtain a log-normal log-distribution with a variance that increases over time (see

Proposition 3). Since the proportion of innovators and imitators is fixed, this implies that also

the variance of the distribution of the total population of firms will diverge when we have both

innovators and imitators.27 However, from the empirical evidence discussed in Section 2 we do

not find support for such a divergence. Hence, in order to develop a more realistic model for

the evolution of the empirical productivity distribution, we need to move beyond the case of

exogenous innovation-imitation strategies. This is the focus of the following section.

26For q = 1 we can derive from Equation (13) the following differential equation ∂Fa(t)
∂t

= Fa(t)
2 − Fa(t). This

can be written as ∂ lnFa(t)
∂t

= Fa(t)− 1, with the solution

Fa(t) =
Fa(0)

Fa(0) + et(1− Fa(0))
, a ∈ S,

and the initial distribution Fa(0). We see that limt→∞ Fa(t) = 0 as long as Fa(0) < 1, while Fa(t) = 1 for all a ∈ S
with the property that Fa(0) = 1.

27It is possible to characterize the dynamics of the cumulative log-productivity distribution in terms of a differ-
ential equation. However, this admits no closed-form solution. The analysis is deferred to Appendix A.
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4.3. Endogenous Innovation-Imitation Strategies

This section contains the main contribution of our paper. We analyze the case in which firms

choose whether to innovate (in-house R&D) or to imitate other firms, based on a standard value-

maximization objective. In our environment this is equivalent to maximizing the expected profit

flow, given by (4), in each period. We assume ǫi (t) ∈ R+ to be a firm-specific shock affecting

the firm’s productivity in implementing in-house R&D. In particular, ǫi (t) = 1 if a firm decides

to imitate and ǫi (t) = ǫini (t) if the firm pursues in-house R&D, where ǫini (t) is a stochastic

variable, assumed to be independently and identically log-logistic distributed across firms, with

scale parameter β [Fisk, 1961].28 Thus, log ǫini (t) has a logistic distribution. In a time interval

[t, t + ∆t) a single firm is selected at random, makes a new draw ǫini (t), and is granted the

opportunity to change its R&D strategy. Such events are i.i.d. across firms and over time.

ǫini (t) is drawn from the cdf Fǫini (t) : R+ → [0, 1], where Fǫini (t)(x) = 1
1+x−β (or, identically,

Flog ǫini (t)(x) =
1

1+e−βx ). When no event occurs, ǫini (t) remains constant. Note that the median of

ǫini (t) equals 1/2, implying that, at every t, 50% of the firms have a comparative advantage in

imitation and innovation, respectively. This is for simplicity and entails no loss of generality.

Firm i chooses innovation whenever, conditional on its current productivity Ai (t) and the

state of ǫi (t) (which is known at time t)

ǫini (t)× E
in
i [Ai(t+∆t)|Ai (t)] > E

im
i [Ai(t+∆t)|Ai (t)] ,

where E
in
i [·|Ai(t)] and E

im
i [·|Ai(t)] denote expectations conditional on innovation and imitation

of firm i with current productivity level Ai(t), respectively. Note that, as β → ∞ (almost) all

firms draw ǫini (t) ≈ 1, namely, productivity shocks vanish. To the opposite, as β → 0, half of the

firms are totally unable to implement innovations, and the other half are infinitely productive.

Thus, this corresponds to a case in which half of the firms do in-house R&D and half imitate,

irrespective of their initial productivity.29

We can now analyze the expected productivity of a firm i with a given productivity Ai(t) at

time t if it were to imitate or innovate at time t+∆t. Let Ain
i (Ai(t)) = E

in
i [Ai(t+∆t)|Ai (t)] be

the expected productivity of firm i if it innovates at time t+∆t. We have that

Ain
i (Ai(t)) = Āai(t)P(η(t+∆t) = 0) + Āai(t)+1

P(η(t+∆t) = 1) + . . .

Similarly, let Aim
i (Ai(t), P (t)) = E

in
i [Ai(t+∆t)|Ai (t)] be the expected productivity of firm i

if it imitates. Analogous to the derivation of Equation (11), one can show that the expected

28The assumption that under imitation ǫi (t) = 1 is for simplicity and entails no loss of generality, since what
matters is the difference between the value of ǫi(t) under innovation and imitation, respectively. For instance, we
can think that when a technology is copied, there is no uncertainty about the best way to implement it.

29Note that even the case of β → 0 is different from that of exogenous innovation and imitation strategies discussed
in Section 4.2.3. There, each firm was permanently assigned to a given type (either innovator or imitator). In
contrast, here, even in the case of β → 0 firms change their R&D strategy over time, although the proportions of
innovators and imitators remain approximately constant.
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productivity of firm i if it imitates is given by

Aim
i (Ai(t), P (t)) = Āai(t)Sai(t)(P (t)) +

∞∑

b=ai(t)+1

Ābqb−a (Pb(t) + (1− q)(1− Fb(t))) , (15)

with Sa(P ) = 1−∑∞
b=a+1T

im
ab (P ) from Section 4.2.2. Consequently, the expected profit of firm i

when innovating in-house is given by πini (t) = ψAin
i (Ai(t))ǫ

in
i (t), and similarly, the expected profit

of firm i through imitation is πimi (t) = ψAim
i (Ai(t), P (t)), where ǫ

in
i (t) are i.i.d. non-negative

random variables. Let aini (ai(t))) ≡ logAin
i (Ai(t)) and aimi (ai(t), P (t)) ≡ logAim

i (Ai(t), P (t)).

Further, let

pimβ (ai(t), P (t)) ≡ P(πimi (t) > πini (t)) = P(log ǫini (t) < aimi (ai(t), P (t))− aini (ai(t)))

denote the probability that a firm’s profit from imitation is larger than from innovation. Then

pimβ (ai(t), P (t)) = Flog ǫini (t)

(
aimi (ai(t), P (t))− aini (ai(t)))

)

=
1

1 + e−β(aimi (ai(t),P (t))−aini (ai(t)))
, (16)

where the second equality follows from the properties of the logistic function. We also define the

probability of innovation as pinβ (ai(t), P (t)) ≡ 1− pimβ (ai(t), P (t)).

An important results regarding the propensity of firms to conduct in-house R&D can be

given for a particularly simple and intuitive case in which one step of innovation is achieved with

probability p, thus, η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2. Further, assume for simplicity

that firms do not have any absorptive capacity limits (q = 1). We then can give the following

proposition:

Proposition 5. Assume that η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2 for some p ∈ (0, 1),
β > 0 and that firms do not have any absorptive capacity limits (q = 1). Then for any P there
exists a unique threshold log-productivity a∗ ∈ N such that it holds that pimβ (a, P ) > pinβ (a, P ) when

a < a∗, and pimβ (a, P ) < pinβ (a, P ) when a > a∗, where it might hold that pimβ (a∗, P ) = pinβ (a∗, P ).

Proposition 5 states that relatively backward firms (below the threshold a∗) are more likely

to imitate, while firms with an advanced technology (above the threshold a∗) are more likely to

innovate.

We now turn to the general description of the evolution of the productivity distribution.

Observe that the transition matrix T(P ) is the sum of the transition matrix for imitation Tim(P )

(see Section 4.2.2) and innovation Tin (see Section 4.2.1), each weighted with the probability

of imitation pimβ (a, P ) and innovation pinβ (a, P ) = 1 − pimβ (a, P ), respectively. Further, observe

that the imitation probability pimβ (a, P ) is continuous in P for any finite β. Hence, by virtue of

Proposition 1, we are able to state the dynamics of the log-productivity distribution when the

population N of firms becomes large.

Proposition 6. Assume that β < ∞ and let D(P ) be the diagonal-matrix of all probabilities
pimβ (a, P ). Then in the limit of large N , the evolution of the log-productivity distribution P (t) is
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given by
∂P (t)

∂t
= P (t) (T(P )− I) = P (t)

(
(I−D(P ))Tin +D(P )Tim(P )− I

)
, (17)

for some initial distribution P (0) : S → [0, 1].

In the special case of η1 = p and η0 = 1− p for some p ∈ (0, 1) we obtain

∂Pa(t)

∂t
= Pa(t)

(
a−1∑

b=1

pimβ (b, P )Pb(t) + pimβ (a, P )Sa(t)

)

+ (1− p)Pa(t)p
in
β (a, P )

+ pPa−1(t)p
in
β (a− 1, P )− Pa(t), a ∈ S. (18)

Proposition (6) provides a complete characterization of the evolution of the productivity distri-

bution, which can be computed by direct numerical iteration.

The above discussion does not cover the case without shocks (β = ∞), i.e., ǫi (t) = ǫini (t) = 1

for all i ∈ N . This case is of particular economic interest, since all firms are ex ante identical

and the decision whether to imitate or do in-house R&D is entirely determined by the state

of productivity. However, the technical analysis is somewhat more involved since the imitation

probability pimβ (ai(t), P (t)) of Equation (16) has a point of discontinuity in the limit as β → ∞
(corresponding to the case of vanishing shocks), and has V (P ) = T(P )− I where the transition

matrix is given by Equation (17). In this case, the evolution of the log-productivity distribution

then follows a differential inclusion (a set-valued differential equation) ∂P (t)
∂t ∈ V̄ (P ), as stated in

Proposition 2.

The model is parsimoniously parameterized by a parameter β ≥ 0 governing the variance of

the productivity shocks, the in-house innovation probability p ∈ [0, 1] (restricting our analysis to

the case of η1 = p, η0 = 1− p and ηi = 0 for all i ≥ 2), and the imitation probability q ∈ [0, 1]. In

order to better understand the resulting productivity distributions and their dependency on the

parameters of the model, we analyze in the following sections two polar opposite cases where addi-

tional analytical results can be proven. In Section 4.3.1 we study the limit of strong productivity

shocks (characterized by β → 0), while in Section 4.3.2 we consider the limit of no productivity

shocks (as covered by Proposition 2). In both cases we will demonstrate that the productivity

distribution follows a traveling wave with tails that exhibit a power-law decay, corresponding

to a log-productivity distribution with exponential tails.30 A numerical analysis (based on the

numerical integration of Equation (18)) shows that the result also holds for intermediate values

of the variance of shocks.

4.3.1. Equilibrium Growth with Strong Shocks

In the limit case of β → 0, it holds imitation probability pimβ (a, P ) = 0.5 in Equation (16). This

means that firms chooses between imitation and in-house R&D uniformly at random for all a and

all P . Inserting this into Equation (18), and focusing on the case of q close to unity, yields the

30Note that P (a, t) ∝ e−λa = e−λ logA = A−λ.
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following differential equation for the dynamics of the cumulative distribution function F (t)

∂Fa(t)

∂t
=

2q − 1

2
(Fa(t)

2 − Fa(t))−
p

2
(Fa(t)− Fa−1(t)) , a ∈ S, (19)

subject to the boundary conditions lima→∞ Fa(t) = 1 and lima→1 Fa(t) = 0. A numerical solution

for the resulting probability mass function is given in Figure 4 (left). Our analysis will reveal

that the distribution obtains a stable shape moving to the right (with increasing average log-

productivity) over time. Such a solutions is called a traveling wave. More precisely, a traveling

wave is a solution of the form Fa(t) = f(a − νt) such that for any s ≥ t it must hold that

Fa(t) = Fa+νs(t + s). For specific initial conditions, we can give a more formal result, as stated

in the following proposition.

Proposition 7. Let Fa(t) be a solution of Equation (19) with Heaviside initial value Fa(0) =
Θ(a− am) for some am ≥ 1 and define mǫ(t) = inf{a : Fa(t) > ǫ}. Then

lim
t→∞

mǫ(t)

t
= ν

for some constant ν ≥ 0, and Fa(t) is a traveling wave of the form Fa = f(a − νt) for some
non-decreasing function f : R+ → R+.

From a numerical integration of this differential equation we find that the limiting log-

productivity distribution decays exponentially in the tails. Guided by this observation, we impose

a general exponential function for the tails and derive the parameters of this function, as well

as the traveling wave velocity.31 It turns out that in the limit of vanishing absorptive capacity

limits (q = 1) we recover the model analyzed by Majumdar and Krapivsky [2001]. The general

case can be solved in a similar way to their analysis and is stated in the following proposition.

Proposition 8. Assume that η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2 with p ∈ [0, 1] and
strong productivity shocks with β = 0. Consider weak absorptive capacity limits such that q is
close to unity and Equation (19) holds.

(i) If we assume that the front of the traveling wave solution of Equation (19) follows an
exponential distribution with exponent λ ≥ 0, i.e. Pa(t) ∝ e−λ(a−νt) for a much larger than
νt, then the traveling wave velocity is given by

ν(p, q) =
2q − 1− p+ peλ(p,q)

2λ(p, q)
, (20)

31Note that the assumption of an exponential decay is not very restrictive, as such tail distributions are common
for a broad class of probability distributions. More precisely, for the log-productivity values exceeding some high
threshold a∗, i.e. a > a∗, the distribution Fa can be written approximately as [see e.g. De Haan and Ferreira, 2006,
Chap. 3]

1− Fa ≈ (1− Fa∗)

(

1−Hγ

(

a− a∗

f(a∗)

))

, a > a∗,

for some positive function f : R → R+, where Hγ(a) = 1 − (1 + γa)
− 1

γ is the generalized Pareto distribution.
This is known as the Pickands–Balkema–de Haan theorem [Pickands, 1975]. For γ = 0 we obtain an exponential
distribution, that is limγ→0 Hγ(a) = 1− e−a.
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Figure 4: (Left) The log-productivity distribution Pa(t) for period t = 200, p = 0.119, q = 1. The distribution
obtained by numerical integration of Equation (35) is indicated by a circles while the theoretical predictions are
shown with a dashed line. The front of the traveling wave decays as a power-law with exponent λ = 2. (Right)
Traveling wave velocity ν for different values of p ∈ [0, 1] and q = 1 at t = 100.

where the exponent λ(p, q) of the front of the distribution is given by32

λ(p, q) = 1 +W

(
2q − 1− p

pe

)

. (21)

(ii) If we assume that Pa(t) ∝ eρ(a−νt), ρ ≥ 0 for a much smaller than νt, then the exponent
ρ(p, q) is given by

ρ(p, q) =
1

2

(

2q − 1 + p+ 2W
(

−p
2
e

1−p−2q
2

)
))

. (22)

Our numerical analysis shows that the results of Proposition 8 hold for general initial dis-

tributions which are concentrated enough, such as an exponential distribution with an exponent

that is large enough. Moreover, when there are no limitations in the abilities of firms to imi-

tate other firms’ technologies (q = 1), one can show that transitional dynamics of the average

log-productivity is given by Et[a] = ν(p, q)t− 3
2λ(p,q) ln t+O(1) [Majumdar and Krapivsky, 2001].

By solving the dynamical system corresponding to Equation (19) but continuous in state we

can compute Fa(t) for large times t. The resulting traveling wave velocity ν(p, q) (the productivity

growth rate) for q = 1 can be seen in Figure 4 (right) for different values of p together with our

theoretical predictions. From Equations (20) and (21) we directly find that the growth rate

of the economy is increasing in the innovation probability p (see also Figure 4, right) and the

absorptive capacity parameter q, i.e. ∂ν(p,q)
∂p > 0, ∂ν(p,q)

∂q > 0. Further results in the limit of

strong productivity shocks (considering that β is small but positive) can be found in Appendix

B. Our analysis reveals that with increasing β the growth rate ν of the economy’s productivity

increases.

32W (x) is the Lambert W function (or product log), which is implicitly defined by W (x)eW (x) = x, and can be

written as W (x) = −∑∞
n=1

nn−1

n!
(−x)n for |x| < 1

e
.
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4.3.2. Equilibrium Growth without Shocks

In this section we consider an economy where productivity shocks become irrelevant as β → ∞
and for all firms i ∈ N we have that ǫi (t) = ǫini (t) = 1. In this case, all firms are ex ante

identical and the decision whether to imitate or to conduct in-house R&D is entirely determined

by their state of productivity. As the following lemma illustrates, there exists a critical log-

productivity level a∗ below which firms only imitate other firms technologies, while the firms

with log-productivities above the threshold a∗ conduct only in-house R&D.

Lemma 1. Assume that firms have maximal absorptive capacity (q = 1). Then in the limit of
vanishing productivity shocks (β → ∞) there exists for any productivity distribution a threshold
log-productivity a∗ ∈ N such that

lim
β→∞

pimβ (a, P ) =

{

1, if a ≤ a∗,

0, if a > a∗.
(23)

The dynamics of the log-productivity distribution is given by the differential inclusion of

Proposition 2. From Equation (23) we observe that the imitation probability has a point of

discontinuity at a∗ and is continuous for a < a∗ and a > a∗. The same holds for the function

V̄ (P ) of Proposition 2, which then is given by V (P ) for all a 6= a∗, and the differential inclusion

becomes a differential equation at the continuity points of V (P ). We then can state the following

proposition.

Proposition 9. Let η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2 with p ∈ [0, 1]. Consider
vanishing productivity shocks (β → ∞), and assume that firms have maximal absorptive capacity
(q = 1). Then the dynamics of the cumulative log-productivity distribution is given by

∂Fa(t)

∂t
=

{

Fa(t)
2 − Fa(t), if a < a∗,

(Fa(t)− 1)Fa∗(t)− p(Fa(t)− Fa−1(t)), if a > a∗.
(24)

The above differential equation for Fa(t) can be solved numerically subject to the boundary

conditions lima→∞ Fa(t) = 1 and lima→1 Fa(t) = 0. The resulting log-productivity distribution

for p = 0.1 and q = 1 can be seen in Figure 5 (left).

A numerical integration of Equation (24) reveals that the log-productivity distribution is a

traveling wave with exponential tails. Moreover, we observe that the threshold log-productivity a∗

is close to the average log-productivity νt. In the following proposition we then assume a general

exponential function for the tails,33 and further assume that the threshold log-productivity a∗ is

given by νt, in order to solve for the limiting log-productivity distribution.

Proposition 10. Let η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2 with p ∈ [0, 1]. Consider
vanishing productivity shocks (β → ∞) and assume that firms do not have any absorptive capacity
limits (q = 1).

33Such a behavior is typical for large productivity values. See also Footnote 31.
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Figure 5: (Left) The log-productivity distribution Pa(t) for p = 0.125 and log Ā = 1 at t = 400. The distribution
obtained by numerical integration of Equation (24) is indicated with circles while the theoretical predictions are
shown with a dashed line. The front of the traveling wave is close to a power-law with exponent λ of 2. (Right)
Traveling wave velocity ν for different values of p ∈ [0, 1] by means of numerical integration of Equation (24) and
theoretical prediction indicated by the dashed line.

(i) If we assume that the front of the traveling wave solution of Equation (24) follows an
exponential distribution with exponent λ ≥ 0 for all a ≥ a∗, i.e. Pa(t) ∝ e−λ(a−νt), and we
assume that the threshold log-productivity a∗ is given by the average νt, then the traveling
wave velocity is given by

lim
β→∞

νβ(p) =
1

λ

(

1 + p(eλ − 1)− p(Ā− 1)(1− e1−λ)

e− 1

)

(25)

where λ is the root of the equation

eλ(λ− 1)− Ā− 1

e− 1
e1−λ(1 + λ) +

Ā+ e− 2

e− 1
=

1

p
. (26)

(ii) If we assume that the left tail of the traveling wave solution of Equation (24) follows an
exponential function with exponent ρ ≥ 0, i.e. Pa(t) ∝ eρ(a−νt), for all a much smaller than
the threshold a∗ then the exponent ρ is given by ρ = 1/ν.

Equation (26) can be solved numerically, using standard numerical root finding procedures

[see e.g. Press et al., 1992, Chap. 9], to obtain the exponent λ. Inserting λ into Equation (25)

further gives the traveling wave velocity ν. This is shown in Figure 5 (right) together with the

numerical values for p = 0.125 and log Ā = 1 at t = 400. The figure shows that the traveling

wave velocity ν is increasing with the innovation success probability p. This means that as firms’

in-house R&D success probability increases, also the growth rate of the economies productivity

increases when absorptive capacity of firms is maximal (q = 1).34

34Numerical integration for β → ∞ and q intermediate between zero and one suggest the hypothesis that there
is a transition in the (p, q)-space between travelling-wave behavior and log-normal-with-rising-variance behavior.
For q > 5p the traveling-wave behavior is visually clear. For q ≤ p the log-normal-with-rising-variance behavior is
visually clear.
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Figure 6: Exploration of impact of innovation probability p, imitation probability q, on the dependent power-law
parameters λ, and ρ, and on the productivity growth rate ν. In the top row the parameter β = 100 is relatively
high corresponding to the case where productivity shocks are almost absent. The bottom row corresponds to β = 0
with maximally large shocks. The contour plots are based on numerical integrations of the ODE in Eq. (17) as
explained in Section 5. The black asterisk marks the calibrated (p, q)-points which approximates λ and ν closest
(but not ρ).

5. Calibration of the Model’s Parameters

The goal of this section is to calibrate the model’s parameters given by the innovation success

probability p and the imitation success probability q, such that the empirically observed right

tail exponent λ and the growth rate of the traveling wave ν can be reproduced.

Ideally, also the parameter β should be included in the calibration procedure. But it turned

out that its impact is not as strong, and we put less emphasis on it. Further on, ideally, also

the left tail exponent ρ shall fit. But we also regard the fit of ρ as second order priority for two

reasons. First, the empirical data is less reliable in the lower region. Second, from a practical

point of view, it is much more interesting to understand the growth of productivity and the spread

of the distribution to the few most innovative firms than how the distribution expands to the

least innovative firms.

Our theoretical results on the computation of λ, ν and ρ cover only parts of the (β, p, q)-

parameter space. Further on, the interdependence we know is quite complex and non-linear.

Thus, a simple regression estimation procedure is ruled out.

We developed a hands on method to estimate λ, ρ and ν for computed trajectories with

parameters p, q and β, based on some heuristics which we derived from sorrow observations.

The method works as follows: Start with initial distribution P0 = (1 0 . . . ) on a long enough
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Figure 7: ODE trajectories for calibrated parameters (p = 0.002925, q = 0.1025) compared to the empirical pdf.
The parameter β = 100 is set close to dynamics without shocks. The parameters p and q are calibrated to fit
λ = 3.32 (from Table 1) and ν = 0.0227 (from Table 3) closest. This leads to a left power-law tail exponent
ρ = 2.46. The empirically estimated value is ρ = 1.46 (see Table 1), but this might be an artifact of a distortion in
the very low productivity region, as the slope fits the distribution in the intermediate low level well. The solution
of the ODE of log-productivity is computed starting with P = (1 0 · · · ) until its peak fits to the peak of the
empirical distribution from the year 2003. The solution is shifted upwards to enable better comparison.

vector (we used length 30). All distributions mentioned here are handled as pdf’s. Decide on

an appropriate Tmax and compute the distributions numerically (with Matlab’s function ode45)

along the trajectory at time steps t = 0, 1, 2, . . . , Tmax. Heuristics for the choice of Tmax where

experimentally quantified such that the peak of the distribution at Tmax lies well in the center of

the support of P0.

Then compute the arithmetic mean of productivity and the geometric mean of productivity

for the distribution in each time step t. The arithmetic means build the lower bounds for the

support of the distribution where λ is fitted by linear regression on the logarithm of productivity

and the logarithm of the distribution function. The geometric means build the upper bounds

for the support of the distribution where ρ is fitted by linear regression on the logarithm of

productivity and the logarithm of the distribution function.35 Based on this we are able to fit λ

and ρ for each time step t. We compute an estimate for ν for each time step t by looking at the

differences in average log-productivity for time step t and t− 1.

We observed that for large enough Tmax the fitted values stabilize, but some regular fluctua-

tions remained due to the discreteness of the support of the distribution. To minimize the effect

we averaged several values of λ and ρ along an interval of values of t of a certain length until

Tmax.
36

Based on this calibration method we computed values of λ, ρ and ν for the theoretical

distributions of the ODE as a function of p, q and β on the grid p = 0.001,+0.0002. . . , 0.014,

35Support for fitting was further restricted to the region where the distribution function was larger than a certain
accuracy to avoid distortion from border effect which appear when floating point precision achieves its limits.

36We found reasonable heuristics for assigning such a “wavelength” that the slight fluctuations could be averaged
out well.
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q = 0.04,+0.002. . . , 0.16 and β = 0, 100. After computation of the field we improved accuracy of

the grid (using Matlab’s function interp2). We improved the accuracy of p to steps of length

0.000025 and the accuracy of q to steps of length 0.00025. Within this grid we computed the

values of p and q which minimized the quadratic difference of empirical and theoretical λ plus

the quadratic difference of the empirical and theoretical ν.

In Figure 6 and 7 we report the calibrated values of p = 0.002925, q = 0.1025, (for the case of

β = 100 where shocks are almost absent) and show in the latter figure the computed theoretical

trajectories of the distribution of productivity together with the time evolution of empirical

distribution. The figure reveals that the model can well reproduce the observed pattern.

6. Growth, Inequality and Policy Implications

Our model is parsimoniously parameterized by a parameter β ≥ 0 governing the variance of the

productivity shocks, the in-house innovation probability p ∈ [0, 1] and the parameter q ∈ [0, 1]

measuring the absorptive capacity of the firms in the economy. In this section we study the effects

of each of the three parameters (β, p, q) on (i) the speed of growth and (ii) the inequality implied

by the productivity distribution. This will allow us to analyze the effects of R&D policies that

impact the innovation success probability p and the imitation success probability q. Examples

for the first are R&D subsidy programs that foster the development of in-house innovations while

policies that weaken the intellectual property protection regime (and hence make it easier to

imitate others’ technologies) are examples for the latter.

We first turn to the analysis of industry performance and efficiency. An industry has a

higher performance, measured in aggregate intermediate goods and final good production, if it

has a higher average log-productivity.37 Equivalently, this corresponds to a higher average log-

productivity per unit of time, as measured by the growth rate ν. From our analysis in the previous

sections, we can derive the following result for the growth rate (and thus for efficiency) comparing

the two extreme cases of vanishing and strong productivity shocks.

Proposition 11. Assume that there are no absorptive capacity limits (q = 1). Then, under
the assumptions of Propositions 8 and 10, we have that limβ→0 ν

β(p) < limβ→∞ νβ(p) for any
p ∈ (0, 1).

Proposition 11 shows that the growth rate (and hence aggregate productivity and output) are

higher when shocks are small. In this proposition we have assumed that firms do not face any

absorptive capacity limits (by setting q = 1). By means of a numerical integration of Equation

(17) we can also study general values of q. We do this for two possible cases: (a) we keep the value

of the absorptive capacity parameter q at its calibrated value of 0.079 and analyze the impact of

changes in the innovation success probability p, or (b) we set p to its calibrated value of 0.0054

and study the effects of a change in q (see also Section 5 for the estimation of these parameters).

37We will consider the average productivity measured by the geometric mean µ = n
√
A1A2 · · ·An =

(
∏n

i=1 Ai

)1/n
,

which is related to the arithmetic average of the log-productivity values via 1
n

∑n
i=1 ai = 1

n

∑n
i=1 logAi = log µ.

However, our results also hold for the arithmetic average of the productivity values.
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Figure 8: Plots of λ, ρ and ν for p (resp. q) when q (resp. p) is fixed to the value from the calibrated parameters
illustrated in Figure 6 (at the black asterisk). In the top row the parameter β = 100 is relatively high corresponding
to the case where productivity shocks are almost absent. The bottom row corresponds to β = 0 with maximally
large shocks.

For both cases we provide a numerical analysis when productivity shocks are small (β = 100)

and when productivity shocks are being dominant (β = 0). The results are shown in Figure 8.

In case (a) in Figure 8 (left panels) we find that for both values of β an increase in the

innovation success probability p increases ν and hence accelerates growth. Thus, an R&D subsidy

program which increases firms’ in-house R&D success probability p leads to a higher growth rate

of the economy. A similar analysis, but with varying values of the absorptive capacity (i.e.

the imitation success probability q) in case (b) is shown in Figure 8 (right panels). The figure

reveals that an increase in the absorptive capacity q always increases the growth rate ν. Thus,

an implication of our model is that policies which positively affect the absorptive capacity q, for

example by weakening the intellectual patent protection of incumbent technologies in an industry,

can have a positive effect on the growth rate ν of the economy.

A complete numerical analysis of the growth rate ν for general values of q in the case of

productivity shocks being small (β = 100) and in the case of productivity shocks being dominant

(β = 0) is shown in Figure 6 (middle panels). The figure confirms the result of Proposition 11.

For all values of the innovation probability p, the productivity growth rate ν is higher the smaller

the productivity shocks are (comparing the cases of β = 100 and β = 0). The same holds for an

increase in the absorptive capacity parameter q. Moreover, an increase in p or q leads to a higher

growth rate ν.
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Further, we can investigate the degree of inequality in the economy. As our measure of

inequality we take the exponent λ of the right power-law tail of the distribution. A smaller

value of λ corresponds to a more dispersed distribution with a higher degree of inequality. For

both cases (a) and (b) we provide a numerical analysis for small productivity shocks (β = 100)

and dominant productivity shocks (β = 0) in Figure 8 (left panel). In case (a) we see that the

exponent λ is always higher in the limit of strong productivity shocks and the difference increases

with increasing innovation success probability p. However, in case (b) the reverse relationship

holds: an increase in the absorptive capacity q yields a higher value of λ and thus reduces

inequality.

We can derive the following policy implications from the preceding analysis. We find that

both types of policies, those that enhance the in-house innovation success probability p as well

as those that facilitate the imitation and diffusion of existing technologies (increasing the value

of q) increase the growth rate ν of the economy. However, while the first leads to an increase in

inequality (smaller values of λ), the latter has the opposite effect of decreasing inequality (higher

values of λ). It must be noted, however, that an economy in which technologies can easily be

imitated (high q) but there is no in-house R&D (p → 0) does not generate growth. Thus, a

balanced approach is required, fostering both, the capacities of firms to generate innovations

in-house and an environment in which these innovations can diffuse throughout the economy.

7. Conclusion

In this paper we have introduced an endogenous model of technological change, productivity

growth and technology spillovers which is consistent with empirically observed productivity dis-

tributions. The innovation process is governed by a combined process of firms’ in-house R&D

activities and adoption of existing technologies of other firms. The emerging productivity dis-

tributions can be described as traveling waves with a constant shape and power-law tails. We

incorporate the trade off firms face between their innovation and imitation strategies and take

into firms productivities are exposed to exogenous shocks [cf. Bloom, 2009]. We show that these

shocks can reduce industry performance and efficiency while at the same time increase inequality.

The current model can be extended in a number of directions. Three of them are given in

Appendix D. First, in Appendix D.1 we outline a model of productivity growth and technology

adoption which includes the possibility that a firm’s productivity may also be reduced due to

exogenous events such as the expiration of a patent. Second, in Appendix D.2 we depart from

the assumption of a fixed population of firms and instead allow for firm entry and exit. Third, in

Appendix D.3 we consider an alternative way of introducing capacity constraints in the ability of

firms to adopt and imitate external knowledge by introducing a cutoff productivity level above

which a firm cannot imitate. By introducing a cutoff, one can show that our model can generate

“convergence clubs” as they can be found in empirical studies of cross country income differences

[e.g. Durlauf, 1996; Durlauf and Johnson, 1995; Feyrer, 2008; Quah, 1993, 1996, 1997].

Finally, one could extend our framework by introducing heterogeneous interactions in the

form of a network in the imitation process and analyze the emerging productivity distributions,
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such as in Di Matteo et al. [2005]; Ehrhardt et al. [2006]; Kelly [2001]. This is beyond the scope

of the present paper and we leave this avenue for future research.
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Appendix

A. Growth with Exogenous R&D Strategies

Denote by P
(1)
a (t) the fraction of innovators (with a total of N1 innovators) with log-productivity

a at time t and similarly denote by P
(2)
a (t) the fraction of imitators (with a total of N2 imitators)

with log-productivity a at time t. The total fraction of firms with log-productivity a at time t
can then be written as

Pa(t) =
N1P

(1)
a (t) +N2P

(2)
a (t)

N1 +N2
= n1P

(1)
a (t) + n2P

(2)
a (t),

where we have introduced the population shares of innovators n1 = N1/N and imitators n2 =
N2/N with N = N1+N2. The evolution of the log-productivity distribution P (1)(t) of innovating
firms is independent of the imitating firms and, by virtue of Proposition 1, it is given by (see also
Section 4.2.1)

∂P (1)(t)

∂t
= P (1)(t)(Tin − I).

In contrast, the evolution of the log-productivity distribution P
(2)
a (t) of imitating firms is given

by

∂P
(2)
a (t)

∂t
= Pa(t)

a∑

b=1

P
(2)
b (t)− P (2)

a (t)

(

1−
a−1∑

b=1

Pb(t)

)

. (27)

The first term in the above equation takes into account the fraction of imitating firms with log-
productivities smaller or equal to a that imitate a firm with log-productivity a. The second term
considers the imitating firms with log-productivity a that imitate a firm with log-productivity
larger than a. This is equivalent to the residual firms that fail to imitate a firm with log-
productivity larger than a.

For simplicity, assume that one step of innovation is achieved with probability p, thus, η1 = p,
η0 = 1−p and ηi = 0 for all i ≥ 2. Summation over a and rearranging terms, one can then derive
from Equation (27) the dynamics of the cumulative log-productivity distribution Fa(t), which is
given by

∂Fa(t)

∂t
= Fa(t)

2 − Fa(t)− n1F
(1)
a (t)Fa(t) + n1F

(1)
a (t)− n1pP

(1)
a (t). (28)

Given the solution for P
(1)
a (t) (and F

(1)
a (t), respectively) and a fixed value of a, Equation (28)

is a Riccati first-order, linear differential equation with non-constant, nonlinear coefficients, for
which no closed form solution exists.38

B. The Limit of Strong Productivity Shocks

In the following we derive some intuition for what happens in the case of of β small but positive,
that is, when the productivity shocks are strong but do not completely dominate the R&D decision
of the firms. To simplify our analysis assume that firms face no absorptive capacity limits (q = 1).
We then can give the following proposition.

38For a fixed log-productivity a, denote by y(t) = Fa(t). Then one can write from Equation (28) the following

differential equation dy(t)
dt

+ ay(t)2 + b(t)y(t) = c(t), where a = −1, b(t) = 1 + n1F
(1)
a (t) and c(t) = n1(F

(1)
a (t) −

pP
(1)
a (t)).
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Figure 9: Traveling wave velocity νβ(λ) as a function of p ∈ (0, 1) assuming that log Ā = 1. Results of numerical
integration of Equation (18) are shown with circles. (Left) The dashed line corresponds to β = 0.05 and (right)
β = 0.1, while the dashed-dotted line corresponds to a value of β = 0. We see that the velocity for β > 0 is always
higher than for β = 0.

Proposition 12. Let η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2 with p ∈ [0, 1]. Assume that
firms do not have any absorptive capacity limits (q = 1). Further, assume that for β small enough
the solution of Equation (19) admits a traveling wave of the form

Pa(t) = N

{

eρ(a−νt), if a ≤ νt,

e−λ(a−νt), if a > νt,

and that for β small enough ρ is given by Equation (22). Then the traveling wave velocity is given
by

νβ(p) =
1

λ

(

1 + γ(β, p)

2 + γ(β, p)
−
(
eλ − 1

)
(eρ − 1)

eλ+ρ − 1

( ∞∑

b=1

e−λb

2 + γ(β, p) (1 +A(λ, ρ)e−λb)

+
∞∑

b=0

e−ρb

2 + γ(β, p) (B(λ, ρ)e−ρb + C(λ, ρ)eb)

)

+
1

2 + γ(β, p)

(

1 + p
(

eλ − 1
))
)

and λ is given by the root of d
dλν

β(p) = 0, where we have denoted by

A(λ, ρ) =
(e− 1) (eρ − 1) eλ

(eλ − e) (eλ+ρ − 1)
, B(λ, ρ) =

(
eλ−1

)
(e− 1)eρ

(eλ+ρ − 1) (e1+ρ − 1)
,

C(λ, ρ) =
e
(
eλ − 1

)
(eρ − 1)

(eλ − e) (e1+ρ − 1)
, γ(β, p) =

β

log(Ā)(1 + p(Ā− 1))
.

The precise expression for d
dλν

β(p) = 0 can be found in the proof of Proposition 12 in Appendix
C. A comparison of the traveling wave velocity νβ(p) for β = 0, β = 0.05 and β = 0.1 is
given in Figure 9. We find that with increasing values of β the velocity and hence the average
productivity growth rate increase, and that this effect is stronger, the larger is the innovation
success probability p.
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C. Proofs of Propositions, Corollaries and Lemmas

Proof of Proposition 1. In the following we introduce the random variable ζNP whose distri-
bution describes the stochastic increments of (PN (t))t∈T from the state P ∈ PN

P
(
ζNP = z

)
= P

(
PN (t+∆t) = P + z

∣
∣PN (t) = P

)
. (29)

Moreover, following the notation in Sandholm [2010, Chap.10.2] we introduce the functions V N ,
AN and AN

δ by

V N (P ) = NE[ζNP ],

AN (P ) = NE[|ζNP |],
AN

δ (P ) = NE[
∣
∣
∣ζNP I{|ζNP |>δ}

∣
∣
∣].

When β <∞, we then can state the following theorem [Benaim and Weibull, 2003; Kurtz, 1970;
Sandholm, 2003]:

Theorem 1. Let V : R|S| → R
|S| be a Lipschitz continuous vector field. Suppose that for some

sequence (δN )∞N=N0
with limN→∞ δN = 0, it holds that

(i) limN→∞ supP∈PN

∣
∣V N (P )− V (P )

∣
∣ = 0,

(ii) supN supP∈PN AN (P ) <∞, and

(iii) limN→∞ supP∈PN AN
δN

(P ) = 0,

and that the initial conditions P (0)N = PN
0 converge to P0. Let {P (t)}t≥0 be the solution of the

mean-field dynamics
dP

dt
= V (P ) (30)

starting from P0. Then for each T <∞ and ǫ > 0, we have that

lim
N→∞

P

(

sup
t∈[0,T ]

∣
∣P (t)N − P (t)

∣
∣ < ǫ

)

= 1.

In the following we prove that the conditions (i) to (iii) in Theorem 1 hold for our framework.
First, observe that

V N (P ) = NE[ζNP ]

= N
∑

a,b≥1

1

N
(eb − ea)P

(

ζNP =
1

N
(eb − ea)

)

= N
∑

a,b≥1

1

N
(eb − ea)PaTab(P )

=
∑

a≥1

ea




∑

b≥1

PbTba(P )− Pa

∑

b≥1

Tab(P )





=
∑

a≥1

eaVa(P ) = V (P )

which is independent of N . This implies that condition (i) in Theorem 1 is satisfied. Note also
that since Tab(P ) is continuously differentiable as long as β <∞, V (P ) is a Lipschitz continuous
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function as required. Further, observe that since |ea − eb| =
√
2 for a 6= b and 0 otherwise,

(PN (t))t∈T has jumps of at most
√
2/N . Hence, for δN =

√
2/N

AN
δN (P ) = NE

[∣
∣
∣ζNP I{|ζNP |>

√
2/N}

∣
∣
∣

]

= 0,

and condition (iii) in Theorem 1 holds. Finally, we find that

AN (P ) = NE[|ζNP |] ≤ N

√
2

N
=

√
2 <∞,

and also condition (ii) in Theorem 1 is satisfied.
Theorem 1 tells us that when the number of firms N is large, nearly all sample paths of the

Markov chain (PN (t))t∈T stay within a small ǫ of the solution of the mean-field dynamics of

Equation (30), which can be written in the compact form P (t)
dt = P (t)(T(P ) − I), for any finite

β <∞. 2

Proof of Proposition 2. We consider the case of β = ∞. In this case the imitation proba-
bility pimβ (a, P ) of Equation (16) has a point of discontinuity, and so does V (P ) = T(P )− I. Let

‖P‖ denote the L2 norm in R
|S|
+ . Define

V̄ (P ) =
⋂

ǫ>0

cl
(
conv

(
V
(
{P ′ ∈ R

S
+ : ‖P − P ′‖ ≤ ǫ}

)))
(31)

as the closed convex hull of all values of V that obtain vectors P ′ arbitrarily close to P . We then
can state the following theorem [Gast and Gaujal, 2010]:39,40

Theorem 2. Let V̄ (P ) be upper semi-continuous and assume that there exists an c > 0 such that
‖V̄ (P )‖ ≤ c. Then for all T > 0

inf
P∈DT (P (0))

sup
0≤t≤T

‖PN (t)− P (t)‖ p−→ 0,

where P (t) is a solution of the differential inclusion

dP

dt
∈ V̄ (P ) (32)

with initial conditions P (0) for any t ∈ [0, T ], and DT (P (0)) denotes the set of all solutions of
Equation (32) starting from P (0).

For any P where V (P ) is continuous, also V̄ (P ) = {V (P )}, while if V (P ) discontinuous, V̄ (P ) is
the set-valued function defined in Equation (31). Since V (P ) is bounded, V̄ (P ) is bounded and
upper semi-continuous. Hence, the requirements of Theorem 2 are satisfied and Equation (32)
describes the dynamics of the log-productivity distribution in the limit of N being large for any
t ∈ [0, T ] when β = ∞. 2

Proof of Proposition 3. Observe that in the case of pure innovation the log-productivity
ai(t) = logAi(t) of firm i grows according to Equation (5), from which we get ai(t) = ai(0) +
∑t

j=1 η(tj), where tj ≥ 0 denotes the time at which the j-th innovation arrives. Assuming that

39See also Roth and Sandholm [2010].
40The set V̄ (P ) is upper semi-continuous if for any P ∈ R

|S| and any open set O containing V̄ (P ), there exists
a neighborhood N of P such that V̄ (N) ∈ O.
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the random variables η(t) are independent and identically distributed with finite mean µη < ∞
and variance σ2η < ∞, then by virtue of the central limit theorem,

∑t
j=1 η(tj) converges to a

normal distribution N (µηt, σ
2
ηt). Consequently, Ai(t) converges to a log-normal distribution with

mean µA = etµη+
1
2
tσ2

η and variance σ2A =
(

etσ
2
η − 1

)

e2tµη+tσ2
η . 2

Proof of Proposition 4. Inserting Equation (11) into the differential Equation (12), and sum-
mation over a yields the evolution of the cumulative log-productivity distribution F (t) in the
general case of q ∈ [0, 1] as given by

∂Fa(t)

∂t
= Pa(1− q)(1− Fa) + PaFa

+ Pa−1q(1− q)(1− Fa) + Pa−1(1− q)(1− Fa) + Pa−1Fa

+ Pa−2q
2(1− q)(1− Fa) + Pa−2q(1− q)(1− Fa) + Pa−2(1− q)(1− Fa) + Pa−2Fa

+ . . .

− Fa.

This can be written as

∂Fa(t)

∂t
= Fa(t)

2 + (1− q)(1− Fa(t))
a−1∑

b=0

qbFa−b(t)− Fa(t),

and the proposition follows. 2

Proof of Proposition 5. When β > 0 we see from the definition of the imitation probability
in Equation (16) that pimβ (a, P ) > pinβ (a, P ) is equivalent to aim(a, P ) > ain(a). Equality holds at

the threshold log-productivity a∗ ≡ aim(a∗, P ) = ain(a∗). This can be written as

a∗ + log(1− p+ Āp) = a∗ + log

(

Fa∗ +
∞∑

b=a∗+1

eb−a∗Pb

)

.

Rearranging terms yields

1− p+ Āp = Fa∗ +
∞∑

b=1

ebPb−a∗ ,

or equivalently

1− p+ Āp = 1−Ga∗ +

∞∑

b=1

ebPb+a∗ = 1 +

∞∑

b=1

(eb − 1)Pb+a∗ .

That is

p(Ā− 1) =
∞∑

b=1

(eb − 1)Pb+a∗ .

The condition pimβ (a, P ) > pinβ (a) for all a > a∗ can then be written as follows

∞∑

b=a+1

(eb−a − 1)P (b, t)

{

≥ p(Ā− 1) if a ≤ a∗,

< p(Ā− 1) if a > a∗.

The validity of this inequality, as well as the uniqueness and existence of a∗ is equivalent to the
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strict monotonicity of the function f(a, t) defined by

f(a, t) =

∞∑

b=a+1

(eb−a − 1)P (b, t).

f(a, t) is strictly monotonous decreasing if f(a−1, t)−f(a, t) = (e−1)P (a, t) > 0. This holds for
all a in the support S of P (a, t) where P (a, t) > 0. Hence, if at time t for all a ∈ S we have that
P (a, t) > 0 then there exist a unique threshold log-productivity a∗ satisfying the above condition.

Consider a small time interval ∆t > 0. We show that if P (b, t) satisfies the above condition,
then it also must hold that f(a− 1, t+∆t)− f(a, t+∆t) > 0. First, consider a ≤ a∗. Then for
q = 1, P (a, t) > 0 and F (a, t) > F (a− 1, t) we get

f(a− 1, t+∆t)− f(a, t+∆t) = (e− 1)P (a, t+∆t)

= (e− 1) (F (a, t+∆t)− F (a− 1, t+∆t))

= (e− 1)(F (a, t)2 − F (a− 1, t)2)

> 0.

On the other hand, we can write for a > a∗, P (a, t +∆t) = (1 − p)P (a, t) + pP (a − 1, t), which
is positive given that P (a, t) > 0 and p ∈ [0, 1] and so f(a, t+∆t) is monotonic decreasing. For
∆t→ 0 we then obtain the corresponding result in continuous time. 2

Proof of Proposition 6. The transition matrix T(P ) is the sum of the transition matrix for
imitation Tim(P ) and innovation Tin, each weighted with the probability of imitation pimβ (a, P )

and innovation pinβ (a, P ) = 1− pimβ (a, P ), that is

T(P ) = (I−D(P ))Tin +D(P )Tim(P ), (33)

where D(P ) is the diagonal-matrix of all imitation probabilities pimβ (a, P ). For any finite value

of β, the imitation probability pimβ (a, P ) is continuous in P , and so is T(P ). Hence, we can
apply Proposition 1, and derive the differential equation for the evolution of the log-productivity
distribution stated in Equation (17). 2

In the following we derive a lemma and a corollary which will help us to show that Equation
(19) admits a traveling wave solution with a stable shape.41

First, from Equation (19) we can derive the following lemma:

Lemma 2. Let F
(1)
a (t) and F

(2)
a (t) be solutions of Equation (19) with initial data chosen such

that F
(1)
a (0) ≥ F

(2)
a (0). Then for all t > 0 we have that F

(1)
a (t) ≥ F

(2)
a (t).

Proof of Lemma 2. We introduce the difference

Va(t) = F (2)
a (t)− F (1)

a (t).

In the following we show that if Va(0) ≤ 0 then Va(t) ≤ 0 for all t > 0. We can write Equation
(19) as follows

∂Fa(t)

∂t
+ Fa(t) =

2q − 1

2
Fa(t)

2 +
3− 2q − p

2
Fa(t) +

p

2
Fa−1(t).

41Our results follow Bramson [1983], who analyzed the traveling wave solution u(x, t) = w(x − νt) of the Kol-

mogorov equation ∂u
∂t

= f(u) + ∂2u
∂x2 .
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We then get for Va(t)

∂Va(t)

∂t
+ Va(t) =

2q − 1

2
((F (2)

a (t))2 − (F (1)
a (t))2) +

3− 2q − p

2
Va(t) +

p

2
Va−1(t)

=
2q − 1

2
︸ ︷︷ ︸

≥0

Va(t)
︸ ︷︷ ︸

≤0

(F (2)
a (t) + F (1)

a (t))
︸ ︷︷ ︸

≥0

+
3− 2q − p

2
︸ ︷︷ ︸

≥0

Va(t)
︸ ︷︷ ︸

≤0

+
p

2
︸︷︷︸

≥0

Va−1(t)
︸ ︷︷ ︸

≤0

.

Hence, we find that if Va(t) ≤ 0 for all a ≥ 0 then also ∂Va(t)/∂t+ Va(t) ≤ 0.
Next, we show that if Va(t) ≤ 0 and ∂Va(t)/∂t + Va(t) ≤ 0 then also Va(t + s) ≤ 0 for all

s > 0. For this purpose, let ǫ = s/n with n ∈ N. For n being sufficiently large (and ǫ sufficiently
small) we can use a first-order Taylor approximation to write

Va(t+ ǫ) = Va(t) +
∂Va(t)

∂t
ǫ

Va(t+ 2ǫ) = Va(t+ ǫ) +
∂Va(t+ ǫ)

∂t
ǫ

...

Va(t+ nǫ) = Va(t+ (n− 1)ǫ) +
∂Va(t+ (n− 1)ǫ)

∂t
ǫ

We can assume that Va(t) ≤ 0. If ∂Va(t)/∂t ≤ 0 then we also have that Va(t+ ǫ) ≤ 0. Otherwise,
we observe that

Va(t+ ǫ) = Va(t) +
∂Va(t)

∂t
ǫ ≤ Va(t) +

∂Va(t)

∂t
≤ 0,

so that also in this case Va(t+ ǫ) ≤ 0. We can repeat this argument for all ǫ, 2ǫ, . . . , nǫ = s and
show that Va(t+ s) ≤ 0. 2

A direct consequence of Lemma 2 is the following corollary.

Corollary 1. Let Fa(t) be a solution of Equation (19) with Heaviside initial data, that is

Fa(0) = Θ(a− am) =

{

0, if a < am,

1, if a ≥ am.
(34)

Further, define mǫ(t) = inf{a : Fa(t) ≥ ǫ} for any ǫ ∈ [0, 1]. Then we have that Fa+mǫ(t)(t)
converges to some function fǫ(a) as t→ ∞.

Proof of Corollary 1. For t0, b ∈ R+ we set for any a ≥ 0

F (1)
a (t) = Fa+mǫ(t0)(t)

F (2)
a (t) = Fa+mǫ(t0+b)(t+ b).

If we start from Heaviside initial data we have that F
(1)
a (0) ≥ F

(2)
a (0) and Proposition 2 applies.

It follows that F
(1)
a (t) ≥ F

(2)
a (t) for all t > 0. We then can write

0 ≤ Fa+mǫ(t0+b)(t0 + b) ≤ Fa+mǫ(t0)(t0) ≤ 1.

For each value of b this is a decreasing sequence of real numbers which is bounded from below
and thus its infimum is the limit. In particular, since t0, b and ǫ were chosen arbitrarily, we obtain
that Fa+m0(t)(t) converges to some f(a) ≥ 0 from above as t → ∞. An illustration can be seen
in Figure 10. 2

37



 

 
Fa(t)

Fa(t+ s)

ǫ

mǫ(t) mǫ(t+ s)

Figure 10: Illustration of distributions and at times t and t+ s for s > 0.

We are now in place to give a proof of Proposition 7.

Proof of Proposition 7. By Corollary 1 we can fix a value of ǫ = 1
2 , where m1/2(t) is the

median of Fa(t), and have that

lim
t→∞

Fa+m1/2(t)(t) = f(a),

for some time-independent function f(a) satisfying f(0) = 1/2. This implies that

lim
t→∞

dFa+m1/2(t)(t)

dt
= 0,

or equivalently
∂Fa+m1/2(t)(t)

∂t
+
∂Fa+m1/2(t)(t)

∂a

dm1/2(t)

dt
= o(1).

Using Equation (19), the above equation can be written as follows

o(1) =
2q − 1

2
Fa+m1/2(t)(t)

2 +
1− 2q − p

2
Fa+m1/2(t)(t) +

p

2
Fa+m1/2(t)−1(t)

+
∂Fa+m1/2(t)(t)

∂a

dm1/2(t)

dt
.

Integrating with respect to time over the interval [t, t+∆t), considering a value of t large enough
and integrating over [0, a), we obtain

o(1) =

∫ a

0

(
2q − 1

2
f(x)2 +

1− 2q − p

2
f(x)

p

2
f(x− 1)

)

dx

+ f(a)(m1/2(t+∆t)−m1/2(t))∆t.

The only time dependent term on the RHS from the above equation is m1/2(t + ∆t) −m1/2(t)
while the LHS is constant so that we must have

lim
t→∞

(m1/2(t+∆t)−m1/2(t)) = ν∆t

for some constant ν ≥ 0. In particular, if m1/2(t) = νt then the above equation is trivially
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satisfied.
Further, we must have that Fm1/2(t)(t) = Fm1/2(t+s)(t+s), or equivalently, Fνt(t) = Fν(t+s)(t+

s), and this is satisfied for Fa(t) = f(a− νt). It follows that the solution of Equation (19) must
be a traveling wave. Note that due to the stable shape of the traveling wave, the above result
holds for any value of ǫ. 2

Proof of Proposition 8. We first give a proof of part (i) of the proposition. In order to solve
for the traveling wave solution of Equation (19) we observe that in terms of the complementary
cumulative log-productivity it can be written as

∂Ga(t)

∂t
=

2q − 1

2
(−Ga(t)

2 +Ga(t))−
p

2
(Ga(t)−Ga−1(t)). (35)

For appropriate initial conditions Proposition 7 implies that the dynamics of the complementary
cumulative log-productivity distribution Ga(t) in Equation (35) admits a traveling wave solution
Ga(t) = g(x), x = a− νt with velocity ν satisfying

ν
dg(x)

dx
=

2q − 1

2
(g(x)2 − g(x)) +

p

2
(g(x)− g(x− 1)). (36)

Numerical studies confirm that this is also true for general initial conditions which are concen-
trated enough.

We then assume that on the balanced growth path the complementary cumulative log-
productivity distribution Ga(t) has the traveling wave form Ga(t) ∝ e−λ(a−νt) for a much larger
than νt. Observe that for values of a much larger than νt we can neglect the term Ga(t)

2 in
Equation (35). Then we obtain from Equation (35) the following condition for ν

λνe−λ(a−νt) =
2q − 1

2
e−λ(a−νt) − p

2
e−λ(a−νt) +

p

2
e−λ(a−1−νt).

Solving for ν yields

ν =
2q − 1− p+ peλ

2λ
. (37)

For sufficiently steep initial conditions with compact support the exponent λ is realized that
minimizes the traveling wave velocity ν. This is called the selection principle [Bramson, 1983;
Murray, 2002]. The corresponding value of λ can be obtained from the first order conditions
dν/dλ = 0, or equivalently

2q − 1− p+ peλ = pλeλ. (38)

The minimum of Equation (37) is obtained at λ solving Equation (38). This yields

λ = 1 +W

(
2q − 1− p

pe

)

, (39)

whereW is the Lambert W function (or product log), which is the inverse function of f(w) = wew.
Next, we show part (ii) of the proposition, where we consider the left tail of the traveling

wave. For a much smaller than νt we can neglect the term F (a, t)2 in Equation (19) to obtain

∂F (a, t)

∂t
= −2q − 1

2
F (a, t)− p

2
(F (a, t)− F (a− 1, t)).

Assuming that F (a, t) ∝ eρ(a−νt), ρ ≥ 0, we get

2ρν = 2q − 1 + p− pe−ρ. (40)
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This equation can be solved numerically to obtain the exponent ρ [see e.g. Press et al., 1992,
Chap. 9]. 2

Proof of Corollary 1. From Proposition 5 we know that there exists a unique threshold log-
productivity a∗ such that aim(a, P ) > ain(a) for all a < a∗ and aim(a, P ) < ain(a) or all a > a∗.
From the properties of the logistic function in the definition of the imitation probability pimβ (a, P )

in Equation (16) it follows that pimβ (a, P ) → 1 as β → ∞ for all a < a∗, while pimβ (a, P ) → 0 as
β → ∞ for all a > a∗. 2

Proof of Proposition 9. Under the assumption that Equation (23) holds for β large enough,
we can insert Equation (23) into Equation (18) to find that the evolution of the log-productivity
distribution can be written as

∂Pa(t)

∂t
=







Pa(t)(Fa−1(t) + Fa(t))− Pa(t), if a ≤ a∗,

Pa(t)Fa∗(t) + (1− p)Pa(t)− Pa(t), if a = a∗ + 1,

Pa(t)Fa∗(t) + (1− p)Pa(t) + pPa−1(t)− Pa(t), if a > a∗ + 1.

For the dynamics of the cumulative log-productivity distribution Fa(t) =
∑a

b=1 Pa(t) we then get
for a < a∗

∂Fa(t)

∂t
=

a∑

b=1

∂Pb(t)

∂t

=
a∑

b=1

(Pb(t)(Fb−1(t)− Fb(t))− Pb(t))

= Fa(t)
2 − Fa(t),

where in the last line from above we have used the results obtained in Proposition 4. Next, for
a = a∗ + 1 we get

∂Fa∗+1(t)

∂t
=

a∗∑

b=1

dPb(t)

dt
+
∂Pa∗+1(t)

∂t

= Fa∗+1(t)
2 − Fa∗+1(t) + Pa∗+1(t)Fa∗(t)− pPa∗+1(t)

= Fa∗(t)
2 − Fa∗(t)− (Fa∗+1(t)− Fa∗(t))(p− Fa∗(t))

= −(1− Fa∗+1(t))Fa∗(t)− p(Fa∗+1(t)− Fa∗(t)).

Similarly, for a > a∗ + 1 we get

∂Fa(t)

∂t
=

a∗∑

b=1

∂Pb(t)

∂t
+
∂Pa∗+1(t)

∂t
+

a∑

b=a∗+2

∂Pb(t)

∂t

= Fa∗(t)
2 − Fa∗(t) + Pa∗+1(t)Fa∗(t)− pPa∗+1(t)

+
a∑

b=a∗+2

(Fa∗(t)Pb(t)− p(Pb(t)− Pb−1(t)))

= −(1− Fa(t))Fa∗(t)− p(Fa(t)− Fa−1(t)).

Putting the above results together we can write

∂Fa(t)

∂t
=

{

Fa(t)
2 − Fa(t), if a ≤ a∗,

−(1− Fa(t))Fa∗(t)− p(Fa(t)− Fa−1(t)), if a ≥ a∗ + 1.
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Note that for all a ≥ 1 and t ≥ 0 we have that dFa(t)
dt ≤ 0. 2

Proof of Proposition 10. We first prove part (i) of the proposition. We assume that the
log-productivity distribution for a > a∗ is given by Pa(t) = Ne−λ(a−νt) with a proportionality
factor N = Pa∗(t). For the complementary cumulative distribution function Ga(t) = 1− Fa(t) =
∑∞

b=a+1 Pb(t) for a > a∗ this implies that

Ga(t) =
∞∑

b=a+1

Ne−λ(b−νt) =
N

eλ − 1
e−λ(a−νt). (41)

In terms of the complementary cumulative distribution function Ga(t) = 1− F (a, t) we then can
write Equation (24) for a much larger than the threshold a∗ as

∂Ga(t)

∂t
= Ga(t) (1−Ga∗(t))− p (Ga(t)−Ga−1(t))

Inserting Equation (41) yields

λνe−λ(a−νt) = e−λ(a−νt)

(

1− N

eλ − 1

)

− p
(

e−λ(a−νt) − e−λ(a−1−νt)
)

(42)

which gives

λν = 1− N

eλ − 1
− p

(

1− eλ
)

. (43)

Next, note that the threshold log-productivity a∗ satisfies

a∗ + log

(

Fa∗(t) +
∞∑

b=a∗+1

eb−a∗Pb(t)

)

= a∗ + log
(
1 + p(Ā− 1)

)
. (44)

This means that the expected log-productivity obtained through innovation equals the expected
log-productivity obtained through imitation. This Equation can be written as

∞∑

b=a∗+1

(eb−a∗ − 1)Pb(t) = p(Ā− 1)

Inserting Pa(t) = Ne−λ(a−νt) into the above equation and assuming that a∗ = νt yields

p(Ā− 1) = N
∞∑

b=1

(eb − 1)e−λb = N

(
1

eλ−1 − 1
+

1

1− eλ

)

,

so that

N = p(Ā− 1)

(
1

eλ−1 − 1
+

1

1− eλ

)−1

, (45)

Inserting N into Equation (43) gives

λν = 1− p(Ā− 1)

eλ − 1

(
1

eλ−1 − 1
+

1

1− eλ

)−1

− p(1− eλ),

so that we obtain

ν =
1

λ

(

1 + p(eλ − 1)− p(Ā− 1)(1− e1−λ)

e− 1

)

. (46)

According to the selection principle we have encountered already in the proof of Proposition 8,
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Figure 11: (Left) The traveling wave velocity ν as a function of λ for different values of p = 0.1, p = 0.5 and p = 1.
(Right) The ν minimizing value of λ for the same values of p. The figures show that the minimizing value of λ is
decreasing for increasing values of p, and consequently, the front of the traveling wave becomes steeper. Moreover,
the velocity ν of the traveling wave increases with increasing values of p.

for sufficiently steep initial conditions of Fa(0) the value of λ is realized that minimizes Equation
(46). The traveling wave velocity ν as a function of λ for different values of p can be seen in
Figure 11 (left). The corresponding first-order condition (FOC) is given by

dν

dλ
=

1− e+ p(Ā+ e− 2) + (e− 1)eλp(λ− 1)− (Ā− 1)e1−λp(1 + λ)

(−1 + e)λ2
= 0

and Equation (26) follows. The FOC from above is equivalent to

e− 1

Ā+ e− 2 + (e− 1)eλ(λ− 1)− (Ā− 1)e1−λ(1 + λ)
= p, (47)

which is illustrated in Figure 11 (right).
Next, we consider part (ii) of the proposition. Observe that for values of a much smaller than

a∗ = νt we can neglect the term Fa(t)
2 in Equation (24). We then assume that the left tail of

the log-productivity distribution can be described by an exponential function Pa(t) ∝ eρ(a−νt).
Inserting this into Equation (24) for a smaller than a∗ gives

−ρνeρ(a−νt) = −(2q − 1)eρ(a−νt),

and hence we obtain ρ = 1/ν. 2

Proof of Proposition 11. The traveling wave velocity in the limit of β → 0 follows from
Equations (20) and (21) as

lim
β→0

min
λ
νβ(λ) =

1 + p(e
1+W

(

1−p
pe

)

− 1)

2(1 +W
(
1−p
pe

)

)
,
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while the traveling wave velocity for β → ∞ is given by Equation (25). We then have that

lim
β→∞

νβ(λ)− lim
β→0

min
λ
νβ(λ)

=
1

λ

(

1 + p(eλ − 1)− p(Ā− 1)(1− e1−λ)

e− 1

)

− 1 + p(e
1+W

(

1−p
pe

)

− 1)

2(1 +W
(
1−p
pe

)

)
> 0.

Since the above equation holds for all λ, it holds in particular for the value of λ minimizing
limβ→∞ νβ(λ), and hence, we have that limβ→∞ νβ(λ) > limβ→0 ν

β(λ). A higher traveling wave
velocity ν implies first-order stochastic dominance of the respective cumulative distribution func-
tions and therefore a higher average productivity. 2

Proof of Proposition 12. Motivated by our analysis for the case of β = 0, we make the
following assumption on the log-productivity distribution

Pa = N

{

eρ(a−νt), if a ≤ νt,

e−λ(a−νt), if a > νt,
(48)

with the normalization constant N given by

1

N
=

eρ

eρ − 1
+

1

eλ − 1
. (49)

The average log-productivity is then given by

Et[a] =

∞∑

b=1

bPb = N

νt∑

b=1

beρ(b−νt) +N

∞∑

b=νt+1

be−λ(b−νt)

= N

(
eλ + νt(eλ − 1)

(eλ − 1)2
+
eρ(e−ρt − 1 + νt(eρ − 1))

(eρ − 1)2

)

≈ νt,

for large t. In the case in which P(η(t) = 1) = p and P(η(t) = 0) = 1− p for p ∈ (0, 1) we obtain:

ain(a(t)) = a(t) + log(1− p+ Āp). (50)

Plugging in the expressions for ain(ai(t)) and aim(a(t), P (t)) given by Equations (50) and (15),
respectively, and rearranging terms, yields

pinβ (ai(t), P (t)) =
1

1 +

(
Sai(t)

(t)+
∑∞

b=ai(t)+1 e
b−ai(t)qb−a(Pb(t)+(1−q)(1−Fb(t)))

1−p+Āp

)β
.

Note that both, the distribution as well as the innovation probability are translational invariant,
since they only depend on the difference a− νt. We then can write for a > νt as follows

pinβ =
1

1 +

(

1+N
(e−1)e−λ(a−νt−1)

(eλ−1)(eλ−e)

1+p(Ā−1)

) β
log Ā

.
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For small values of β this can be written as

pinβ =
1

2 + γ
(

1 + (e−1)(eρ−1)
(eλ−e)(eλ+ρ−1)

e−λ(a−νt−1)
) ,

where we have denoted by γ = β/(log Ā(1 + p(Ā− 1))) and used the fact that

N =
(eρ − 1)(eλ − 1)

eρ+λ − 1
.

For a large enough we get pinβ ∼ 1
2+γ . Similarly, for a < νt one can show that

pinβ =
1

2 + γ
(

(eλ−1)(e−1)eρ

(eλ+ρ−1)(eρ+1−1)
e−ρ|a−νt| + (eλ−1)(eρ−1)

(eλ−1)(eρ+1−1)
e|a−νt|

) .

For a much smaller than νt we get pinβ ∼ 0. Let us denote by A = (e−1)(eρ−1)eλ

(eλ−e)(eλ+ρ−1)
, B =

(−1+eλ)(−1+e)eρ

(−1+eλ+ρ)(−1+e1+ρ)
, C =

e(−1+eλ)(−1+eρ)

(−e+eλ)(−1+e1+ρ)
. Then we can write for β small enough

pinβ =







1
2+γ(1+Ae−λ(a−νt))

, if a ≤ νt,

1
2+γ(Beρ(a−νt)+Ce−(a−νt))

, if a > νt.
(51)

With the distribution given in Equation (48) and the innovation probability from Equation (51),
we obtain for a larger than νt from Equation (18)

λν =
νt∑

b=1

(

1− 1

2 + γ
(
Beρ(b−νt) + Ce−(b−νt)

) + 1− 1

2 + γ
(
1 +Ae−λ(a−νt)

)

)

Neρ(b−νt)

+
a−1∑

b=νt+1

(

1− 1

2 + γ
(
1 +Ae−λ(b−νt)

) + 1− 1

2 + γ
(
1 +Ae−λ(a−νt)

)

)

Ne−λ(b−νt)

+

(

1− 1

2 + γ
(
1 +Ae−λ(a−νt)

)

)

Ne−λ(a−νt)

+ (1− p)
1

2 + γ
(
1 +Ae−λ(a−νt)

) + peλ
1

2 + γ
(
1 +Ae−λ(a−1−νt)

) − 1.

For a much larger than νt and large t the above equation can be written as

λν =
1 + γ

2 + γ
−
(
eλ − 1

)
(eρ − 1)

eλ+ρ − 1

( ∞∑

b=1

e−λb

2 + γ (1 +Ae−λb)
+

∞∑

b=0

e−ρb

2 + γ (Be−ρb + Ceb)

)

+
1

2 + γ

(

1 + p
(

eλ − 1
))

.
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Rearranging for ν and taking the derivative of ν with respect to λ yields the FOC

0 =
−2 + p− γ + eλp(−1 + λ)

(2 + γ)λ2

−
∞∑

b=0

(

e−bρ (−1 + eρ)

(

−2 +
1

(e− eλ)
2
(−1 + e1+ρ)

e−bρ

(

−(−1 + e)eρ
(

e− eλ
)2 (

−1 + eλ
)2
γ

+ebρ
(

−2eλ
(

e− eλ
)2 (

−1 + e1+ρ
) (

−1 + eλ+ρ + λ− eρ(1 + λ)
)

−e1+b
(

−1 + eλ
)2

(−1 + eρ) γ
(

e+ e2λ+ρ + eλ(−1 + λ)− e1+λ+ρ(1 + λ)
)))))

×






(

−1 + eλ+ρ
)2



2 +

(
−1 + eλ

) ( e1+b(−1+eρ)
−e+eλ

+ (−1+e)eρ−bρ

−1+eλ+ρ

)

γ

−1 + e1+ρ





2

λ2






−1

−
∞∑

b=1

(

e−bλ (−1 + eρ)

(

(−1 + e)eλ−bλ (−1 + eρ) γ
(
eλ(1 + e) + e2λ(−1 + λ)− e(1 + λ)

)

(e− eλ)
2

+(2 + γ)
(

−1− bλ+ eλ
(

1 + (−1 + b)λ+ eρ
(

1 + λ+ bλ− eλ(1 + bλ)
)))))

×
(
(−1 + e)eλ−bλ (−1 + eρ) γλ

−e+ eλ
+
(

−1 + eλ+ρ
)

(2 + γ)λ

)−2

.

This equation can be solved numerically to obtain the values of λ, and from those the correspond-
ing values of the traveling wave velocity ν. 2

D. Model Extensions

In this appendix we sketch three possible extensions of our model. First, in Appendix D.1 we
allow for productivity shocks that can also lead to a decline in the productivity of a firm [cf.
Melitz, 2003]. Next, in Appendix D.2 we provide a basic mechanism for firm entry and exit.
Finally, Appendix D.3 introduces an absorptive capacity limit with an upper cutoff which bounds
the relative productivity a firm can imitate from above.

D.1. Evolution of the Productivity Distribution with Decay

In this section we extend the model in the sense that firms not only exhibit productivity increases
due to their innovation and imitation strategies but they are also exposed to possible productivity
shocks, if e.g. a skilled worker leaves the company or one of their patents expires, leading to a
decline in productivity. Specifically, we assume that in each period t a firm exhibits a productivity
shock with probability r ∈ [0, 1] and this leads to a productivity decay of δ. Otherwise, the firm
tries to increase its productivity through innovation or imitation as discussed in the previous
sections. If firm i with log-productivity ai(t) experiences a productivity decay in a small interval
δt = 1/N then her log-productivity at time t+∆t is given by ai(t+∆t) = ai(t)− δ, where δ ≥ 0
is a non-negative discrete random variable. Denoting by P(δ = 1) = δ1, P(δ = 2) = δ2,. . . , we
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can introduce the matrix

Tdec =








0 0 . . .
δ1 −δ1 0 . . .
δ2 δ1 −δ1 − δ2 0 . . .
...

...
. . .

. . .
. . .







.

The evolution of the log-productivity distribution in the limit of large N is then given by

∂P (t)

∂t
= P (t)

(

(1− r)
(
(I−D)Tin +DTim(P (t))

)
+ rTdec − I

)

. (52)

D.2. Firm Entry and Exit

We assume that at a given rate γ ≥ 0, new firms enter the economy with an initial productivity
A0(t) = A0e

θt, A0, θ ≥ 0, The productivity A0(t) corresponds to the knowledge that is in the
public domain and is freely accessible.42 A higher value of θ corresponds to a weaker intellectual
property right protection. A0(t) can also represent the technological level achieved through public
R&D. New firms can start with this level of productivity when entering. Moreover, we assume
that incumbent firms cannot have a productivity level below A0(t). Finally, we assume that
incumbent firms exit the market at the same rate γ as new firms enter,43 keeping a balanced in-
and outflow of firms. This means that a monopolist in sector i at time t is replaced with a new
firm in that sector that starts with productivity A0(t).

We assume that in each period, first, a randomly selected firm either decides to conduct in-
house R&D or imitate other firms’ technologies and, second, entry and exit takes place. Both
events happen within a small time interval [t, t + ∆t). We then have to modify Equation (10)
accordingly. In the case of A0 = 1 we can write in the limit of large N

∂P (t)

∂t
= (1− γ − θt)P (t)

(
(I−D)Tin +DTim(P (t))− I

)
+ (γ − θt− 1)Q.

where Q = (1 0 0 . . . ).

D.3. Absorptive Capacity Limits with Cutoff

We assume that imitation is imperfect and a firm i is only able to imitate a fraction D ∈ (0, 1)
of the productivity of firm j.

Ai(t+∆t) =

{

Aj(t) if Aj/Ai ∈ ]1, 1 +D],

Ai(t) otherwise.
(53)

Thus, the productivity of j is copied only if it is better than the current productivity Ai of firm
i, but not better than (1 + D)Ai. We call the variable D the relative absorptive capacity limit.
Taking logs of Equation (53) governing the imitation process reads as

ai(t+∆t) =

{

aj(t) if aj − ai ∈]0, d],
ai(t) otherwise.

(54)

42In contrast, any technology corresponding to a productivity level above A0(t) embodied in a firm is protected
through a patent and is not accessible by any other firm. Firms can imitate other technologies, but only if they
are within their absorptive capacity limits.

43Similarly, Melitz [2003] assumes that firms can be hit with a bad productivity shock at random and then are
forced to leave the market.
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year N min(A) geomean(A) mean(A) max(A) std(A)

1995 48,667 0.098 59.20 78.48 65,527 414.88
1996 48,720 0.132 59.90 77.44 54,698 296.26
1997 48,762 0.060 61.47 77.78 18,526 143.72
1998 48,761 0.343 64.04 80.89 18,983 160.77
1999 48,739 0.228 66.72 85.47 19,706 166.80
2000 48,755 0.321 69.13 90.95 18,880 180.00
2001 48,684 0.257 69.48 87.66 26,382 193.43
2002 48,529 0.174 69.76 86.98 15,553 142.55
2003 48,353 0.079 70.41 89.40 22,089 167.85

Table 2: Descriptive statistics for total factor productivity as estimated by Equations (2) and (3). The number
of firms in the balanced panel of western European countries is 49, 022. The different numbers of N come due
to the fact that productivity can not be computed when one of the input variables is nonpositive. This happens
occasionally for the variables output (as added value, 1, 913 times nonpositive), capital (as fixed assets, 285 times
zero), and material cost (1, 030 times nonpositive) for reasons which are possibly not directly related to productivity.

We have introduced the variables d = log(1+D). For small D it holds that d ≈ D. The variable
d is called the absorptive capacity limit.

We now consider the potential increase in productivity due to imitation and the associated
transition matrix Tim. Following Equation (53) we assume that a firm with a log-productivity of
a(t) can only imitate those other firms with log-productivities in the interval [a(t), a(t) + d]. In
this case Tim depends only on the current distribution of log-productivity P (t) and simplifies to

Tim =








S1(P ) P2 . . . P1+d 0 . . .
0 S2(P ) P3 . . . P2+d 0 . . .

0 S3(P ) P4 . . . P3+d . . .
. . .

. . .
. . . . . .

. . .







,

with Pb = P (b, t) and Sb(P ) = −Pb+1− . . .−Pb+d. For the initial distribution of log-productivity
P (0), the evolution of the distribution is governed by

∂P (t)

∂t
= P (t)

(
(I−D)Tin +DTim(P (t))− I

)
,

where similar to the previous sections we have assumed that ∆t = 1/N and taken the limit
N → ∞.

E. Additional Empirical Results

Descriptive statistics for the estimated productivity levels for our sample are shown in Table 2.
From the table we see that both the geometric as well as the arithmetic mean of the produc-
tivity increase with time. These are also shown in Figure 12. We then estimate the traveling
wave velocity (growth rate) ν by estimating the parameters of an exponential growth function
on a measures of a central tendency per year Ā(t) = exp(νt + const). Exponential growth of
productivity corresponds to linear growth of log-productivity log Ā(t) = νt + const. The results
of five fits are shown in Table 3. The fits on all data points show that a non-zero growth is highly
significant (due to narrow 95% confidence intervals). The fits on arithmetic and geometric mean
show an appropriate goodness of the fits. Such a goodness can naturally not be expected by fits
on all data points.
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Figure 12: The arithmetic mean of productivity (points connected with a solid line) and geometric mean of
productivity (points connected with a dashed line) per year. The ordinate has a logarithmic scale. Thus, the
fitted lines correspond to exponential functions. The upper line corresponds to regression R5 and the lower line to
regression R3 in Table 3.

regression Eq. ν̂ N R2

(95%-conf. int.)

R1 logAit = νt+ c 0.0245 437,970 0.0097
(0.0238,0.0253)

R2 geomeani(Ait) = exp(νt+ c) 0.0240 9 0.9285
(0.0180,0.0300)

R3 log geomeani(Ait) = νt+ c 0.0245 9 0.9341
(0.0187,0.0303)

R4 meani(Ait) = exp(νt+ c) 0.0201 9 0.7711
(0.0103,0.0300)

R5 log(meani(Ait)) = νt+ c 0.0204 9 0.7821
(0.0108,0.0301)

average 0.0227

Table 3: Five fits for the exponential growth of productivity. The parameter ν is the speed of the traveling wave
of log-productivity. Fits R1, R2, and R3 fit a function which approximates the geometric mean of productivity, R4
and R5 approximate the arithmetic mean of productivity. Fitted parameters, their 95%-confidence intervals and
their coefficient of determination R2 are computed with the matlab function fit and the default configuration of
the library models poly1 (=linear) for R1, R3 and R5 and exp1 for R2 and R4.
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