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ABSTRACT 

U-MIDAS: MIDAS regressions with unrestricted lag polynomials* 

Mixed-data sampling (MIDAS) regressions allow to estimate dynamic 
equations that explain a low-frequency variable by high-frequency variables 
and their lags. When the difference in sampling frequencies between the 
regressand and the regressors is large, distributed lag functions are typically 
employed to model dynamics avoiding parameter proliferation. In 
macroeconomic applications, however, differences in sampling frequencies 
are often small. In such a case, it might not be necessary to employ 
distributed lag functions. In this paper, we discuss the pros and cons of 
unrestricted lag polynomials in MIDAS regressions. We derive unrestricted 
MIDAS regressions (U-MIDAS) from linear high-frequency models, discuss 
identification issues, and show that their parameters can be estimated by 
OLS. In Monte Carlo experiments, we compare U-MIDAS to MIDAS with 
functional distributed lags estimated by NLS. We show that U-MIDAS 
performs better than MIDAS for small differences in sampling frequencies. On 
the other hand, with large differing sampling frequencies, distributed lag-
functions outperform unrestricted polynomials. The good performance of U-
MIDAS for small differences in frequency is confirmed in an empirical 
application on nowcasting Euro area and US GDP using monthly indicators. 
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1 Introduction

Economic time series differ substantially with respect to their sampling frequency. For

example, financial variables are observable daily or even intra-daily, whereas national

accounts data such as GDP is available at quarterly frequency depending on the rules ap-

plied in statistical agencies. This raises the problem of how to conduct empirical analyses

on the relationships between variables sampled at different frequencies.

The simplest solution is to work at the lowest frequency in the data, e.g. quarterly

when some variables are available on a monthly basis and others on a quarterly basis. This

requires time aggregation of high-frequency variables with a loss of potentially relevant

high-frequency information, and a convolution of the dynamic relationships among the

variables (see e.g. Marcellino (1999)).

As an alternative, mixed data-sampling (MIDAS) regressions as proposed by Ghysels,

Santa-Clara, and Valkanov (2005, 2006), Ghysels, Sinko, and Valkanov (2007) and An-

dreou, Ghysels and Kourtellos (2010a, 2010b), amongst others, directly relate variables

sampled at different frequencies without loosing high-frequency information. To allow for

dynamics, MIDAS regressions are typically based on distributed lag polynomials such as

the exponential Almon lag to ensure a parsimonious specification (Ghysels, Sinko, and

Valkanov, 2007). Due to the non-linearity of the lag polynomials, MIDAS regressions are

typically estimated by non-linear least squares (NLS) following the literature on distrib-

uted lag models (Lütkepohl, 1981; Judge et al., 1985).

MIDAS regressions have been applied in the financial literature, see for example Ghy-

sels, Rubia, and Valkanov (2009) in the context of volatility forecasting. In the macro-

economic literature, applications are often related to nowcasting and forecasting. For

example, Clements and Galvao (2008, 2009) proposed to use MIDAS for forecasting quar-

terly GDP growth using monthly business cycle indicators, see also Kuzin, Marcellino, and

Schumacher (2011), Bai, Ghysels, and Wright (2010), Marcellino and Schumacher (2010),

amongst others. The recent application by Andreou, Ghysels and Kourtellos (2010b)

proposes MIDAS regressions when daily financial data is used to forecast quarterly GDP.

An alternative way to handle mixed-frequency data requires to write the model in

state space form with time-aggregation schemes, see e.g. Mariano and Murasawa (2003).

Kuzin et al. (2011) compare mixed frequency VARs estimated with the Kalman filter with

MIDAS regressions, finding an unclear ranking but confirming the good performance of

MIDAS. Bai et al. (2010) compare MIDAS regressions to state space models and discuss

the approximating properties of MIDAS.

In this paper, we study the performance of a variant of MIDAS which does not resort

to functional distributed lag polynomials. In particular, we discuss the pros and cons

of MIDAS regressions with unrestricted linear lag polynomials, which do not require

NLS, but can be estimated by OLS. We will call this approach from now on unrestricted

MIDAS, or U-MIDAS in brief, and compare it to the standard MIDAS approach based

on the exponential Almon lag following Ghysels et al. (2005, 2006), which we simply
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denote as MIDAS. One reason that motivates the use of U-MIDAS in macroeconomic

applications is that the difference between sampling frequencies is in many applications

not so high. For example, many of the cited papers use monthly data, such as survey

outcomes or industrial production, to predict quarterly GDP growth. In that case, the

number of monthly lags necessary to estimate the lag polynomials might not be too large,

implying that a curse of dimensionality might not be relevant. However, when financial

data come into play as in Andreou, Ghysels, and Kourtellos (2010b) and Monteforte and

Moretti (2010), we face more severe limits in the degrees of freedom and functional lag

polynomials may be preferable.

Koenig, Dolmas, and Piger (2003) already proposed U-MIDAS in the context of real-

time estimation. Clements and Galvao (2008, 2009) also considered U-MIDAS to forecast

quarterly GDP, and Marcellino and Schumacher (2010) provide an application in a factor

model framework. Rodriguez and Puggioni (2010) discuss Bayesian estimation of unre-

stricted MIDAS equations. However, none of these papers systematically studies the role

of the functional form of the lag polynomial.

We expand on the existing literature in the following respects. We discuss how U-

MIDAS regressions can be derived in a general linear dynamic framework, and under

which conditions the parameters of the underlying high-frequency model can be identified.

Next, we provide Monte Carlo simulations that help highlighting the advantages and

disadvantages of U-MIDAS versus MIDAS. The basic design of the exercise is similar to

that of Ghysels and Valkanov (2006), where a high-frequency VAR(1) is specified. We

look both at the in-sample and out-of-sample nowcasting performance. We find that if the

frequency mismatch is small, i.e. when mixing monthly and quarterly data, U-MIDAS

is indeed better than MIDAS. With larger differences in sampling frequencies, MIDAS

with exponential Almon lag polynomials is instead preferable. We also consider the case

in which the restricted MIDAS model is the true DGP. Even in this favorable set up

for functional lag polynomials, it turns out that U-MIDAS is still preferable when the

frequency mismatch is small.

Finally, we carry out an empirical exercise, where GDP growth in the US and euro area

are related to different monthly indicators. In the comparison, we clearly find a better

in-sample performance of the U-MIDAS model, confirming the results of the Monte Carlo

experiments. The evidence is more mixed when looking at the out-of-sample nowcasting

performance. However, for a number of indicators, U-MIDAS can outperform MIDAS

also out-of-sample. We conclude that U-MIDAS can be a strong competitor for MIDAS.

This generally holds if the differences in sampling frequency in the data are small, in

particular, when mixing quarterly and monthly data.

The paper proceeds as follows. In Section 2 we provide a theoretical motivation for U-

MIDAS in a linear dynamic framework and discuss its use for nowcasting and forecasting.

In Section 3 we present the results of the Monte Carlo experiments. In Section 4 we

discuss the empirical nowcast exercises for the US and in Section 5 for the euro area. In
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Section 6 we summarize the main results and conclude.

2 The rationale behind U-MIDAS and its use in fore-

casting

In this section we derive the Unrestricted MIDAS (U-MIDAS) regression approach from

a general dynamic linear model, consider its use as a forecasting device, and compare it

with the original MIDAS specification of Ghysels et al. (2005, 2006).

2.1 U-MIDAS regressions in dynamic linear models

We assume that y and the N variables x are generated by the V AR(p) process a(L)
1×1

−b(L)
1×N

−d(L)
N×1

C(L)
N×N


 yt

1×1

xt
N×1

 =

 eyt
1×1

ext
N×1

 , (1)

or

a(L)yt = b1(L)x1t + ...+ bN(L)xNt + eyt (2)

C(L)xt = d(L)yt + ext (3)

where a(L) = 1 − a1L − ... − apL, b(L) = (b1(L), ..., bN(L)), bj(L) = bj1L + ... + bjpL
p,

j = 1, ..., N , d(L) = (d1(L), ..., dN(L))
′, dj(L) = dj1L + ... + djpL

p, C(L) = I − C1L −
... − CpL

p, and the errors are jointly white noise. For simplicity, we suppose that the

starting values y−p, ..., y0 and x−p, ..., x0 are all fixed and equal to zero, which coincides

with the unconditional expected value of y and x. Different lag lengths of the polynomials

in (2) and (3) can be easily handled, but at the cost of an additional complication in the

notation.

We then assume that x can be observed for each t, while y can be only observed every

k periods. For example, k = 3 when t is measured in months and y is observed quarterly

(e.g., x could contain industrial production and y GDP growth), while k = 4 when t is

measured in quarters and y is observed annually (e.g., x could contain GDP growth and

y fiscal variables that are typically only available on an annual basis). Let us indicate the

aggregate (low) frequency by τ , while Z is the lag operator at τ frequency, with Z = Lk

and Zyτ = yτ−1. In the sequel, HF indicates high frequency (t) and LF low frequency (τ).

Let us then introduce the operator

ω(L) = ω0 + ω1L+ ...+ ωk−1L
k−1, (4)

which characterizes the temporal aggregation scheme. For example, ω(L) = 1 + L+ ...+

Lk−1 in the case of flow variables and ω(L) = 1 for stock variables.
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While general, this framework still imposes a few restrictions. In particular, y is

univariate and there are no MA components in the generating mechanism of y and x.

These restrictions simplify substantially the notation, and are helpful for the identification

of the parameters of the HF model for y given the LF model. The framework remains

general enough to handle the majority of empirical applications, and the extensions are

theoretically simple but notationally cumbersome.

The method we adopt to derive the generating mechanism for y at LF is similar to

that introduced by Brewer (1973), refined by Wei (1981) and Weiss (1984), and further

extended by Marcellino (1999) to deal with general aggregation schemes and multivariate

processes.

Let us introduce a polynomial in the lag operator, β(L), whose degree in L is at most

equal to pk−p and which is such that the product h(L) = β(L)a(L) only contains powers

of Lk = Z, so that h(L) = h(Lk) = h(Z). It can be shown that such a polynomial always

exists, and its coeffi cients depend on those of a(L), see the above references for details.

In order to determine the AR component of the LF process, we then multiply both

sides of (2) by ω(L) and β(L) to get

h(Lk)ω(L)yt = β(L)b1(L)ω(L)x1t + ...+ β(L)bN(L)ω(L)xNt + β(L)ω(L)eyt. (5)

Thus, the order of the LF AR component, h(Z), is at most equal to p. In addition, the

polynomial h(Lk) can be decomposed into

h∏
s=1

k∏
i=1

(1− 1

hsi
L), (6)

where h < p is more precisely defined in Appendix A.1, and at least one hsi for each s

has to be such that a(hsi) = 0.

It can be shown that, in general, there is an MA component in the LF model, q(Z)uyt.

Its order, q, coincides with the highest multiple of k non zero lag in the autocovariance

function of β(L)ω(L)eyt. The coeffi cients of the MA component have to be such that the

implied autocovariances of q(Z)uyt coincide with those of β(L)ω(L)eyt evaluated at all

multiples of k.

Let us consider now the x variables, which are observable at frequency t. The poly-

nomials β(L)bj(L)ω(L) = bj(L)β(L)ω(L), j = 1, ..., N , are at most of order pk + k − 1.
Each term β(L)ω(L)xjt is a particular combination of HF values of xj that affects the LF

values of y.

In Appendix A.1 we show that, under certain rather strict conditions, it is possible

to recover the polynomials a(L) and bj(L) that appear in the HF model for y from the

LF model, and therefore also β(L) can be identified. In this case we can use the exact
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MIDAS model

h(Lk)ω(L)yt = b1(L)z1t + ...+ bN(L)zNt + q(Lk)uyt, (7)

zjt = β(L)ω(L)xit, j = 1, ..., N,

t = k, 2k, 3k, ...

The left-hand side of this is equation contains the LF variable y, obtained from time

aggregation ω(L)yt = yτ . The LF variable is regressed on its own LF lags and on lags of

xjt for j = 1, ..., N . As the polynomials a(L) and bj(L) are identified, there is no need for

a polynomial approximation.

When β(L) cannot be identified, we can use an approximate unrestricted MIDAS

model based on a linear lag polynomial such as

c(Lk)ω(L)yt = δ1(L)x1t−1 + ...+ δN(L)xNt−1 + εt, (8)

t = k, 2k, 3k, ...

where c(Lk) = (1 − c1Lk − ... − ccLkc), δj(L) = (δj,0 + δj,1L + ... + δj,vL
v), j = 1, ..., N .

We label this approach hereafter unrestricted MIDAS or simply U-MIDAS. 1 2

Notice that, since the polynomials δi(L) operate at HF while c(Lk) in LF, the matrix

of regressors in (8) is of the type

y0 ... y−kc δ1,0x1,k−1 ... δ1,vx1,k−v−1 ... δN,0xN,k−1 ... δN,vxN,k−v−1

yk ... y−(k−1)c δ1,0x1,2k−1 ... δ1,vx1,2k−v−1 ... δN,0xN,2k−1 ... δN,vxN,2k−v−1
...

...
...

...
...

...

yTk−k ... yTk−kc δ1,0x1,Tk−1 ... δ1,vx1,Tk−v−1 ... δN,0xN,Tk−1 ... δN,vxN,Tk−v−1

As an example, if ω(L) = 1, i.e. y is a stock variable, and k = 3 (i.e., t is monthly and τ

is quarterly), the matrix of regressors becomes

y0 ... y−3c δ1,0x1,3−1 ... δ1,vx1,3−v−1 ... δN,0xN,3−1 ... δN,vxN,3−v−1

y3 ... y−2c δ1,0x1,6−1 ... δ1,vx1,6−v−1 ... δN,0xN,6−1 ... δN,vxN,6−v−1
...

...
...

...
...

...

y3T−3 ... y3T−3c δ1,0x1,3T−1 ... δ1,vx1,3T−v−1 ... δN,0xN,3T−1 ... δN,vxN,3T−v−1

Note that if we assume that the lag orders c and v are large enough to make the

error term εt uncorrelated, then, all the parameters in the U-MIDAS model (8) can be

estimated by simple OLS (while the aggregation scheme ω(L) is supposed known). From

1The static version of U-MIDAS corresponds to the direct mixed frequency regression model of
Kvedaras and Rackauskas (2010). They only consider static regressions, but allow for a larger set of
aggregation schemes.

2In general, the error term εt has an MA structure. However, for the sake of simplicity, we will work
with an AR approximation throughout, since this does not affect the main points we want to make and
simplifies both the notation and the estimation
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a practical point of view, the lag order v could differ across variables, and vi and c could

be selected by an information criterion such as BIC. We will follow this approach in the

Monte Carlo experiments and in the empirical applications, combining it with the use of

information criterion for lag length selection.

2.2 Forecasting with U-MIDAS

To start with, let us consider the case where the forecast origin is in period t = Tk

and the forecast horizon measured in t time is h = k, namely, one LF period ahead.

Using standard formulae, the optimal forecast (in the MSE sense and assuming that εt is

uncorrelated) can be expressed as

ŷTk+k|Tk = (c1L
k + ...+ ccL

kc)yTk+k + δ1(L)x̂1Tk+k−1|Tk + ...+ δN(L)x̂NTk+k−1|Tk, (9)

where x̂iTk+j|Tk = xiTk+j|Tk for j ≤ T .

A problem with the expression in (9) is that forecasts of future values of the HF

variables x are also required. Following e.g. Marcellino et al. (2006), a simpler approach

is to use a form of direct estimation and construct the forecast as

ỹTk+k|Tk = c̃(Lk)yTk + δ̃1(L)x1Tk + ...+ δ̃N(L)xNTk, (10)

where the polynomials c̃(Z) = c̃1L
k + ... + c̃cL

kc and δ̃i(L) are obtained by projecting yt
on information dated t − k or earlier, for t = k, 2k, ..., Tk. We will use this approach in

the Monte Carlo simulations and empirical applications. In general, the direct approach

of (10) can also be extended to construct hk-step ahead forecasts given information in

Tk:

yTk+hk|Tk = c(Lk)yTk + δ1(L)x1Tk + ...+ δN(L)xNTk, (11)

where the polynomials c(Z) and δi(L) are obtained by projecting yt on information dated

t− hk or earlier, for t = k, 2k, ..., Tk.3

The conditioning information set for forecasting in (10) contains HF information up

to the end of the sample of the LF variable, namely period Tk. An advantage of the

MIDAS approach is that it also allows for incorporating leads of the HF variable xt
for the projections. This is due to the fact that observations of HF indicators are much

earlier available than the observations of the LF models, for example, surveys or industrial

production. MIDAS with leads can exploit this early information and thus is in particular

helpful for nowcasting, namely, computing and updating projections of the LF variable

for the current period given all potential HF information which is available (Giannone et

al., 2008; Marcellino and Schumacher, 2010; Andreou et al., 2010b; Kuzin et al., 2011).

3Marcellino and Schumacher (2010) present the details of the derivation of a direct forecasting equation
for the case where the regressors are factors extracted from a large set of high frequency indicators. A
similar approach can be used in this context to derive (10) from a given HF VAR DGP.

7



Nowcasting with HF indicators becomes politically relevant, because the publication lags

for many LF variables are quite substantial. For example, quarterly GDP in US is typically

published after about four weeks in the subsequent quarter. Thus, within each quarter,

the contemporaneous value of GDP growth is not available, making nowcasts necessary.

As a particular nowcasting example, suppose that the value of interest is still yTk+k,

but that now HF information up to period Tk+1 is available, e.g. observations of monthly

industrial production on the first month of a given quarter becomes available. Then, the

expression in (9) can be easily modified to take the new information into account:

ŷTk+k|Tk+1 = c̃(Lk)yTk + δ1(L)x̂1Tk+k−1|Tk+1 + ...+ δN(L)x̂NTk+k−1|Tk+1, (12)

where x̂iTk+j|Tk+1 = xiTk+j|Tk+1 for j ≤ T + 1. Similarly, the coeffi cients in (10) would

be now obtained by projecting yt on information dated t− k+ 1 or earlier and the direct
forecast becomes

ỹTk+k|Tk+1 = c̃(Lk)yTk + δ̃1(L)x1Tk+1 + ...+ δ̃N(L)xNTk+1. (13)

If time passes by and new HF information becomes available, say, in periods Tk+1, Tk+

2, . . ., the nowcast can be updated similar to the one-step ahead case.

2.3 U-MIDAS and MIDAS with exponential Almon lags

It is interesting to compare the U-MIDAS approach with the original MIDAS specification

of Ghysels et al. (2005, 2006) with functional lag polynomials, see also Clements and

Galvao (2008). Assuming for simplicity that c(Lk) = 1, N = 1, ω(L) = 1, the U-MIDAS

model in (8) simplifies to

yt = δ1(L)xt−1 + εt (14)

for t = k, 2k, ..., Tk. The original MIDAS model would be

yt = β1B(L, θ)xt−1 + εt, (15)

where the polynomial B(L, θ) is the exponential Almon lag following Lütkepohl (1981)

with

B(L, θ) =

K∑
j=0

b(j, θ)Lj, b(j, θ) =
exp(θ1j + θ2j

2)
K∑
j=0

exp(θ1j + θ2j2)

. (16)

Therefore, the MIDAS specification of Ghysels et al. (2005, 2006) is nested in U-MIDAS,

since it is obtained by imposing a particular dynamic pattern. The key advantage of the

original MIDAS specification is that it allows for long lags with a limited number of pa-

rameters, which can be particularly useful in financial applications with a high mismatch

between the sampling frequencies of y and x, e.g. when y is monthly and x is daily.
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However, for macroeconomic applications with small differences in sampling frequencies,

for example monthly and quarterly data, the specification in (15) can have several disad-

vantages. In particular, it could simply be the case that the restriction β1B(L, θ) = δ1(L)

is not valid and that the Almon lag approximation might not be general enough. Addi-

tionally, if the impulse response function is relatively short-lived and only a few HF lags

are needed to capture the weights, a linear unrestricted lag polynomial might suffi ce for

estimation. Moreover, the model resulting from (15) is highly nonlinear in the parame-

ters, so that it cannot be estimated by OLS. In summary, these considerations suggest

that U-MIDAS should perform better than the original MIDAS as long as the aggregation

frequency is small and U-MIDAS is not too heavily parameterized.

In general, it should be kept in mind that both MIDAS and U-MIDAS should be

regarded as approximations to dynamic linear models such as the one discussed in Section

2.1. Since we do not know the true model in practice, we cannot expect one of the

approaches to dominate with empirical data. However, given a known DGP, it might be

useful to identify conditions under which MIDAS or U-MIDAS do better. Thus, we will

consider both approaches in the simulations below.

3 Monte Carlo experiments

This Section presents a set of Monte Carlo experiments that focus on the in-sample and

forecasting performance of alternative MIDAS regressions. We discuss, in turn, the basic

simulation design, the models under comparison, and the results. Next, as a robustness

check, we present results for alternative simulation designs.

3.1 The simulation design

The simulation design is closely related to that in Ghysels and Valkanov (2006). We

modify the exercise in a way to discuss its use in macroeconomic forecasting, in partic-

ular forecasting quarterly GDP. As predictors for this variable, the empirical literature

typically uses monthly and daily indicators, see Clements and Galvao (2008, 2009) and

Andreou, Ghysels and Kourtellos (2010b), respectively. Additionally, we consider weekly

data. Thus, we end up with the sampling frequencies k = {3, 12, 60}, which represent
cases of data sampled at monthly and quarterly frequency (k = 3), at weekly and quarterly

frequency (k = 12), or at daily and quarterly frequency (k = 60).

In each case, the DGP is given by the high-frequency VAR(
yt

xt

)
=

(
ρ δl

δh ρ

)(
yt−1

xt−1

)
+

(
ey,t

ex,t

)
. (17)

yt is the LF variable and xt is the HF variable, where t is the HF time index with

t = 1, . . . , (T + ES)×k. T defines the size of the estimation sample we use in the in-sample

9



analysis (expressed in the low-frequency unit, e.g. quarters in our example), while for the

forecasting purposes we generate an additional number of observations, which defines our

evaluation sample, ES (also expressed in the low-frequency unit). k denotes the sampling

frequency of the LF variable yt, whereas xt is sampled with k = 1. We further assume

that ω(L) = 1. Thus, the LF variable yt is available only for t = k, 2k, . . . , (T + ES)× k.
In the VAR (17), the shocks ey,t and ex,t are sampled independently from the normal

distribution with mean zero for all t = 1, . . . , (T + ES)× k, and the variances are chosen
such that the unconditional variance of y is equal to one. For the persistence parameter,

we choose ρ = {0.1, 0.5, 0.9}, and following Ghysels and Valkanov (2006), we fix δl =
{0.1, 0.5, 1.0} and δh = 0. Thus, the DGP is recursive, as the HF variable affects the

LF variable, but not vice versa. Later on in Section 3.6, we will also consider non-

recursive DGPs. Overall, we cover a broad range of DGPs representing different degrees

of persistence and correlation between the HF and the LF variable.

Initially, for the in-sample analysis, yt and xt are simulated for all t = 1, . . . , T ×k, see
Ghysels and Valkanov (2006). To estimate the MIDAS regressions, the available data is

defined as yt with t = k, 2k, . . . , T ×k and xt with t = 1, 2, . . . , T ×k, representing mixed-
frequency data which is typical in empirical applications. The number of observations

for the LF variable is T = 100. To compare the in-sample fit obtained with the different

methods, we look at the in-sample MSE for each simulation, defined as IS −MSEr =
1
T

∑T
t=1(ŷt,r−yt,r)2, with r = 1, ..., R. In this experiment, we fix the number of simulations

at R = 2000.4

In order to conduct a forecast comparison, we also simulate both variables ES × k

HF periods ahead for t = T × k + 1, . . . , T × k + ES × k. ES is set equal to T
2
= 50.

The final values of the LF variable, from yT×k+k to yT×k+ES×k, will be used as the actual

values to be compared with the alternative forecasts. Regarding the information set

available for forecasting, we assume that we know values up to period (T + es− 1) × k,
with es = 1, ..., ES, for the LF variable and (T + es− 1)× k + k − 1 for the HF variable
xt. This yields forecasts of the LF variable k HF periods ahead for each date in the

evaluation sample, yT×k+es×k|T×k+es×k−1, conditional on HF information within the LF

forecast period. The corresponding forecast error is yT×k+es×k|T×k+es×k−1 − yT×k+es×k.

The latter is used to compute the mean-squared error (MSE) over the evaluation sample

for each replication r, asMSEr =
1
ES

∑ES
es=1(yT×k+es×k|T×k+es×k−1,r−yT×k+es×k,r)2, where

r = 1, ...R, and in our experiment R = 500.5

For the in- and out-of-sample analyses we report summary statistics based on the

empirical distribution of the IS-MSEs and MSEs over all replications, i.e., its average,

4We consider the IS-MSE to be coherent with the forecasting analysis later where, following common
practice, we adopt the squared-error loss function. For the in-sample analysis, we could as well look at
the R2, a more traditional measure of goodness-of-fit, but the results would be qualitatively similar since
both measures are based on the residual sum of squares.

5The number of replications in this case is only 500 for computational issues. In fact, for each
replication we need to estimate the models and then compute the forecast 50 times, one for each quarter
of the evaluation sample. Therefore, even with 500 replications, we obtain 25000 forecasts.
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median, and selected percentiles.

3.2 The models under comparison

We consider empirical MIDAS regressions that are based on estimated coeffi cients and

possibly misspecified functional forms. In particular, we evaluate the following two types

of models:

1. MIDAS with an autoregressive term as used in Clements and Galvao (2008, 2009).

This follows from the fact that the HF VAR also implies an autoregressive term. In

order to rule out periodic movements in the impulse response function from the HF

variable xt on the LF variable yt, a common factor specification is imposed, yielding

the model

yt×k = β0 + β1yt×k−k + β2(1− β1Lk)B(L, θ)xt×k−1 + εt×k, (18)

where the polynomial B(L, θ) is the exponential Almon lag defined as in eq. (16).

We set K = 1.5 × k, which suffi ces to capture the true impulse response function
as implied by the DGP. The model is estimated using NLS, with the additional

coeffi cient λ and the common factor structure imposed. We apply the coeffi cient

restrictions −100 < θ1 < 5 and −100 < θ2 < 0. As starting values might matter, we

compute the residual sum of squares in each replication for alternative parameter

pairs in the sets θ1 = {−0.5, 0.0, 0.5} and θ2 = {−0.01,−0.1,−0.5,−1}. Note that
when xt is available until T×k+es×k−1, this is the final date used to estimate the
coeffi cients of the model. Given the NLS estimates of the parameters, the forecast

can be computed as

yT×k+es×k|T×k+es×k−1 = β̂0+β̂1yT×k+es×k−k+β̂2(1−β̂1Lk)B(L, θ̂)xT×k+es×k−1. (19)

2. U-MIDAS as introduced in Section 2. In particular, U-MIDAS is estimated without

considering the Almon lag polynomial. Rather, we leave the lag polynomial of the

indicator HF variable xt unrestricted. Furthermore, we do not impose the common

factor restriction as in Clements and Galvao (2008) for the autoregressive term.

Thus, the model becomes

yt×k = µ0 + µ1yt×k−k + ψ(L)xt×k−1 + εt×k, (20)

with lag polynomial ψ(L) =
∑K

j=0 ψjL
j = ψ0+ψ1L+ . . .+ψKL

K . The coeffi cients

µ0, µ1 and ψ(L) are estimated by OLS. To specify the lag order, we use the BIC

with a maximum lag order of K to choose the lags. Given the selected BIC order

k̂ and OLS estimated parameters µ̂0, µ̂1 and ψ̂(L), the U-MIDAS forecast can be

11



computed as

yT×k+es×k|T×k+es×k−1 = µ̂0 + µ̂1yT×k+es×k−k + ψ̂(L)xT×k+es×k−1. (21)

3.3 Monte Carlo in-sample comparison results

We summarize the results of the in-sample evaluation in Table 1. As anticipated, we

compare the performance of the two different methods, U-MIDAS and MIDAS, based on

their respective in-sample MSEs. The table reports summary statistics for the distribution

of the in-sample MSE of U-MIDAS relative to that of MIDAS as described in the previous

subsection for alternative parameter values and sampling frequencies. More in detail, we

first compute the ratio IS-MSE(U-MIDAS)/IS-MSE(MIDAS) for each replication, then

report the mean, the median and selected percentiles of the distribution of these ratios.

Hence, median, mean, and percentile ratio values smaller than one indicate a superior

performance of U-MIDAS.

The results can be summarized as follows. When the difference in sampling frequencies

is large (k = 12, 60), restricted MIDAS outperforms U-MIDAS for almost each value of

persistence and interrelatedness. Instead, U-MIDAS clearly outperforms MIDAS for k =

3, especially when the process is persistent, that is when ρ = {0.5, 0.9}. The distribution
results tend to be very concentrated, especially when ρ = 0.1, while the values of the ratio

are slightly more dispersed when the persistence is bigger. It is very interesting to notice

that when ρ = {0.5, 0.9}, U-MIDAS models outperform systematically MIDAS models,

since even the values correspondent to the 90th percentile are smaller than 1.

3.4 Monte Carlo forecast comparison results

The results of the Monte Carlo forecast experiments are summarized in Table 2. As in

the in-sample analysis, we compare the forecasting performance of U-MIDAS and MIDAS

based on their (out-of-sample) MSEs, computed over the 50 periods of the evaluation

sample. The Table reports the summary statistics for the distribution of the MSE of U-

MIDAS relative to that of MIDAS, as described in Section 3.3 for the in-sample analysis.

Again, a median or mean value smaller than one indicates a superior performance of

U-MIDAS.

The results confirm the evidence of the in-sample analysis: U-MIDAS forecasts perform

better than MIDAS for k = 3 if the process is persistent. If the difference in sampling

frequencies is large (k = 12, 60), MIDAS outperforms U-MIDAS for almost each value of

persistence and interrelatedness. A likely reason for this pattern of results is that when

k is large, U-MIDAS becomes heavily parameterized, notwithstanding BIC lag length

selection, and imprecise estimation affects the forecasting accuracy. On the contrary,

when k = 3, the number of U-MIDAS parameters is limited and their estimates precise,

and the additional flexibility allowed by U-MIDAS yields a better forecasting performance

12



Table 1: In-sample MSE of U-MIDAS relative to in-sample MSE of MIDAS (DGP: recur-
sive HF VAR)

relative performance:
rho delta l delta h k mean 10th 25th median 75th 90th

prctile prctile prctile prctile

0.1 0.10 0.00 3 1.01 0.97 0.99 1.00 1.02 1.04
0.1 0.10 0.00 12 1.01 0.97 0.99 1.00 1.02 1.05
0.1 0.10 0.00 60 1.01 0.98 0.99 1.00 1.02 1.04
0.1 0.50 0.00 3 1.01 0.98 0.99 1.00 1.03 1.04
0.1 0.50 0.00 12 1.01 0.97 0.99 1.00 1.02 1.04
0.1 0.50 0.00 60 1.01 0.97 0.99 1.00 1.02 1.04
0.1 1.00 0.00 3 1.01 0.98 0.99 1.00 1.02 1.04
0.1 1.00 0.00 12 1.01 0.97 0.99 1.00 1.02 1.04
0.1 1.00 0.00 60 1.01 0.97 0.99 1.00 1.02 1.04
0.5 0.10 0.00 3 0.92 0.85 0.89 0.93 0.96 0.99
0.5 0.10 0.00 12 1.00 0.94 0.97 1.00 1.03 1.06
0.5 0.10 0.00 60 1.00 0.94 0.97 1.00 1.03 1.06
0.5 0.50 0.00 3 0.92 0.85 0.89 0.93 0.96 0.99
0.5 0.50 0.00 12 1.00 0.94 0.97 1.00 1.03 1.05
0.5 0.50 0.00 60 1.00 0.94 0.97 1.00 1.03 1.06
0.5 1.00 0.00 3 0.92 0.85 0.88 0.92 0.96 0.99
0.5 1.00 0.00 12 1.00 0.94 0.97 1.00 1.03 1.06
0.5 1.00 0.00 60 1.00 0.94 0.97 1.00 1.03 1.06
0.9 0.10 0.00 3 0.91 0.83 0.87 0.92 0.96 0.99
0.9 0.10 0.00 12 1.02 0.89 0.95 1.01 1.08 1.14
0.9 0.10 0.00 60 1.14 0.97 1.04 1.13 1.23 1.32
0.9 0.50 0.00 3 0.92 0.83 0.87 0.92 0.96 1.00
0.9 0.50 0.00 12 1.02 0.89 0.95 1.01 1.08 1.14
0.9 0.50 0.00 60 1.13 0.97 1.04 1.13 1.23 1.31
0.9 1.00 0.00 3 0.92 0.83 0.87 0.92 0.96 0.99
0.9 1.00 0.00 12 1.02 0.90 0.95 1.01 1.08 1.15
0.9 1.00 0.00 60 1.13 0.97 1.04 1.13 1.22 1.31

Notes: Columns 1 to 4 show the parameter specification for the DGP in eq. (17). The
entries of columns 5 to 10 report the performance of the IS-MSE(U-MIDAS)relative to IS-
MSE(MIDAS). The ratio IS-MSE(U-MIDAS)/IS-MSE(MIDAS) is computed for each repli-
cation, then in column 5 the mean of the distribution of these ratios is reported, and in
columns 6 to 10 the main percentiles (10th, 25th, 50th, 75th, 90th) of the distribution are
reported.
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Table 2: Out-of-sample MSE of U-MIDAS relative to MSE of MIDAS (DGP: recursive
HF VAR)

relative performance:
rho delta l delta h k mean 10th 25th median 75th 90th

prctile prctile prctile prctile

0.1 0.10 0.00 3 1.01 0.96 0.99 1.01 1.03 1.07
0.1 0.10 0.00 12 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.10 0.00 60 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.50 0.00 3 1.01 0.96 0.99 1.01 1.03 1.07
0.1 0.50 0.00 12 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.50 0.00 60 1.01 0.97 0.99 1.01 1.04 1.07
0.1 1.00 0.00 3 1.01 0.97 0.99 1.01 1.03 1.07
0.1 1.00 0.00 12 1.01 0.96 0.99 1.01 1.04 1.07
0.1 1.00 0.00 60 1.01 0.97 0.99 1.01 1.04 1.07
0.5 0.10 0.00 3 0.94 0.83 0.89 0.94 0.98 1.04
0.5 0.10 0.00 12 1.05 0.97 1.00 1.05 1.09 1.13
0.5 0.10 0.00 60 1.05 0.97 1.00 1.04 1.10 1.14
0.5 0.50 0.00 3 0.93 0.82 0.88 0.93 0.98 1.02
0.5 0.50 0.00 12 1.05 0.97 1.01 1.05 1.09 1.13
0.5 0.50 0.00 60 1.05 0.96 1.00 1.05 1.09 1.15
0.5 1.00 0.00 3 0.94 0.83 0.89 0.94 0.99 1.04
0.5 1.00 0.00 12 1.05 0.97 1.00 1.04 1.08 1.14
0.5 1.00 0.00 60 1.05 0.97 1.01 1.05 1.09 1.14
0.9 0.10 0.00 3 0.91 0.80 0.86 0.91 0.96 1.02
0.9 0.10 0.00 12 1.09 0.93 1.01 1.08 1.18 1.25
0.9 0.10 0.00 60 1.23 1.03 1.11 1.21 1.32 1.45
0.9 0.50 0.00 3 0.91 0.81 0.85 0.91 0.97 1.01
0.9 0.50 0.00 12 1.07 0.91 0.98 1.07 1.16 1.24
0.9 0.50 0.00 60 1.24 1.05 1.13 1.23 1.34 1.46
0.9 1.00 0.00 3 0.92 0.81 0.86 0.92 0.98 1.03
0.9 1.00 0.00 12 1.08 0.92 0.99 1.07 1.15 1.23
0.9 1.00 0.00 60 1.22 1.04 1.11 1.21 1.31 1.44

Notes: Columns 1 to 4 show the parameter specification for the DGP in eq. (17). The entries
of columns 5 to 10 report the performance of the out-of-sample MSE(U-MIDAS)relative to
out-of-sample MSE(MIDAS). The MSE is calculated over an evaluation sample of 50 periods.
The ratio MSE(U-MIDAS)/MSE(MIDAS) is computed for each replication, then in column
5 the mean of the distribution of these ratios is reported, and in columns 6 to 10 the main
percentiles (10th, 25th, 50th, 75th, 90th) of the distribution are reported.
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than MIDAS. An alternative explanation could be that BIC selects models that are too

parsimonious when k is large, and therefore omits relevant regressors. We will discuss

this possibility in the next subsection.

3.5 The role of BIC for lag length selection

In Sections 3.3 and 3.4, we select the number of lags to be included in the U-MIDAS

models according to the BIC criterion, which is known to prefer rather parsimonious

models, at least in finite samples. We now want to check whether a different selection

criterion for the number of lags can influence the results. In particular, we assess whether

the use of the AIC criterion, which puts a lower loss on the number of parameters than

BIC, can improve the results, and in particular those for k large.

Table 3: Out-of-sample MSE of U-MIDAS relative to out-of-sample MSE of MIDAS
(DGP: recursive HF VAR). AIC selection criterion

relative performance:
rho delta l delta h k mean 10th 25th median 75th 90th

prctile prctile prctile prctile

0.1 0.10 0.00 3 1.01 0.96 0.98 1.00 1.02 1.05
0.1 0.10 0.00 12 1.02 0.97 0.99 1.01 1.05 1.09
0.1 0.10 0.00 60 1.11 0.97 1.00 1.03 1.14 1.37
0.1 0.50 0.00 3 1.01 0.96 0.98 1.00 1.03 1.05
0.1 0.50 0.00 12 1.02 0.97 0.99 1.01 1.05 1.09
0.1 0.50 0.00 60 1.12 0.98 1.00 1.03 1.15 1.45
0.1 1.00 0.00 3 1.01 0.97 0.99 1.01 1.03 1.06
0.1 1.00 0.00 12 1.02 0.96 0.98 1.01 1.05 1.10
0.1 1.00 0.00 60 1.10 0.98 1.00 1.04 1.13 1.32
0.5 0.10 0.00 3 0.93 0.83 0.88 0.93 0.98 1.02
0.5 0.10 0.00 12 1.05 0.96 1.00 1.04 1.09 1.14
0.5 0.10 0.00 60 1.14 0.98 1.01 1.07 1.20 1.40
0.5 0.50 0.00 3 0.93 0.82 0.88 0.92 0.98 1.02
0.5 0.50 0.00 12 1.05 0.97 1.00 1.05 1.09 1.14
0.5 0.50 0.00 60 1.16 0.98 1.02 1.08 1.20 1.48
0.5 1.00 0.00 3 0.94 0.83 0.89 0.93 0.99 1.03
0.5 1.00 0.00 12 1.05 0.97 1.00 1.04 1.09 1.14
0.5 1.00 0.00 60 1.15 0.98 1.03 1.09 1.19 1.42
0.9 0.10 0.00 3 0.91 0.81 0.85 0.90 0.96 1.01
0.9 0.10 0.00 12 1.05 0.92 0.99 1.05 1.12 1.18
0.9 0.10 0.00 60 1.32 1.05 1.13 1.24 1.45 1.71
0.9 0.50 0.00 3 0.91 0.81 0.85 0.91 0.96 1.01
0.9 0.50 0.00 12 1.03 0.91 0.97 1.04 1.09 1.15
0.9 0.50 0.00 60 1.32 1.05 1.13 1.26 1.42 1.68
0.9 1.00 0.00 3 0.92 0.80 0.86 0.92 0.97 1.02
0.9 1.00 0.00 12 1.04 0.92 0.97 1.03 1.10 1.18
0.9 1.00 0.00 60 1.30 1.05 1.12 1.24 1.43 1.64

Notes: See Table 2.
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The results in Table 3 imply that there are no gains from the switch in information

criterion. As with BIC lag length selection, U-MIDAS outperforms MIDAS only for a

small mismatch in sampling frequency (k = 3). Moreover, the results are even worse for

k = 60, confirming that the main problem is the estimation of too heavily parameterized

models rather than omitted regressors.6

3.6 An alternative DGP with non-recursive VAR structure

To check the robustness of the results we have obtained so far, we now consider an

alternative HF data generating process that allows for reverse causality from y to x by

setting δh 6= 0. The values of δl and δh cannot be chosen freely but must be selected in
order to ensure a non-explosive solution, which ensures stationarity of both y and x. To

ensure a stable solution, the condition

det

[
I2 −

(
ρ δl

δh ρ

)
z

]
6= 0 for |z| ≤ 1 (22)

must hold. In general, the solution is z1,2 = 1
ρ2−δhδl

(
ρ±
√
δhδl

)
, depending heavily on the

relative size of δl and δh. For the sake of simplicity, we assume that both processes are

equally important for each other, so that δl = δh = δ. This implies the solutions for the

characteristic roots are

z1,2 =
ρ± δ

(ρ+ δ)(ρ− δ) . (23)

These roots lie outside the unit circle, if 1 + δ > ρ and 1 − δ > ρ. Thus, if we further

assume that the series yt and xt have a positive impact on each other, δ > 0, only the

restriction 1− δ > ρ is binding. Hence, depending on the selection of ρ = {0.1, 0.5, 0.9},
we select the ρ, δ couples

{0.1, 0.1} , {0.1, 0.4} , {0.1, 0.8} ,
{0.5, 0.1} , {0.5, 0.2} , {0.5, 0.4} , (24)

{0.9, 0.01} , {0.9, 0.04} , {0.9, 0.08} ,

with varying degrees of persistence and interrelatedness. The results on the relative

forecasting performance of U-MIDAS and MIDAS can be found in Table 4.

Overall, the results are in line with those for the benchmark case. With a medium to

high degree of persistence, the forecasting performance of U-MIDAS is better than that

of MIDAS when k = 3, whereas in general MIDAS dominates for k = {12, 60}.
6For the sake of space, for all the robustness checks in this and the next two subsections, we only

report the results on the forecasting performance. Similar conclusions however emerge from the in-sample
analysis, which is available upon request.
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Table 4: Out-of-sample MSE of U-MIDAS relative to out-of-sample MSE of MIDAS
(DGP: non-recursive HF VAR)

relative performance:
rho delta l delta h k mean 10th 25th median 75th 90th

prctile prctile prctile prctile

0.1 0.10 0.10 3 1.01 0.96 0.99 1.01 1.03 1.07
0.1 0.10 0.10 12 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.10 0.10 60 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.40 0.40 3 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.40 0.40 12 1.01 0.96 0.99 1.01 1.03 1.06
0.1 0.40 0.40 60 1.01 0.97 0.99 1.01 1.03 1.06
0.1 0.80 0.80 3 1.02 0.96 0.99 1.01 1.04 1.08
0.1 0.80 0.80 12 1.01 0.97 0.99 1.01 1.04 1.07
0.1 0.80 0.80 60 1.01 0.97 0.99 1.01 1.04 1.07
0.5 0.10 0.10 3 0.94 0.83 0.89 0.94 0.99 1.04
0.5 0.10 0.10 12 1.05 0.97 1.00 1.05 1.09 1.13
0.5 0.10 0.10 60 1.05 0.97 1.00 1.04 1.09 1.14
0.5 0.20 0.20 3 0.94 0.83 0.89 0.94 0.98 1.03
0.5 0.20 0.20 12 1.05 0.97 1.01 1.05 1.09 1.12
0.5 0.20 0.20 60 1.05 0.96 1.00 1.05 1.09 1.14
0.5 0.40 0.40 3 0.98 0.90 0.93 0.98 1.03 1.07
0.5 0.40 0.40 12 1.04 0.96 1.00 1.04 1.07 1.12
0.5 0.40 0.40 60 1.04 0.96 1.00 1.03 1.07 1.11
0.9 0.01 0.01 3 0.91 0.81 0.86 0.91 0.96 1.02
0.9 0.01 0.01 12 1.09 0.93 1.01 1.08 1.18 1.25
0.9 0.01 0.01 60 1.23 1.03 1.11 1.21 1.32 1.45
0.9 0.04 0.04 3 0.93 0.83 0.88 0.92 0.98 1.03
0.9 0.04 0.04 12 1.06 0.91 0.98 1.06 1.14 1.22
0.9 0.04 0.04 60 1.22 1.04 1.11 1.20 1.32 1.44
0.9 0.08 0.08 3 0.99 0.93 0.96 0.99 1.02 1.05
0.9 0.08 0.08 12 0.99 0.92 0.96 0.99 1.03 1.06
0.9 0.08 0.08 60 1.00 0.93 0.97 1.00 1.03 1.06

Notes: See Table 2.
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3.7 Using MIDAS as DGP

As a final robustness check, we now carry out Monte Carlo simulations using a MIDAS

regression equation with exponential Almon lag as the data generating process. Thus, we

are in a case that favours a priori the restricted MIDAS regression over the U-MIDAS.

The DGP is

yt×k+k = β0 + β1B(L, θ)xt×k+k−1 + εt×k+k, (25)

with the lag polynomial B(L, θ) defined as in (16). We set k = {3, 12, 60} to mimic the
design in the previous sections. When simulating yt×k+es×k, we use T = 100 and the sets

θ1 = 0.7 and θ2 = {−0.025,−0.05,−0.3}. The monthly indicator xt is generated as an
AR(1) process, with persistence equal to 0.9. Given these 9 different DGPs, we again use

U-MIDAS and MIDAS as before to forecast yt×k+es×k and evaluate their performance by

MSE. For estimating MIDAS and U-MIDAS, we set K = 1.5× k, which again suffi ces to
capture the true impulse response functions.

To fix the starting values of θ1 and θ2, we compute the residual sum of squares in

each replication for alternative parameter pairs in the sets θ1 = {−0.5, 0.0, 0.5} and
θ2 = {−0.01,−0.1,−0.5,−1}. As initial values, we then choose those θ1 and θ2 that

minimize the residual sum of squares. Results on the forecasting performance can be

found in Table 5.

Table 5: Out-of-sample MSE of U-MIDAS relative to out-of-sample MSE of MIDAS,
(DGP: MIDAS)

relative performance:
theta1 theta2 k mean 10th 25th median 75th 90th

prctile prctile prctile prctile

0.70 -0.025 3 0.95 0.86 0.91 0.96 1.01 1.04
0.70 -0.025 12 1.20 1.00 1.07 1.19 1.31 1.43
0.70 -0.025 60 1.27 1.06 1.15 1.25 1.37 1.48
0.70 -0.05 3 0.90 0.80 0.85 0.90 0.96 1.00
0.70 -0.05 12 1.09 0.98 1.03 1.09 1.15 1.21
0.70 -0.05 60 1.14 1.01 1.07 1.14 1.21 1.28
0.70 -0.3 3 0.98 0.91 0.95 0.98 1.01 1.04
0.70 -0.3 12 1.03 0.96 1.00 1.03 1.07 1.10
0.70 -0.3 60 1.03 0.96 0.99 1.03 1.07 1.10

Notes: Columns 1 to 3 show the parameter specification for the DGP in eq. (25). The entries of
columns 4 to 9 report the performance of the out-of-sample MSE(U-MIDAS)relative to out-of-sample
MSE(MIDAS). The MSE is calculated over an evaluation sample of 50 periods. The ratio MSE(U-
MIDAS)/MSE(MIDAS) is computed for each replication, then in column 4 the mean of the distribution
of these ratio is reported, and in columns 5 to 9 the main percentiles (10th, 25th, 50th, 75th, 90th) of
the distribution are reported.

Interestingly, the Table highlights that, even in a set up favorable to restricted MI-

DAS, as long as the frequency mismatch is small (k = 3) and therefore the number of
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parameters to be estimated is low, U-MIDAS still yields a better forecasting performance

than MIDAS. Restricted MIDAS is of course strongly outperforming in the case of very

large discrepancies in the sampling frequency.

A likely cause for the detected pattern is the following. UMIDAS provides more

flexibility than MIDAS, since as we have seen the latter is typically nested in the former.

Hence, as long as the number of parameters is rather limited with respect to the sample

size, as in the case k = 3, UMIDAS is a nesting model and as such it is not surprising that

it forecasts slightly better than MIDAS. Computational problems for the NLS estimator

of the MIDAS parameters can further add to the advantages of OLS based UMIDAS.

Both positive UMIDAS features, nesting and simplicity of estimation, are however more

than counterbalanced by the curse of dimensionality when k is large, thus making MIDAS

the clear winner in that case.

3.8 Summary of the simulation results

As a general summary of the simulation results, we can say that as long as the depen-

dent variable is suffi ciently persistent and the frequency mismatch with the explanatory

variables limited, there is strong evidence that the U-MIDAS specification is better than

MIDAS. The gains are larger in in-sample analysis, where the estimation sample is longer,

but are still present in the out-of-sample comparison.

4 Empirical application to US GDP growth

In this section, we assess the MIDAS and U-MIDAS methods in terms of their in-sample

and nowcasting performance. Specifically, we consider nowcasting quarterly US GDP

growth using a set of selected monthly indicators as in Clements and Galvao (2009) and

Stock andWatson (2003). The indicators are the ten components of the composite leading

indicator provided by the Conference Board, starting in January 1959 and updated to

July 2011. Appendix A.2 provides a complete description of the data. In the empirical

application, we adopt a recursive approach in nowcasting, with the first evaluation quarter

fixed at 1985Q1 and the last one at 2011Q1, for a total of 105 evaluation samples. For

each quarter, we compute three nowcasts, at the beginning of each month of the quarter,

thereby including information up to the end of the previous month. The dataset is a final

dataset, but we replicate the ragged-edge structure due to different publication lags of

the monthly series. Thus, we take into account the different information sets available

at each point in time in which the nowcasts are computed. Each month, the models are

re-estimated using all the data available at that point in time. To specify the MIDAS

regressions, we consider a maximum number of monthly lags of the indicators equal to

2k = 6 months.

To compare the two mixed-frequency approaches, we first look at the in-sample perfor-
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mance as in the Monte Carlo experiment. We first compute the in-sample ratio MSE(U-

MIDAS)/MSE(MIDAS) for each monthly indicator. Table 6 shows the results of the

in-sample performance. In panel A, we report the in-sample results computed with data

up to the fourth quarter 2006, in panel B those computed based on data up to the fourth

quarter 2010, so that we can compare the performance before and during the recent

financial crisis.

Table 6: Results for individual indicators. In-sample analysis for US GDP growth

Relative in-sample MSE ( MSE(U-MIDAS) / MSE(MIDAS) )
A. Sample 1959Q1 - 2006Q4 B. Sample 1959Q1 - 2011Q1

hm
1 2 3

M2 0.97 0.99 1.00
stock 0.87 0.99 0.99
hours 0.73 0.84 0.81
ordersn 0.98 0.92 1.01
ordersc 0.96 1.01 1.00
building 0.82 1.00 0.98
claims 0.97 1.00 1.00
vendor 0.92 0.91 0.90
spread 1.00 1.01 1.01
expect 0.96 0.98 0.96

average 0.92 0.96 0.97

hm
1 2 3

M2 0.96 0.98 0.99
stock 0.95 0.98 0.98
hours 0.74 0.84 0.79
ordersn 0.98 1.01 1.01
ordersc 0.96 1.01 1.00
building 0.95 0.99 0.98
claims 0.97 0.99 1.00
vendor 0.92 0.92 0.91
spread 0.99 1.00 1.01
expect 0.98 0.99 0.97

average 0.94 0.97 0.96

Notes: the table reports the performance of the IS-MSE(U-MIDAS)relative to IS-
MSE(MIDAS). The ratio IS-MSE(U-MIDAS)/IS-MSE(MIDAS) is computed for each single
indicator model, and is reported in the corresponding row. The last row reports the average
across indicators. Since the models change for each nowcast horizon, we report the results
for each of the three hm. Panel A reports the results at December 2006 (before the financial
crisis), Panel B at March 2011 (with the financial crisis included in the sample).

In the majority of cases, the MSE ratios are smaller than one, indicating a superior

performance of the U-MIDAS with respect to MIDAS. Especially for one-month ahead

nowcasts, all indicators show a relative in-sample MSE smaller or equal to one. The

results on the relative in-sample performance of U-MIDAS and MIDAS also do not change

substantially before and after the beginning of the crisis, if we compare panel A and B in

Table 6.

We now consider the out-of-sample nowcasting performance. We first look at the

relative performance for nowcasting GDP growth using the different monthly indicators

in the two MIDAS approaches against a benchmark. In our exercise, the benchmark is

an AR model, with lag length recursively selected according to the BIC criterion. To

compute the MSE of each MIDAS model and the benchmark, we consider two evaluation

samples. The first one starts in 1985Q1 and ends in 2006Q4, whereas the second again

covers the recent crisis period, ending in 2011Q1, and again starting in 1985Q1. Over

the evaluation samples, we compute the out-of-sample MSE of the U-MIDAS and MIDAS
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models using each single indicator relative to that of a benchmark. A relative MSE not

greater than one indicates a superior performance of the MIDAS nowcasts. The results

are reported in the upper part 1 of Table 7. In addition, we report a relative out-of-sample

MSE of the U-MIDAS to the MIDAS model as in the in-sample exercise. The results are

reported in the lower part 2 of Table 7.

The figures reported in the upper part of Table 7 indicate that the MIDAS models can

outperform the AR benchmark only for a few indicators. In particular, according to the

results in first sample period, depicted on the left side of the Table, the orders of consump-

tion goods (ordersc), building permits (build), new claims for unemployment insurance

(claims), the vendor performance diffusion index (vendor), and consumer expectations

(expect) yield a relative MSE lower than one at some horizons.

If we focus on those relative MSE pairs with either U-MIDAS or MIDAS or both

having a relative MSE smaller than one at the different horizons, we find 5 pairs with

a superior performance of U-MIDAS, and 3 pairs, where restricted MIDAS is better. In

general, there is no particular combination of an indicator and U-MIDAS which is clearly

dominated by the combination of the same indicator and restricted MIDAS, as the results

generally depend on the horizon.

The lower part of the Table, left side, shows the relative MSE between U-MIDAS

and MIDAS. Note that although the majority of cases seems to indicate a dominance of

restricted MIDAS (relative MSE greater than one), most of the nowcasts are not infor-

mative compared to a benchmark, as discussed in the upper part of the Table, and thus

should not be considered in the comparison.

In the evaluation sample ending in 2011Q1, as shown on the right side of Table 7,

we generally find lower relative MSEs over the AR benchmark compared to the earlier

evaluation period. Thus, the recent crisis seems to matter for the nowcast performance

of the different models. In particular, the indicator-based MIDAS regressions seem to

improve in relative terms compared to the benchmark. If we again only focus on those

relative MSE pairs with either U-MIDAS or MIDAS or both having a relative MSE smaller

than one at the different horizons, we find 9 pairs with a superior performance of U-

MIDAS, and 8 pairs, where restricted MIDAS is better. If we focus on the best performing

models (highlighted in bold in Table 7), we see that when including the crisis period the

best performer is an indicator model estimated with the restricted MIDAS, while the

opposite is true for the sample without the crisis. In the more recent period, we can also

find a few cases where either U-MIDAS or MIDAS dominate. For example, using restricted

MIDAS with orders of consumption goods (ordersc) now seems to work better than U-

MIDAS over all horizons, whereas building permits (build) work better as predictors using

U-MIDAS.

Overall, there is mixed empirical evidence on the relative performance of U-MIDAS

and MIDAS. The in-sample performance of U-MIDAS is better than the nowcast perfor-

mance. However, neither U-MIDAS or MIDAS are dominating out-of-sample. Generally,
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Table 7: Results for individual indicators relative to an AR benchmark. Nowcasting
performance for US GDP growth

1. Relative out-of-sample MSE ( MSE(model) / MSE( AR benchmark) )
A. Sample 1985Q1 - 2006Q4 B. Sample 1985Q1 - 2011Q1

hm
1 2 3

M2 midas 1.42 1.40 1.40
u-midas 1.16 1.03 1.45

stock midas 1.13 1.16 1.08
u-midas 1.24 1.23 1.19

hours midas 1.28 1.17 1.03
u-midas 1.53 1.41 1.06

ordersn midas 1.36 1.13 1.11
u-midas 1.56 1.35 1.29

ordersc midas 0.92 1.13 1.00
u-midas 0.94 1.13 0.99

building midas 1.00 0.98 1.01
u-midas 1.01 0.98 0.89

claims midas 0.94 1.03 1.14
u-midas 0.89 0.99 1.10

vendor midas 0.97 0.98 0.94
u-midas 0.97 0.93 1.04

spread midas 1.57 1.57 1.57
u-midas 1.46 1.54 1.52

expect midas 1.01 0.96 1.01
u-midas 1.00 0.98 1.10

hm
1 2 3

M2 midas 1.60 1.57 1.46
u-midas 1.28 1.18 1.42

stock midas 1.12 1.03 0.93
u-midas 1.09 1.08 0.98

hours midas 1.25 1.16 1.03
u-midas 1.39 1.30 0.89

ordersn midas 1.18 1.06 0.97
u-midas 1.32 1.26 1.18

ordersc midas 0.71 0.91 0.79
u-midas 0.74 0.92 0.81

building midas 1.02 0.91 0.88
u-midas 0.93 0.90 0.81

claims midas 0.86 0.93 0.89
u-midas 0.81 0.90 0.86

vendor midas 1.01 1.01 0.95
u-midas 1.02 0.99 1.05

spread midas 1.55 1.56 1.46
u-midas 1.43 1.53 1.43

expect midas 0.94 0.89 0.86
u-midas 0.93 0.92 0.94

2. Relative out of sample MSE ( MSE(U-MIDAS) / MSE(MIDAS) )
A. Sample 1985Q1 - 2006Q4 B. Sample 1985Q1 - 2011Q1

hm
1 2 3

M2 0.82 0.74 1.04
stock 1.10 1.05 1.10
hours 1.20 1.21 1.04
ordersn 1.15 1.19 1.16
ordersc 1.02 1.00 0.99
building 1.01 1.00 0.89
claims 0.95 0.96 0.97
vendor 1.00 0.95 1.11
spread 0.93 0.99 0.96
expect 0.99 1.03 1.09

average 1.02 1.01 1.03

hm
1 2 3

M2 0.80 0.75 0.97
stock 0.97 1.04 1.05
hours 1.12 1.11 0.86
ordersn 1.12 1.19 1.22
ordersc 1.03 1.01 1.02
building 0.91 0.98 0.91
claims 0.94 0.96 0.96
vendor 1.01 0.97 1.10
spread 0.92 0.98 0.98
expect 0.99 1.03 1.08

average 0.98 1.00 1.01

Notes: The upper part of the Table reports the performance of the MSE(model) relative
to MSE(benchmark), see part 1. The ratioMSE(model)/MSE(benchmark) is computed for
each single indicator model, and is reported in the corresponding row. Panel A reports
the results for the evaluation sample ending in December 2006 (before the financial crisis),
Panel B in March 2011 (with the financial crisis included in the sample). The benchmark
is a AR model with lag lenght selected according to the BIC criterion. The number in
bold represents the best performance for each horizon. The lower part of the Table reports
the performance of the MSE(U-MIDAS) relative to MSE(MIDAS) and the average across
indicators, see part 2.
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U-MIDAS is a strong competitor to restricted MIDAS, as it performs better for several

high frequency indicators and forecast horizons. Finally, we also find that during the

recent crisis, the information content of monthly indicators has increased compared to a

benchmark without high-frequency information.

5 An application to euro area GDP growth

To provide additional evidence on the relative performance of MIDAS and UMIDAS we

also conduct an evaluation for the Euro area GDP growth rate. The dataset in this case

includes the same series as in Foroni and Marcellino (2011), extracted from the Eurostat

database of Principal European Economic Indicators (PEEI) and updated at the end of

May 2011. The complete list of the series included is in Appendix A.3. Quarterly GDP

is available from 1996Q1 until 2010Q4, while the roughly 140 monthly indicators from

January 1996 to at most May 2011 (depending on the publication delay, there is a differ-

ent number of missing observations for each series at the end of the sample). Generally,

the monthly series include consumer and producer price index by sector, industrial pro-

duction and (deflated) turnover indexes by sector, car registrations, new orders received

index, business and consumers surveys with their components, sentiment indicators, un-

employment indices, monetary aggregates, interest and exchange rates. When analyzing

the nowcasting performance, we adopt a recursive approach as for the US, with the first

evaluation quarter fixed at 2003Q1 and the last one at 2010Q4, for a total of 32 evaluation

samples.

As in the analysis for the US, we start with an in-sample evaluation, distinguishing

the periods with and without the recent crisis. The results are shown in Table 8 that

reports the average and percentiles of the distribution across indicators of the IS-MSE(U

MIDAS) relative to IS-MSE(MIDAS).

The average ratios are always smaller than one, indicating a clear superior performance

of the U-MIDAS with respect to the MIDAS approach. In most of the cases, the in-

sample MSE obtained with the unrestricted model is 10% smaller than the corresponding

one obtained with the restricted polynomial. Moreover, the results are stable across the

different subsamples.

Results are different in the case of the nowcasting performance. Table 9 indicates

that only for hm = 1 more than half of the U-MIDAS models perform better than the

correspondent restricted models, in the pre-crisis sample. If we consider also the crisis,

the restricted MIDAS performs much better. This is due to the fact that the estimates

of the parameters of the U-MIDAS are influenced substantially by the dramatic drop and

subsequent recovery of the GDP in the quarters Q4 2008 and Q1 2009.

Overall the results are in line with those with simulated data and similar to those

obtained for the US. It is also worth noting that for at least 25% of the indicators the

U-MIDAS approach produces more precise nowcasts than MIDAS, with even larger values
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Table 8: Results for individual indicators. In-sample analysis for Euro area GDP growth,

Relative in sample MSE ( MSE(U-MIDAS) / MSE(MIDAS) )
A. Sample 1996Q1 - 2006Q4 B. Sample 1996Q1 - 2010Q4

hm
1 2 3

average 0.89 0.87 0.88
10th pctile 0.76 0.73 0.74
25th pctile 0.82 0.80 0.82
median 0.90 0.89 0.90
75th pctile 0.96 0.94 0.95
90th pctile 1.01 0.99 0.99

hm
1 2 3

average 0.86 0.81 0.82
10th pctile 0.69 0.57 0.58
25th pctile 0.80 0.75 0.74
median 0.89 0.86 0.87
75th pctile 0.95 0.93 0.92
90th pctile 0.98 0.95 0.95

Notes: the table reports the performance of the IS-MSE(U MIDAS)relative to IS-MSE(MIDAS). The
ratio IS-MSE(U MIDAS)/IS-MSE(MIDAS) is computed for each single indicator model, then in the
second row the mean of the distribution of these ratio is reported, and in rows 3 to 7 the main percentiles
(10th, 25th, 50th, 75th, 90th) of the distribution are reported. Since the models change for each nowcast
horizon, we report the results for each of the three hm. Panel A reports the results at December 2006
(before the financial crisis), Panel B at December 2010 (with the financial crisis included in the sample).

Table 9: Results for individual indicators. Nowcasting performance for Euro area GDP
growth.

Relative out of sample MSE ( MSE(U-MIDAS) / MSE(MIDAS) )
A. Sample 2003Q1 - 2006Q4 B. Sample 2003Q1 - 2010Q4

hm
1 2 3

average 1.03 1.03 1.00
10th pctile 0.79 0.79 0.79
25th pctile 0.88 0.94 0.91
median 0.99 1.00 0.99
75th pctile 1.08 1.09 1.07
90th pctile 1.34 1.29 1.21

hm
1 2 3

average 1.09 1.03 0.99
10th pctile 0.90 0.73 0.76
25th pctile 1.01 0.92 0.90
median 1.09 1.06 1.01
75th pctile 1.17 1.14 1.07
90th pctile 1.31 1.25 1.16

Notes: the table reports the performance of the MSE(U MIDAS)relative to MSE(MIDAS). The ratio
MSE(U MIDAS)/MSE(MIDAS) is computed for each single indicator model, then in the second row the
mean of the distribution of these ratio is reported, and in rows 3 to 7 the main percentiles (10th, 25th,
50th, 75th, 90th) of the distribution are reported. Panel A reports the results for the evaluation sample
ending in December 2006 (before the financial crisis), Panel B in December 2010 (with the financial crisis
included in the sample).
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in the pre-crisis period.

The evidence of a better performance of U-MIDAS in the pre-crisis sample emerges also

from Table 10, where we look at the average and the median relative MSE performance

for nowcasting quarterly GDP growth for the two different classes of models, against

a benchmark. We consider as a benchmark an AR process, with lag length selected

according to the BIC criterion. First, we estimate every individual model and compute

the relative MSE with respect to the benchmark. Then, we take the average and the

median across all the indicators of the relative MSE within a model class.

Table 10: Results for individual indicators relative to an AR benchmark. Nowcasting
performance for Euro area GDP growth

Relative out of sample MSE ( MSE(model) / MSE(AR benchmark) )
A. Sample 2003Q1 - 2006Q4 B. Sample 2003Q1 - 2010Q4

hm
1 2 3

average u-midas 1.15 1.08 1.14
average midas 1.14 1.08 1.19
median u-midas 1.06 1.03 1.07
median midas 1.06 1.03 1.09

hm
1 2 3

average u-midas 0.87 0.80 0.85
average midas 0.81 0.79 0.87
median u-midas 0.94 0.85 0.91
median midas 0.86 0.83 0.90

Notes: the table reports the average and the median performance of the MSE(model) relative to
MSE(benchmark). The ratio MSE(model)/MSE(benchmark) is computed for each single indicator model,
and then mean and median are computed for each class of models. Panel A reports the results for the
evaluation sample ending in December 2006 (before the financial crisis), Panel B in December 2010 (with
the financial crisis included in the sample). The benchmark is a AR model with lag lenght selected
according to the BIC criterion.

Table 10 also highlights striking differences before and after the crisis. As already

noticed in Foroni and Marcellino (2011), it is impossible to outperform a naive benchmark

in the period up to 2006 on average across all indicators. However, during the crisis, the

use of monthly information becomes very important, and both MIDAS approaches clearly

outperform the benchmark.

Given the large set of monthly indicators under analysis, it is of interest to identify

the best performing ones, and to assess whether the ranking changed substantially during

the crisis. Table 11 reports the top ten best performing monthly indicators for nowcasting

euro area GDP growth up to hm = 2, which also have a good performance at hm = 3,

with details provided in Appendix A.4 The performance of MIDAS and UMIDAS is overall

comparable, with UMIDAS better than MIDAS in four out of ten cases before the crisis

and five out of ten case with the crisis sample included. The best indicators are overall

rather stable over time, and include components of the business surveys such as IEOB,

BCI and IPE. However, the monthly indicators are much more useful over the full sample,

due to their improved performance with respect to the AR benchmark during the crisis

period.
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Table 11: Results for best individual indicators. Out-of-sample analysis for Euro area
GDP growth,

Top 10 euro area indicators
A. Sample 2003Q1 - 2006Q4 B. Sample 2003Q1 - 2010Q4

hm
1 2 3

BS IEOB u-midas 0.45 0.82 1.10
BS BCI midas 0.66 0.77 0.93
BS IPE midas 0.71 0.66 0.82
BS IEOB midas 0.71 0.88 0.99
BS IPT midas 0.73 0.84 0.92
BS ICI midas 0.73 0.76 0.92
BS IOB midas 0.75 0.85 0.95
BS IOB u-midas 0.75 0.83 1.05
BS BCI u-midas 0.76 0.78 1.14
BS IPE u-midas 0.77 0.74 0.84

hm
1 2 3

BS IPE midas 0.44 0.33 0.54
BS BCI u-midas 0.47 0.29 0.51
BS BCI midas 0.48 0.57 0.74
MIG NDCOG IS PPI midas 0.50 0.86 0.95
BS IEOB u-midas 0.51 0.36 0.69
MIG NDCOG IS PPI u-midas 0.51 0.53 0.50
BS GES NY midas 0.52 0.55 0.57
MIG COG IS PPI midas 0.52 0.86 0.96
BS IPE u-midas 0.52 0.28 0.43
BS GES NY u-midas 0.55 0.61 0.58

Notes: the table reports the performance of the top ten monthly indicators for forecasting euro area
GDP growth up to hm= 2, with a good performance also at hm= 3. Specifically, the values are the
ratio MSE(U MIDAS) or MSE(MIDAS) relative to the AR benchmark. Panel A reports the results up
to December 2006 (before the financial crisis), Panel B up to December 2010 (with the financial crisis
included in the sample).

In summary, as for the US we observe a deterioration of the out of sample performance

of U-MIDAS relative to MIDAS with respect to the in-sample evaluation. The difference is

even more marked than for the US, likely due to the shorter estimation samples used in the

recursive out of sample exercise for the euro area. As small samples are more problematic

for heavily parameterized models, the short sample length might be more problematic for

U-MIDAS than MIDAS, even when the specification of the former is based on the BIC

criterion. A second explanation could be related to the very good performance of MIDAS

during the crisis. Overall, there is mixed empirical evidence on the relative performance

of U-MIDAS and MIDAS also for the euro area. However, generally, U-MIDAS is a

strong competitor to restricted MIDAS, as it performs better for several high frequency

indicators and forecast horizons.

6 Conclusions

In the recent literature, mixed-data sampling (MIDAS) regressions have turned out to

be useful reduced-form tools for nowcasting low-frequency variables with high-frequency

indicators. To avoid parameter proliferation in the case of long high-frequency lags, func-

tional lag polynomials have been proposed. In this paper, we have discussed a variant of

the MIDAS approach, which does not resort to functional lag polynomials, but rather to

simple linear lag polynomials. Compared to the standard MIDAS approach in the litera-

ture, these polynomials are not restricted by a certain functional form, and we therefore
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call the approach unrestricted MIDAS (U-MIDAS).

We derive U-MIDAS regressions from a linear dynamic model, obtaining a simple and

flexible specification to handle mixed-frequency data. It can be expected to perform better

for forecasting than MIDAS as long as it is not too heavily parameterized, in particular, as

long as the differences in sampling frequencies are not too large. We have shown that this

is indeed the case by means of Monte Carlo simulations. U-MIDAS is particularly suited

to provide macroeconomic nowcasts and forecasts of quarterly variables, such as GDP

growth, given timely observations of monthly indicators like industrial production. On

the other hand, when daily data is available, our simulation results indicate that MIDAS

with functional lag polynomials are preferable to predict quarterly variables.

In the empirical applications for US and euro area GDP growth, we find that U-

MIDAS provides a very good in-sample fit based on monthly macroeconomic indicators.

The evidence is more mixed when looking at the out-of-sample nowcast performance.

Nonetheless, the out-of-sample evidence suggests that U-MIDAS can outperform MIDAS

with restricted polynomials for some of the high-frequency indicators. Overall, we do not

expect one polynomial specification to be dominant in every case. As U-MIDAS might

be a strong competitor, we rather suggest to consider it as an alternative to the existing

MIDAS approaches.
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A Appendix

A.1 Identification of the disaggregate process

Let us consider the LF exact MIDAS model for y (equation (7)):

h(Lk)ω(L)yt = b1(L)β(L)ω(L)x1t + ...+ bN(L)β(L)ω(L)xNt + q(Lk)uyt, (26)

t = k, 2k, 3k, ...

We want to determine what and how many HF models are compatible with this LF model,

namely, whether the parameters of the generating mechanism of y at HF can be uniquely

identified from those at LF. The following discussion is based on Marcellino (1998), to

whom we refer for additional details.

To start with, assuming that y follows the model in (26), we try and identify the

a(L) polynomials that can have generated h(Lk). This requires to analyze all the possible

decompositions of h(Lk) into β(L)a(L).

We have said that at least one hsi for each s in (6) has to be such that a(hsi) = 0. The

other k − 1 hsis can instead solve either β(hsi) = 0 or also a(hsi) = 0. Thus, for each s,
there are 2k − 1 possible “distributions”of the hsis as roots of β(L) and a(L). Hence, we
obtain a total of (2k − 1)h potential disaggregated AR components, which can be written
as ∏

m

(1− 1

hm
L), (27)

where the hms are the hsis which are considered as roots of a(l) = 0. The possible degree

of a(L) ranges from h to hk, with h < p.

A simple but rather stringent suffi cient condition for exact identification of the disag-

gregate process in our context is:

Proposition 1. All the roots of a(l) = 0 are distinct and positive, or distinct and

possibly negative if k is even.

Proof If a(l) = 0 has distinct and positive roots, or distinct and possibly negative roots

if k is even, then they coincide with those of h(z) = 0 raised to power of 1/k, and this

exactly identifies the AR component. Once, a(L) is exactly identified, β(L) is also unique.

Finally, given β(L) and since the aggregation operator ω(L) is known, the polynomials

bj(L) can be also recovered, j = 1, ..., N .

To conclude, it is worth making a few comments on this result. First, Wei and Stram

(1990) discuss more general suffi cient a priori conditions for one disaggregate model to be

identifiable from an aggregate one. Second, the hypothesis of no MA component at the

disaggregate level can be relaxed. Marcellino (1998) shows that such an MA component

can be uniquely identified if its order is smaller than p−1 and the condition in Proposition
1 holds. Third, the condition in Proposition 1 could be relaxed by imposing constraints on

the bi(L) polynomials. Fourth, when y is multivariate the link between the disaggregate
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and aggregate models is much more complicated, see Marcellino (1999), even though

conceptually the procedure to recover the disaggregate model is similar to the one we

have proposed for the univariate case. Finally, notice that the identification problem does

not emerge clearly within a Kalman filter approach to interpolation and forecasting, where

the underlying assumption is that the disaggregate model is known.

A.2 Monthly US data

Name Monthly indicator
M2 Real money supply M2

stock Stock price index (500 common stocks)

hours Average weekly hours in manufacturing

ordersn Orders: non-defence capital goods

ordersc Orders: consumer goods and materials

building Building permits

claims New claims for unemployment insurance

vendor Vendor performance diffusion index

spread Term spread (10 year - Federal Funds)

expect Consumer confidence index (U Michigan)
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A.3 Monthly euro area indicators

Monthly indicators
HICP - All items excluding energy and unprocessed food

HICP - All items excluding energy, food, alcohol and tobacco

HICP - All items excluding energy and seasonal food

HICP - All items excluding energy

HICP - All items excluding tobacco

HICP - All items

HICP - Food and non alcoholic beverages

HICP - Alcoholic beverages and tobacco

HICP - Clothing and footwear

HICP - Housing, water, electricity,gas and other fuels

HICP - Furnishings, household equipment and maintenance

HICP - Health

HICP - Transport

HICP - Communication

HICP - Recreation and culture

HICP - Education

HICP - Hotels, cafes and restaurants

HICP - Miscellaneous goods and services

HICP - Energy

HICP - Food

Producer price index - Electricity, gas, steam and air conditioning supply

Producer price index - Industry (except construction), sewerage, waste management and remediation activities

Producer price index - Mining and quarrying

Producer price index - Manufacturing

Producer price index - Manufacturing, for new orders

Producer price index - Electricity, gas, steam and air conditioning supply

Producer price index - Water collection, treatment and supply

Producer price index - Capital goods

Producer price index - Consumer goods

Producer price index - Durable consumer goods

Producer price index - Intermediate goods

Producer price index - Non-durable consumer goods

Producer price index - Energy

Business Climate Indicator

Consumer confidence indicator

Consumer surveys - Financial situation over the last 12 months

Consumer surveys - Financial situation over the next 12 months

Consumer surveys - General economic situation over the last 12 months
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Consumer surveys - Major purchases over the next 12 months

Consumer surveys - Major purchases at present

Consumer surveys - Price trends over the last 12 months

Consumer surveys - Price trends over the next 12 months

Consumer surveys - Statement on financial situation of household

Consumer surveys - Savings over the next 12 months

Consumer surveys - Savings at present

Consumer surveys - Unemployment expectations over the next 12 months

Business surveys - Constructions - Assessment of order-book levels

Business surveys - Constructions - Employment expectations for the months ahead

Business surveys - Constructions - Price expectations for the months ahead

Business surveys - Constructions - Construction confidence indicator

Business surveys - Constructions - Factors limiting building activity - None

Business surveys - Constructions - Factors limiting building activity - Insuffi cient demand

Business surveys - Constructions - Factors limiting building activity - Weather conditions

Business surveys - Constructions - Factors limiting building activity - Shortage of labour

Business surveys - Constructions - Factors limiting building activity - Shortage of material and/or equipment

Business surveys - Constructions - Factors limiting building activity - Other

Business surveys - Constructions - Factors limiting building activity - Financial constraints

Business surveys - Industry - Industrial confidence indicator

Business surveys - Industry - Employment expectations for the months ahead

Business surveys - Industry - Assessment of export order-book levels

Business surveys - Industry - Assessment of order-book levels

Business surveys - Industry - Expectations for the months ahead

Business surveys - Industry - Production trend observed in recent months

Business surveys - Industry - Assessment of stocks of finished products

Business surveys - Industry - Selling price expectations for the months ahead

Business surveys - Retail - Assessment of stocks

Business surveys - Retail - Retail confidence indicator

Business surveys - Retail - Expected business situation

Business surveys - Retail - Employment

Business surveys - Retail - Orders placed with suppliers

Business surveys - Retail - Present business situation

Business survey - Services - Assessment of business climate

Business survey - Services - Evolution of demand expected in the months ahead

Business survey - Services - Evolution of demand in recent months

Business survey - Services - Services Confidence Indicator

Business survey - Services - Evolution of employment in recent months

Consumer confidence indicator

Economic sentiment indicator
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Production index

Production index - Buildings

Production index - Civil engineering works

Production index - Construction

Production index - Mining and quarrying; manufacturing; electricity, gas, steam and air conditioning supply

Production index - Mining and quarrying; manufacturing

Production index - Mining and quarrying

Production index - Manufacturing

Production index - Manufacturing, for new orders

Production index - Electricity, gas, steam and air conditioning supply

Production index - Capital goods Production index - Consumer goods

Production index - Durable consumer goods

Production index - Intermediate goods

Production index - Non-durable consumer goods

Turnover index - domestic market - Mining and quarrying; manufacturing

Turnover index - non-domestic market - Mining and quarrying; manufacturing

Turnover index - total - Mining and quarrying; manufacturing

Turnover index - domestic market - Manufacturing

Turnover index - non-domestic market - Manufacturing

Turnover index - total - Manufacturing

Turnover index - domestic market - Manufacturing, for new orders

Turnover index - non-domestic market - Manufacturing, for new orders

Turnover index - total - Manufacturing, for new orders

Turnover index - domestic market - Capital goods

Turnover index - non-domestic market - Capital goods

Turnover index - total - Capital goods

Turnover index - domestic market - Consumer goods

Turnover index - non-domestic market - Consumer goods

Turnover index - total - Consumer goods

Turnover index - domestic market - Durable consumer goods

Turnover index - non-domestic market - Durable consumer goods

Turnover index - total - Durable consumer goods

Turnover index - domestic market - Intermediate goods

Turnover index - non-domestic market - Intermediate goods

Turnover index - total - Intermediate goods

Turnover index - domestic market - Non-durable consumer goods

Turnover index - total - Non-durable consumer goods

New orders received index - Manufacturing, for new orders

New orders received index - Manufacturing, for new orders (except heavy transport equipment)
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A.4 Top performers monthly euro area indicators

Name Monthly indicator
BS BCI Business Climate Indicator

BS GES NY Consumer Surveys - General economic situation over the next 12 months

BS ICI Business Surveys - Industry - Industrial confidence indicator

BS IEOB Business Surveys - Industry - Assessment of export order-book levels

BS IOB Business Surveys - Industry - Assessment of order-book levels

BS IPE Business Surveys - Industry - Assessment of order-book levels

BS IPT Business Surveys - Industry - Production trend observed in recent months

MIG COG IS PPI Industry - Producer price index: Consumer goods

MIG NDCOG IS PPI Industry - Producer price index: Non-durable consumer goods
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