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nestedness in real-world networks. Links are formed on the basis of agents’ 
centrality and have an exponentially distributed life time. We use stochastic 
stability to identify the networks to which the network formation process 
converges and find that they are nested split graphs. We completely 
determine the topological properties of the stochastically stable networks and 
show that they match features exhibited by real-world networks. Using four 
different network datasets, we empirically test our model and show that it fits 
well the observed networks. 
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Abstract

We develop a dynamic network formation model that can explain the observed nestedness
in real-world networks. Links are formed on the basis of agents’ centrality and have an
exponentially distributed life time. We use stochastic stability to identify the networks to
which the network formation process converges and find that they are nested split graphs.
We completely determine the topological properties of the stochastically stable networks
and show that they match features exhibited by real-world networks. Using four different
network datasets, we empirically test our model and show that it fits well the observed
networks.

Key words: Nestedness, Bonacich centrality, network formation, nested split graphs
JEL: A14, C63, D85

1. Introduction

Nestedness is an important aspect of real-world networks.1 For example, the organiza-
tion of the New York garment industry [Uzzi, 1996] and of the Fedwire bank network
[May et al., 2008; Soramaki et al., 2007] are nested in the sense that their organization is
strongly hierarchical. If we consider the latter network (i.e. the network of banks), then
as reported in May et al. [2008], the topology of interbank payment flows within the US

✩We would like to thank Phillip Bonacich, Yann Bramoullé, Ulrik Brandes, Guido Caldarelli, Sanjeev
Goyal, Patrick Groeber, Matt Jackson, Matteo Marsili, Fernando Vega-Redondo, Douglas White, Eric
Gilson as well as the participants of the 2009 DIME conference in Paris, the 2009 Trento Summer School
on “Innovation and Networks”, the 2009 HSC Videoconference at the University of California San Diego,
the 2009 workshop on the Economics of Social Networks at Laval University, the Microeconomic Theory
seminar at University of California Berkeley in 2009, the Theory Workshop at the Kellog School of Man-
agement (MEDS) at Northwestern University in 2010 and the 2011 Society for Advanced Economic Theory
(SAET) conference in Faro for their helpful comments. We would like to thank the Austrian National Bank
for providing access to the data. Michael D. König acknowledges financial support from Swiss National
Science Foundation through research grant PBEZP1–131169.

Email addresses: mdkoenig@stanford.edu (Michael D. König), tessonec@ethz.ch (Claudio J.
Tessone), yves.zenou@ne.su.se (Yves Zenou)

1We speak of nestedness in terms of a nested neighborhood structure of the nodes in a network: A
network exhibits nestedness if the neighborhood of a node is contained in the neighborhoods of the nodes
with higher degrees.
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Fedwire service is clearly nested.2 The sample from this network amounted to around
700, 000 transfer funds, with just over 5, 000 banks involved on an average day. The au-
thors [Soramaki et al., 2007] find that this network is characterized by a relatively small
number of strong flows (many transfers) between nodes, with the vast majority of linkages
being weak to non-existing (few to no flows). Furthermore, the topology of this Fedwire
network is highly dissortative [Newman, 2002], since large banks are disproportionately
connected to small banks, and vice versa; the average bank was connected to 15 others.
In other words, most banks have only a few connections while a small number of “hubs”
have thousands. Similarly, Åkerman and Larsson [2010], who study the evolution of the
global arms trade network using a unique dataset on all international transfers of major
conventional weapons over the period 1950-2007, find that these networks are nested and
dissortative in the sense that big countries mainly trade arms with small countries but
small countries do not trade with each other. Using aggregate bilateral imports from 1950
to 2000, De Benedictis and Tajoli [2011] analyze the structure of the world trade network
over time, detecting and interpreting patterns of trade ties among countries. They also
find that world trade tends to be concentrated among a sub-group of countries and a small
percentage of the total number of flows accounts for a disproportionately large share of
world trade. The larger countries account for a generally larger share of world trade and
have more partners. Figure 3 in their paper shows a clear core-periphery structure, in-
dicating nestedness of their networks. Interestingly, in all these networks, dissortativity
arises naturally since “big” agents tend to interact with “small” agents and vice versa. For
example, banks seek relationships with each other that are mutually beneficial. As a result,
small banks interact with large banks for security, lower liquidity risk and lower servicing
costs, and large banks may interact with small banks in part because they can extract a
higher premium for services and can accommodate more risk.

Surprisingly, nestedness has not been studied from a theoretical point of view, even
though other salient features of networks such as “small world” properties with high clus-
tering and short average path lengths [Watts and Strogatz, 1998] as well as “scale-free” or
power-law degree distribution [Barabasi and Albert, 1999] have received a lot of attention.3

The first aim of this paper is to propose a dynamic network formation model that ex-
hibits not only the standard features of real-world networks (small worlds, high clustering,
short path lengths and a power-law degree distributions) but also nestedness and dissorta-
tivity. The second aim is to provide a microfoundation for the network formation process
where linking decisions are based on the utility maximization of each agent rather than on
a random process, which is often assumed in most dynamic models of network formation.
The last aim of this paper is to test empirically our model with different network data
sources (interbank loans, trade in conventional goods and arms trade between countries)
and to show that our model fits well the features of these real-world networks, especially
their nestedness.

To be more precise, we develop a dynamic model where, at each period of time, agents
play a two-stage game: in the first stage, as in Ballester et al. [2006], agents play their
equilibrium contributions proportional to their Bonacich centrality [Bonacich, 1987], while,
in the second stage, a randomly chosen agent can update her linking strategy by creating
a new link as a best response to the current network. Links do not last forever but have an

2See Figures 1 and 2 in Soramaki et al. [2007].
3See Jackson and Rogers [2007] who propose a model that has all these features but not nestedness.
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exponentially distributed life time. The most valuable links (i.e. the ones with the highest
Bonacich centrality) decay at a lower rate than those that are less valuable. As a result,
the formation of social networks can be regarded as a tension between the search for new
linking opportunities and volatility that leads to the decay of existing links.

We introduce noise into the decision process to form links [cf. Blume, 2003; Feri, 2007;
Foster and Young, 1990; Hofbauer and Sandholm, 2007; Kandori et al., 1993; Sandholm,
2010], and analyze the limit of the invariant distribution, the stochastically stable networks,
as the noise vanishes. We first show that in this limit, starting from arbitrary initial
conditions, at each period of time the network generated by this dynamic process is a nested
split graph. These graphs, which are relatively well-known in the applied mathematics
literature [Aouchiche et al., 2008; Mahadev and Peled, 1995], have a very nice and simple
structure that make them very tractable to work with. To the best of our knowledge, this
is the first time that a complex dynamic network formation model can be characterized
by such a simple structure in terms of networks it generates. By doing so, we are able to
bridge the economics literature and the applied mathematics/physics literatures in a simple
way. Because of their simple features, we then show that degree, closeness, eigenvector and
Bonacich centrality induce the same ordering of nodes in a nested split graph (this is also
true for betweenness centrality if the ordering is not strict). This implies, in particular,
that if we had a game where agents formed links according to other measures of centrality
(such as degree, closeness, or betweenness) than the Bonacich centrality, then all our results
would be unchanged. We then show that the stochastically stable network is a nested split
graph. Instead of relying on a mean-field approximation of the degree distribution and
related measures as most dynamic network formation models do, because of the nature
of nested split graphs, we are able to derive explicit solutions for all network statistics of
the stochastically stable networks (by computing the adjacency matrix).4 We also find
that, by altering the rate at which linking opportunities arrive and links decay, a sharp
transition takes place in the network density. This transition entails a crossover from highly
centralized networks when the linking opportunities are rare and the link decay is high to
highly decentralized networks when many linking opportunities arrive and only few links
are removed. From the efficiency perspective such sharp transition can also be observed in
aggregate payoffs in the stochastically stable networks.

The intuition of these results is as follows. Agents want to link to other agents who are
more central since this leads to higher actions (as actions are proportional to centrality)
and higher actions raise payoffs more. Similarly, links to agents with lower centrality last
shorter. Notice moreover that, once someone loses a link with an agent, she becomes less
central and this makes it more likely that the next link she has will also disappear. Thus
link gains and losses are self reinforcing. This intuition suggests that if α, the probability
of adding links is large then the process should approximate complete network while if it is
small then the process should approximate the star network. The key insight of our model
is that for intermediate values of α the stochastically stable network is a nested split graph.

We then proceed by showing that our model reproduces the main empirical observations
of social networks. Indeed, we show that the stochastically stable networks emerging in
our link formation process are characterized by short path length with high clustering,
exponential degree distributions with power-law tails, negative degree-clustering correlation

4In a nested split graph the degree distribution uniquely defines the adjacency matrix (up to a permu-
tation of the node labels).
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and nestedness. These networks also show a clear core-periphery structure. Moreover, we
show that stochastically stable networks are dissortative.

Using four different data sources we then test empirically our model. The first network
we analyze is the network of Austrian banks in the year 2008. Links in the network represent
exposures between Austrian-domiciled banks on a non-consolidated basis [cf. Boss et al.,
2004]. The second network is the global banking network in the year 2011 obtained from
the Bank of International Settlements (BIS) locational statistics on exchange-rate adjusted
changes in cross-border bank claims [cf. Minoiu and Reyes, 2011]. The third one is a
trade network between countries in the year 2000. The trade network is defined as the
network of import-export relationships between countries in a given year in millions of
current-year U.S. dollars. Finally, we consider the network of arms trade between countries
[cf. Åkerman and Larsson, 2010]. We use data obtained from the SIPRI Arms Transfers
Database holding information on all international transfers between countries of seven
categories of major conventional weapons accumulated from 1950 to 2010. A link in the
network represents a recipient or supply relationship between two countries during this
period. Even though these networks are very different, they all exhibit strong nestedness
and dissortativity and we find a reasonable goodness of fit of our model with these networks
(even though our model is only parsimoniously parameterized).

It is worth noting that the model we study is rather general and the fact that our
network formation process generates nested-split graphs is not an artifact of a very specific
linking protocol. First, our results are independent of initial conditions. That is, the
network formation process will always converge to a nested split graph starting from any
possible initial network eventually. Second, we would obtain exactly the same results using
more general utility functions, e.g. any increasing function of the Bonacich centrality of the
agent or using “information centrality” introduced in Stephenson and Zelen [1989]. Third,
when creating a link, an agent can choose anyone in the network not only neighbors of
neighbors as it is often assumed. In other words, we do not restrict the set of choices of
her possible contacts. Fourth, if we relax the assumptions that agents are myopic and
consider instead farsighted agents, we can still show that a stochasically stable network
with nested-split feature exists. Finally, if it is assumed that link formation is costly, we
are able to show that if this cost is not too large, networks will still be nested split graphs.
We discuss in more detail all these robustness issues in Section 9.

Our paper is organized as follows. Section 2 discussed the relation of our model to the
literature. In Section 3, we introduce the model and discuss the basic properties of the
network formation process. In particular, Section 3.1 discusses the first stage of the game.
In Section 3.2, we introduce the second stage of the game, where the network formation is
explained. Next, Section 4 shows that stochastically stable networks exist, can be computed
analytically and are nested-split graphs. After deriving the stochastically stable networks in
Section 5, we analyze their properties in terms of topology and centralization. In Section 6,
we study efficiency from the point of view of maximizing total efforts and aggregate payoff
in the stochastically stable networks. We investigate the efficiency of different stochastically
stable networks as a function of the volatility of the environment. In Section 7, we show that
the particular structure of nested-split graphs can be observed in real-world networks and
run some numerical simulations to show the resilience of nested-split graphs to changes in
parameters. Using four different network datasets, we empirically test our model in Section
8. Section 9 discusses our results and their robustness. Finally, Section 10 concludes.
Appendix A gives all the necessary definitions and characterizations of networks used
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throughout the paper. In Appendix B we provide some general results for nested split
graphs in terms of their topology properties and centralization measures. We extend our
analysis in Appendix C by including linking costs. All proofs can be found in Appendix
D.

2. Relation to the literature

The literature on network formation is basically divided in two strands that are not commu-
nicating very much with each other. In the random network approach (mainly developed by
mathematicians and physicists),5 which is mainly dynamic, the reason why a link is formed
is pure chance. Indeed, this literature builds networks either through a purely stochastic
process where links appear at random according to some distribution, or else through some
algorithm for building links. In this approach, researchers study how emerging networks
match real-world networks [see e.g. Newman, 2010; Vega-Redondo, 2007]. While sharing
some common features with this literature, our model is quite different since agents do not
create links randomly but in a strategic way, i.e. they maximize their utility function.

In the other approach (developed by economists), the reason for the formation of a
link is strategic interactions. Individuals carefully decide with whom to interact and
this decision entails some consent by both parts in a given relationship. There are some
dynamic network formation models with strategic interactions. Bala and Goyal [2000],
Watts [2001], Jackson and Watts [2002a], Dutta et al. [2005] are prominent papers of
this literature. Bala and Goyal [2000] propose a model similar to the connections model
[Jackson and Wolinsky, 1996], but with directional flow of communication or information.
They focus on the dynamic formation of networks in this directed communications model.
The network formation game is played repeatedly, with individuals deciding on link for-
mation in each period. In this setting, for low enough costs to forming links, the process
leads naturally to a limiting network which has the efficient structure of a wheel. Also in
the context of the connections model, Watts [2001] considers a framework where pairs of
agents meet over time, and decide whether or not to form or sever links with each other.
Agents are myopic and so base their decision on how the decision on the given link affects
their payoffs, given the current network in place. An interesting result applies to a cost
range where a star network is both pairwise stable and efficient. Jackson and Watts [2002b]
model network formation as an intertemporal process with myopic individuals breaking and
forming links as the network evolves dynamically. Dutta et al. [2005] relax the assumption
of myopic agents and assume that agents behave in a farsighted manner by taking into ac-
count the intertemporal repercussions of their own decisions. Our model is different than
the ones developed in these papers in the sense that we consider both dynamic models of
network formation and optimal actions from agents. This allows us to give a microfoun-
dation of the network formation process as equilibrium actions transform into equilibrium
utility functions. Another crucial difference is that we are able to match most features of
real-world networks while these models do not.6 As Jackson [2007, 2008] pointed out, the

5See e.g. Albert and Barabási [2002].
6Mele [2010] provides an interesting dynamic network formation model where individuals decide with

whom to form links by maximizing a utility function. Even though the utility function has nice properties
(it is a potential function), contrary to our model, Mele does not characterize analytically the network
statistics we do here and resorts to Bayesian estimation strategy to estimate his model.
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random approach gives us a great deal of insight into how networks form (i.e. matches the
characteristics of real-life networks) while the deterministic approach performs better on
why networks form.

There is also another strand of the literature (called “games on networks”) that takes
the network as given and studies how the network structure impacts on outcomes and
individual decisions. A prominent paper of this literature is Ballester et al. [2006].7 They
mainly show that if agents’ payoffs are linear-quadratic, then the unique interior Nash
equilibrium of an n−player game in which agents are embedded in a network is such that
each individual effort is proportional to her Bonacich centrality measure. The latter is a
well-known centrality measure introduced by Bonacich [1987].8 The Bonacich centrality of
a particular node counts the total number of paths that start from this node in the graph,
weighted by a decay factor based on path length. In the model of Ballester et al. [2006],
it is mainly the centrality of an agent in a network that explains her outcome.9 In this
paper, we introduce strategic interactions in a non-random dynamic network formation
game where agents also choose how much effort they put in their activities.

There are some papers that, as in our framework, combine both network formation and
endogenous actions. These papers include Bramoullé et al. [2004], Cabrales et al. [2010],
Calvo-Armengol and Zenou [2004], Galeotti and Goyal [2010], Goyal and Vega-Redondo
[2005], Goyal and Joshi [2003], Jackson and Watts [2002a]. Most of these models are,
however, static and the network formation process is different. Goyal and Joshi [2003] is
the closest to our model. They consider a standard Cournot model of competition where
prior to market stage, firms can form costly links with each other since a link lowers costs
of production for the two firms. In this framework, a network defines a cost profile for
the competing firms. They show that every pairwise equilibrium connected network is
an inter-linked star network. Their model is static but has link formation and choice of
action (quantity). Our model is dynamic and has link formation and a choice of action.
The details of the payoffs and the methods of analysis, however, differ. In particular, the
introduction of stochastic elements in our analysis helps in solving our model, which allows
us to obtain more general results, like for example calculating the exact degree distribution
of the stochastically stable networks.

Finally, our paper is also related to Jackson and Rogers [2007], who also motivate their
modelling approach by means of statistics of empirical networks. In their model, new nodes
are born over time and can attach to existing nodes either by choosing one uniformly at
random or through a search process that makes the likelihood of meeting a given node

7Bramoullé and Kranton [2007], Bramoullé et al. [2011] and Galeotti et al. [2010] are also important
papers in this literature. The first paper focuses on strategic substitutabilities while the second one
provides a general framework solving any game on networks with perfect information and linear best-reply
functions. The last paper investigates the case when agents do not have perfect information about the
network. Because of its tractability, in the present paper, we use the model of Ballester et al. [2006] who
analyze a network game of local complementarities under perfect information.

8Centrality is a fundamental measure of the importance of actors in social networks, dating back to
early works such as Bavelas [1948]. See Wasserman and Faust [1994] for an introduction and survey.

9In the empirical literature, it has been shown that centrality is important in explaining exchange
networks [Cook et al., 1983], peer effects [Calvó-Armengol et al., 2009; Haynie, 2001], creativity of workers
[Perry-Smith and Shalley, 2003], workers’ performance [Mehra et al., 2001], power in organizations [Brass,
1984], the flow of information [Borgatti, 2005; Stephenson and Zelen, 1989], the formation and performance
of R&D collaborating firms and inter-organizational networks [Boje and Whetten, 1981; Powell et al., 1996;
Uzzi, 1997] as well as the success of open-source projects [Grewal et al., 2006].
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proportional to the number of links the node already has. In their model, m is the average
degree while r represents the ratio of how many links are formed uniformly at random
compared to how many are formed proportionally to the number of links existing nodes
already have. As r approaches 0, the distribution converges to be scale-free, while as m
tends to infinity the distribution converges to a negative exponential distribution, which
corresponds to the degree distribution of a purely uniform and independent link formation
process on a network that grows over time. Our model is quite different since, contrary
to Jackson and Rogers [2007], agents choose actions and form links by maximizing their
utility. Also we look at the steady-state distribution while they analyze growing networks.
As a result, the predictions of the two models are quite different. In particular, we can
explain how and why nestedness is an important feature of real-world networks.10

To summarize, our main contribution to the literature is that we are able to explain the
emergence of nestedness in networks by analyzing a dynamic network formation model with
endogenous actions. We are also able to analytically characterize the stochastically stable
networks, which can be shown to be nested-split graphs, and to provide a microfoundation
for the link-formation process. Even if nested-split graphs have a much more regular
structure than the complex networks we observe in many real-world applications, they are
easy to study, they are the result of endogenous rational actions and they have most of the
properties of real-world networks. Finally, we test empirically our model with four different
datasets and show that our model fits well these observed networks.

3. The Model

In this section, we introduce the network formation process, which can be viewed as a two-
stage game on two separate time scales. On the fast time scale, all agents simultaneously
choose their effort level in a fixed network structure. It is a game following Ballester et al.
[2006] with local complementarities where players have linear-quadratic payoff functions.
On the slow time scale, agents receive linking opportunities at a given rate and decide
with whom they want to form a link while the links they have created decay after having
reached their finite life time. This introduces two different time scales, one in which agents
are choosing their efforts in a simultaneous move game and the second in which an agent
forms a link and anticipates the equilibrium outcome in the following simultaneous move
game.

3.1. Nash Equilibrium and Bonacich Centrality

Consider a static network G in which the nodes represent a set N = {1, 2, . . . , n} of
agents/players. Following Ballester et al. [2006], each agent i ∈ N in the network G
selects an effort level xi ≥ 0, x ∈ R

n
+, and receives a payoff πi : R

n
+ × Ω × R+ → R of the

following form

πi(x, G, λ) ≡ xi −
1

2
x2
i + λ

n∑

j=1

aijxixj, (1)

10Also, the model by Jackson and Rogers [2007] produces assortative networks, while ours generates
dissortative networks. Hence, the real-world networks to which these two models apply are different.

7



where λ ≥ 0 and aij ∈ {0, 1}, i, j = 1, . . . , n are the elements of the symmetric n × n
adjacency matrix A of G. This utility function is additively separable in the idiosyncratic
effort component (xi − 1/2x2

i ) and the peer effect contribution (λ
∑n

j=1 aijxixj). Payoffs

display strategic complementarities in effort levels, i.e., ∂2πi(x, G, λ)/∂xi∂xj = λaij ≥ 0.
The general payoff structure in Equation (1) has a variety of applications [Ballester et al.,

2006]. For example, Equation (1) can be interpreted as the profit function of a bank com-
peting in quantities of lending à la Cournot with other banks in a single homogeneous
product (a loan) on the same market (see Cohen-Cole et al. [2011]). Equation (1) can also
be interpreted as the utility of a representative consumer in country i. Goods produced in
different countries j trading with country i are complements, with a parameter λ ≥ 0, and
the utility of i has an own concavity term in domestically produced goods.

In order to find the Nash equilibrium solution associated with the above payoff function
(1), we define a network centrality measure introduced by Bonacich [1987]. Let λPF(G) be
the largest real eigenvalue of the adjacency matrix A of network G. The adjacency matrix
is a matrix that lists the direct connections in the network. If I denotes the n× n identity
matrix and u ≡ (1, . . . , 1)⊤ the n-dimensional vector of ones then we can define Bonacich
centrality as follows:

Definition 1. If and only if λ < 1/λPF(G) then the matrix B(G, λ) ≡ (I− λA)−1 =
∑∞

k=0 λ
kAk exists, is non-negative,11 and the vector of Bonacich centralities is defined as

b(G, λ) ≡ B(G, λ) · u. (2)

We can write the vector of Bonacich centralities as b(G, λ) =
∑∞

k=0 λ
kAk·u = (I−λA)−1·u.

For the components bi(G, λ), i = 1, . . . , n, we get

bi(G, λ) =
∞∑

k=0

λk(Ak · u)i =
∞∑

k=0

λk

n∑

j=1

(
Ak
)

ij
, (3)

where
(
Ak
)

ij
is the ij-th entry of Ak. Because

∑n
j=1

(
Ak
)

ij
is the number of all walks

of length k in G starting from i, bi(G, λ) is the number of all walks in G starting from i,
where the walks of length k are weighted by their geometrically decaying factor λk.

Now we can turn to the equilibrium analysis of the game.

Theorem 1 (Ballester et al. [2006]). Let b(G, λ) be the Bonacich network centrality of
parameter λ. For λ < 1/λPF(G) the unique interior Nash equilibrium solution of the
simultaneous n–player move game with payoffs given by Equation (1) and strategy space
R

n
+ is given by

x∗i = bi(G, λ), (4)

for all i = 1, . . . , n.

11The proof can be found e.g. in Debreu and Herstein [1953].
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Moreover, the payoff of agent i in the equilibrium is given by12

π∗i (G, λ) ≡ πi(x
∗, G, λ) =

1

2
(x∗i )

2 =
1

2
b2i (G, λ). (5)

The parameter λ measures the effect on agent i of agent j’s contribution, if they are
connected. If we assume that we have strong network externalities so that λ approaches
its highest possible value 1/λPF(G) then the Bonacich centrality becomes proportional to
the standard eigenvector measure of centrality [Wasserman and Faust, 1994, Chap. 5.2].
The latter result has been shown by Bonacich [1987] and Bonacich and Lloyd [2001].

Furthermore, Ballester et al. [2006] have shown that the equilibrium outcome and the
payoff for each player increases with the number of links in G (because the number of net-
work walks increases in this way).13 This implies that, if an agent is given the opportunity
to change her links, she will add as many links as possible. On the other hand, if she is
only allowed to form one link at a time, she will form the link to the agent that increases
her payoff the most. In both cases, eventually, the network will then become complete,
i.e. each agent is connected to every other agent. However, to avoid this latter unrealistic
situation, we assume that the agents are living in a volatile environment that causes links
to decay such that the complete network can never be reached. Instead the architecture of
the network adapts to the volatile environment. We will treat these issues more formally
in the next section.

3.2. The Network Formation Process

We now introduce a network formation process that incorporates the idea that agents with
high Bonacich centrality (their equilibrium effort levels) are more likely to connect to each
other, while the links they have established between each other have a longer life time if
they are viewed as more valuable to them.

We consider continuous time Markov chain (G(t))t∈R+
with G(t) = (N , E(t)) comprising

the set of agents N = {1, . . . , n} together with the set of edges/links E(t) ⊂ N × N at
time t between them. (G(t))t∈R+

is a collection of random variables G(t), indexed by time
t ∈ R+ on a probability space (Ω,F ,P), where Ω is the countable state space of all networks
with n nodes, F is the σ-algebra σ ({G(t) : t ∈ R+}) generated by the collection of G(t),
and P : F → [0, 1] is a countably additive, non-negative measure on (Ω,F) with total mass
∑

G∈Ω P(G) = 1. At every time t ≥ 0, links can be created or decay with specified rates
that depend on the current network G(t) ∈ Ω.

Definition 2. Consider a continuous time Markov chain (G(t))t∈R+
on the probability space

(Ω,F ,P). Let π∗(G(t), λ) ≡ (π∗1(G(t)), . . . , π∗n(G(t))) denote the profile of Nash equilibrium
payoffs of the agents in G(t) following from the payoff function (1) with parameter 0 ≤
λ < 1/λPF(G(t)).14

12As discussed in more detail in Section 9, all our results would be unchanged in a setup where agents do
not choose efforts but where their payoff is given by any monotonic increasing function of their Bonacich
centrality.

13See Theorem 2 in Ballester et al. [2006].
14In order to guarantee an interior solution of the Nash equilibrium efforts corresponding to the payoff

functions in Equation (1), we assume that the parameter λ ≥ 0 is smaller than the inverse of the largest
real eigenvalue of G(t) for any t. Testing the impact of the Bonacich centrality measure on educational
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(i) At a rate αi ∈ (0, 1) link creation opportunities arrive at each agent i ∈ N . If such
an opportunity arrives, then agent i computes the marginal payoff π∗i (G(t) ⊕ ij, λ) for
each agent j /∈ N\(Ni ∪ {i}) she is not already connected to, where this computation
includes an additive, exogenous stochastic term εij, incorporating possible mistakes in the
computation of the agent [cf. Blume, 2003; Hofbauer and Sandholm, 2007].15 We assume
that the exogenous random terms εij are identically and independently type I extreme value
distributed (or Gumbel distributed) with scaling parameter ζ [cf. McFadden, 1981].16 Given
that agent i receives a link creation opportunity, she then links to agent j with probability
[cf. Anderson et al., 1992]17

bζi (j|G(t)) ≡ P

(

π∗i (G(t)⊕ ij, λ) + εij = max
k∈N\(Ni∪{i})

π∗i (G(t)⊕ ik, λ) + εik

)

1N\(Ni∪{i})(j)

=
eπ

∗
i (G(t)⊕ij,λ)/ζ

∑

k∈N\(Ni∪{i})
eπ

∗
i (G(t)⊕ik,λ)/ζ

1N\(Ni∪{i})(j).

It follows that the probability that in a small time interval [t, t+∆t) a transition takes place
from G(t) to G(t) ⊕ ij is given by P(G(t + ∆t) = G ⊕ ij|G(t) = G) = αib

ζ
i (j|G(t))∆t +

o(∆t).18

(ii) We assume that a link ij, once established, has an exponentially distributed life time
τij ∈ R+ with parameter νζ

ij(G(t)) ≡ 1
E(τij |G(t))

= βifij(G(t)), including an agent specific

component βi ∈ (0, 1), and a link specific component

f ζ
ij(G(t)) ≡ eπ

∗
i (G(t)⊖ij,λ)/ζ

∑

k∈Ni
eπ

∗
i (G(t)⊖ik,λ)/ζ

1Ni
(j).

The probability that in a small time interval [t, t +∆t) a transition takes place from G(t)
to G(t)⊖ ij is given by P(G(t+∆t) = G⊖ ij|G(t) = G) = βif

ζ
ij(G(t))∆t+ o(∆t).

Transitions to networks that differ by more than one link have probability of the order
o(∆t).

In words, if agent i is chosen to form a link (at rate αi), she will choose the agent that
increases the most her utility. There is, however, a possibility of error, captured by the
stochastic term in the profit function. Furthermore, it is assumed that links do not last
forever but have an exponentially distributed life time with an expectation that depends on
the relative payoff loss from removing that link. The specific functional form of the pairwise
component f ζ

ij(·) in the expected life time of a link incorporates the fact that links which are
more valuable to an agent (i.e. the ones with the highest Bonacich centrality) live longer

outcomes in the United States, Calvó-Armengol et al. [2009] found that only 18 out of 199 networks (i.e.
9 %) do not satisfy this eigenvalue condition. In Section 9, we show that our results still hold in a more
general framework (i.e. a more general utility function) where this condition on the eigenvalue is not
needed.

15See also Sandholm [2010, Chap. 6].
16For the distribution of the error term it holds that P(εij ≤ c) = e−ec/ζ−γ

, where γ ≈ 0.58 is Euler’s

constant. The expectation is E(εij) = 0 and the variance is given by Var(εij) =
π2ζ2

6 .
17These are the perturbed best response strategies analyzed in Hofbauer and Sandholm [2007].
18f(t) = o(g(t)) as t → ∞ if limt→∞ f(t)/g(t) = 0.
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than the ones which are viewed as less valuable to her. The value of a link is measured by
the perceived loss in payoff incurred by the agent from removing the link.19 The fact that
links do not last forever is a quite natural feature of real-world networks. Ehrhardt et al.
[2008] put forward inter-firm alliances and scientific collaborations as examples of networks
with volatile environment. In the context of inter-firm alliances, Hagedoorn [2002] for
research partnerships, Kogut et al. [2007] for joint ventures, Harrigan [1988] for alliances
and Park and Russo [1996] for (equity-based) joint ventures provide empirical evidence
on this phenomenon. For example, Harrigan [1988] studies 895 alliances from 1924 to
1985 and concludes that the average life-span of the alliance is relatively short, 3.5 years,
with a standard deviation of 5.8 years and 85 % of these alliances last less than 10 years.
Park and Russo [1996] focus on 204 joint ventures among firms in the electronic industry
for the period 1979-1988. They show that less than half of these firms remain active
beyond a period of five years and for those that last less than 10 years (2/3 of the total),
the average lifetime turns out to be 3.9 years. Similar empirical evidence can be found
in Newman [2004], Grossman [2002], Goyal et al. [2006] for scientific collaborations in
physics, biomedical research, computer science, mathematics and economics, showing a
relative short life of link duration.

It should be clear that, when a new link may be added to the network, then that link
proposal will always be accepted by the receiver. This is because it always increases the
utility of the receiver due to local complementarities in the utility function. In fact, we
will show below, that it will also be the best reply for the receiver (i.e. the best alternative
in terms of link formation).

Observe that when agents decide to create a link, they do it in a myopic way, that is
they only look at the agents that give them the current highest payoff. There is literature
on farsighted networks where agents calculate their lifetime-expected utility when they
want to create a link [see, e.g. Konishi and Ray, 2003]. We adopt here a myopic approach
because of its tractability and because our model also incorporates effort decision.20

The Markov chain (G(t))t∈R+
can be described infinitesimally in time by the genera-

tor matrix Qζ with elements given by the transition rates qζ : Ω × Ω → R defined by
lim∆t↓0 P(G(t+∆t) = G′|G(t) = G) = qζ(G,G′). Consequently, qζ(G,G⊕ ij) = αib

ζ
i (j|G)

and qζ(G,G ⊖ ij) = βif
ζ
ij(G). The transition rates have the property that qζ(G,G′) =

qζ(G,G ± ij) ≥ 0 if G′ differs from G by the link ij and qζ(G,G′) = 0 if G′ differs from
G by more than one link. Moreover, it must hold that

∑

G′∈Ω qζ(G,G′) = 0, and one can

show that P(G(t) = G′|G(0) = G) = eQ
ζt. If a non-negative solution to µζQζ = 0 with

∑

G∈Ω µζ(G) = 1 exists, then µζ is the stationary distribution of the Markov chain satis-
fying µζ(G′) = limt→∞ P(G(t) = G′|G(0) = G) [see e.g. Ethier and Kurtz, 1986; Liggett,
2010; Stroock, 2005].

The most simple case is the one where ζ diverges, the error term εij becomes dominant
and the link formation and decay rates are payoff independent. The link creation and

19In a similar way, Staudigl [2011] assumes that the linking activity levels of agents depend on their
relative marginal payoffs, and Snijders [2001]; Snijders et al. [2010] introduce exponential link update
rates, which “depend on actor-specific covariates or on network statistics expressing the degree to which
the actor is satisfied with the present network structure.” See also Eq. (3.4) in Staudigl [2011] and Snijders
[2001], Section 7.1.

20Jackson and Watts [2002b] argue that this form of myopic behavior makes sense if players discount
heavily the future. In Section 9, we discuss the possibility of having farsighted agents in our model
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decay rates are then given by

λi ≡ lim
ζ→∞

qζ(G,G⊕ ij) = αi
1

|N\(Ni ∪ {i})|1N\(Ni∪{i})(j),

µi ≡ lim
ζ→∞

qζ(G,G⊖ ij) = βi
1

|Ni|
1Ni

(j).

These transition rates correspond to a birth-death Markov chain with birth rates λi and
death rates µi [see e.g. Liggett, 2010, Chap. 2.7.1]. It follows that the stationary degree
distribution is given by P (d) = 1

n

∑n
i=1 P(di = d) where

P(di = d) = P(di = 0)
d−1∏

j=0

λj

µj+1

=
1

1 + αi

βi

∑n−1
d=1

∏d−1
j=0

n−j
j+2

αi

βi

d−1∏

j=0

n− j

j + 2

=
αi

αi (2n+1 − n− 3) + βi(n+ 1)

(
n+ 1

d+ 1

)

.

Setting αi = βi = 1/2 for all i ∈ N , we can write the degree distribution for large n as

P (d) =
1

2 (2n − 1)

(
n+ 1

d+ 1

)

∼
(
1

2

)n−1(
n− 1

d

)

, as n → ∞. (6)

This is equivalent to a Poisson degree distribution P (d) =
(
n−1
d

)
pd(1− p)n−1−d correspond-

ing to a random graph G(n, p) with an independent link probability p = 1/2 [see e.g.
Jackson, 2008, Chap. 4].

A more interesting case, from a behavioral and topological point of view, is the one
where ζ converges to zero and the error term εij vanishes. For each agent i ∈ N let the best
response be the set-valued map Bi : Ω → N defined as Bi(G) ≡ argmaxk∈N\(Ni∪{i})π

∗
i (G⊕

ik, λ), and similarly we define the map Mi : Ω → N as Mi(G) ≡ argmaxk∈Ni
π∗i (G⊖ik, λ).

In the limit ζ → 0, we then have that the link creation and decay rates are given by

q(G,G⊕ ij) ≡ lim
ζ→0

qζ(G,G⊕ ij) = αi
1

|Bi(G)|1Bi(G)(j),

q(G,G⊖ ij) ≡ lim
ζ→0

qζ(G,G⊖ ij) = βi
1

|Mi(G)|1Mi(G)(j).

Networks in the support of the stationary distribution of the Markov chain when ζ con-
verges to zero correspond to the stochastically stable states [Foster and Young, 1990].21 A
network G ∈ Ω is called stochastically stable if µ(G) > 0 where µ ≡ limζ→0 µ

ζ . The set

of stochastically stable networks is denoted by Ω̂ ≡ {G ∈ Ω : µ(G) > 0}. We will analyze
these states in Section 4, while we will study the sample paths generated by the chain in
the limit of ζ converging to zero in the next section.

21See also Young [1998, Chap. 3] and Sandholm [2010, Chap. 12].
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3.3. Network Formation and Nested Split Graphs

In this section we will focus on the Markov chain introduced in Definition 2 as the probabil-
ity of mistakes converges to zero. An essential property of the chain is that it produces net-
works in a well defined class of graphs denoted by “nested split graphs” [Aouchiche et al.,
2008].22 We will give a formal definition of these graphs and discuss an example in this
section. Nested split graphs include many common networks such as the star or the com-
plete network. Moreover, as their name already indicates, they have a nested neighborhood
structure. This means that the set of neighbors of each agent is contained in the set of
neighbors of each higher degree agent. Nested split graphs have particular topological
properties and an associated adjacency matrix with a well defined structure.

In order to characterize nested split graphs, it will be necessary to consider the degree
partition of a graph, which is defined as follows:

Definition 3 (Mahadev and Peled [1995]). Let G = (N , E) be a graph whose distinct
positive degrees are d(1) < d(2) < . . . < d(k), and let d0 = 0 (even if no agent with degree 0
exists in G). Further, define Di = {v ∈ N : dv = d(i)} for i = 0, . . . , k. Then the set-valued
vector D = (D0,D1, . . . ,Dk) is called the degree partition of G.

With the definition of a degree partition, we can now give a more formal definition of
a nested split graph.23,24

Definition 4 (Mahadev and Peled [1995]). Consider a nested split graph G = (N , E) and
let D = (D0,D1, . . . ,Dk) be its degree partition. Then the nodes N can be partitioned
in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating set

⋃k
i=⌊ k

2⌋+1
Di in the graph

G′ = (N\D0, E). Moreover, the neighborhoods of the nodes are nested. In particular, for
each node v ∈ Di, i = 1, . . . , k,

Nv =

{⋃i
j=1Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
,

⋃i
j=1Dk+1−j \ {v} if i =

⌊
k
2

⌋
+ 1, . . . , k.

(7)

Figure 1 (left) illustrates the degree partition D = (D0,D1, . . . ,D6) and the nested
neighborhood structure of a nested split graph. A line between Di and Dj indicates that
every node in Di is linked to every node in Dj for any i, j = 1, . . . , 6. The nodes in
the dominating set included in the solid frame induce a clique while the nodes in the
independent sets that are included in the dashed frame induce an empty subgraph. In the
following we will call the sets Di, i =

⌊
k
2

⌋
+ 1, . . . , k, dominating subsets, since the set Di

induces a dominating set in the graph obtained by removing the nodes in the set
⋃k−i

j=0Dj

from G.
A nested split graph has an associated adjacency matrix which is called stepwise matrix

and it is defined as follows:

22Nested split graphs are also called “threshold networks” [Hagberg et al., 2006; Mahadev and Peled,
1995].

23 Let x be a real valued number x ∈ R. Then, ⌈x⌉ denotes the smallest integer larger or equal than x
(the ceiling of x). Similarly, ⌊x⌋ denotes the largest integer smaller or equal than x (the floor of x).

24In general, split graphs are graphs whose nodes can be partitioned in a set of nodes which are all
connected among each other and sets of nodes which are disconnected. A nested split graph is a special
case of a split graph.
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D6 D1 d(1) = 2

D2 d(2) = 3

D3 d(3) = 4D4d(4) = 5

D5d(5) = 7

D6d(6) = 9

A =















0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0















Figure 1: Representation of a connected nested split graph (left) and the associated adjacency matrix
(right) with n = 10 agents and k = 6 distinct positive degrees. A line between Di and Dj indicates that
every node in Di is linked to every node in Dj . The solid frame indicates the dominating set and the nodes
in the independent sets are included in the dashed frame. Next to the set Di the degree of the nodes in the
set is indicated. The neighborhoods are nested such that the degrees are given by d(i+1) = d(i) + |Dk−i+1|
for i 6=

⌊
k
2

⌋
and d(i+1) = d(i) + |Dk−i+1| − 1 for i =

⌊
k
2

⌋
. In the corresponding adjacency matrix A to the

right the zero-entries are separated from the one-entries by a stepfunction.

Definition 5 (Brualdi and Hoffman [1985]). A stepwise matrix A is a matrix with ele-
ments aij satisfying the condition: if i < j and aij = 1 then ahk = 1 whenever h < k ≤ j
and h ≤ i.

Figure 1 (right) shows the stepwise adjacency matrix A corresponding to the nested
split graph shown on the left hand side. If we let the nodes by indexed by the order of the
rows in the adjacency matrix A then it is easily seen that for example D6 = {1, 2 ∈ N :
d1 = d2 = d(6) = 9} and D1 = {9, 10 ∈ N : d9 = d10 = d(1) = 2}.

If a nested split graph is connected we call it a connected nested split graph. The
representation and the adjacency matrix depicted in Figure 1 actually shows a connected
nested split graph. From the stepwise property of the adjacency matrix it follows that a
connected nested split graph contains at least one spanning star, that is, there is at least
one agent that is connected to all other agents. In Appendix B, we also derive the clustering
coefficient, the neighbor connectivity and the characteristic path length of a nested split
graph. In particular, we show that connected nested split graphs have small characteristic
path length, which is at most two. We also analyze different measures of centrality (see
Wasserman and Faust [1994, Chap. 5.2]) in a nested split graph. One important result
is that degree, closeness, and Bonacich centrality induce the same ordering of nodes in
a nested split graph. If the ordering is not strict, then this holds also for betweenness
centrality (see Section B.2.5 in the Appendix).

In the next proposition, we identify the relationship between the Bonacich centrality of
an agent and her degree in a nested split graph.

Proposition 1. Consider a pair of agents i, j ∈ N of a nested split graph G = (N , E).
(i) If and only if agent i has a higher degree than agent j then i has a higher Bonacich

centrality than j, i.e. di > dj ⇔ bi(G, λ) > bj(G, λ).

(ii) Assume that neither the links ik nor ij are in G, ij /∈ E and ik /∈ E . Further assume
that agent k has a higher degree than agent j, dk > dj. Then adding the link ik to
G increases the Bonacich centrality of agent i more than adding the link ij to G, i.e.
dk > dj ⇔ bi(G⊕ ik, λ) > bi(G⊕ ij, λ).
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From part (ii) of Proposition 1 we find that when agent i has to decide to create a
link either to agents k or j, with dk > dj, in the link formation process (G(t))t∈R+

then i
will always connect to agent k because this link gives i a higher Bonacich centrality than
the other link to agent j. We can make use of this property in order to show that the
networks emerging from the link formation process defined in the previous section actually
are nested split graphs. This result is stated in the next proposition.

Proposition 2. Consider the network formation process (G(t))t∈R+
introduced in Defini-

tion 2 in the limit of ζ converging to zero. Assume that at t = 0, we start with the empty
network G(0) = K̄n. Then, at any time t ≥ 0, the network G(t) is a nested split graph
almost surely, and the set Ψ ∈ Ω consisting of all possible unlabeled nested split graphs on
n nodes with |Ψ| = 2n−1 has measure P(Ψ) = 1.

This result is due to the fact that agents, when they have the possibility of creating
a new link, always connect to the agent who has the highest Bonacich centrality (and by
Proposition 1 the highest degree). This creates a nested neighborhood structure which
can always be represented by a stepwise adjacency matrix after a possible relabeling of the
agents.25 The same applies for link decay.

Let us give some more intuition of this crucial result. Agents want to link to others
who are more central since this leads to higher actions (as actions are proportional to
centrality) and higher actions raise payoffs more. Similarly, links decay to those with
lower centrality as these agents have lower actions and hence lower payoff effects. Notice
moreover that, once a link decays to an agent, she becomes less central and this makes it
more likely that another link decays. Thus link gains and losses are self reinforcing. This
intuition suggests that if α, the probability of adding links is large then the process should
approximate complete network while if it is small then the process should approximate the
star network. The key insight of our model is that for intermediate values of α the network
is a nested split graph.

Observe that it is assumed that there is no cost to forming links. If links represent a
social tie, then there is a cost to maintaining a link since agents must spend time with the
person they are linked to. Because of the assumption of no link cost, each agent wants
to connect to every other agent, which leads to the formation of nested split graphs. In
Section 9 and Appendix C, we extend the model to see what would happen to the results
if links were costly to maintain and only the links that increase the payoff of an agent were
formed. We show that as long as the cost is not too high, marginal payoffs are positive
and the networks always converges to nested split graphs so that all our results hold.

Due to the nested neighborhood structure of nested split graphs, any pair of agents
in (the connected component) of a nested split graph is at most two links separated from
each other. From Proposition 1 it then follows that in a nested split graph G(t) the
best response of an agent i are the agents with the highest degrees in i’s second-order
neighborhood N (2)

i .26 Moreover, if G(t) is a nested split graph then i ∈ Bj(G(t)) if and

25Further, we will show in Proposition 3 that as ζ converges to zero, (G(t))t∈R+
induces a finite state

Markov chain where the recurrent states Ω̂ consist of nested split graphs.
26Let Ni = {k ∈ N : ik ∈ E(t)} be the set of neighbors of agent i ∈ N and N (2)

i =
⋃

j∈Ni
Nj\ (Ni ∪ {i})

denote the second-order neighbors of agent i in the current network G(t). Note that the connectivity
relation is symmetric such that j is a second-order neighbor of i if i is a second-order neighbor of j, i.e.

i ∈ N (2)
j if and only if j ∈ N (2)

i for all i, j ∈ N .
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only if j ∈ Bi(G(t)). Hence, we could require in addition that links are only formed under
mutual consent as in the consent game by Myerson [1991].

From the fact that G(t) is a nested split graph with an associated stepwise adjacency
matrix it further follows that at any time t in the network evolution, G(t) consists of a
single connected component and possibly isolated nodes.

Corollary 1. Consider the network formation process (G(t))t∈R+
introduced in Definition

2 in the limit of ζ converging to zero. Assume that at t = 0, we start with the empty network
G(0) = K̄n. Then, at any time t ≥ 0, the network G(t) has at most one non-singleton
component almost surely.

Nested split graphs are not only prominent in the literature on spectral graph theory
[Cvetkovic et al., 1997] but they have also appeared in the recent literature on economic
networks. Nested split graphs are so called “inter-linked stars” found in Goyal and Joshi
[2003].27 Subsequently, Goyal et al. [2006] identified inter-linked stars in the network of
scientific collaborations among economists. It is important to note that nested split graphs
are characterized by a distinctive core-periphery structure. Core-periphery structures have
been found in several empirical studies of interfirm collaborations networks [Baker et al.,
2008; Kitsak et al., 2010]. A recent study by Leskovec et al. [2009] also finds nested core-
periphery structures in over 100 large sparse real-world social and information networks.
The wider applicability of nested split graphs suggests that a network formation process as
it is defined in Definition 2 that generates these graphs as the stochastically stable networks
are of general relevance for understanding economic and social networks.

Finally, note that the network formation process (G(t))t∈R+
introduced in Definition

2 is independent of initial conditions G(0).28 This means that even when we start from
an initial network G(0) which is not a nested split graph then after some finite time the
Markov chain will reach a nested split graph. From then on all consecutive networks visited
by the chain are nested split graphs.

4. Stochastically Stable Networks: Characterization

In this section we show that the network formation process (G(t))t∈R+
of Definition 2

induces an ergodic Markov chain with a unique invariant distribution. We then proceed
by analyzing the stochastically stables states in Ω̂ (in the limit of ζ → 0) of this process
as the number n of agents becomes large.

Proposition 3. The network formation process (G(t))t∈R+
introduced in Definition 2 in-

duces an ergodic Markov chain on the finite state space Ω with a unique stationary distribu-
tion µζ such that µζ(G′) = limt→∞ P(G(t) = G′|G(0) = G) for any G,G′ ∈ Ω. Moreover,
the stochastically stable states Ω̂ are given by the set of nested split graphs Ψ such that
limζ→0 µ

ζ(Ψ) = 1.

27Nested split graphs are inter-linked stars but an inter-linked star is not necessarily a nested split graph.
Nested split graphs have a nested neighborhood structure for all degrees while in an inter-linked star this
holds only for the nodes with the lowest and highest degrees.

28See Proposition 3 in Section 4 and its proof in Appendix D.
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In the following we will assume for simplicity that αi = 1 − βi = α for all i ∈ N in
Definition 2, expressing the relative weights of link creation versus link decay.29 In this
case, the symmetry of the network formation process with respect to the link arrival rate
α and the link decay parameter 1− α allows us to state the following proposition.

Proposition 4. Consider the Markov chain (G(t))t∈R+
of Definition 2 with α ≡ αi = 1−βi

for all i ∈ N . Let G(t) be a sample path generated with the homogeneous link arrival rate α,
and let G′(t) be a sample path with arrival rate 1− α. Let µ be the stationary distribution
of G(t) and µ′ the stationary distribution of G′(t) in the limit ζ → 0. Then for each
network G in the support of µ the complement Ḡ of G has the same probability in µ′, i.e.
µ′(Ḡ) = µ(G).

Proposition 4 allows us to derive the stationary distribution µ for any value of 1/2 < α <
1 if we know the corresponding distribution for 1− α. This follows from the fact that the
complement Ḡ of a nested split graph G is a nested split graph as well [Mahadev and Peled,
1995]. In particular, the networks Ḡ are nested split graphs in which the number of nodes
in the dominating subsets corresponds to the number of nodes in the independent sets in
G and, conversely, the number of nodes in the independent sets in Ḡ corresponds to the
number of nodes in the dominating subsets in G.

With this symmetry in mind we restrict our analysis in the following to the case of
0 < α ≤ 1/2. Let {N(t)}t∈R+

be the degree distribution with the d-th element Nd(t),
giving the number of nodes with degree d in G(t), in the t-th sequence N(t) ≡ {Nd(t)}n−1d=0 .
Further, let Pt(d) ≡ Nd(t)/n denote the proportion of nodes with degree d (P(t) ≡ 1

n
N(t))

and let P (d) ≡ limt→∞ Pt(d) be its asymptotic value. In the following proposition we
determine the asymptotic degree distribution of the nodes in the independent sets for n
large enough.

Proposition 5. Consider the Markov chain (G(t))t∈R+
of Definition 2 with α ≡ αi = 1−βi

for all i ∈ N and let 0 < α ≤ 1/2. Let Pt(d) denote the proportion of nodes with degree
d in G(t). Then the asymptotic expected proportion of nodes in the independent sets with
degrees, d = 0, 1, . . . , d∗, in the stochastically stable networks G ∈ Ω̂ for large n is given by

lim
t→∞

Et (Pt(d)) =
1− 2α

1− α

(
α

1− α

)d

, (8)

where30

d∗(n, α) =
ln
(

(1−2α)n
2(1−α)

)

ln
(
1−α
α

) , (9)

and Pt(d) → Et (Pt(d)) almost surely as n → ∞.

The structure of nested split graphs implies that if there exist nodes for all degrees
between 0 and d∗ (in the independent sets), then the dominating subsets with degrees

29Note that taking into account the possibility of an agent remaining quiescent only modifies the time-
scale of the process discussed, thus yielding identical results to the model proposed. This implies that,
without any loss of generality, it is possible to assume αi + βi = 1 for all i ∈ N . For simplicity, we also
assume that these probabilities are the same across agents.

30Note that d∗(n, α) from Equation (9) might in general not be an integer. In this case we take the
closest integer value to Equation (9), that is, we take [d∗(n, α)] = ⌊d∗(n, α) + 1

2⌋. The error we make in
this approximation is negligible for large n.
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larger than d∗ contain only a single node. Further, using Proposition 4, we know that
for α > 1/2 the expected number of nodes in the dominating subsets is given by the
expected number of nodes in the independent sets in Equation (8) for 1 − α, while each
of the independent sets contains a single node. This determines the asymptotic degree
distribution for the independent or dominating subsets, respectively, for all values of α in
the limit of large n.

From Equation (9) we can directly derive the following corollary.

Corollary 2. Consider the Markov chain (G(t))t∈R+
of Definition 2 with αi = 1− βi = α

for all i ∈ N . Then there exists a phase transition in the asymptotic average number of
independent sets, d∗(n, α), for G ∈ Ω̂ as n becomes large such that

lim
n→∞

d∗(n, α)

n
=







0, if α < 1
2
,

1
2
, if α = 1

2
,

1, if α > 1
2
.

(10)

Corollary 2 implies that as n grows without bound the networks in the stationary
distribution µ are either sparse or dense, depending on the value of the link creation
probability α. Moreover, from the functional form of d(n, α) in Equation (9) we find that
there exists a sharp transition from sparse to dense networks as α crosses 1/2 and the
transition becomes sharper the larger is n.

Observe that, because a nested split graph is uniquely defined by its degree distribu-
tion,31 Proposition 5 delivers us a complete description of a typical network generated by
our model in the limit of large t and n. We call this network the “stationary network”.
We can compute the degree distribution and the corresponding adjacency matrix of the
stationary network for different values of α.32 The latter is shown in Figure 2. From
the structure of these matrices we observe the transition from sparse networks containing
a hub and many agents with small degree to a quite homogeneous network with many
agents having similar high degrees. Moreover, this transition is sharp around α = 1/2. In
Figure 3, we show particular networks arising from the network formation process for the
same values of α. Again, we can identify the sharp transition from hub-like networks to
homogeneous, almost complete networks.

Figure 4 (left) displays the number m̄ of links m relative to the total number of possible
links n(n− 1)/2, i.e. m̄ = 2m

n(n−1)
, and the number of distinct degrees k as a function of α.

We see that there exists a sharp transition from sparse to dense networks around α = 1/2
while k reaches a maximum at α = 1/2. This follows from the fact that k = 2d∗ with d∗

given in Equation (9) is monotonic increasing in α for α < 1/2 and monotonic decreasing
in α for α > 1/2.

31The degree distribution uniquely determines the corresponding nested split graph up to a permutation
of the indices of nodes.

32Non-integer values for the partition sizes can be approximated with the closest integer while preserving
the nested structure of the degree partitions.
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Figure 2: Representation of the adjacency matrices of stationary networks with n = 1000 agents for
different values of parameter α: α = 0.2 (top-left plot), α = 0.4 (top-center plot), α = 0.48 (top-right
plot), α = 0.495 (bottom-left plot), α = 0.5 (bottom-center plot), and α = 0.52 (bottom-right plot). The
solid line illustrates the stepfunction separating the zero from the one entries in the matrix. The matrix
top-left for α = 0.4 is corresponding to a star-like network while the matrix bottom-right for α = 0.52
corresponds to an almost complete network. Thus, there exists a sharp transition from sparse to densely
connected stationary networks around α = 0.5. Networks of smaller size for the same values of α can be
seen in Figure 3.

Figure 3: Sample networks with n = 50 agents for different values of parameter α: α = 0.2 (top-left
plot), α = 0.4 (top-center plot), α = 0.48 (top-right plot), α = 0.495 (bottom-left plot), α = 0.5 (bottom-
center plot), and α = 0.52 (bottom-right plot). The shade and size of the nodes indicate their eigenvector
centrality. The networks for small values of α are characterized by the presence of a hub and a growing
cluster attached to the hub. With increasing values of α the density of the network increases until the
network becomes almost complete.

19



5. Stochastically Stable Networks: Statistics

We would like now to investigate further the properties of our networks and see how they
match real-world networks. There exists a growing number of empirical studies trying to
identify the key characteristics of social and economic networks. However, only few theo-
retical models (a notable exception is Jackson and Rogers [2007]) have tried to reproduce
these findings to the full extent. We pursue the same approach. We show that our net-
work formation model leads to properties which are shared with empirical networks. These
properties can be summarized as follows:33

(i) The average shortest path length between pairs of agents is small [Albert and Barabási,
2002].

(ii) Empirical networks exhibit high clustering [Watts and Strogatz, 1998]. This means
that the neighbors of an agent are likely to be connected.

(iii) The distribution of degrees is highly skewed. While some authors [e.g. Barabasi and Albert,
1999] find power-law degree distributions, others find deviations from power-laws in
empirical networks, e.g. in Newman [2004], or exponential distributions [Guimera et al.,
2006].

(iv) Several authors have found that there exists an inverse relationship between the clus-
tering coefficient of an agent and her degree [Goyal et al., 2006; Pastor-Satorras et al.,
2001]. The neighbors of a high degree agent are less likely to be connected among
each other than the neighbors of an agent with low degree. This means that empirical
networks are characterized by a negative clustering-degree correlation.

(v) Networks in economic and social contexts exhibit degree-degree correlations. Newman
[2002, 2003] has shown that many social networks tend to be positively correlated.
In this case the network is said to be assortative. On the other hand, technological
networks such as the internet [Pastor-Satorras et al., 2001] display negative corre-
lations. In this case the network is said to be dissortative. Others, however, find
also negative correlations in social networks such as in the Ham radio network of
interactions between amateur radio operators [Killworth and Bernard, 1976] or the
affiliation network in a Karate club [Zachary, 1977]. Networks in economic contexts
may have features of both technological and social relationships [Jackson, 2008] and
so there exist examples with positive degree correlations such as in the network be-
tween venture capitalists [Mas et al., 2007] as well as negative degree correlations as
it can be found in the world trade web [Serrano and Boguñá, 2003], online social
communities [Hu and Wang, 2009] and in networks of banks [De Masi and Gallegati,
2007; May et al., 2008].

In the following sections, we analyze some of the topological properties of the stochasti-
cally stable networks in our model that are in the support of the stationary distribution µ.
We simply refer to these networks as stationary networks. With the asymptotic expected
degree distribution derived in Proposition 5, we can calculate the expected clustering coef-
ficient, the clustering-degree correlation, the neighbor connectivity, the assortativity, and
the characteristic path length by using the expressions derived for these quantities in Ap-

33This list of empirical regularities is far from being extensive and summarizes only the most pervasive
patterns found in the literature.
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pendix B, where we show that these statistics are all functions of the degree distribution.34

These network measures are interesting because they can be compared to key empirical
findings of social and economic networks. In fact, we show that the stationary networks
exhibit all the well-known stylized facts of real-world networks. Moreover, in König et al.
[2010], we show that, by introducing capacity constraints in the number of links an agent
can maintain, we are able to produce both, assortative as well as dissortative networks.

Note that since the stationary distribution µ is unique, we can recover the expected
value of any statistic by averaging over a large enough sample of empirical networks gen-
erated by numerical simulations. We then superimpose the analytical predictions of the
statistic derived from Proposition 5 with the sample averages in order to compare the va-
lidity of our theoretical results, also for small network sizes n. As we will show, there is a
good agreement of the theory with the empirical results for all n.

Degree Distribution From Proposition 5, we find that the degree distribution follows
an exponential decay with a power-law tail.35 The power-law tail has an exponent of minus
one.36 Degree distributions with power-law tails have been found in empirical networks, e.g.
in scientific collaboration networks Newman [2004]. For α = 1/2 the degree distribution is
uniform while for larger values of α most of the agents have a degree close to the maximum
degree.

Clustering The clustering coefficient is shown in Figure 5 (left). We find that for prac-
tically all values of α, the clustering in the stationary networks is high. This finding is in
agreement with the vast literature on social networks that have reported high clustering
being a distinctive feature of social networks. Moreover, Goyal et al. [2006] have shown
that there exists a negative correlation between the clustering coefficient of an agent and
her degree. We find this property in the stationary networks as well, as it is shown in
Figure 5 (right).

Assortativity and Nearest Neighbor Connectivity We now turn to the study of
correlations between the degrees of the agents and their neighbors. This property is usually

34Any network statistic f : Ω → R we consider can be expressed as a function of the (empir-
ical) degree distribution Pt : Ω → [0, 1]n. Hence, we can compute the expectation as Et (f) =
∑

k∈(0,...,n)n f(k/n)Pt (Pt = k/n). In Proposition 5 we show that the degree distribution converges to its

expected value with probability one. Therefore, we have that Et (f) =
∑

k∈(0,...,n)n f(k/n)1Et(Pt)(k/n) =

f(Et(Pt)) as n → ∞.
35For 0 < α ≤ 1/2 and n large enough the asymptotic expected degree distribution for the degrees

d smaller or equal than d∗ is given by an exponential function P (d) = 1−2α
1−α

exp
(
− ln

(
1−α
α

)
d
)
. On the

other hand, if we assume (i) that the degree of a node in a dominating subset is symmetrically distributed
around its expected value, (ii) we compute the integral over the probability density function by a rectangle
approximation and (iii) further assume that the degree distribution obtained in this way has the same
functional form for all degrees d larger than d∗ then one can show that for 0 < α ≤ 1/2 and n large
enough the asymptotic expected degree distribution P (d) is given by P (d) = α

(1−2α)nd
−1. The power-law

tail of the degree distribution can be confirmed by the empirical distribution from a logarithmic binning
of numerical simulations, as can be seen in Figure 4 (right).

36We can extend our model to obtain a degree distribution with an arbitrary power-law tail by mak-
ing the probability of selecting an agent depending on the number of links she already has, while pre-
serving the nested structure of the network she is embedded in. This extension is further discussed in
König and Tessone [2011].
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Figure 4: (Left) In the top panel we show the number m̄ of links m relative to the total number of possible
links n(n−1)/2 of the stationary network. The number of distinct degrees k = 2d∗, with d∗ from Equation
(9), found in the stationary network for different values of α are shown in the bottom panel. The figures
display both, the results obtained by recourse of numerical simulations (symbols) and respecting theoretical
predictions (lines) of the model. (Right) Degree distribution P (d) for different values of parameter α and
a network size n = 10 000: α = 0.2 (top-left plot), α = 0.4 (top-center plot), α = 0.48 (top-right plot),
α = 0.49 (bottom-left plot), α = 0.5 (bottom-center plot), and α = 0.52 (bottom-right plot). The solid line
corresponds to the average of simulations while the dashed line indicates the theoretical degree distribution
from Proposition 5. The degrees have been binned to smoothen the degree distribution.
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Figure 5: The left panel shows the clustering coefficient C and the right panel the clustering-degree
correlation of stationary networks. The symbols correspond to the results obtained by recourse of numerical
simulations. The solid lines correspond to the analytical results. We show that the clustering-degree
correlation is negative for different values of α and a network size of n = 1000. The different plots show
different values of α: α = 0.2 (top-left plot), α = 0.4 (top-center plot), α = 0.48 (top-right plot), α = 0.49
(bottom-left plot), α = 0.5 (bottom-center plot), and α = 0.52 (bottom-right plot).
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measured by the network assortativity γ [Newman, 2002]37 and nearest neighbor connec-
tivity dnn(d) [Pastor-Satorras et al., 2001]. Dissortative networks are characterized by neg-
ative degree correlations between a node and its neighbors and assortative networks show
positive degree correlations. In dissortative networks γ is negative and dnn(d) monotonic
decreasing while in assortative networks γ is positive and dnn(d) monotonic increasing. We
find that in our basic model without capacity constraints (see König et al. [2010] for an
extension including capacity constraints in the number of links an agent can maintain), we
observe dissortative networks.

Assortativity and average nearest neighbor connectivity for different values of the link
creation probability α are shown in Figure 6. Clearly, stationary networks are dissortative
while the degree of dissortativity decreases with increasing α. However, if we recall the
structure of the nested split graphs in Definition 4, to the class the stationary networks
belong to, we can see that high degree agents are connected among each other while it is
only the low degree agents that are not connected among each other. In this sense agents
with high degrees tend to be connected to other agents with high degree. Considering only
the agents with high degrees, we can call the network assortative. However, the agents
with low degrees, that are only connected to agents with high degrees but are disconnected
to agents with low degree, are so numerous in the stationary network (for low values of α)
that we obtain an overall negative value for the assortativity of the network.

The dissortativity of stationary networks simply reflects the fact that stationary net-
works are strongly centralized for values of α below 1/2. As an example consider a star
K1,n−1. K1,n−1 is completely dissortative with an assortativity coefficient of γ = −1. Pe-
ripheral agents all have minimum degree one and are only connected to the central agent
with maximum degree while the central agent is only connected to the agents with min-
imum degree. In this sense dissortativity is simply a measure of centralization in the
network.

Characteristic Path Length Figure 8 shows the characteristic path length ℓ and the
network efficiency ǫ (defined in Section B.1.4 in Appendix B). From these figures one
can see that the characteristic path length ℓ never exceeds a distance of two. This means
that for all parameter values of α stationary networks are characterized by short distances
between agents. Together with the high clustering shown in this section the stationary
networks can be seen as “small worlds” [Watts and Strogatz, 1998]. Stationary networks
are efficient for values of α larger than 1/2, in terms of short average distance between
agents, while for values of α smaller than 1/2 they are not. However, this short average
distance is attained at the expense of a large number of links.

Centralization of Stochastically Stable Networks In the following section, we an-
alyze the degree of centralization in stationary networks. As we will show, there exists
a sharp transition in the centralization as a function of the link creation probability α.
This means that stationary networks are either strongly centralized and hierarchical or

37 The assortativity coefficient γ ∈ [−1, 1] is essentially the Pearson correlation coefficient of degree
between nodes that are connected. Positive values of γ indicate that nodes with similar degrees tend to
be connected (and dnn(d) is an increasing function of the degree d) while negative values indicate that
nodes with different degrees tend to be connected (and dnn(d) is a decreasing function of the degree d).
See Newman [2002] for further details.
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Figure 6: In the left panel we show the assortativity γ of stationary networks. In the right panel we
show the average nearest neighbor connectivity dnn for α = 0.2 (top-left plot), α = 0.4 (top-center plot),
α = 0.48 (top-right plot), α = 0.49 (bottom-left plot), α = 0.5 (bottom-center plot), and α = 0.52
(bottom-right plot). The symbols correspond to the results obtained by recourse of numerical simulations.
The solid lines correspond to the analytical results.

decentralized and homogeneous, depending on α. In Section 6, we will also find such a
transition in the aggregate payoffs and effort levels of the agents.

For our analysis, we use the centralization index introduced by Freeman [1979]. The
centralization C : Ω → [0, 1] of a network G = (N , E) ∈ Ω is given by

C ≡
∑

u∈G (C(u∗)− C(u))

maxG′

∑

v∈G′ (C(v∗)− C(v))
, (11)

where u∗ and v∗ are the agents with the highest values of centrality in the current network
and and the maximum in the denominator is computed over all networks G′ = (N , E ′) ∈ Ω
with the same number of agents. For the degree, closeness, betweenness and eigenvector
centrality measures one obtains the following indices38

Cd ≡
∑

u∈N (Cd(u
∗)− Cd(u))

n2 − 3n+ 2
, Cc ≡

∑

u∈N (Cc(u
∗)− Cc(u))

(n2 − 3n+ 2)/(2n− 3)
,

Cb ≡
∑

u∈N (Cb(u
∗)− Cb(u))

n3 − 4n2 + 5n− 2
, Cv ≡

∑

u∈N (Cv(u
∗)− Cv(u))

√

(n− 1)/2(
√
n− 1− 1)

.

From Figure 7 (right), showing degree, closeness, betweenness and eigenvector centraliza-
tion, we clearly see that there exists a phase transition at α = 1/2 from highly centralized
to highly decentralized networks. This means that for low arrival rates of linking opportu-
nities α (and a strong link decay) the stationary network is strongly polarized, composed
mainly of a star (or an inter-linked star as in Goyal and Joshi [2003]), while for high ar-
rival rates of linking opportunities (and a weak link decay) stationary networks are largely
homogeneous. We can also see that the transition between these states is sharp. It is
interesting to note that the same pattern emerges for all centrality measures considered,

38For the normalization of all the centralization indices we have used the star K1,n−1. For degree,
closeness, betweenness and eigenvector centralization it can be shown that K1,n−1 is the network that
maximizes the sum of differences in centrality [Bolland, 1988; Freeman, 1979].
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Figure 7: (From left to right) Degree, closeness, betweenness and eigenvector centralization in the station-
ary networks for different values of α. For all centralization measures we obtain a sharp transition between
strongly centralized networks for lower values of α and decentralized networks for higher values of α. Note
that we have only considered the connected component for the computation of the different centralization
measures.

irrespective of whether the measures takes into account only the local neighborhood of an
agent, such as in the case of degree centrality, or the entire network structure, as for the
other centrality measures.39

Our findings are in line with previous works studying the optimal internal communica-
tion structure of organizations [Guimerà et al., 2002]. Other works [Calvó-Armengol et al.,
2009; Dodds et al., 2003; Dupouet and Yildizoglu, 2006; Huberman and Hogg, 1995] have
discussed the conditions under which informal organizational networks outperform central-
ized structures in complex, changing environments and under which conditions hierarchies
are more efficient. Similar to Arenas et al. [2010] and Ehrhardt et al. [2006], we find sharp
transitions between largely homogeneous and centralized networks. Moreover, the station-
ary networks in our model are polarized and strongly centralized for a low volatility in the
environment associated with many linking opportunities whereas they are homogeneous
and largely decentralized for a highly volatile environment with few linking opportunities
and a strong link decay. The hierarchical structure of stationary networks and its de-
pendency on the volatility is similar to the findings for optimal networks in Arenas et al.
[2010].

6. Stochastically Stable Networks: Efficiency

We now turn to the investigation of the optimality and efficiency of stochastically stable
networks. Following Jackson and Wolinsky [1996] and Jackson [2008], we define the social
welfare as the sum of the agents’ individual payoffs Π(x∗, Gλ) =

∑n
i=1 πi(x

∗, G, λ). We are
interested in the solution of the following social planner’s problem. Let G(n) denote the
set of connected graphs having n agents in total. The social planner’s solution is given by
G∗ = argmaxG∈G(n) Π(x∗, G, λ). A graph G∗ solving the maximization problem will be
denoted as “efficient”. The efficient network has been derived in Ballester et al. [2006] and
we state their result in the following proposition.

Proposition 6 (Ballester et al. [2006]). Let G(n) denote the set of connected graphs having
n agents and consider G ∈ G(n). Then the efficient network G∗ = argmaxG∈G(n) Π(x∗, G, λ)
is the complete graph Kn.

39It is also irrelevant whether we use a centrality measure based on shortest paths, as for closeness and
betweenness centrality, or one that is based on all paths, such as eigenvector centrality.
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This proposition is a direct consequence of Theorem 2 in Ballester et al. [2006] where
more links is always better. Moreover, Corbo et al. [2006] have shown that, in the case of
strong complementarities, when λ approaches 1/λPF(G), maximizing aggregate equilibrium
payoffs is equivalent to maximizing the largest real eigenvalue λPF(G) of the network G.40

Proposition 7 (Corbo et al. [2006]). Let G(n,m) denote the set of connected graphs hav-
ing n agents and m links and consider G ∈ G(n,m). As λ ↑ 1/λPF(G), maximizing aggre-
gate equilibrium contribution and payoff reduces to argmax{Π(x∗, G, λ) : G ∈ G(n,m)} =
argmax{λPF(G) : G ∈ G(n,m)}.

Proposition 7 tells us that, if we want to compare aggregate payoffs of any two networks
G and G′, we can compare their largest real eigenvalues, λPF(G) and λPF(G

′), in the case
of strong complementarities λ. Moreover, from Proposition 6 we know that aggregate
payoff is highest in the complete network Kn. Kn also has the highest possible largest
real eigenvalue, namely λPF(Kn) = n − 1 [Cvetkovic and Rowlinson, 1990]. We assume
that λ is close to 1/(n− 1). The closer is the largest real eigenvalue λPF(G) of a network
G to the one of the complete network (λPF(Kn) = n − 1), the closer it comes to being
efficient. Following these observations we show the ratio of the largest real eigenvalue of
stochastically stable networks to n − 1 for different values of α. We find that for values
of α below 1/2, stochastically stable networks are highly inefficient and a sharp transition
occurs for increasing values of α above 1/2. It is also seen that the transition becomes
sharper the larger the network is. This implies that a highly volatile environment and
the strong competition of the agents for becoming a hub induces highly inefficient network
structures.41

7. How Realistic are Nested Split Graphs?

In this section, we would like to discuss two main characteristics of nested-split networks
and see how “realistic” they are. First, are real-world networks nested? At the macroscopic
level, some real world networks exhibit a high degree of clustering while, coincidentally,
their degree distributions show power-law tails. Taken together, these two characteristics
indicate a hierarchical organization in the network [Ravasz and Barabási, 2003]. In social
and economic (see e.g. May et al. [2008]), as well as biological systems [Bastolla et al.,
2009], it has been found that the hierarchical organization of networks can further be
characterized by nestedness : the neighborhood of a node is contained in the neighborhood
of the nodes with higher degrees. In these examples, the extent of nestedness (defined
as the fraction of links belonging to the nested structure) was shown to be above 93
% [Saavedra et al., 2008]. A recent study Leskovec et al. [2009] also finds nested core-
periphery structures in over 100 large sparse real-world social and information networks.

40Stochastically stable networks might not always be connected. Instead, they can have a single con-
nected component and isolated agents. If there are k isolated agents then their contribution to the aggre-
gate payoff is k (with an equilibrium effort equal to one for each agent). We neglect the contribution of
these isolated agents because it is negligible for large complementarities, and consider only the connected
component of the network.

41It can be shown that the largest real eigenvalue can be increased by concentrating all the
links in a densely connected core (clique) for fixed values of the number of links m and nodes n
[Cvetkovic and Rowlinson, 1990].
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Figure 8: (Left) The characteristic path length ℓ of stationary networks and (middle) the results for the
network efficiency ǫ, obtained by recourse of numerical simulations (symbols) and respecting theoretical
predictions (lines) of the model. (Right) We show the largest eigenvalue of the adjacency matrix of the
stochastically stable network relative to the eigenvalue to the complete graph, which is the efficient network,
obtained by recourse of numerical simulations (symbols) and respecting theoretical predictions (lines) of
the model for different values of α and n = 200 agents. For higher values of α the stochastically stable
network comes close to the efficient graph G∗ which has a largest real eigenvalue of λPF(G

∗) = n− 1.

More generally, as described in the introduction, nestedness appears in various so-
cial contexts, including the organization of the New York garment industry [Uzzi, 1996]
and in the topology of the Fedwire network [May et al., 2008; Soramaki et al., 2007].
Also, Åkerman and Larsson [2010], who study the evolution of the global arms trade net-
work using a unique dataset on all international transfers of major conventional weapons
over the period 1950-2007, find that networks are nested and dissortative in the sense
that big countries mainly trade arms with small countries but small countries do not
trade with each other. Similarly, using aggregate bilateral imports from 1950 to 2000,
De Benedictis and Tajoli [2011] analyze the structure of the world trade network over
time, detecting and interpreting patterns of trade ties among countries. They also find
that world trade tends to be concentrated among a sub-group of countries and a small per-
centage of the total number of flows accounts for a disproportionally large share of world
trade. Figure 3 in their paper shows a clear core-periphery structure similar to our Figure
3. Indeed, in the 1950s, the trade network was relatively close to that of our Figure 3 when
α is small while, in the 1990s, it resembles more to the case when α is high.

Second, nested-split graphs have a diameter equals to 2. Most real-world networks
have, in fact, very low diameter. For example, if we consider the Fedwire bank network
discussed above [Soramaki et al., 2007], then the average path length (which is the average
distance from a node to any other node) is 2.6 while the diameter is around 6 (see their
Table 3 on page 324). This means that this interbank payment network exhibits the
small world phenomenom common to many networks. Similarly, Åkerman and Larsson
[2010] who study arms-trade networks find also small diameters: between 4 and 6. Finally,
Banerjee et al. [2010] have detailed network data on 75 villages in rural Karnataka (2-
3 hours outside Bangalore in India) before a particular microfinance institution starts
working in the villages. They study how the idea of joining microfinance spread through
the network. In this dataset, the social network consists of friends and relatives and from
whom they borrow or lend small amount of money. The average path length is 1.97 and
the diameter is 3. All these networks have small diameters but, of course, not equal exactly
to 2. We can extend our model to obtain networks with diameters closer to 6 than to 2
[see König et al., 2010], but adding these features would reduce the mathematical elegance
of our formulation in terms of nested-split graphs. At the end of this section, we provide
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some simulations when ζ > 0 and show that the networks are still nested-split graphs but
the diameter is bigger than 2.

To sum up, nested-split graphs have a much more regular structure than the complex
networks we observe in the real world but are easy to study, they are the result of endoge-
nous rational actions and, even if different, they have most of the properties of real-world
networks. In this respect, nested-split graphs are a good approximation of real-world net-
works. Also, because nested-split graphs have a simple structure, our model can be easily
extended to study different issues. For example, König and Tessone [2011] show that our
model can be applied not only to an economic context, but also to a variety of models
studied in the physics literature, ranging from the analysis of ecological systems to physi-
cal synchronization processes being coupled to network dynamics. They extend our model
by introducing heterogeneous selection probabilities of the nodes depending on the number
of links they already have, derive the dynamics of the degree distribution in the continuous
limit and analyze its properties. They show that the stationary degree distribution is given
by a double-power law with a flexible exponent.42

We have seen that the stochastically stable network, i.e. the network in the support
of the stationary distribution obtained when ζ goes to zero, is a nested-split graph. In
contrast, when ζ tends to infinity, links will be created and deleted at random and therefore
we will obtain a Poisson random graph.43 For intermediary values of ζ, the Markov chain
will still be ergodic but the stationary distribution will be difficult to characterize. This
clear transition can be observed in panels (a) to (c) in Figure 9 (right). We have run
numerical simulations of our model by characterizing the global network properties of the
stationary networks for ζ > 0. In that case, we see that the stationary states display
characteristics more commonly found in real-world networks, like the average path length,
which takes small values, but larger than ℓ = 2 (See Figure 9 (left)). This means that
when ζ is not equal to zero but close to it, we still have a nested-split graph structure with
a path length larger than 2 but still relatively small. Indeed, in the simulations displayed
in the middle of Figure 9, when ζ = 10, the average path length ℓ is equal to 3.

8. Estimating the Model’s Parameters

In this section we would like to provide real-world evidence of our model and estimate the
model’s parameters for four different empirical data sets.

The first network we analyze is the network of Austrian banks in the year 2008 [cf.
Boss et al., 2004]. Links in the network represent exposures between Austrian-domiciled
banks on a non-consolidated basis (i.e. no exposures to foreign subsidiaries are included).
We obtain a sample of n = 770 banks with m = 2454 links between them and an average
degree of d̄ = 20.54. The degree variance is σ2

d = 1273.22. The largest connected component
comprises 768 banks, which is 99.7% of the total of banks, and it is illustrated in Figure
10. The network is highly clustered with an average clustering coefficient of C = 0.75 and
shows a low average path length of ℓ = 2.27 in the connected component. The network of
banks is dissortative with a monotonic decreasing nearest neighbor connectivity dnn with

42Such distributions have been observed for example in online social networks [Gjoka et al., 2010].
43See Equation (6).
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(b)

(c)

(a)

Figure 9: Results of numerical simulations of the model introduced in Definition 2, where the rates of link
creation (decay) are Gumbel distributed on the increase (resp. decrease) of payoff of the agents adjacent to
the link. In the left panels (from top to bottom) the network density m̄, the average path-length (ℓ) and
the degree of centralization for the eigenvector centrality Cv are plotted as a function of ζ, the parameter
of the Gumbel distribution. The three plots on the right column depict snapshots of the adjacency matrix
once the stationary regime has been reached (all the global measures do not change over time, but fluctuate
around the stationary state). In these snapshots, the parameters are (a) ζ = 0.002, (b) ζ = 0.004, and (c)
ζ = 0.08, respectively.

Figure 10: Adjacency matrices for the Austrian banking network, the global network of banks obtained
from the Bank of International Settlements (BIS) locational statistics, the GDP trade network and the arms
trade network (from left to right). The shade and size of the nodes indicate their eigenvector centrality.
The GDP trade network is much more dense than the network of banks and the network of arms trade.
All four networks show a core of densely connected nodes.
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degree (see Figure 12) and an assortativity coefficient of γ = −0.51 [Newman, 2002].44

Secondly, we consider the global banking network in the year 2011 obtained from the
Bank of International Settlements (BIS) locational statistics on exchange-rate adjusted
changes in cross-border bank claims [cf. Minoiu and Reyes, 2011]. BIS locational statistics
are compiled on the basis of residence of BIS reporting banks and cover the cross-border
positions of all banks domiciled in the reporting area, including positions with respect to
foreign affiliates, loans, deposits, debt securities, and other assets provided by banks. We
obtain a network with n = 239 nodes andm = 2454 links between them. An illustration can
be seen in Figure 10. The average degree of the network is d̄ = 20.54 and we observe a high
degree variance of σ2

d = 1273.22. Almost all nodes are contained in the largest connected
component (93%). The average clustering coefficient is high and measures C = 0.81. The
network is characterized by a short average path length (in the connected component) of
ℓ = 1.95. The network is dissortative with a coefficient of γ = −0.76. and a monotonic
decreasing average nearest neighbor connectivity dnn (see Figure 12).

The third empirical network we consider is the network of trade relationships between
countries in the year 2000 [cf. Gleditsch, 2002]. The trade network is defined as the network
of import-export relationships between countries in a given year in millions of current-year
U.S. dollars. We refer to this network as the GDP network. We construct an undirected
network in which a link is present between two countries if either one has exported to
the other country. The trade network contains n = 196 nodes, m = 4138 links, has an
average degree of d̄ = 42.22 and a degree variance of σ2

d = 1524.16. The network consists
of a giant component with 181 nodes, encompassing 92% of all nodes in the network. The
network is shown in Figure 10. The network of trade is highly clustered with C = 0.73, a
short average path length of ℓ = 2.25, dissortative γ = −0.40 and has a decreasing average
nearest neighbor connectivity dnn (see Figure 12).

Fourth, we consider the network of arms trade between countries [cf. Åkerman and Larsson,
2010]. We use data obtained from the SIPRI Arms Transfers Database holding information
on all international transfers between countries of seven categories of major conventional
weapons accumulated from 1950 to 2010. A link in the network represents a recipient or
supply relationship of arms between two countries during this period. We obtain a network
with n = 246 nodes and m = 2245 links. The average degree is d̄ = 18.25 and the degree
variance is σ2

d = 589.97. An illustration can be seen in Figure 10. The network is connected
and has an average path length of ℓ = 2.25. The average clustering coefficient is C = 0.48
and the average nearest neighbor connectivity dnn is decreasing with degree (see Figure
12), with an assortativity coefficient of γ = −0.39.

Observe that our theoretical model is general enough to encompass all these networks.
For example, consider our payoff function of Equation (1) defined in Section 3.1. Then,
for the trade network, it suffices to interpret xi as the volume of trade for country i and
have aij = 1 between countries i and j when either one has exported to the other country.
Similarly, for the bank network, xi would be the volume of loans each bank i provides to
other banks in the network and aij = 1 when bank i provides a loan to bank j. In that
case, we need to consider directed networks instead of undirected networks but this does
not affect any of our results.

All these four real-world networks are of similar size, show short average path lengths

44See also Footnote 37 for the definition of γ.
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Figure 11: Adjacency matrices (sorted by the eigenvector centralities of the nodes) for the Austrian banking
network, the global network of banks obtained from the Bank of International Settlements (BIS) locational
statistics, the GDP trade network and the arms trade network (from left to right). All adjacency matrices
are significantly nested.

of around 2, are dissortative and have a monotonic decreasing average nearest neighbor
connectivity. They also show a relatively high clustering and the clustering degree distribu-
tion is decreasing with the degree (see Figure 12). An important feature of these networks
is that they all show a high degree of nestedness. This can be witnessed from the adja-
cency matrices depicted in Figure 11, which resemble the nested matrices we derive from
our theoretical model (see Figure 2). Similarly, when we compare the networks simulated
from our model (see Figure 3) and the ones described in real-world networks (Figure 10),
they are relatively similar (in terms of a clear core-periphery structure indicating nested-
ness).45 A more quantitative measure of nestedness confirms this observation by showing
that all networks are significantly nested. We have computed the degree of nestedness
by calculating the matrix temperature Tn using the BINMATNEST algorithm proposed by
Rodŕıguez-Gironés and Santamaŕıa [2006]. Typically, the lower the temperature Tn, the
higher the degree of nestedness. For the network of Austrian banks we obtain Tn = 0.05, for
the network of banks from BIS statistics we get Tn = 0.75, for the GDP trade network we
obtain Tn = 7.26, and for the arms trade network Tn = 1.72. This indicates that the net-
works of banks have the highest degree of nestedness. However, comparing Tn for matrices
of different density and size can be difficult. Instead, one can compute the probability of
a certain degree of nestedness being generated at random. For all the networks considered
we obtain a p-value not distinguishable from zero (using 500 null matrices) showing that
all empirical networks are significantly nested.46

We then estimate the main parametersΘ ≡ (α, ζ) of our model by using the Likelihood-
Free Markov Chain Monte Carlo (LF-MCMC) algorithm suggested by Marjoram et al.

45We have performed a k-core decomposition of the empirical networks. A k-core is a maximal subnet-
work in which all nodes have a degree of at least k with the other nodes in the subnetwork. Examining the
k-cores with increasing values of k does not split the network into separate components. This is another
indicator for the nested structure observed in these networks.

46See Rodŕıguez-Gironés and Santamaŕıa [2006] for further details of the BINMATNEST algorithm.

31



[2003].47 The purpose of this algorithm is to estimate the parameter vector Θ of our
model on the basis of the summary statistics S ≡ (S1,S2,S3)n×3, where S1 ≡ (P (d))n−1d=0 ,
S2 ≡ (C(d))n−1d=0 , S3 ≡ (dnn(d))

n−1
d=0 are the degree distribution, the clustering degree dis-

tribution and the average nearest neighbor degree distribution, respectively. Moment con-

ditions are obtained from the Euclidean distances ∆(Si,S
o
i ) ≡

√
∑n

j=1

(
Si,j − So

i,j

)2
for

each statistic Si (generated by the algorithm) and its observed value So
i . The algorithm

generates a Markov chain which is a sequence of parameters {Θs}Ss=1 with a stationary dis-
tribution that approximates the distribution of the parameter values Θ conditional on the
observed statistic So.48 Since this estimation algorithm would require the computation of
the Bonacich centrality an extensive number of times, we assume that the complementarity
parameter λ is small such that we can approximate the Bonacich centrality by the degree
centrality when simulating the network formation process.49 Note also that the reported
estimates of ζ hold only up to a scaling factor, which depends on the choice of λ. Hence,
only the relative values of ζ between different samples is meaningful but not its absolute
value.

The estimated parameter values are shown in Table 1. We observe that the estimates for
ζ are higher for the network of GDP trading countries and the network of arms trade than
the corresponding estimates for the networks of banks. This confirms our intuition from
Figure 9 (right), where we have seen that with increasing values of ζ stationary networks
become less nested (and we obtain a random graph as ζ → ∞), and the lower values for
the matrix temperature Tn for these networks (see also the adjacency matrices in Figure
11). Hence, our estimates support our earlier observation that the networks of banks have
a higher degree of nestedness than the networks of trade relationships between countries.

Moreover, Figure 12 shows the empirical distributions (squares) and typical simulated
ones (circles) for the bank network, the network of GDP trade and the arms trade network.
The comparison of observed and the simulated distributions shown in Figure 12 indicate
that the model can relatively well reproduce the observed empirical networks, even though
the model is parsimoniously parameterized in relying only on two exogenous variables α
and ζ. The fit seems to be best for the networks of banks, which also shows the most
distinct nestedness pattern (see Figure 11).

9. Robustness Analysis

In our model, we describe a dynamic process incorporating both the play of a network
game and the endogenous formation of the network. A striking finding is that, starting

47See Sisson and Fan [2011] for an introduction to LF-MCMC and Chib [2001] for a general discussion
of MCMC approaches in econometrics.

48For the implementation of the algorithm we have chosen an initial uniform (prior) parameter distri-
bution. The proposal distribution is a normal distribution. During the “burn-in” phase [Chib, 2001],
we consider a monotonic decreasing sequence of thresholds with appropriately chosen values from careful
numerical experimentation. For the Austrian banking network we have chosen a burn-in period of 1000
steps, while for the network of GDP trade we have used a period of 3000.

49The Bonacich centrality is defined by bi(G,λ) =
∑∞

k=0 λ
k
(
Ak · u

)

i
= 1 + λdi + λ2

∑

j∈Ni
dj +

λ3
∑

j∈Ni

∑

k∈Nj
dk + . . . = 1 + λdi + λ2

∑

j∈Ni
dj + O(λ3). Marginal payoff from forming a link ij

for agent i can then be written as π∗
i (G⊕ ij, λ)− π∗

i (G,λ) = λ(2+λ)
2 + λ2

2 di(di +1)+ λ2dj +O(λ3). When
computing marginal payoffs from forming a link (and the decay rates) we ignore terms of the order O(λ3).
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Table 1: Estimation of the model parameters θ ∈ Θ = (α, ζ) for the Austrian network of banks, the global network of banks obtained from
the Bank of International Settlements (BIS) locational statistics, the network of GDP trading countries and the arms trade network.a The
table shows simulated averages of the parameters and their standard deviations,b after the chain has converged.c

Austrian Bank Network Global Bank Network GDP Trade Network Arms Trade Network

θ µθ σθ τθ pθ(S) µθ σθ τθ pθ(S) µθ σθ τθ pθ(S) µθ σθ τθ pθ(S)

α 0.45 0.00 29.63 0.99 0.45 0.01 10.65 0.91 0.44 0.00 6.49 0.96 0.44 0.00 50.67 0.99
ζ 1.13 0.06 68.98 0.99 1.70 0.18 91.64 0.96 20.51 0.32 143.30 0.89 24.87 0.16 657.82 0.93

n 770 239 196 246
S 3000 700 2000 5000

a τθ is the integrated autocorrelation time, which should be much smaller than the number S of iterations of the Markov
chain algorithm used to compute the parameter estimates [Sokal, 1996].

b µθ is the mean and σθ is the simulation standard deviation calculated from batch means (of length 10) for each parameter
θ ∈ Θ [Chib, 2001].

c pθ(S) is the p-value associated with Geweke’s spectral density diagnostic indicating the convergence of the chain
[Brooks and Roberts, 1998; Geweke, 1992]. The number S of iterations of the chain have been chosen for each data set
individually such that reasonably high values of pθ(S) are obtained.

33



10
0

10
1

10
2

10
−2

10
−1

 

 

d

P
(d
)

emp.
num.

10
0

10
1

10
2

10
−2

10
−1

 

 

d

P
(d
)

emp.
num.

10
0

10
1

10
2

10
−2

10
−1

 

 

d

P
(d
)

emp.
num.

10
0

10
1

10
2

10
−2

10
−1

 

 

d

P
(d
)

emp.
num.

10
0

10
1

10
2

10
2

 

 

d

d
n
n
(d
)

emp.
num.

10
0

10
1

10
2

10
2

 

 

d

d
n
n
(d
)

emp.
num.

10
0

10
1

10
2

10
2

 

 

d

d
n
n
(d
)

emp.
num.

10
0

10
1

10
2

10
2

 

 

d

d
n
n
(d
)

emp.
num.

10
0

10
1

10
2

10
−1

10
0

 

 

d

C
(d
)

emp.
num.

10
0

10
1

10
2

10
−1

10
0

 

 

d

C
(d
)

emp.
num.

10
0

10
1

10
2

10
0

 

 

d

C
(d
)

emp.
num.

10
0

10
1

10
2

10
−1

10
0

 

 

d

C
(d
)

emp.
num.

Figure 12: The empirical (2) and an exemplary simulated (◦) degree distribution P (d), average nearest
neighbor degree dnn(d) and clustering degree distribution C(d) for the Austrian banking network (first
column), the network of banks obtained from the Bank of International Settlements (BIS) (second column),
the GDP trade network (third column) and the arms trade network (fourth column).
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from any arbitrary graph,50 the process converges to a nested split graph in the limit of
vanishing noise. We like to show that this characterization is not an artifact of a very
specific protocol of network formation but is quite general.

First, in the model presented in this paper, using Ballester et al. [2006], we give a
micro-foundation of why agents choose to create a link with the agent who has the highest
Bonacich centrality in the network. By doing so we impose a specific structure of the utility
function (i.e. a linear quadratic structure; see Equation (1)) and a condition on the largest
real eigenvalue of the graph (i.e. λ < 1/λPF; see Theorem 1). In fact, all our results,
in particular the fact that the network converges to a nested split graph, hold if we take
a general utility function (i.e. no specific structure), that is increasing in their Bonacich
centrality. Moreover, imagine that agents do not choose effort x but just create links
following the network formation mechanism described in Definition 2, where their utility is
given by the sum of the current Bonacich centrality of their neighbors, then all our results
still hold. As a consequence of Corollary 11 (see Appendix B.2.5), this is also true for
any other centrality measure we have considered. Moreover, we could also define as utility
“information centrality” introduced by Stephenson and Zelen [1989], where the payoff of
agents is given by the information they receive along different paths in the network. If
we let agents choose the importance (or weights, see Stephenson and Zelen [1989]) of the
paths such that they receive maximum information (similar to choosing efforts x) then all
our results hold without making any assumption on the eigenvalue of the network.51

Second, we consider in C the same model as in Section 3 but we assume that the agent
who wants to form a link must pay a cost c ≥ 0. Proposition 8 in C shows that if c is less
than λ(2−λ)/(2(1−λ)2) then agents payoffs are increasing from forming a link. As a result,
even when requiring that links are only formed if they profitable, the emerging network
will always be a nested split graph. In other words, even with costly link formation, all
our results hold as long as c is not too large.

Third, in Section 5, for the nodes in the dominating subsets, we obtain a power-law
degree distribution with an exponent of minus one. We can extend our model to obtain a de-
gree distribution with an arbitrary power-law tail by making the probability of selecting an
agent depending on the number of links she already has, while preserving the nested struc-
ture of the network she is embedded in. This extension is studied in König and Tessone
[2011], where also a number of applications of our model to various physical and ecological
systems is discussed.

Fourth, with our network formation game, we always obtain negative degree-degree
correlations (i.e. our networks are dissortative). In König et al. [2010], we extend our
game by including capacity constraints in the number of links an agent can maintain and a
random search mechanism for new linking partners when an agent refuses to accept a new
link due to her capacity constraints. We find that by introducing capacity constraints and
random search, stationary networks can become assortative. Thus, we are able to repro-
duce all topological properties of empirically observed social and economic networks. The
emergence of assortativity and positive degree-correlations, respectively, can be explained
by considering limitations in the number of links an agent can maintain. This may be of

50See Proposition 3 in Section 4.
51The same reasoning as in the proof of Proposition 1 that applies for walks also applies for paths. This

fact can be used to show that the agent with the highest degree in a nested split graph has the highest
information centrality.
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particular relevance for social networks and give an explanation for the distinction between
assortative social networks and dissortative technological networks suggested by Newman
[2002].

Finally, we have assumed myopic agents, i.e. agents maximize their current utility.
Assume, instead, that agents create and delete links based on their discounted life time
expected utility. They will still create links with the agent who has the highest Bonacich
centrality in the network since this agent has a higher probability than any other agent in
the network to have the highest Bonacich centrality in the future (at any period of time).
In other words, there exists a farsighted equilibrium which has the same properties as ours,
i.e., the network at any period of time is a nested-split graph.

10. Conclusion

In this paper we propose a dynamic network formation model to explain the observed
nestedness in various real-world networks. Agents exert effort in some activities and create
links with other agents while the network is exposed to a volatile environment. We find
that the stochastically stable networks are nested split graphs. We completely determine
the topological properties of the stochastically stable networks and show that they match
features exhibited by real-world networks. We estimate the model using data from four
different real-world networks and show that it fits well the observed networks.

The model and analysis provide an explanation of the importance of nestedness in real-
world networks. Because agents tend to link to highly connected agents, a core-periphery
network structure tends to emerge in equilibrium as a result of this network formation
process. This is particularly true for networks of banks since small banks interact with large
banks for security, lower liquidity risk and lower servicing costs, and large banks interact
with small banks in part because they can extract a higher premium for services and can
accommodate more risk. This is certainly less true for co-authorship networks, which tend
to be non-nested and assortative [cf. Goyal et al., 2006]. There is certainly much more work
to be done in this area but we believe that our model, by providing a microfoundation to
the link-formation process and unifying the strategic-based and the random-based network
formation models, provides a first step towards a better understanding of the structure of
real-world networks.
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Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S., 2003. Markov chain Monte Carlo without likelihoods.

Proceedings of the National Academy of Sciences of the United States of America 100 (26), 15324.
Mas, D., Vignes, A., Weisbuch, G., 2007. Networks and syndication strategies: Does a venture capitalist

need to be in the center?, ERMES-CNRS Universite Pantheon Assas Paris II, Working Paper No. 07-14.
May, R., Levin, S., Sugihara, G., 2008. Ecology for bankers. Nature 451 (21), 893–895.
McFadden, D., 1981. Econometric models of probabilistic choice. MIT Press, Cambridge, MA, Ch. Struc-

tural Analysis of Discrete Data with Econometric Applications.
Mehra, A., Kilduff, M., Brass, D. J., 2001. The social networks of high and low self-monitors: Implications

for workplace performance. Administrative Science Quarterly 46 (1), 121–146.
Mele, A., 2010. Segregation in Social Networks: Theory, Estimation and Policy. Unpublished mauscript.
Minoiu, C., Reyes, J., 2011. A network analysis of global banking: 1978-2009. IMF Working Papers.
Myerson, R. B., 1991. Game Theory: Analysis of Conflict. Harvard University Press.
Newman, M. E. J., 2010. Networks: An Introduction. Oxford University Press.
Newman, M. E. J., Oct 2002. Assortative mixing in networks. Physical Review Letters 89 (20), 208701.
Newman, M. E. J., Feb 2003. Mixing patterns in networks. Physical Review E 67 (2), 026126.
Newman, M. E. J., 2004. Coauthorship networks and patterns of scientific collaboration. Proceedings of

the National Academy of Sciences 101 (90001), 5200–5205.
Park, S., Russo, M., 1996. When competition eclipses cooperation: An event history analysis of joint

venture failure. Management science, 875–890.
Pastor-Satorras, R., Vazquez, A., Vespignani, A., 2001. Dynamical and correlation properties of the inter-

net. Physical Review Letters 87.
Perry-Smith, J., Shalley, C., 2003. The social side of creativity: A static and dynamic social network

perspective. Academy of Management Review 28 (1), 89–106.
Powell, W., Koput, K. W., Smith-Doerr, L., 1996. Interorganizational collaboration and the locus of

innovation: Networks of learning in biotechnology. Administrative Science Quarterly 41 (1), 116–145.
Ravasz, E., Barabási, A., 2003. Hierarchical organization in complex networks. Physical Review E 67 (2),

026112.
Rodŕıguez-Gironés, M., Santamaŕıa, L., 2006. A new algorithm to calculate the nestedness temperature of

presence–absence matrices. Journal of Biogeography 33 (5), 924–935.
Saavedra, S., Reed-Tsochas, F., Uzzi, B., December 2008. A simple model of bipartite cooperation for

ecological and organizational networks. Nature 457 (7228), 463–466.
Sabidussi, G., 1966. The centrality index of a graph. Psychometrika 31 (4), 581–603.
Sandholm, W., 2010. Population games and evolutionary dynamics. MIT Press.
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Appendix

A. Network Definitions and Characterizations (For On-

line Publication)

A network (graph) G is the pair (N , E) consisting of a set of agents (vertices or nodes) N =

{1, . . . , n} and a set of edges E ⊂ N × N (links) between them. A link ij is incident with the

vertex v ∈ N in the network G whenever i = v or j = v. There exists a link between vertices

i and j such that aij = 1 if ij ∈ E and aij = 0 if ij /∈ L. The neighborhood of an agent i ∈ N
is the set Ni = {j ∈ N : ij ∈ E}. The degree di of an agent i ∈ N gives the number of links

incident to agent i. Clearly, di = |Ni|. Let N (2)
i =

⋃

j∈Ni
Nj\ (Ni ∪ {i}) denote the second-order

neighbors of agent i. Similarly, the k-th order neighborhood of agent i is defined recursively from

N (0)
i = {i}, N (1)

i = Ni and N (k)
i =

⋃

j∈N (k−1)
i

Nj\
(
⋃k−1

l=0 N (l)
i

)

. A walk in G of length k from i

to j is a sequence p = 〈i0, i1, . . . , ik〉 of agents such that i0 = i, ik = j, ip 6= ip+1, and ip and ip+1

are directly linked, for all 0 ≤ p ≤ k − 1. Agents i and j are said to be indirectly linked in G if

there exists a walk from i to j in G. An agent i ∈ N is isolated in G if aij = 0 for all j. The

network G is said to be empty when all its agents are isolated.

A subgraph, G′, of G is the graph of subsets of the agents, N (G′) ⊆ N (G), and links, E(G′) ⊆
E(G). A graph G is connected, if there is a path connecting every pair of agents. Otherwise

G is disconnected. The components of a graph G are the maximally connected subgraphs. A

component is said to be minimally connected if the removal of any link makes the component

disconnected.

A dominating set for a graph G = (N , E) is a subset S of N such that every node not in S
is connected to at least one member of S by a link. An independent set is a set of nodes in a

graph in which no two nodes are adjacent. For example the central node in a star K1,n−1 forms

a dominating set while the peripheral nodes form an independent set.

In a complete graph Kn, every agent is adjacent to every other agent. The graph in which no

pair of agents is adjacent is the empty graph Kn. A clique Kn′ , n′ ≤ n, is a complete subgraph of

the network G. A graph is k-regular if every agent i has the same number of links di = k for all

i ∈ N . The complete graph Kn is (n− 1)-regular. The cycle Cn is 2-regular. In a bipartite graph

there exists a partition of the agents in two disjoint sets V1 and V2 such that each link connects

an agent in V1 to an agent in V2. V1 and V2 are independent sets with cardinalities n1 and n2,

respectively. In a complete bipartite graph Kn1,n2
each agent in V1 is connected to each other

agent in V2. The star K1,n−1 is a complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph Ḡ with the same nodes as G such that any two

nodes of Ḡ are adjacent if and only if they are not adjacent in G. For example the complement

of the complete graph Kn is the empty graph K̄n.

Let A be the symmetric n× n adjacency matrix of the network G. The element aij ∈ {0, 1}
indicates if there exists a link between agents i and j such that aij = 1 if ij ∈ E and aij = 0 if

ij /∈ E . The k-th power of the adjacency matrix is related to walks of length k in the graph. In

particular,
(
Ak
)

ij
gives the number of walks of length k from agent i to agent j. The eigenvalues

of the adjacency matrix A are the numbers λ1, λ2, . . . , λn such that Avi = λivi has a nonzero

solution vector vi, which is an eigenvector associated with λi for i = 1, . . . , n. Since the adjacency

matrix A of an undirected graph G is real and symmetric, the eigenvalues of A are real, λi ∈ R

for all i = 1, . . . , n. Moreover, if vi and vj are eigenvectors for different eigenvalues, λi 6= λj ,
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then vi and vj are orthogonal, i.e. vT
i vj = 0 if i 6= j. In particular, Rn has an orthonormal basis

consisting of eigenvectors of A. Since A is a real symmetric matrix, there exists an orthogonal

matrix S such that STS = SST = I (that is ST = S−1) and STAS = D, where D is the

diagonal matrix of eigenvalues of A and the columns of S are the corresponding eigenvectors.

The Perron-Frobenius eigenvalue λPF(G) is the largest real eigenvalue of A associated with G,

i.e. all eigenvalues λi of A satisfy |λi| ≤ λPF(G) for i = 1, . . . , n and there exists an associated

nonnegative eigenvector vPF ≥ 0 such that AvPF = λPF(G)vPF. For a connected graph G

the adjacency matrix A has a unique largest real eigenvalue λPF(G) and a positive associated

eigenvector vPF > 0. There exists a relation between the number of walks in a graph and its

eigenvalues. The number of closed walks of length k from a agent i in G to herself is given by
(
Ak
)

ii
and the total number of closed walks of length k in G is tr

(
Ak
)
=
∑n

i=1

(
Ak
)

ii
=
∑n

i=1 λ
k
i .

We further have that tr (A) = 0, tr
(
A2
)
gives twice the number of links in G and tr

(
A3
)
gives

six times the number of triangles in G.

B. Topological Properties of Nested Split Graphs (For

Online Publication)

In this appendix we discuss in more detail the topological properties of nested split graphs that

arise from our network formation process. We first derive several network statistics for nested split

graphs. We compute the degree distribution, the clustering coefficient, average nearest neighbor

neighbor connectivity and the characteristic path length in a nested split graph. In particular,

we show that connected nested split graphs have small characteristic path length, which is at

most two. We then analyze different measures of centrality in a nested split graph.52 From the

expressions of these centrality measures we then can show that degree, closeness, eigenvector and

Bonacich centrality induce the same ordering of nodes in a nested split graph. If the ordering

is not strict, then this holds also for betweenness centrality. As we elaborate in more detail in

Section 9 this has important implications for the generality of our model. Finally, for all statistics

derived in this section we show that they are all completely determined by the degree partition

in a nested split graph.

B.1. Network Statistics

In the following sections we will compute the degree connectivity, the clustering coefficient, as-

sortativity and average nearest nearest neighbor connectivity and the characteristic path length

in a nested split graph G as a function of the degree partition D (introduced in Definition 3).

B.1.1. Degree Connectivity

The nested neighborhood structure of a nested split graph allows us to compute the degrees of

the nodes according to a recursive equation that is stated in the next corollary.

Corollary 3. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the

52See Wasserman and Faust [1994, Chap. 5.2] for an overview of different measures of centrality.
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Figure 13: Representation of nested split graphs and their degree partitions D with corresponding adja-
cency matrices A. A line between Di and Dj indicates that every node in Di is adjacent to every node in
Dj . The partitions included in the solid frame (Di with

⌊
k
2

⌋
+1 ≤ i ≤ k) are the dominating subsets while

the partitions in the dashed frame (Di with 1 ≤ i ≤
⌊
k
2

⌋
) are the independent sets. The figure on the left

considers the case of k = 6 (even) and the figure on the right the case of k = 7 (odd). The illustration
follows Mahadev and Peled [1995, p. 11].

degree partition of G. Then du = 0 if u ∈ D0 and for each u ∈ Di, v ∈ Di−1, i = 1, . . . , k, we get

du =

{

dv + |Dk−i+1|, if i 6=
⌊
k
2

⌋
+ 1,

dv + |Dk−i+1| − 1, if i =
⌊
k
2

⌋
+ 1,

(12)

or equivalently

du =

{∑i
j=1 |Dk+1−j |, if 1 ≤ i ≤

⌊
k
2

⌋
,

∑i
j=1 |Dk+1−j | − 1, if

⌊
k
2

⌋
+ 1 ≤ i ≤ k.

(13)

Equation (12) shows that the neighborhoods of the agents in a nested split graph are nested

(see also Definition 4). The degrees of the agents in ascending order of the graph in Figure 13,

left, are 2, 3, 4, 5, 7, 9 while in the graph in Figure 13, right, they are 1, 2, 3, 4, 7, 8, 9.

B.1.2. Clustering Coefficient

The clustering coefficient C(u) for an agent u is the proportion of links between the agents within

her neighborhood Nu divided by the number of links that could possibly exist between them

[Watts and Strogatz, 1998]. It is given by

C(u) ≡ |{vw : v, w ∈ Nu ∧ vw ∈ E}|
du(du − 1)/2

. (14)

In a nested split graph the clustering coefficient can be derived from the degree partition, as the

following corollary shows.

Corollary 4. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the

degree partition of G. Denote by Si
D =

∑k
j=i |Dj |. Then for each u ∈ Di, i = 0, . . . , k, and
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du ≥ 2, the clustering coefficient is given by

C(u) =







0, if i = 0,

1, if 1 ≤ i ≤
⌊
k
2

⌋
,

1
du(du−1)

(

S
⌊ k

2⌋+1

D − 1

)[(

S
⌊ k

2⌋+1

D − 2

)

+ 2|D⌊ k

2⌋|
]

, if i =
⌊
k
2

⌋
+ 1, k even,

1
du(du−1)

(

S
⌊ k

2⌋+1

D − 1

)(

S
⌊ k

2⌋+1

D − 2

)

, if i =
⌊
k
2

⌋
+ 1, k odd,

1
du(du−1)

[(

S
⌊ k

2⌋+1

D − 1

)(

S
⌊ k

2⌋+1

D − 2

)

+

2
∑⌊ k

2⌋
j=k−i+1 |Dj |

(

Sk−j+1
D − 1

)]

, if
⌊
k
2

⌋
+ 2 < i ≤ k,

(15)

where du is given by Equation (13).

Proof of Corollary 4. Note that for all agents in the independent sets, u ∈ Di with 1 ≤ i ≤
⌊
k
2

⌋
, the clustering coefficient is one, since their neighbors are all connected among each other.

Next, we consider the agents u ∈ Di with
⌊
k
2

⌋
+1 ≤ i ≤ k and degree du =

∑i
j=1 |Dk+1−j |−1. The

neighbors of agent u in the dominating subsets are all connected among each other with a total

of 1
2

(
∑k

j=⌊ k

2⌋+1
|Dj | − 1

)(
∑k

j=⌊ k

2⌋+1
|Dj | − 2

)

links, excluding agent u from the dominating

subset. The neighbors of u in the independent sets are not connected. Finally, we consider the

links between neighbors for which one neighbor is in a dominating subset and one neighbor is in

an independent set. If k is even we get
∑⌊ k

2⌋
j=k−i+1 |Dj |

(
∑k

l=k−j+1 |Dl| − 1
)

links, excluding agent

u in the dominating subset (see Figure 13 (left)). If k is odd there is no such contribution for the

agents in the set D⌊ k

2⌋+1 (see Figure 13 (right)). Putting these contributions together we obtain

the clustering coefficient of an agent u ∈ Di for all i = 1, . . . , k, as given by Equation (15).

The total clustering coefficient is the average of the clustering coefficients over all agents,

C ≡ 1
n

∑

u∈N C(u). The clustering coefficients of the agents in ascending order of the graph

in Figure 13, left, are 5/12, 5/12, 13/21, 9/10, 1, 1, 1, 1, 1, 1, with a total clustering coefficient of

C = 0.84. In the graph in Figure 13, right, it is 13/36, 13/28, 4/7, 1, 1, 1, 1, 1, 1, with a total

clustering of C = 0.74.

B.1.3. Assortativity and Nearest Neighbor Connectivity

There exists a measure of degree correlation called average nearest neighbor connectivity [Pastor-Satorras et al.,

2001]. More precisely, the average nearest neighbor connectivity dnn(u) is the average degree of

the neighbors of an agent with degree du. It is defined by

dnn(u) ≡
1

du

∑

v∈Nu

dv. (16)

In a nested split graph the average nearest neighbor connectivity is determined by its degree

partition.

Corollary 5. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the
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degree partition of G. Denote by Si
D =

∑i
j=1 |Dk+1−j |. Then for each u ∈ Di, i = 0, . . . , k,

dnn(u) =







0, if i = 0,

1
Si

D

∑i
j=1 |Dk+1−j |

(

Sk+1−j
D − 1

)

, if i = 1, . . . ,
⌊
k
2

⌋
,

1

S
⌊ k2 ⌋+1

D
−1

[
∑k

j=⌊ k

2⌋+2
|Dj |

(

Sj
D − 1

)

+
(

|D⌊ k

2⌋+1| − 1
)(

S
⌊ k

2⌋+1

D − 1

)

+ |D⌊ k

2⌋|S
⌊ k

2⌋
D

]

, if i =
⌊
k
2

⌋
+ 1, k even,

1

S
⌊ k2 ⌋+1

D
−1

[
∑k

j=⌊ k

2⌋+1
|Dj |

(

Sj
D − 1

)]

− 1, if i =
⌊
k
2

⌋
+ 1, k odd,

1
Si

D
−1

[
∑k

j=⌊ k

2⌋+1
|Dj |

(

Sj
D − 1

)

+
∑⌊ k

2⌋
j=k−i+1 |Dj |Sj

D

]

− 1, if i =
⌊
k
2

⌋
+ 2, . . . , k

(17)

Proof of Corollary 5. First, consider an agent u ∈ Di with i = 1, . . . ,
⌊
k
2

⌋
corresponding

to the independent sets. We know that the number of neighbors (degree) of agent u is given by
∑i

j=1 |Dk+1−j |. The neighbors of agent u are the agents in the dominating subsets with degrees

given in Equation (13). Thus, the number of neighbors of the neighbors of u in the sets Dk+1−j

is
∑k+1−j

l=1 |Dk+1−l| − 1. Putting the above results together, we obtain for the average nearest

neighbor connectivity of agent u ∈ Di, i = 1, . . . ,
⌊
k
2

⌋
, the following expression.

dnn(u) =
1

∑i
j=1 |Dk+1−j |

i∑

j=1

|Dk+1−j |
(

k+1−j
∑

l=1

|Dk+1−l| − 1

)

. (18)

Next, we consider an agent u in the set Di with
⌊
k
2

⌋
+2 ≤ i ≤ k corresponding to the dominating

subsets. The number of neighbors of agent u is given by
∑i

j=1 |Dk+1−j | − 1. The number

of neighbors of an agent v ∈ Dj ,
⌊
k
2

⌋
+ 1 ≤ j ≤ k in the dominating subsets is given by

∑j
l=1 |Dk+1−l|−1. Since agent u is connected to all other agents in the dominating subsets, we can

sum over all their neighborhoods with a total of
∑k

j=⌊ k

2⌋+1
|Dj |

(
∑j

l=1 |Dk+1−l| − 1
)

neighbors.

Note however, that we have to subtract agent u herself from this sum. Morover, the number of

neighbors of an agent w ∈ Dj , 1 ≤ j ≤
⌊
k
2

⌋
in the independent sets is given by

∑j
l=1 |Dk+1−l|.

Thus, the average nearest neighbor connectivity of agent u ∈ Di,
⌊
k
2

⌋
+ 2 ≤ i ≤ k, is given by

dnn(u) = 1
∑i

j=1 |Dk+1−j |−1

[
∑k

j=⌊ k

2⌋+1
|Dj |

(
∑j

l=1 |Dk+1−l| − 1
)

+
∑⌊ k

2⌋
j=k−i+1 |Dj |

∑j
l=1 |Dk+1−l|

]

− 1.

(19)

In a similar way we can consider the cases i =
⌊
k
2

⌋
+ 1 for both k even and k odd.

When the average nearest neighbor connectivity is a monotonic increasing function of the

degree d, then the network is assortative, while, if it is monotonic decreasing with d, it is dissor-

tative [Newman, 2002; Pastor-Satorras et al., 2001]. Nested split graphs are dissortative, since

for i < j and du ∈ Di < dv ∈ Dj it follows that dnn(u) > dnn(v). This is because the higher is the

degree of an agent in a dominating subset, the more neighbors she has from the independent sets

with low degrees, which decreases her average nearest neighbor connectivity. For example, the

average nearest neighbor connectivities of the agents in the graph in Figure 13, left, in ascending

order are 13/3, 13/3, 37/7, 33/5, 15/2, 15/2, 25/3, 25/3, 9, 9 while in the graph in Figure 13, right,

they are 35/9, 35/8, 34/7, 7, 7, 8, 8, 8, 17/2, 9.
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B.1.4. Characteristic Path Length

The characteristic path length is defined as the number of links in the shortest path between two

agents, averaged over all pairs of agents [Watts and Strogatz, 1998]. This can be written as

ℓ(G) ≡ 1

n(n− 1)/2

∑

u 6=v∈G

d(u, v), (20)

where d(u, v) is the geodesic (shortest path) between agent u and agent v in N\D0.
53 Then the

characteristic path length in a nested split graph is given by the following corollary.

Corollary 6. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the

degree partition of G. Then the characteristic path length of G is given by

ℓ(G) = 1
n(n−1)/2

[

1
2

∑k
j=⌊ k

2⌋+1
|Dj |

(
∑k

j=⌊ k

2⌋+1
|Dj | − 1

)

+
∑⌊ k

2⌋
j=1 |Dj |

(
∑⌊ k

2⌋
j=1 |Dj | − 1

)

+
∑⌊ k

2⌋
l=1 |Dl|

(
∑k

j=k−l+1 |Dj |+ 2
∑k−l

j=⌊ k

2⌋+1
|Dj |

)]

.

(21)

Proof of Corollary 6. We first consider all pairs of agents in the dominating subsets. All

theses agents are adjacent to each other and thus the shortest path between them has length

one. Moreover, there are 1
2

∑k
j=⌊ k

2⌋+1
|Dj |

(
∑k

j=⌊ k

2⌋+1
|Dj | − 1

)

pairs of agents in the dominating

subsets.

Next, we consider all pairs of agents in the independent sets. From Equation (26) we know

that all of them are at a distance of two links separated from each other. Moreover, there are

1
2

∑⌊ k

2⌋
j=1 |Dj |

(
∑⌊ k

2⌋
j=1 |Dj | − 1

)

pairs of agents in which both agents stem from an independent set.

Further, consider the pairs of agents in which one agent is in the independent set D1 and the

other in a dominating subset. Then there are |D1||Dk| pairs of agents with shortest path 1 and

|D1|
∑k−1

j=⌊ k

2⌋+1
|Dj | pairs of agents with shortest path 2. Similarly, we can consider the pairs in

which one agent is in the set D2. Then we have |D2|(|Dk|+ |Dk−1|) pairs of agents with shortest

path 1 and |D2|
∑k−2

j=⌊ k

2⌋+1
|Dj | pairs of agents with shortest path 2. Finally, if one agent is in

the set D⌊ k

2⌋ then we have |D⌊ k

2⌋|
∑k

j=⌊ k

2⌋+1
|Dj | pairs of agents with distance 1 and none with

distance 2, if k is even (see Figure 13, left). If k is odd (see Figure 13, right), and we have one

agent is in the set D⌊ k

2⌋ then we have |D⌊ k

2⌋|
∑k

j=⌊ k

2⌋+2
|Dj | pairs of agents with distance 1 and

|D⌊ k

2⌋||D⌊ k

2⌋+1| pairs with distance 2.

Therefore, the average path length ℓ(G) defined in Equation (20) is given by the following

equation

n(n−1)
2 ℓ(G) = 1

2

∑k
j=⌊ k

2⌋+1
|Dj |

(
∑k

j=⌊ k

2⌋+1
|Dj | − 1

)

+ 21
2

∑⌊ k

2⌋
j=1 |Dj |

(
∑⌊ k

2⌋
j=1 |Dj | − 1

)

+
∑⌊ k

2⌋
l=1 |Dl|

[
∑k

j=k−l+1 |Dj |+ 2
∑k−l

j=⌊ k

2⌋+1
|Dj |

]

.
(22)

53Note that we do not consider the isolated agents in the set D0 because the characteristic path length
ℓ(G) is not defined for disconnected networks G.
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Considering the graph in Figure 13, left, the characteristic path length is ℓ(G) = 22/15 while

in the graph in Figure 13, right, we get ℓ(G) = 68/45.

Note that, by taking the inverse of the shortest path length one can introduce a related

measurement, the network efficiency,54 ǫ(G) ≡ 1
n(n−1)

∑

u 6=v∈G
1

d(u,v) that is also applicable to

disconnected networks [Latora and Marchiori, 2001]. Finally, we find that in a connected nested

split graph agents are at most two links separated from each other and thus these graphs are

characterized by a short characteristic path length.

B.2. Centrality

In the next sections we analyze different measures of centrality in a nested split graph G. We

derive the expressions for degree, closeness and betweenness centrality as a function of the degree

partition of G. Finally, we show that these measures are similar in the sense that they induce

the same ordering of the nodes in G based on their centrality values.

B.2.1. Degree Centrality

The degree centrality of an agent u ∈ N is given by the proportion of agents that are adjacent to

u [Wasserman and Faust, 1994]. We obtain the normalized degree centrality simply by dividing

the degree of agent u with the maximum degree n− 1. This yields the following corollary.

Corollary 7. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the

degree partition of G. Then for each u ∈ Di, i = 0, . . . , k, the degree centrality is given by

Cd(u) =







1
n−1

∑i
j=1 |Dk+1−j |, if 1 ≤ i ≤

⌊
k
2

⌋
,

1
n−1

(
∑i

j=1 |Dk+1−j | − 1
)

, if
⌊
k
2

⌋
+ 1 ≤ i ≤ k.

(23)

Proof of Corollary 7. The result follows directly from Corollary 3.

We observe that degree centrality as well as the degree are increasing with increasing index

i of the set Di to which agent u belongs. Degree centralities for the graphs shown in Figure 13

can be derived from the degrees given in Section B.1.1 by dividing the degrees with n− 1.

B.2.2. Closeness Centrality

Excluding the isolated nodes in G, closeness centrality of agent u ∈ N \ D0 is defined as

[Beauchamp, 1965; Sabidussi, 1966]:

Cc(u) =
n− 1

∑

v 6=u∈G d(u, v)
. (24)

where d(u, v) measures the shortest path between agent u and agent v in N \ D0. For a nested

split graph we obtain the following corollary.

54 The network efficiency must not be confused with the efficiency of a network. The first is related to
short paths in the network while the latter measures social welfare, that is, the efficient network maximizes
aggregate payoff.
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Corollary 8. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the

degree partition of G. Then for each u ∈ Di, i = 0, . . . , k, the closeness centrality is given by

Cc(u) =







n−1
∑k

j=k−i+1 |Dj |+2
∑k−i

j=1 |Dj |−2
, if 1 ≤ i ≤

⌊
k
2

⌋
,

n−1
∑k

j=k−i+1 |Dj |+2
∑k−i

j=1 |Dj |−1
, if

⌊
k
2

⌋
+ 1 ≤ i ≤ k.

(25)

Proof of Corollary 8. For both agents in the independent sets, u ∈ Di with 1 ≤ i ≤
⌊
k
2

⌋
,

and in the dominating subsets, u ∈ Di with
⌊
k
2

⌋
+ 1 ≤ i ≤ k, we can compute the length of the

shortest paths as follows:

d(u, v) =

{

1 for all v ∈ ⋃k
j=k−i+1Dj ,

2 for all v ∈ ⋃k−i
j=1Dj .

(26)

In order to compute the closeness centrality we have to consider all pairs of agents in the graph

and compute the length of the shortest path between them, which is given in Equation (26). We

obtain for any agent u ∈ Di, i = 1, . . . , k, the following expression

Cc(u) =







n−1
∑k

j=k−i+1 |Dj |+2
∑k−i

j=1 |Dj |−2
, if 1 ≤ i ≤

⌊
k
2

⌋

n−1
∑k

j=k−i+1 |Dj |+2
∑k−i

j=1 |Dj |−1
, if

⌊
k
2

⌋
+ 1 ≤ i ≤ k.

(27)

Note that we have subtracted 1 and 2 in the denominator, respectively, since the sums would

otherwise include the contribution of agent u herself.

We have that closeness centrality is identical for all agents in the same set. Also note that

Cc(u) = 1 for u ∈ Dk. Moreover, closeness centrality is increasing with increasing degree.

The closeness centralities of the agents in descending order for the graph in Figure 13, left,

are 1, 1, 9/11, 9/13, 9/14, 9/14, 9/15, 9/15, 9/16, 9/16 while in the graph in Figure 13, right, they

are 1, 9/10, 9/11, 9/14, 9/14, 9/15, 9/15, 9/15, 9/16, 9/17.

B.2.3. Betweenness Centrality

Betweenness centrality is defined as [Freeman, 1977]

Cb(u) =
∑

u 6=v 6=w∈G

g(v, u, w)

g(v, w)
, (28)

where g(v, w) denotes the number of shortest paths from agent v to agent w and g(v, u, w) counts

the number of paths from agent v to agent w that pass through agent u.

The betweenness centrality for a nested split graph can be derived from its degree partition

as follows.55

Corollary 9. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be the

degree partition of G. Then cb(u) = 0 if u ∈ Di, i = 0, . . . ,
⌊
k
2

⌋
and for each u ∈ Di, v ∈ Di−1,

55A similar result can be found in Hagberg et al. [2006].

47



i =
⌊
k
2

⌋
+ 1, . . . , k, the betweenness centrality is given by

Cb(u) =







0 if , i =
⌊
k
2

⌋
+ 1, k odd

|D⌊ k2 ⌋
|
(

|D⌊ k2 ⌋
|−1

)

∑k

j=⌊ k2 ⌋+1
|Dj |

, if , i =
⌊
k
2

⌋
+ 1, k even

cb(v) +
|Dk−i+1|(|Dk−i+1|−1)

∑k
j=i |Dj |

+
2|Dk−i+1|

∑i−1
j=k−i+2 |Dj |

∑k
j=i |Dj |

, if
⌊
k
2

⌋
+ 2 ≤ i ≤ k.

(29)

Proof of Corollary 9. In this proof, we follow closely Hagberg et al. [2006]. The agents in

the independent sets Di, 0 ≤ i ≤
⌊
k
2

⌋
do not lie on any shortest path between two other agents

in the network and thus their betweenness centrality vanishes. For the agents in the dominating

subsets we have that the betweenness centrality of the agent u ∈ D⌊ k

2⌋+1 vanishes if k is odd and

is given by |D⌊ k

2⌋|
(

|D⌊ k

2⌋| − 1
)

/
∑k

j=⌊ k

2⌋+1
|Dj | if k is even. The latter result is due the shortest

path between agents that are both in D⌊ k

2⌋. Next, consider an agent u ∈ Di and v ∈ Di−1, with
⌊
k
2

⌋
+ 2 ≤ i ≤ k. Then the betweenness centrality of agent u is given by the following recursive

relationship

Cb(v) +
|Dk−i+1| (|Dk−i+1| − 1)

∑k
j=i |Dj |

+
2|Dk−i+1|

∑i−1
j=k−i+2 |Dj |

∑k
j=i |Dj |

. (30)

The first term in Equation (30) is due to the fact that all shortest paths through lower dominating

nodes v ∈ Di−1 have the same length as through u ∈ Di. The second term in Equation (30)

represents the contribution of paths between nodes in Dk−i+1, divided by the number of shortest

path passing through the agents in the dominating subsets Dj , i ≤ j ≤ k. The third term

in Equation (30) represents all path between an agent in Dk−i+1 and the other being in Dj ,

k − i+ 2 ≤ j ≤ i− 1, divided by the number of shortest path passing through the agents in the

dominating subsets Dj , i ≤ j ≤ k.

From Corollary 9, we find that the agents in the independent sets Di with 1 ≤ i ≤
⌊
k
2

⌋
have

vanishing betweenness centrality. From the above equation we also observe that the betweenness

centrality is increasing with degree such that the agents in Dk have the highest betweenness

centrality, the agents in Dk−1 the second highest betweenness centrality and so on. Thus, the

ordering of betweenness centralities follows the degree ordering for all agents in the dominat-

ing subsets while the agents in the independent sets have vanishing betweenness centrality. For

the betweenness centralities of the agents in the graph in Figure 13, left, we obtain in descend-

ing order 109/6, 109/6, 31/6, 1/2, 0, 0, 0, 0, 0, 0 while in the graph in Figure 13, right, they are

28, 12, 6, 0, 0, 0, 0, 0, 0, 0.

B.2.4. Eigenvector Centrality

There is a central property that holds for nested split graphs in relation to Bonacich centrality,

namely that the agents with higher degree also have higher Bonacich centrality. Similar to part

(i) of Proposition 1 we can give the following corollary.56

Corollary 10. Let v be the eigenvector associated with the largest real eigenvalue λPF(G) of the

adjacency matrix A of a nested split graph G = (N , E). For each i ∈ N , let vi be the eigenvector

56A similar result can be found in Grassi et al. [2007].
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centrality of agent i. Consider a pair of agents i, j ∈ N . If and only if agent i has a higher degree

than agent j then i has a higher eigenvector centrality than j, i.e. di > dj ⇔ vi > vj.

Proof of Corollary 10. The proof is identical to the proof of part (i) of Proposition 1.

B.2.5. Centrality Rankings

Putting together the results for different centrality measures derived in the previous sections, we

can make the following observation of the rankings of agents for different centrality measures in

a nested split graph.

Corollary 11. Consider a nested split graph G = (N , E). Let Cd, Cc, Cb, Cv denote the vectors

of degree, closeness, betweenness and eigenvector centrality in G. Then for any l,m ∈ {d, c, v},
l 6= m and i, j ∈ N we have that Cl(i) ≥ Cl(j) ⇔ Cm(i) ≥ Cm(j), and Cl(i) ≥ Cl(j) ⇒ Cb(i) ≥
Cb(j).

Proof of Corollary 11. The proof is a direct application of Corollaries 7, 8 9 and Proposition

1.

If and only if an agent i has the k-th highest degree centrality then i is the agent with the k-th

highest closeness and eigenvector centrality. This result also holds for Bonacich centrality (see

Proposition 1). Moreover, if an agent i has the k-th highest degree centrality then she also has the

k-th highest betweenness centrality and this also holds for closeness, eigenvector and Bonacich

centrality, respectively. The ordering induced by degree, closeness eigenvector and Bonacich

centrality coincide and these orderings also apply in a weak sense for betweenness centrality.

We discuss in Section 9 that this allows us to generalize our model to various other centrality

measures beyond Bonacich centrality.

C. Introducing the Cost of Forming a Link (For Online

Publication)

Consider the network formation process of Definition 2 with one modification: The agent who

wants to create a link needs to pay a cost c and creates the link only of it increases her payoff.

The following proposition gives a bound on the linking cost c such that link monotonicity holds,57

that is, marginal payoffs from forming a link are always positive.

Proposition 8. Consider the network formation process (G(t))t∈R+
in Definition 2. Assume that

there is a cost c ≥ 0 of creating a link for the agent who initiates that link. Further, assume that

agents create links only if it increases their payoff. Then, if c is smaller than λ(2−λ)/(2(1−λ)2),

link monotonicity holds and the emerging network will always be a nested split graph.

57Link monotonicity requires that π∗
i (G ⊕ ij, λ) > π∗

i (G,λ) for all i, j ∈ N and ij /∈ G [cf. e.g.
Dutta et al., 2005].
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Proof of Proposition 8. For notational simplicity we drop the time index and denote by

G ≡ G(t). We consider the network G ⊕ ij obtained by adding the link ij /∈ G. The marginal

payoff from forming a link ij for agent i ∈ N is given by

π∗i (G⊕ ij, λ)− π∗i (G, λ) =
1

2

(
bi(G⊕ ij, λ)2 − bi(G, λ)2

)

=
1

2
(bi(G⊕ ij, λ)− bi(G, λ)) (bi(G⊕ ij, λ) + bi(G, λ)) .

Note that the Bonacich centrality of agent i ∈ N can be written as bi(G, λ) = 1+
∑

j∈Ni
bj(G, λ).

The change in the Bonacich centrality from forming the link ij is given by

bi(G⊕ ij, λ)− bi(G, λ) =
∑

k∈Ni\{j}

(bk(G⊕ ij, λ)− bk(G, λ)))

︸ ︷︷ ︸

>0

+λbj(G⊕ ij, λ)

≥ λbj(G⊕ ij, λ) ≥ λmin
k∈N

bk(G⊕ ij, λ).

In the first line from above we have used the fact that the number of walks emanating at i is

increasing with the addition of a link and so is the Bonacich centrality.

The smallest Bonacich centrality in a non-empty graph G (after the creation of a link the

graph is always non-empty) is obtained in a path of length 2 (dyad), P2, for which bi(P2, λ) =
1

1−λ .

Hence, we have that bi(G⊕ ij, λ)− bi(G, λ) > λ/(1−λ) and bi(G⊕ ij, λ)+ bi(G, λ) > (2−λ)/(1−
λ), so that the marginal payoff of agent i from forming a link ij is bounded from below by

π∗i (G ⊕ ij, λ) − π∗i (G, λ) > λ(2−λ)
2(1−λ)2 . This bound might seem crude but note that if the linking

cost is higher than λ(2 − λ)/(2(1 − λ)2), the empty graph is a stable network, irrespective of

how we allow agents to remove links. Hence, we find that if the cost c of a link is lower than

λ(2 − λ)/(2(1 − λ)2), a link will always be formed and the networks generated in our network

formation process will all be nested split graphs.

The above proposition shows that nested split graphs can also arise even when links are costly

to be formed, as long as the costs are not too large.

D. Proofs of Propositions, Corollaries and Lemmas (For

Online Publication)

In this section we give the proofs of the propositions, corollaries and lemmas stated earlier in the

paper.

Proof of Proposition 1. (i) A graph having a stepwise adjacency matrix is a nested split

graph G. A nested split graph has a nested neighborhood structure. The neighborhood Nj of an

agent j is contained in the neighborhood Ni of the next higher degree agent i with |Ni| = di >

|Nj | = dj with Nj ⊂ Ni. For a symmetric adjacency matrix the vector of Bonacich centralities is

given by b(G, λ) = λAb+ u, u = (1, . . . , 1)⊤. For agent i we get

bi(G, λ) = λ

n∑

k=1

aikbk(G, λ) + 1 = λ
∑

k∈Ni

bk(G, λ) + 1, (31)
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i

j k

Nj Nk

G′ G′′

Figure 14: An illustration of the two networks G′ and G′′, which differ in the links ij and ik. The
neighborhood Nj of agent j and the neighborhood Nk of agent k are indicated by corresponding boxes.
Note that the neighborhood of agent j is contained in the neighborhood of agent k. The loop at agent i
indicates a walk starting at i and coming back to i before proceeding to either agent j or k.

and similarly for agent j

bj(G, λ) = λ
∑

k∈Nj

bk(G, λ) + 1. (32)

Since Nj ⊂ Ni and dj = |Nj | < |Ni| = di we get

bi(G, λ)

bj(G, λ)
=

λ
∑

k∈Ni
bk(G, λ) + 1

λ
∑

k∈Nj
bk(G, λ) + 1

> 1. (33)

The inequality follows from the fact that the Bonacich centrality is nonnegative and the numerator

contains the sum over the same positive numbers as the denominator plus some additional values.

Conversely, in a nested split graph we must either have Ni ⊂ Nj or Nj ⊂ Ni. Assuming that

bi(G, λ) > bj(G, λ) we can conclude from the above equation that Nj ⊂ Ni and therefore |Ni| =
di > |Nj | = dj . If there are l distinct degrees in G then the ordering of degrees d1 > d2 > . . . > dl
is equivalent to the ordering of the Bonacich centralities b1(G, λ) > b2(G, λ) > . . . > bl(G, λ).

(ii) Consider the agents i, j and k in the nested split graph G(t), such that dj ≤ dk. Let G′ be

the graph obtained from G(t) by adding the link ij and G′′ be the graph obtained from G(t) by

adding the link ik. We want to show that the Bonacich centrality of agent i in G′′ is higher than

in G′, that is, bi(G
′, λ) < bi(G

′′, λ). For this purpose we count the number of walks emanating at

agent i when connecting either to agent j or agent k. Since G is a nested split graph, we have that

Nj ⊂ Nk. An illustration is given in Figure 14. We consider a walk Wl of length l ≥ 2 starting

at agent i in G′. We want to know how many such walks there are in G′ and G′′, respectively.

For this purpose we distinguish the following cases:

(a) Assume that Wl does not contain the link ij nor the link ik. Then each such walk Wl in G′

is also contained in G′′, since G′ and G′′ differ only in the links ij and ik.

(b) Consider the graph G′ and a walk Wl starting at agent i and proceeding to agent j. For each

walk Wl in G′ there exists a walk W̃l in G′′ being identical to Wl except of proceeding from i

to j it proceeds from i to k and then to the neighbor of j that is visited after j in Wl. This

is always possible since the neighbors of j are also neighbors of k.

(c) Consider a walk Wl in G′ that starts at i but first takes a detour returning to i before
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proceeding from i to j. Using the same argument as in (ii) it follows that for each such walk

Wl in G′ there exists a walk of the same length in G′′.

(d) Consider a walk Wl in G′ that starts at agent i and at some point in its sequence of agents

and links proceeds from agent j to agent i. For each such walk Wl in G′ there exists a walk

W̃l in G′′ that is identical to Wl except that it does not proceed from a neighbor of j to j

and then to i it proceeds from a neighbor of j to k and then to i.

The above cases take into account all possible walks in G′ and G′′ of an arbitrary length l and

show that in G′′ there are at least as many walks of length l starting from agent i as there are in

G′.

Now consider the walks of length two, W2, in G′ starting at agent i and proceeding to agent

j. Then there are |Nj | such walks in G′. However, there are |Nk| > |Nj | such walks in G′′ of

length two that start at agent i.

The Bonacich centrality bi(G(t), λ) is computed by the number of all walks in G(t) starting

from i, where the walks of length l are weighted by their geometrically decaying factor λl. We

have shown that for each l the number of walks in G′′ is larger or equal than the number of walks

in G′ and for l = 2 it is strictly larger. Thus, the Bonacich centrality of agent i in G′′ is higher

than in G′. Note that all agents in a nested split graph are at most two links separated from each

other (if there exists any walk between them). Thus, the agent with the highest degree is also

the agent with the highest degree among the neighbors’ neighbors. From this discussion we see

that in a nested split graph G(t) the best response of an agent i are the agents with the highest

degrees in i’s second-order neighborhood.

Proof of Proposition 2. We give a proof by induction. The induction basis is trivial. We

start at t = 0 from an empty network G(0) = K̄n, which has a trivial stepwise adjacency matrix

(see also the Definition 5). Since there are no links present in K̄n we can omit the removal of a

link. Consider a small time increment ∆t > 0. During that time interval a one step transition

with positive probability can only involve the creation of a link by an isolated agent. All other

isolated agents are best responses of this agent. The formation of the link creates a path of length

one whose adjacency matrix is stepwise. This is true because we can always find a simultaneous

columns and rows permutation which makes the adjacency matrix stepwise. Thus G(∆t) has a

stepwise adjacency matrix.

Next we consider the induction step of a one step transition from G(t) to G(t+∆t). By the

induction hypothesis, G(t) is a nested split graph with a stepwise adjacency matrix. First, we

consider the creation of a link ij. Let agent j be a best response of agent i, that is j ∈ Bi(G(t)).

Using Proposition 1, this means that agent i must be the agent with the highest degree not

already connected to j. From the stepwise adjacency matrix A(G(t)) of G(t) (see Definition 5)

we find that adding the link ij to the network G(t) such that j has the highest degree among all

agents not already connected to i results in a matrix A(G(t) ⊕ ij) that is stepwise. Therefore,

the network G(t)⊕ ij is a nested split graph.

We give an example in Figure 15. Let the agents be numbered by the rows respectively

columns of the adjacency matrix. We assume that agent 4 receives a link creation opportunity.

Two possible positions for the creation of a link from agent 4, either to agent 7 or to agent 10

are indicated with boxes. Since, in a stepwise matrix, the agent in the best response set has the

highest degree, agent 7 is a best response of agent 4 while agent 10 is not. It further holds that

agent 4 is also a best response of agent 7, since agent 4 is the agent with the highest degree not
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A′ =































0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 0 1
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0































←−−−−−
G⊕4,10

A =































0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0































−−−−→
G⊕47

A′′ =































0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0































Figure 15: Two possible positions for the creation of a link from agent 4, either to agent 7 (right) or to
agent 10 (left), are indicated above. Agent 7 has degree 3 while agent 10 has degree 1. Creating a link
to an agent with higher degree results in higher equilibrium payoffs. Thus, the best response of agent 4 is
agent 7 and not agent 10.

already connected to agent 7. Finally, we observe that creating the link 47 preserves the stepwise

form of the adjacency matrix (see also Definition 5).58

For the decay of a link a similar argument can be applied as in the preceding discussion.

Disconnecting from the agent with the smallest degree decreases the Bonacich centrality and

equilibrium payoffs the least, and hence, this will be the link that decays as ζ → 0. From the

properties of the stepwise matrix A(G(t)) it then follows that the matrix A(G(t)⊖ ij) is stepwise.

Thus, at any time t ≥ 0 in the network formation process (G(t))t∈R+
, G(t) is a nested split

graph with an associated stepwise adjacency matrix A(G(t)). Let Ψ denote the set of nested split

graphs on n nodes. It can be shown that |Ψ| = 2n−1 [Mahadev and Peled, 1995]. We thus have

shown that in the limit of vanishing mistakes, ζ → 0, the network G(t) is a nested split graph

almost surely, which is to say that P(G(t) ∈ Ψ|G(0) = K̄n) = 1 for all t ≥ 0.

Proof of Corollary 1. In Proposition 2 we have shown that G(t) generated by (G(t))t∈R+
is

a nested split graph for all times t. In a nested split graph, any node in the connected component

is directly connected to the node(s) with maximum degree. Thus, there exists a path of at most

length two from any node to any other node in the connected component. It follows that G(t)

consists of a connected component and possible isolated nodes.

Proof of Proposition 3. First, we show that (G(t))t∈R+
is a Markov chain. Since the transi-

tion rate qζ(G,G′) governing the transition from a network G to a network G′ depends only on

the current network G, the following Markov property holds

P
(
G(t+ s) = G′|G(s) = G, {G(u) : 0 ≤ u < s}

)
= P

(
G(t+ s) = G′|G(s) = G

)
,

for all t ≥ 0, s ≥ 0 and G,G′ ∈ Ω. The number of possible networks G(t) is finite for any

time t ≥ 0 and the transition rates depend on the state G(t) but not on the time t. Therefore,

(G(t))t∈R+
is a finite state, continuous time, homogeneous Markov chain. Further, not that the

transition rates are bounded.

Next, we show that the Markov chain is irreducible. Consider two networks G,G′ ∈ Ω.

(G(t))t∈R+
is irreducible if there exists a positive probability to pass from any G to any other G′ in

58The adjacency matrix is uniquely defined up to a permutation of its rows and columns. Applying such
a permutation, we can always find an adjacency matrix which is stepwise.
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Ω. This means that there exists a sequence of networksG1, G2, . . . , Gn such that qζ(G,G1)q
ζ(G1, G2) · · · qζ(Gn, G

0. We say that G′ is accessible from G. For ζ > 0 the logistic function in the transition rates

implies that such a sequence always exists and irreducibility follows. We then have that a unique

invarinat distribution µζ exists.

Next, we consider the case of ζ = 0. Let Ψ be the set of nested split graphs and denote by

Ψ̄ = Ω\Ψ. In the following, we show that the networks in Ψ̄ are transient. Observe that for

any network G ∈ Ψ̄ and αi > 0 there exists a positive probability that in a finite number of

consecutive transitions in the Markov chain links are created and no links are removed until the

complete network Kn ∈ Ω is reached. Let T < ∞ be the time when this happens starting from

G /∈ Ψ. Note that Kn ∈ Ψ, and therefore Proposition 2 implies that all networks G(t), t > T ,

visited by the chain will be in Ψ. A state G is transient if
∫∞
0 P(G(t+ s) = G|G(t) = G)ds < ∞

[see e.g. Grimmett and Stirzaker, 2001, Chap. 6]. We have that
∫∞
0 P(G(t + s) = G|G(t) =

G)ds = E
(∫∞

0 1G(G(s))ds|G(t) = G
)
≤ E(T ) < ∞. Therefore, all networks which are not nested

split graphs are transient and they have vanishing probability in the stationary distribution, i.e.

µ(Ψ̄) = 0.

In the following, we show that the set Ψ is a communicating class. Similar to our previous

analysis, it holds that for any G ∈ Ψ and αi > 0 there exists a positive probability that in all

consecutive transitions in the Markov chain links are created and no links are removed until the

complete network Kn ∈ Ω is reached. Then for βi > 0 there exists a positive probability that from

Kn only those links decay such that the network G′ remains.59 Therefore, there exists a positive

probability to pass from any network G to any other network G′ with positive probability, as long

as G,G′ ∈ Ψ. Similarly, one can show that G is accessible from G′. States G and G′ in Ψ are

accessible from one-another. We say that they communicate and Ψ is a communicating class.

Thus, in the case of ζ → 0, the state space Ω can be partitioned in a communicating class Ψ

and a set of transient states Ψ̄. The long run behavior of the chain is determined by the states

in recurrent class Ψ and we have a unique invariant distribution with limζ→0 µ
ζ(Ψ) = 1 [see e.g.

Ethier and Kurtz, 1986; Stroock, 2005].

Before we proceed with the proof of Proposition 4, we introduce the sampled-time Markov

chain (G(t))t∈T , T ≡ {0,∆t, 2∆t, . . .}, associated with the continuous time Markov chain (G(t))t∈R+

in the limit of ζ → 0 on the same measure space (Ω,F) [see e.g. Gallager, 1996, Chap. 6]. In the

sampled-time Markov chain (G(t))t∈T transitions occur only at discrete times t ∈ T separated

by (small) increments of size ∆t. The transition probabilities of the sampled-time Markov chain

(G(t))t∈T are given by p(G,G′) = P(G(t + ∆t) = G′|G(t) = G) = q(G,G′)∆t for G 6= G′ and

p(G,G) = P(G(t+∆t) = G|G(t) = G) = 1−q(G,G)∆t such that
∑

G′∈Ω P(G(t+∆t) = G′|G(t) =

G) = 1. As the next lemma illustrates, both chains have the same long-run behavior.

Lemma 1. The continuous time Markov chain (G(t))t∈R+
and the sampled time Markov chain

(G(t))t∈T , T ≡ {0,∆t, 2∆t, . . .}, ∆t ≥ 0, have the same stationary distribution µ on Ω.

Proof of Lemma 1. To see this, consider a probability measure µ : Ω → [0, 1]. The stationary

59From the adjacency matrix associated with the complete network there exists a sequence of stepwise
matrices in which a link to a neighbor with the smallest degree is removed such that any other stepwise
matrix can be obtained.
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distribution of the sampled-time Markov chain satisfies

µ(G) =
∑

G′∈Ω

p(G′, G)µ(G′) =
∑

G′ 6=G

q(G′, G)∆tµ(G′) + (1− q(G,G)∆t)µ(G),

which implies the system of equations determining the stationary distribution of the continuous

time Markov chain µ(G)q(G,G) =
∑

G′ 6=G q(G′, G)µ(G′), or equivalently µQ = 0.

Hence, in order to investigate the states in the support of the stationary distribution of (G(t))t∈R+
,

it suffices to study the stationary distribution of the discrete time Markov chain (G(t))t∈T . More-

over, note that in the limit of ∆t ↓ 0, also the sample paths of the two chains agree [see e.g.

Gallager, 1996, Chap. 6].

One can show that the sampled-time Markov chain on the nested split graphs Ψ (it is

enough to require that G(0) ∈ Ψ such that G(t) ∈ Ψ for all t > 0) is irreducible and ape-

riodic, and hence is ergodic. Moreover, it has a primitive transition matrix P defined by

(P)ij = P (G(t+∆t) = Gj |G(t) = Gi) for any Gi, Gj ∈ Ψ.

Proof of Proposition 4. In the following we consider the sampled-time Markov chain (G(t))t∈T
with α ≡ αi = 1− βi for all i ∈ N . Due to Lemma 1, the stationary distribution of this chain is

equivalent to the continuous time Markov chain of Definition 2 as ζ converges to zero. Moreover,

because of ergodicity from Proposition 3, we can assume w.l.o.g. that G(0) ∈ Ψ. It then follows

that G(t) ∈ Ψ for all t > 0, and therefore, we restrict the state space Ω to the set of nested split

graphs Ψ.

At every step t ∈ T in the sampled-time Markov chain a link is created with probability α

and a link is removed with probability 1 − α. Further, we consider the complementary chain

(G′(t))t∈T on the same state space Ω where in every period t a link is created with probability

α′ = 1 − α and a link is removed with probability 1 − α′ = α.60 This means that a link is

removed in G′(t) whenever a link is created in G(t) and a link is created in G′(t) whenever a link

is removed in G(t).

As an example, consider the network G represented by the adjacency matrix A in Figure 15.

The complement Ḡ has an adjacency matrix Ā obtained from A by replacing each one element

in A by zero and each zero element by one, except for the elements on the diagonal. Let H be

the network obtained from G by adding the link 47 (setting a47 = a74 = 1 in A). The probability

of this link being created and thus the probability of reaching H after the process was in G is

3α/n, either by selecting one of the two nodes with degrees three or the node with degree five to

create a link. Observe that this is identical to the probability of reaching the network H̄ from

Ḡ if either the two nodes with degrees seven or the node with degree four in Ḡ are selected to

remove a link (with probability α′ = 1− α).

In general we can say that, for any G1, G2 ∈ Ω we have that

P (G(t+∆t) = G2|G(t) = G1) = P
(
G′(t+∆t) = Ḡ2|G′(t) = Ḡ1

)
. (34)

60Two nodes of G′(t) are adjacent if and only if they are not adjacent in G(t). Note that the complement
of a nested split graph is a nested split graph as well [Mahadev and Peled, 1995]. In particular, the networks
G′(t) are nested split graphs in which the number of nodes in the dominating subsets corresponds to the
number of nodes in the independent sets in G(t) and the number of nodes in the independent sets in G′(t)
corresponds to the number of nodes in the dominating subsets in G(t). Thus, (G′(t))t∈T has the same
state space Ω as (G(t))t∈T , namely the space Ψ consisting all unlabeled nested split graphs on n nodes.
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Next consider the stationary distribution µ of (G(t))t∈T and the corresponding transition matrix

P. Similarly, consider the stationary distribution µ′ of (G′(t))t∈T and the corresponding transition

matrix P′. Further, consider an ordering of states G1, G2, . . . in Ω and the transition matrix P

with elements (P)ij giving the probability of observing Gj after the Markov chain (G(t))t∈T was

in Gi. Similarly, consider an ordering of states Ḡ1, Ḡ2, . . . in Ω and the transition matrix P′

with elements (P′)ij giving the probability of observing Ḡj after the Markov chain (G′(t))t∈T was

in Ḡi. Equation (34) implies that P = P′. Moreover, for the stationary distributions it must

hold that µP = µ and µ′P′ = µ′. Since P is primitive, P has a unique positive eigenvector and

therefore µ′ = µ. It follows that for any network G ∈ Ω with probability µ(G) we can take the

complement Ḡ = G′ and assign it the probability µ(G) to get the corresponding probability in

µ′, i.e. µ(G) = µ′(G′).

Before we proceed with the proof of Proposition 5, we state two useful lemmas.

Lemma 2. Consider the sampled-time Markov chain (G(t))t∈T , T ≡ {0,∆t, 2∆t, . . .}, ∆t ≡ 1/n,

with α ≡ αi = 1− βi for all i ∈ N , 0 < α ≤ 1/2, and restrict the state space Ω to the set Ψ of of

all nested split graphs on n nodes. For any 0 ≤ d ≤ n− 1 let X denote the set of states in Ω in

which there is exactly one node with degree d+ 1 and Y the set of states where there is no node

with degree d+ 1. Denote by µX the probability of the states in X in the stationary distribution

µ of (G(t))t∈T and by µY the probability of states in Y . If the number Nd of nodes with degree d

in Y is Θ(n) such that limn→∞Nd/n > 0 then limn→∞ µY = 0.61

Proof of Lemma 2. Let N(X,Y, y) be the expected number of times states in X occur before

the process reaches Y (not counting the process as having immediately reached Y if y ∈ Y ) when

the process starts in y. Then the following relation holds (see Theorem 6.2.3 in Kemeny and Snell

[1960] and also Ellison [2000])
µX

µY
= N(X,Y, y). (35)

Let pY X denote a lower bound on the probability that a state in X occurs after the process is

in a state in Y and, conversely, let pXY denote the probability that a state in Y occurs after

the process is in a state in X. This probability is the same for all states in X, since from the

properties of the Markov chain (G(t))t∈T , it follows that pXY = 2(1− α)/n, because there exist

two possibilities to remove the link of the node with degree d + 1 and the probability to select

a node for link removal is (1 − α)/n. Observe that this probability vanishes for large n, and

limn→∞ pXY = 0. Moreover, we have that

N(X,Y, y) ≥ pY XpXY + 2pY X(1− pXY )pXY + 3pY X(1− pXY )
2pXY + . . .

= pY XpXY

∞∑

i=1

i(1− pXY )
i−1 =

pY X

pXY
.

The right hand side of the above inequality takes into account the fact that states in X can be

reached once, twice, etc., before a state in Y is reached and assigns the corresponding probabilities

to compute the expected value.

61By f = Θ(g) we mean that 0 < lim infn→∞

∣
∣
∣
f(n)
g(n)

∣
∣
∣ ≤ lim supn→∞

∣
∣
∣
f(n)
g(n)

∣
∣
∣ < ∞. In particular, f = Θ(1)

implies that 0 < limn→∞ f(n) < ∞.
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By assuming that there exists a number Nd of nodes with degree d which is Θ(n), we have

that pY X ≥ αNd/n and limn→∞ pY X > 0. It then follows that

µX

µY
= N(X,Y, y) ≥ pY X

pXY
=

α

2(1− α)
Nd → ∞ as n → ∞. (36)

Since µX is a probability with µX ≤ 1, Equation (36) implies that limn→∞ µY = 0.

Lemma 3. Consider the sampled-time Markov chain (G(t))t∈T , T ≡ {0,∆t, 2∆t, . . .}, ∆t ≡ 1/n,

with α ≡ αi = 1 − βi for all i ∈ N , and state space Ψ consisting of all nested split graphs on n

nodes. Then for 0 < α ≤ 1/2 the asymptotic expected proportion of isolated nodes in the limit of

large n is given by P (0) = 1−2α
1−α .

Proof of Lemma 3. We consider the expected change in the number of links m(t) in G(t) from

t to t+∆t.62 The number of links increases by one if any node which does not have the maximum

degree n−1 is selected for creating a link. This happens with probability α (n−Nn−1(t)) /n. The

number of links decreases whenever a node with degree higher than zero is selected for removing

a link. This happens with probability (1 − α) (n−N0(t)) /n. Putting the above contributions

together we can write for the expected change in the total number of links from t to t+∆t

E (m(t+∆t)|N(t))−m(t) =
α

n
(n−Nn−1(t))−

1− α

n
(n−N0(t)) . (37)

Taking expectations on both sides of the above equation and denoting by P̄t(d) ≡ E (Nd(t)/n)

we obtain

E (m(t+∆t))− E (m(t)) = α
(
1− P̄t(n− 1)

)
− (1− α)

(
1− P̄t(0)

)
. (38)

Let ρ denote the initial distribution of states, with ρi = 1 if Gi = K̄n and zero otherwise. Further,

let m be the column vector whose j-th coordinate, mj , is the number of links of network Gj ∈ Ω,

and let Gi = K̄n. Then we can write

E (m(t)) = E (m(t)|G(0) = Gi) =
∑

Gj∈Ω

P (G(t) = Gj |G(0) = Gi)mj =
∑

Gj∈Ω

(

P⊤
)

ij
mj

=
(

P⊤m
)

i
= ρP⊤m.

For large times t the expectation is computed over the invariant distribution µ. In particular,

limt→∞ ρP⊤ = µ and therefore limt→∞ E (m(t)) = limt→∞ ρP⊤m = µm = limt→∞ E (m(t+∆t)).

Thus, we can set the left hand side of Equation (38) to zero, in the limit of large t, and obtain

a relationship between the asymptotic expected proportion of nodes of degree zero and one,

respectively,

1− 2α = (1− α)P̄ (0)− αP̄ (n− 1), (39)

where we have denoted by P̄ (d) = limt→∞ P̄t(d). Next, we consider the chain (G′(t))t∈T which

is constructed from (G(t))t∈T by taking the complement of each network G(t) in every period t

(see also the proof of Proposition 4). In the following, denote the asymptotic expected number

of links, limt→∞ E (m(t)), of (G(t))t∈T by m̄ and of (G′(t))t∈T by m̄′. By construction, we must

62We have that 2m(t) =
∑n−1

d=0 Nd(t)d.
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have that m̄ = n(n− 1)/2− m̄′. From Proposition 4 we know that the Markov chain (G′(t))t∈T
has the same stationary distribution µ′ as the chain (G(t))t∈T for a link creation probability of

α′ = 1−α. For α = 1/2 the two processes are identical and we must have that also their expected

number of links are the same. This implies that for α = 1/2, m̄ = m̄′ = n(n − 1)/4. The only

nested split graph with this number of links, for which the complement has the same number of

links as the original graph, is the one in which each independent set is of size one and also each

dominating subset has size one (except possibly for the set corresponding to the
(⌊

k
2

⌋
+ 1
)
-th

partition). Thus, for α = 1/2 it must hold that P̄ (0) = P̄ (n− 1) = 1/n.

Moreover, we know that for α < 1/2 the expected number of maximally connected nodes

(with degree n− 1) is at most as large as the expected number for α = 1/2, since the probability

of links being created strictly decreases while the probability of links being removed increases for

values of α below 1/2 (and the probability of a maximally connected node losing a link strictly

increases). Thus P̄ (n − 1) ≤ 1/n for α ≤ 1/2, and for large n we can write Equation (39) as

follows 1− 2α = (1− α)P̄ (0). This is equivalent to

P̄ (0) =
1− 2α

1− α
. (40)

For α = 0 no links are created and all nodes are isolated, that is P̄ (0) = 1, while for α = 1/2 the

asymptotic expected number of isolated nodes vanishes in the limit of large n.

With these two lemmas in hand, let us now prove Proposition 5.

Proof of Proposition 5. For the proof of the proposition it is enough to consider the sampled-

time Markov chain (G(t))t∈T with αi = 1−βi = α for all i ∈ N . Due to Lemma 1, it has the same

stationary distribution as the continuous time Markov chain of Definition 2 when ζ converges to

zero. Moreover, because of ergodicity from Proposition 3, we can assume w.l.o.g. that G(0) ∈ Ψ

and G(t) ∈ Ψ for all t > 0. We can then restrict the state space Ω to the nested split graphs

Ψ ⊂ Ω. We further assume w.l.o.g. that the step size is given by ∆t = 1/n, which becomes

arbitrarily small as n grows.

Note that G(t) is completely determined by N(t) and vice versa. Thus it follows that

{N(t)}t∈T is a Markov chain. Denote by P̄t(d) ≡ E (Nd(t)/n) the expected proportion of nodes

with degree d at time t and let us denote by P̄ (d) = limn→∞ P̄t(d); P̄ (d) is determined by the

invariant distribution µ in the limit of large times t. Lemma 3 shows that Equation (8) holds for

d = 0. In the following we show by induction that, given that Equation (8) holds for P̄ (d−1) and

P̄ (d), as n becomes large, also P̄ (d+1) satisfies Equation (8) for all 0 ≤ d < d∗, in the limit of large

n. For this purpose we consider (a) the expected number of isolated nodes E (N0(t+∆t)|N(t))

and (b) the expected number of nodes with degree d = 1, . . . , d∗, E (Nd(t+∆t)|N(t)) at time

t+∆t, conditional on the current degree distribution N(t).

(a) Consider a particular network G(t) in period t generated by (G(t))t∈R+
and its associated

degree distribution N(t). Figure 16 (left) shows an illustration of the corresponding stepwise

matrix. In the following we compute the expected change of the number N0(t) of isolated

nodes in G(t).

The expected change of N0(t) due to the creation of a link has the following contributions.

An agent with the highest degree k in Nk(t) can create a link to an isolated agent and

thus decreases the number of isolated agents by one. The expected change from this link is
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Figure 16: (Left) Representation of the stepwise matrix A of a nested split graph G and some selected
degree partitions. The stepfunction separating the zero entries in the matrix from the one entries is
shown with a thick line. (Right) Representation of the stepwise matrix A of a nested split graph G. The
stepfunction separating the zero entries in the matrix from the one entries is shown with a thick line.

−αNk(t)/n . On the other hand, if an isolated agent creates a link then the expected change

in the number of isolated agents is −αN0(t)/n.

Moreover, the removal of links can affect N0(t) if there is only one agent with maximal degree,

i.e. Nk(t) = 1. In this case, if the agent with the highest degree removes a link, then an

additional isolated agent is created yielding an expected increase in N0(t) of (1−α)Nk(t)/n.

Next, if an agent with degree one in N1(t) removes a link, then the number of isolated agents

increases. Note that in a nested split graph N1(t) > 0 implies that Nk(t) = 1 and vice versa.

This gives an expected change of N0(t) given by (1− α)N1(t)/n.

Putting the above contributions together, the expected change in the number of isolated

nodes at time t+∆t, conditional on N(t), is given by the following expression63

E (N0(t+∆t)|N(t))−N0(t) = −α

n
(N0(t) +Nk(t)) +

1− α

n
(N1(t) + 1) δNk(t),1. (41)

We can take expectations on both sides of Equation (41). For large times t the expectation

is computed on the basis of the invariant distribution µ and similarly to the proof of Lemma

3, after taking expectations, we can set the left hand side of Equation (41) to zero for large

times t. Note that from Lemma 3 we know that the asymptotic expected proportion P̄ (0)

of isolated nodes is Θ(1), for n large. Thus we can apply the result of Lemma 2 which tells

us that the networks in which there does not exist a node with degree one have vanishing

probability in µ for large n. Since the existence of a node with degree one implies that

Nk(t) = 1, in the limit of large n we can set δNk(t),1 = 1. We then obtain from Equation (41)

P̄ (1) =
α

1− α
P̄ (0). (42)

This shows that also P̄ (1) satisfies Equation (8). Together with Lemma 3 this proves the

induction basis.

63δi,j denotes the usual Kronecker delta which is 1 if i = j and 0 otherwise.
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(b) We give a proof by induction on the number Nd(t) of nodes with degree 0 < d < d∗ in a

network G(t) in the support of the stationary distribution µ. In the following, we compute

the expected change in Nd(t) due to the creation or the removal of a link. An illustration

can be found in Figure 16 (right).

Let us investigate the creation of a link. With probability α/n a link is created from an agent

in Nk−d(t) to an agent in Nd(t). This yields a contribution to the expected change of Nd(t)

of −αNk−d(t)/n. If a link is created from an agent in Nk−d+1(t) to an agent in Nd(t) then

the expected change is α/n, if Nk−d+1(t) contains only a single agent. Similarly, if a link is

created from an agent in Nd−1(t) to an agent in Nd(t) then the expected change of Nd(t) is

αNd−1(t)/n, if Nk−d+1(t) = 1. Moreover, if an agent in Nd(t) is selected for link creation

then we get an expected decrease of −αNd(t)/n.

Now we consider the removal of a link. If a link is removed from the agent in Nk−d+1(t) to

an agent in Nd(t) then the expected change of Nd(t) is −(1 − α)Nk−d+1(t)/n. If a link is

removed from an agent in Nk−d(t) to an agent in Nd+1(t) then the expected increase of Nd(t)

is (1−α)/n, if Nk−d(t) = 1. Moreover, if an agent in Nd+1(t) is selected for removing a link,

then we get an expected increase of (1− α)Ni+d(t)/n, if Nk−d(t) = 1. Finally, if an agent in

Nd(t) is selected for removing a link, then we get an expected change of −(1− α)Nd(t)/n.

Putting the above contributions together, the expected change in Nd(t) is given by

E (Nd(t+∆t)|N(t))−Nd(t) =
α

n

(
−Nd(t) + (Nd−1(t) + 1) δNk−d+1(t),1 −Nk−d(t)

)

+
1− α

n

(
−Nd(t) + (Nd+1(t) + 1) δNk−d(t),1 −Nk−d+1(t)

)
.

(43)

We can take expectations on both sides of Equation (43) and similarly to part (a) of this

proof we can set the left-hand-side of Equation (43) as t becomes large. For large times

t the above expectation is computed on the basis of the invariant distribution µ. By the

induction assumption, the asymptotic expected proportion P̄ (d − 1) of nodes with degree

d − 1 is Θ(1) in the limit of large n (as follows from Equation (8)). Thus we can apply

Lemma 2 and neglect the networks in which there does not exist a node with degree d since

they have vanishing probability in µ for large n. Similarly, we know from the induction

assumption that the asymptotic proportion P̄ (d) of nodes with degree d is Θ(1) and, by

virtue of Lemma 2, we know that the networks in which there does not exist a node with

degree d+ 1 have vanishing probability in µ for large n. Thus, in the limit of large n we can

set δNk−d+1(t),1 = δNk−d(t),1 = 1, since the existence of nodes with degrees d and d+ 1 implies

that Nk−d+1(t) = Nk−d(t) = 1 in the limit of large t and n. Therefore, we get from Equation

(43) the following relationship

P̄ (d+ 1) =
1

1− α
P̄ (d)− α

1− α
P̄ (d− 1). (44)

Inserting the expressions for P̄ (d− 1) and P̄ (d) from Equation (8) into Equation (44) yields

P̄ (d+ 1) =
1

1− α

1− 2α

1− α

(
α

1− α

)d

− α

1− α

1− 2α

1− α

(
α

1− α

)d−1

=
1− 2α

1− α

(
α

1− α

)d+1

Thus, Equation (8) also holds for P̄ (d+ 1). This proves the induction step.
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Finally, we have that the degree distribution must be normalized to one, i.e.
∑n−1

d=0 P̄ (d) = 1.

We know that the number of agents in the dominating subsets with degrees larger than d∗ is d∗

(since each set contains only one node and there are d∗ such sets).64 Adding this to the number

of agents in the independent sets with degree d = 0, . . . , d∗ yields n
∑d∗

d=0 P̄ (d)+d∗ = n. Further,

inserting Equation (8) we can derive the number d∗ of independent sets as a function of n and α

d∗(n, α) =
ln
(

2(1−α)
(1−2α)n

)

ln
(

α
1−α

) . (45)

d∗ is a monotonic decreasing function of n for a fixed value of α. Conversely, for a fixed value of

n we get the limits limα→0 d
∗ = 0 and limα→1/2 d

∗ = n/2.

We finish the proof with the following observation, showing that the empirical degree dis-

tribution concentrates around its expected value in the limit of large n when ∆t = 1/n. More

precisely, for any ε > 0 we have that P (|Pt(d)− E (Pt(d))| ≥ ε) ≤ 2e−
ε2n2∆t

8t . To see this, let us

define the following random variable Yd(s) ≡ E (Nd(t)|N(s)), s ∈ T . Since {N(t), t ∈ T } is a

Markov chain, the sequence {Yd(s), s ∈ T , s ≤ t} is a Martingale with respect to {N(t), t ∈ T }.65
Moreover, the change in the number of nodes with degree d per period t is bounded by two, i.e.

|Nd(t) −Nd(t −∆t)| ≤ 2, since at most one link is added or removed in every period t and this

can change the degrees of at most two nodes. Therefore, we can apply Hoeffding’s inequality

(see e.g. Theorem 3, Section 12.2 in Grimmett and Stirzaker [2001]), which states that for any

0 < s ≤ t with |Y (s) − Y (s − ∆t)| ≤ c and any ε > 0, P (|Y (t)− Y (0)| > ε) ≤ 2e−
ε2∆t

2tc2 . With

c = 2, Y (t) = E (Nd(t)|N(t)) = Nd(t), Y (0) = E (Nd(t)|N(0)) = E (Nd(t)) and ∆t = 1/n it then

follows that

P

(∣
∣
∣
∣

Nd(t)

n
− E

(
Nd(t)

n

)∣
∣
∣
∣
≥ ε

)

= P (|Nd(t)− E (Nd(t))| ≥ nε) ≤ 2e−
ε2n2∆t

8t = 2e−
ε2n

8t → 0, (46)

as n → ∞. This implies that the empirical proportion Nd(t)/n of nodes with degree d converges

in probability to its expected value E (Nd(t)/n), as n becomes large.

Since (Ω,F ,P) is a discrete probability space, this also implies convergence almost surely. To

see this, letAn ≡
{

G ∈ Ω :
∣
∣
∣
Nd(t)
n − E

(
Nd(t)
n

)∣
∣
∣ ≥ ε

}

. By Equation (46) we have that limn→∞ Pt(An) =

0. Then there exists and n0 ∈ N such that Pt(An) < Pt(G) for all G ∈ Ω with Pt(G) > 0 and n >

n0. Hence, for all n > n0 we have that {G ∈ Ω : Pt(G) > 0} /∈ An, {G ∈ Ω : Pt(G) > 0}∩An = ∅
and therefore Pt (

⋂∞
n=1

⋃∞
m=nAm) = 0.

Proof of Corollary 2. The results follows directly from the functional form of d∗(n, α) in

Proposition 5.

Proof of Corollary 3. See Theorem 1.2.4 in Mahadev and Peled [1995].

64Note that since networks in which there does not exist a node with degree 0 ≤ d ≤ d∗ in the corre-
sponding independent set can be neglected, the structure of nested split graphs implies that all dominating
subsets have size one.

65We have that E (Yd(s)|N(s−∆t)) = E (E (Nd(t)|N(s)) |N(s−∆t)) = E (Nd(t)|N(s−∆t)) = Yd(s −
∆t). Further, one can show that the first and second moments of {Yd(s), s ≤ t} are bounded. Thus,
{Yd(s), s ≤ t} is a Martingale with respect to {N(t)} for s, t ∈ T [see e.g. Grimmett and Stirzaker, 2001,
Chap. 12].
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