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1 Introduction

Important differences in crime rates are commonly observed across different social groups

and/or locations displaying otherwise identical economic fundamentals (Glaeser et al., 1996).

One of the main explanations put forward to account for this phenomenon is the presence of

social multiplier effects on individual crime decisions. That is, as the fraction of individuals

participating in a criminal behavior increases, the impact on others is multiplied through

social interactions or networks (see, in particular, Sah, 1991; Kleiman, 2009; Glaeser et al.,

1996; Rasmussen, 1996; Schrag and Scotchmer, 1997; Calvó-Armengol and Zenou, 2004).

Empirically, recent research has shown the importance of peer and social multiplier effects in

crime (see e.g., Kling et al., 2005; Damm and Dustmann, 2008; Bayer et al., 2009; Patacchini

and Zenou, 2012).

Ballester et al. (2006, 2010) have argued that concentrating efforts by targeting “key

players”, i.e. criminals who once removed generate the highest possible reduction in ag-

gregate crime level in a network, can have large effects on crime because of these feedback

effects or “social multipliers”. That is, as the fraction of individuals participating in a crim-

inal behavior increases, the impact on others is multiplied through social networks. Thus,

criminal behaviors can be magnified, and interventions can become more effective. Based

on a peer-effect model, Ballester et al. (2006, 2010) have proposed a measure (the inter-

centrality measure) that determines the key player in each network. However, in their model,

contextual effects are not taken into account, i.e. only each individual’s characteristics affect

her effort but not the characteristics of her friends. In the present paper, we extend this

intercentrality measure to include contextual effects and show that the formula proposed by

Ballester et al. (2006, 2010) is not correct in that case.

Contextual effects are important, especially for the empirical measure of peer effects in

crime. In the standard linear-in-means models, Manski (1993, 2000) has put forward the

importance of the reflection problem, which is the difficulty of separating the contextual

effect from the endogenous peer effect on own behavior. Recent empirical papers have

used the network topology to separate these two effects and to show the importance of

contextual effects in education (Calvó-Armengol et al., 2009; Lin, 2010), obesity (Cohen-

Cole and Fletcher, 2008) and crime (Patacchini and Zenou, 2012). In particular, Cohen-

Cole and Fletcher (2008) have replicated the very influential study of Christakis and Fowler

(2007) to show that, when contextual effects are introduced in the empirical analysis, then
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all the endogenous effects of friends’ obesity on own obesity found in Christakis and Fowler

disappear.

In the present paper, we develop a network model1 where contextual effects are taken into

account. We calculate the Nash equilibrium of this game and propose a new intercentrality

measure that determines the key player in a network. This measure captures two effects.

The first effect is a pure contextual effect, which is due to the change in the context (own and

friends’ characteristics) when the key player is removed from the network while the network

is kept unchanged. The second effect is a pure network effect, which captures the change in

crime effort due to the network structure change after the removal of the key player. We

also propose a simple example of a network with four individuals to illustrate all our results.

There are two recent papers that empirically determine key players in soccer and crime.

Using data from UEFA Euro 2008 Tournament, Sarangi and Unlu (2011) evaluate a player’s

contribution to her team and relates her effort to her salaries, they show that key players

regardless of their field position have significantly higher market values than other players.

In this paper, the authors do not take into account contextual effects because they have no

information on the characteristics of the player and thus use the standard intercentrality

measure of Ballester et al. (2006). Using data from adolescents in the United States (Ad-

dHealth data), Liu et al. (2011) determine the characteristics of the key players in crime.

They include contextual effects in their analysis and show that key players are more likely

to be a male, have less educated parents, are less attached to religion and feel socially more

excluded than the average criminal. They also show that contextual effects matter since

the key player may be different when the intercentrality measure used is the one given by

Ballester et al. (2006) or our formula.

The rest of the paper unfolds as follows. In the next section, we present our network model

and determine the Nash equilibrium of this game. In Section 3, we expose the intercentrality

measure of Ballester et al. (2006), which characterizes the key player when contextual effects

are not considered. In Section 4, we determine our new intercentrality measure and illustrate

it with a simple example. Finally, Section 5 concludes.

1There is a growing literature on networks in economics. See, in particular, Goyal (2007) and Jackson

(2008).
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2 The model

2.1 The game

A network g ∈ G is a set of ex-ante identical delinquents N = {1, . . . , n} and a set of links

between them. We assume n ≥ 2. The set of i’s direct contacts is: Ni(g) = {j �= i | gij = 1}

and the cardinality of this set is denoted by ni(g) = |Ni(g)|.
2 The n−square adjacency

matrixG of a network g keeps track of the direct connections in this network. By definition,

delinquents i and j are directly connected in g if and only if gij = 1, (denoted by ij),

and gij = 0 otherwise. Links are taken to be reciprocal, so that gij = gji (undirected

graphs/networks). By convention, gii = 0. Thus G is a symmetric (0, 1)−matrix.3

We consider the following utility function for each delinquents i who chooses effort yi:

ui(y, g) = αi yi −
1

2
y2i + φ

n∑

j=1

gijyiyj (1)

where φ > 0 measures the strength of complementarities. We have indeed:

σij =
∂2ui(y, g)

∂yi∂yj
=

{
−1 if i = j

φgij if i �= j
(2)

This implies that we have local strategic complementarities since if j is linked with i, then

if qj increases
∂ui(y,g)
∂yi

is increased because of peer effects. This is exactly the same utility

function as in Ballester et al. (2006, 2010) and Calvó-Armengol et al. (2009) with one crucial

difference: the ex ante heterogeneity αi of each agent i is not given by αi = xi but by:

αi = xi +
1

gi

n∑

j=1

gij xj (3)

where gi =
∑n

j=1 gij is the total number of links of individual i. In other words, the ex

ante heterogeneity of individual i is not only determined by her own heterogeneity xi (like

e.g. her race, age, education, etc.) but also by the average heterogeneity of her friends (i.e.

the average race of her friends, the average age of her friends, the average education of her

friends, etc.). The heterogeneity αi described in (3) is usually referred to as the contextual

effect (Manski, 1993, 2000). What is crucial for our analysis is that the structure of the

network determines this ex ante heterogeneity αi.

2Vectors and matrices are in bold while scalars are in normal letters.
3All our results hold if we consider a weighted directed network, which implies a weighted asymmetric G

matrix. Likewise
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2.2 The Bonacich network centrality measure

Let Gk be the kth power of G, with coefficients g
[k]
ij , where k is some integer. The matrix

Gk keeps track of the indirect connections in the network: g
[k]
ij ≥ 0 measures the number of

paths of length k ≥ 1 in g from i to j.4 In particular, G0 = I.

Given a scalar φ ≥ 0 and a network g, we define the following matrix:

M(g, φ) = [I−φG]−1 =
+∞∑

k=0

φkGk.

where I is the identity matrix. These expressions are all well-defined for low enough values

of φ.5 The parameter φ is a decay factor that scales down the relative weight of longer paths.

IfM(g, φ) is a non-negative matrix, its coefficientsmij(g, φ) =
∑+∞φk

k=0 g
[k]
ij count the number

of paths in g starting from i and ending at j, where paths of length k are weighted by φk.

Observe that since G is symmetric thenM is also symmetric.

Definition 1 Consider a network g with adjacency n−square matrix G and a scalar φ such

that M(g, φ) = [I−φG]−1 is well-defined and non-negative. Given a vector u ∈ Rn+, the

Katz-Bonacich u-weighted centrality of parameter φ in g is defined as:

bu(g, φ) =
+∞∑

k=0

φkGku = [I−φG]−1 u (4)

An element of the vector bu(g, φ) is denoted by bu (g, φ). Observe that, by definition,

the Katz-Bonacich centrality of a given node is zero when the network is empty. It is also

null when φ = 0, and is increasing and convex with φ.

2.3 Nash equilibrium

Denote by ω (G) the largest eigenvalue of G. We have the following result:

4A path lof length k from i to j is a sequence 〈i0, ..., ik〉 of players such that i0 = i, ik = j, ip �= ip+1, and

gipip+1 > 0, for all 0 ≤ k ≤ k − 1, that is, players ip and ip+1 are directly linked in g. In fact, g
[k]
ij accounts

for the total weight of all paths of length k from i to j. When the network is un-weighted, that is, G is a

(0, 1)−matrix, g
[k]
ij is simply the number of paths of length k from i to j.

5When φ is smaller than the norm of the inverse of the largest eigenvalue of G (Debreu and Herstein,

1953)
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Proposition 1 Consider a game where the utility function of each agent i is given by (1)

with α > 0 (i.e., αi > 0, for all i ∈ N) and α �= α1. Each αi is defined by (3). If

φω (G) < 1, then this game has a unique Nash equilibrium in pure strategies y∗, which is

interior and given by:

y∗ = bα (g, φ) (5)

This proposition is a direct application of Theorem 1 in Calvó-Armengol et al. (2009)

and says that, at the Nash equilibrium, each delinquent i’s effort is equal to her weighted

Bonacich centrality.

3 Finding the key player when there are no contextual

effects

We would like now to expose the “key player” policy. The planner’s objective is to find the

key player, i.e. the delinquent who once removed generates the highest possible reduction in

aggregate delinquency level. Formally, the planner’s problem is the following:

max{y∗(g)− y∗(g[−i]) | i = 1, ..., n},

where y∗(g) =
∑

i

y∗i (g) is the total level of crime in network g and g
[−i] is network g without

individual i. When the original delinquency network g is fixed, this is equivalent to:

min{y∗(g[−i]) | i = 1, ..., n} (6)

From Ballester et al. (2006), we can define a new network centrality measure d(g, φ) that

solves (6). Remember that the Bonacich centrality of node i is bα,i(g, φ) =
∑n

j=1 αjmij(g, φ),

and counts the total number of paths in g starting from i weighted by the αj of each linked

node j. Let bα,i(g, φ) be the centrality of delinquent i in network g, bα(g, φ) the total

centrality in network g (i.e. bα(g, φ) =
∑n

i=1 bα,i(g, φ)) and bα(g
[−i], φ) the total centrality

in g[−i].

Definition 2 Assume that αi = xi for all i (no contextual effects). Then, for all networks

g and for all i, the intercentrality measure of delinquent i is:

di(g, φ) = bα(g, φ)− bα(g
[−i], φ) =

bα,i(g, φ)
∑n

j=1mji(g, φ)

mii(g, φ)
(7)
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The intercentrality measure di(g, φ) of delinquent i is the sum of i’s centrality measures

in g, and i’s contribution to the centrality measure of every other delinquent j �= i also in

g. It accounts both for one’s exposure to the rest of the group and for one’s contribution to

every other exposure.

The following result (Theorem 3 in Ballester et al., 2006) establishes that when αi =

xi, intercentrality captures, in an meaningful way, the two dimensions of the removal of a

delinquent from a network, namely, the direct effect on delinquency and the indirect effect

on others’ delinquency involvement.

Proposition 2 Assume that the utility function of each delinquent i is given by (1) for

αi = xi. Then, a player i
∗ is the key player that solves (6) if and only if i∗ is a delinquent

with the highest intercentrality in g, that is, di∗(g, φ) ≥ di(g, φ), for all i = 1, ..., n.

4 Finding the key player when contextual effects mat-

ter

4.1 A motivating example

Let us now show with a simple example that, when αi = xi +
1
gi

∑n

j=1 gij xj, Proposition 2

is not correct. Consider the following symmetric undirected network with four individuals

(i.e. n = 4):

4 21

3

Figure 1: A bridge network with 4 deliquents
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The adjacency matrix G of this network is given by:

G =






0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0






Assume φ = 0.3 and that6

x =






x1

x2

x3

x4





=






0.1

0.2

0.3

0.4






so that

α =






α1

α2

α3

α4





=






0.4

0.4

0.45

0.5






(8)

It is straightforward to see that, using Proposition 1, we obtain:






y∗1

y∗2

y∗3

y∗4





=






bα,1(g, φ)

bα,2(g, φ)

bα,3(g, φ)

bα,4(g, φ)





=






1.4004

1.1881

1.2265

0.92016






so that the total crime level is given by:

y∗ = y∗1 + y
∗

2 + y
∗

3 + y
∗

4 = bα(g, φ) = 4.735

Individual 1 has the highest weighted Bonacich and thus provides the highest crime effort.

If we look at the formula in Definition 2, it says that the delinquent that the planner wants

to remove is:

di∗(g, φ) = bα(g, φ)− b
[−i]
α
(g, φ) =

bα,i(g, φ)
∑n

j=1mji(g, φ)

mii(g, φ)

6The spectral radius of this graph is: 2.17 and thus the condition φµ1(G) < 1 is satisfied since 2.17×0.3 =

0.651 < 1.
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Let us remove delinquent 1. We have now a network with three delinquents where we have

deleted the first column and first row in G to obtain:

G[−1] =






0 1 0

1 0 0

0 0 0






What is important is that the αs also change. Denote by α[−1] the (n− 1)× 1 vector after

the removal of delinquent 1. Then, (α2, α3, α4) are not anymore equal to (0.4, 0.45, 0.5) but

to:

α
[−1] =






α
[−1]
2

α
[−1]
3

α
[−1]
4




 =






0.5

0.5

0.4




 (9)

Using the same decay factor, φ = 0.3, we obtain:7






y∗2

y∗3

y∗4




 =






bα,2(g
[−1], φ)

bα,3(g
[−1], φ)

bα,4(g
[−1], φ)




 =






0.71429

0.71429

0.4






so that the total effort is now given by:

y∗[−1] = y∗2 + y
∗

3 + y
∗

4 = b
[−1]
α
(g, φ) = 1.8286

Thus, player 1’s contribution is

y∗ − y∗[−1] = bα(g, φ)− b
[−1]
α
(g, φ) = 1⊤Mα− 1⊤M[−1]

α
[−1] = 2.9064 (10)

If we perform the same procedure for the other players, we obtain delinquent 2’s contribution

y∗ − y[−2]∗ = 2.4301,

delinquent 3’s contribution

y∗ − y[−3]∗ = 2.686 2,

7Since individual 4 is now isolated, we have:

y∗4 = α4 = 0.4
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and delinquent 4’s contribution

y∗ − y[−4]∗ = 1.735

Since delinquent 1 has the highest contribution, she is the key player.

Let us now check if the formula (7) works, i.e., if

d1∗(g, φ) =
bα,1(g, φ)

∑j=4
j=1mj1(g, φ)

m11(g, φ)
= 2.9064

Let us go back to the initial network with four individuals. It is easily verified that (with

φ = 0.3):

M = [I− φG]−1 =






1.5317 0.65646 0.65646 0.45952

0.65646 1.3802 0.61101 0.19694

0.65646 0.61101 1.3802 0.19694

0.45952 0.19694 0.19694 1.1379






(11)

so that

m11(g, φ) = 1.5317

and

j=3∑

j=1

mj1(g, φ) = m11(g, φ) +m21(g, φ) +m31(g, φ) +m41(g, φ)

= 1.5317 + 0.65646 + 0.65646 + 0.45952

= 3.3041

Therefore,

d1∗(g, φ) =
bα,1(g, φ)

∑j=3
j=1mj1(g, φ)

m11(g, φ)
=
1.4004× 3.3041

1.5317
= 3.0209 (12)

which is clearly different than (10). This is because in (12) contextual effects are not taken

into account. while they are in (10). Interestingly,

d2∗(g, φ) = 2.8442, d3∗(g, φ) = 2.5278 and d4∗(g, φ) = 1.6103

This shows that the ranking in terms of intercentralities (1, 2, 3, 4) differs than the one in

terms of contribution to crime reduction (1, 3, 2, 4).
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To see the importance of contextual effects, consider the same example but without

contextual effects so that

x =






x1

x2

x3

x4





= α =






α1

α2

α3

α4





=






0.1

0.2

0.3

0.4






We still assume φ = 0.3. It is then straightforward to see that, using Proposition 1, we

obtain: 




y∗1

y∗2

y∗3

y∗4





=






bα,1(g, φ)

bα,2(g, φ)

bα,3(g, φ)

bα,4(g, φ)





=






0.66521

0.60377

0.68068

0.59958






so that the total activity level is given by:

y∗ = y∗1 + y
∗

2 + y
∗

3 + y
∗

4 = bα(g, φ) = 2.549

Individual 3 has now the highest weighted Bonacich and thus provides the highest crime

effort. In other words, when there are no contextual effects, individual 3 is the most active

criminal while it is individual 1 who has the highest weighted Bonacich centrality when

contextual effects are taken into account. This is because individual 1 has not only a central

position but she is also linked to individual 4 who has the highest α in the network.

Let us now calculate the key player when there are no contextual effects. It is easily

verified that individual 1’s contribution is y∗ − y[−1]∗ = 1.435 while the contribution of the

other individuals is equal to:

y∗ − y[−2]∗ = 1.244

y∗ − y[−2]∗ = 1.146

y∗ − y[−2]∗ = 0.988

Thus, criminal 1 is still the key player but her contribution is much lower. It is easily checked

that the formula (7) is now correct so that, for each i = 1, 2, 3, 4, we have:

y∗ − y[−i]∗ =
bα,i(g, φ)

∑n

j=1mji(g, φ)

mii(g, φ)
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4.2 A new formula for the key player

Let us start with some notations. For simplicity and without loss of generality, we focus on

the removal of delinquent 1. It could be any delinquent k; it suffices to replace 1 by k. Let

α
[1] =

(
α1

α
[−1]

)

and let M[1] be the n× n matrix such each element of this matrix is

m[1]
ij =

mi1m1j

m11

It is easily verified that

M[1] =






m11 m12 ... m1n

m21
m21m12

m11
... m21m1n

m11

... ... ... ...

mn1
mn1m12

m11
... mn1m1n

m11






so that

M[1]
α
[1] =






α1m11 + α
[−1]
2 m12 + ...+ α

[−1]
n m1n

m21m11

m11
α1 + α

[−1]
2

m21m12

m11
+ ... + α

[−1]
n

m21m1n

m11

...
mn1m11

m11
α1 + α

[−1]
2

mn1m12

m11
+ ... + α

[−1]
n

mn1m1n

m11






and

1⊤M[1]
α
[1] =

(
α1m11 + α

[−1]
2 m12 + ...+ α

[−1]
n m1n

) n∑

j=1

mj1

m11

=

b
α[1] (g, φ)

n∑

j=1

mj1

m11

In other words,

1⊤M[1]
α
[1] = d1(g, φ) =

b
α[1],1(g, φ)

∑n

j=1mj1(g, φ)

m11(g, φ)

which is the definition of intercentrality (see Definition 2 and (7)) for α[1], that is when

α1 = x1 +
1
g1

∑n

j=1 g1j xj and αk = xk +
1

g
[−1]
k

∑n

j=1 g
[−i]
kj xj, for k �= 1.
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LetM[−1] be the (n− 1)× (n− 1) inverse matrix after the removal of player 1, i.e.,

M[−1] =
[
I− φG[−1]

]−1

Note that when i = 1 or j = 1, then m
[1]
ij =

m11m1j

m11
= m1j (for i = 1) or m

[1]
ij =

mi1m11

m11
= mi1

(for j = 1), and thus m
[1]
ij = mij, that is,

M−M[1] =

(
0 0

0 M[−1]

)

(13)

where the first 0 is a 1× (n− 1) row vector and the second 0 is a (n− 1)× 1 column vector.

Indeed,

M−M[1] =






m11 m12 ... m1n

m21 m22 ... m2n

... ... ... ...

mn1 mn2 ... mnn





−






m11 m12 ... m1n

m21
m21m12

m11
... m21m1n

m11

... ... ... ...

mn1
mn1m12

m11
... mn1m1n

m11






=






0 0 ... 0

0 m22 −
m21m12

m11
... m2n −

m21m1n

m11

... ... ... ...

0 mn2 −
mn1m12

m11
... mnn −

mn1m1n

m11






=






0 0 ... 0

0 m
[−1]
22 ... m

[−1]
2n

... ... ... ...

0 m
[−1]
n2 ... m

[−1]
nn





=

(
0 0

0 M[−1]

)

We can also show that

1⊤M[−1]
α
[−1] = 1⊤

(
0 0

0 M[−1]

)

α
[1] (14)

13



We have:

(
0 0

0 M[−1]

)(
α1

α
[−1]

)

=






0 0 ... 0

0 m
[−1]
22 ... m

[−1]
2n

... ... ... ...

0 m
[−1]
n2 ... m

[−1]
nn











α1

α
[−1]
2

...

α
[−1]
n






=






0

α
[−1]
2 m

[−1]
22 + ... + α

[−1]
n m

[−1]
2n

...

α
[−1]
2 m

[−1]
n2 + ... + α

[−1]
n m

[−1]
nn






Thus

1⊤

(
0 0

0 M[−1]

)

α
[1] = α

[−1]
2

n∑

j=2

m
[−1]
j2 + α

[−1]
3

n∑

j=2

m
[−1]
j3 + ...+ α[−1]n

n∑

j=2

m
[−1]
jn

= 1⊤M[−1]
α
[−1]

The equilibrium outcome of the game before the removal of player 1 is given by:

y∗ = [I− φG]−1α =Mα = bα (g, φ)

and the total equilibrium effort before the removal of player 1 is equal to:

y∗ = 1⊤ [I− φG]−1α = 1⊤Mα = 1⊤bα (g, φ) = bα (g, φ)

What is important is that α now depends on G. Let α[−1] be the (n− 1)× (n− 1) vector

after removing delinquent 1 from the network. Note that α and α[−1] may be completely

different. When we remove delinquent 1, the equilibrium outcome of the game is:

y∗[−1] =
[
I− φG[−1]

]−1
α
[−1] =M[−1]

α
[−1]= b

α[−1]

(
g[−1], φ

)

and the total equilibrium effort after the removal of player 1 is equal to:

y∗[−1] = 1⊤
[
I− φG[−1]

]−1
α
[−1] = 1⊤M[−1]

α
[−1]= 1⊤b

α[−1]

(
g[−1], φ

)
= b

α[−1]

(
g[−1], φ

)
.

Let us calculate the contribution of delinquent 1 when contextual effects matter. We have:

y∗ − y∗[−1] = 1⊤Mα− 1⊤M[−1]
α
[−1]

= 1⊤

(
0 0

0 M[−1]

)

α
[1]
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where we use (14) for the last equality. Now using (13), we obtain:

y∗ − y∗[−1] = 1⊤Mα− 1⊤
(
M−M[1]

)
α
[1]

= 1⊤Mα− 1⊤Mα
[1]
+ 1⊤M[1]

α
[1]

= bα (g, φ)− bα[1] (g, φ)︸ ︷︷ ︸
Total Bonacich centralities computed for network g

+

b
α[1] (g, φ)

n∑

j=1

mj1

m11︸ ︷︷ ︸
Intercentrality of player 1 for fixed α[1]

In this formula, the first effect is the contextual effect, which is is due to the change in the

contextual effect α (from α to α[1]) after the removal of the key player while the network g

remains unchanged. The second effect is the network effect, which captures the change in the

network structure when the key player is removed. The latter corresponds to the standard

inter-centrality measure of Ballester et al. (2006) (see 7) for α[1]. If there were no contextual

effects so α did not change after the removal of delinquent 1 (i.e., α = α[1]), we would have

had bα (g, φ)− bα[1] (g, φ) = 0, and we would be back to the standard formula defined in (7).

We can define a new measure of intercentrality for the removal of delinquent i when

contextual effects matter as follows:

δ
α[i](g, φ) = bα (g, φ)− bα[i] (g, φ) + dα[i](g, φ)

= bα (g, φ)− bα[i] (g, φ) + bα[i] (g, φ)
n∑

j=1

mj1/m11 (15)

Proposition 3 Assume that the utility function of each delinquent i is given by (1) where

αi = xi +
1
gi

∑n

j=1 gij xj. Then, player i
∗ is the key player that solves (6) if and only if i∗

is a delinquent with the highest intercentrality in g, that is, δ
α[i

∗](g, φ) ≥ δα[i](g, φ), for all

i = 1, ..., n.

4.3 Back to the example

Let us illustrate this last result with the network described in Figure 1. For φ = 0.3 and

(x1, x2, x3, x4) = (0.1, 0.2, 0.3, 0.4), we showed that the removal of delinquent led to

3.0209 = d1∗(g, φ) �= y
∗ − y∗[−1] = 2.9064.
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This meant that the formula proposed in (7) was not correct when contextual effects were

taken into account. Let us now show that the new formula is correct so that y∗ − y∗[−1] =

bα (g, φ)− bα[1] (g, φ) + dα[1](g, φ).

Let us first calculate bα (g, φ)− bα[1] (g, φ). We have:

bα (g, φ)− bα[1] (g, φ) = 1
⊤Mα− 1⊤Mα[1]

It is easily verified that (using (8) and (11))

y = [I− φG]−1α =Mα =






y∗1

y∗2

y∗3

y∗4





=






bα,1(g, φ)

bα,2(g, φ)

bα,3(g, φ)

bα,4(g, φ)





=






1.4004

1.1881

1.2265

0.92016






so that the total activity level before the removal of the key player is given by:

y∗ = bα(g, φ) = 1
⊤Mα = 4.735

We also have:

α
[1] =

(
α1

α
[−1]

)

=






α1

α2
[−1]

α3
[−1]

α4
[−1]





=






0.4

0.5

0.5

0.4






so that (using (11)), we obtain:

b
α[1] (g, φ) = 1

⊤Mα[1] =4.9628

As a result,

bα (g, φ)− bα[1] (g, φ) = 1
⊤Mα− 1⊤Mα[1] =− 0.2278

What is interesting here is that, when contextual effects matter, removing a delinquent from

the network can increase the effect on total crime when only contextual effects matter (no

network effect). This is because, when 1 is removed, the average contextual effect of 3 and 4

increases from α2 = 0.4 and α3 = 0.45 (before the removal of 1) to α
[−1]
2 = 0.5 and α

[−1]
3 = 0.5

(after the removal of 1).
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We now need to calculate b
α[1] (g, φ)

n∑

j=1

mj1/m11. We have

M[1] =






1.5317 0.65646 0.65646 0.45952

0.65646 0.28135 0.28135 0.19694

0.65646 0.28135 0.28135 0.19694

0.45952 0.19694 0.19694 0.13786





,

M[1]
α
[1] =






1.452 9

0.622 71

0.622 71

0.435 89






and 1⊤M[1]
α
[1] = 3.1342

Thus

b
α[1] (g, φ)

n∑

j=1

mj1/m11 = 1
⊤M[1]

α
[1] = 3.1342

As a result,

bα (g, φ)− bα[1] (g, φ) + bα[1] (g, φ)
n∑

j=1

mj1/m11 = −0.2278 + 3.1342 = 2.9064

Therefore, we have:

2.9064 = δ
α[1

∗](g, φ) = y∗ − y∗[−1] = 2.9064

5 Concluding remarks

In the present paper, we consider a model where the criminal decision of each individual is

affected by not only her own characteristics, but also by the characteristics of her friends

(contextual effects). We characterize the Nash equilibrium of this game and determine who

the key player is, i.e. the criminal who once removed generates the highest reduction in total

crime in the network. We show that the formula proposed by Ballester et al. (2006) is not

correct and give another one that highlights two effects. The first effect is a pure contextual

effect, which is due to the change in the context (own and friends’ characteristics) when the

key player is removed from the network while the network is kept unchanged. The second

effect is a pure network effect, which captures the change in crime effort due to the network

17



structure change after the removal of the key player. We also propose a simple example of

a network with four individuals to illustrate all our results. We believe that this result is

important, especially for the empirical determination of the key player in real-world networks

where contextual effects matter.
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