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ABSTRACT 

The Strategic Formation of Networks: Experimental Evidence* 

We use a laboratory experiment to explore dynamic network formation in a 
six-player game where link creation requires mutual consent. The analysis of 
network outcomes suggests that the process tends to converge to the 
pairwise-stable (PWS) equilibrium when it exists and not to converge at all 
when it does not. When multiple PWS equilibria exist, subjects tend to 
coordinate on the high-payoff one. The analysis at the single choice level 
indicates that the percentage of myopically rational behavior is generally high. 
Deviations are more prevalent when actions are reversible, when marginal 
payoff losses are smaller and when deviations involve excessive links that can 
be removed unilaterally later on. There is, however, some heterogeneity 
across subjects. 
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1 Introduction

Social networks facilitate information exchange when formal channels are
unavailable (Munshi, 2007). They also work as a means to smooth consump-
tion in the absence of formal insurance markets (Udry, 1994; Fafchamps and
Lund, 2003). Even markets can be seen not as anonymous institutions of
exchange but as networks that facilitate exchange between buyers and sellers
(Kranton and Minehart, 2001). Sociologists have, for a while now, recog-
nized the importance of networks and social structure, and more recently,
economists too have joined the fray (Granovetter, 2005; Jackson, 2005).

Within the economic literature, one question of interest is how networks
are formed. Two seminal theoretical papers advanced explorations of this
question for different link formation rules. Bala and Goyal (2000) study
efficient and Nash-stable networks in non-cooperative games where links are
made and broken unilaterally. Meanwhile, Jackson and Wolinsky (1996) ad-
dress a similar problem with an underlying game that requires links between
two agents to be mutually agreed, although they can be broken unilaterally.

In addition, there is a small but growing experimental literature that
builds on the theory. However, the bulk of this literature focuses on the
former type of rule, namely when links can be made and broken unilaterally
(Callander and Plott, 2005; Berninghaus, Ehrhart and Ott, 2006; Berning-
haus, Ehrhart, Ott and Vogt, 2007; Falk and Kosfeld, 2003; Goeree, Riedl
and Ule, 2009). In contrast, our experiment joins a small number of re-
cent studies that have investigated network formation with the latter type
of rule, that is, when link creation requires mutual consent (Pantz, 2006;
Kirchsteiger, Mantovani, Mauleon and Vannetelbosch, 2011).

Our experiment differs methodologically from those studies in two im-
portant respects. First, we consider networks of six rather than four sub-
jects. Since the number of network combinations grows exponentially with
the number of players, this is the maximal complexity compatible with an
analytical treatment of the problem.1 Second, in previous experiments the
pairwise-stable (PWS) equilibria always existed and was the empty net-
work, or the full network, or both. Instead, we consider four treatments
with unique, multiple, or no PWS equilibrium. In the two treatments with
a unique PWS equilibrium, the network size is ‘intermediate’ (two groups of
three subjects and three groups of two). This rich structure in both the set
of possible networks and the set of equilibria allows for a multi-way com-

1For instance and as developed below, with 4 players there are 64 possible networks
and 6 minimally-connected architectures whereas with 6 players there are 32,768 possible
networks and 20 minimally-connected architectures.
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parison between observed and predicted choices.2 Finally, our setting also
allows us to conduct an in-depth study of the determinants of myopically
rational choices, both at the single decision level and at the subject level.

The results of the experiment can be summarized as follows. The analysis
of outcomes suggests that the network formation process tends to converge
to the PWS equilibrium when it exists and not to converge at all when it
does not. However, convergence is by no means guaranteed, especially when
the stable and efficient networks are close to each other. When multiple
PWS equilibria exist, subjects often manage to reach the high-payoff one (a
result in line with Kirchsteiger et al. (2011)).

To understand better the choices of our subjects, we then study each
single decision. The percentage of myopically rational behavior is generally
high. However, descriptive and regression analyses indicate four instances
where this percentage is decreased. First, at the beginning of the match
because subjects realize that decisions can be reversed later on. Second,
when deviations are necessary to escape the low-payoff PWS equilibrium.
Third, when the marginal payoff losses are small, as predicted by theories
of imperfect choice. And fourth, when the myopic rational decision is to
remove links because such an action does not require the consent of others
and therefore can be taken later on.

Finally, a cluster analysis performed at the subject level reveals different
patterns of behavior across individuals. More than half of our subjects ex-
hibit a behavior close to the theoretical predictions, with a sustained increase
in myopic rationality as the end of the match approaches, and low myopic
rationality when required to reach the farsighted high-payoff equilibrium.
About a quarter of the subjects play poorly without differentiating between
treatments or between early and late turns. The rest exhibit an interesting
pattern, with initially low myopic rationality (consistent with costless ex-
perimentation) and a dramatic increase in myopic rationality (around 20%)
when choices are potentially irreversible.

The paper is organized as follows. In Section 2, we present the concep-
tual framework and network models that are pertinent to our experiment.
Section 3 elaborates the experimental design and introduces our treatments.
Then, in the following three sections, we present our analyses of the proper-
ties of the final network configuration (Section 4), individual choices (Sec-
tion 5) and subject heterogeneity (Section 6). Section 7 concludes.

2Other minor differences include a benefit function from network membership that
depends exclusively on the size of the network, a long sequence of choices with an average
of 102 individual decisions per match, and a reshuffling of partners after each match.
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2 Network environment and basic definitions

A network is a collection of links connecting “nodes” which, in our case,
represent independent agents. A link between two agents can only form if
both of them decide that it is worth forming. Each link is costly for both
agents and this cost is non-transferable. Meanwhile, the benefit depends
on and is a strictly increasing function of the size of the network compo-
nent that an agent belongs to.3 We assume that the benefit is allocated
equally amongst the members of a component. Payoffs are computed as the
difference between benefits and costs.

Given that link formation needs mutual consent while link destruction
does not, what network is likely to emerge? A candidate is the pairwise-
stable network. A network is pairwise-stable (PWS) if: (i) all existing links
are weakly preferred by both agents in the link and are strictly preferred
by at least one of them; and (ii) all non-existing links are such that at
least one of the agents on the non-existing link strictly prefers its absence
(Jackson and Wolinsky, 1996). One other plausible equilibrium is when
agents maximize the total payoffs received by all agents. This is referred to
the strongly efficient network.4

In our game, where benefits are strictly a function of the group size
and are distributed equally across component members, stable and efficient
networks must always be minimally connected. A network is minimally
connected if the removal of any existing link increases the number of com-
ponents. To see why, notice that when benefits are strictly a function of the
component size, for any network that is not minimally connected, removing
a link that does not split a component will increase the net payoff of two
individuals without affecting the net payoffs of any other agent.

The stability notions elaborated above do not provide a prediction of
where the dynamic process of link formation will end. Jackson and Watts
(2002) model the dynamic process by assuming that pairs of agents meet
at random and decide whether to propose a link to each other when none
exists, or sever an existing one. If agents exhibit myopic behaviors and
make their decisions based solely on the marginal payoff they receive from
the potential link that they are considering (and not on the option value

3We distinguish between “network” and “component”. A network describes the link
configurations that include the full graph (i.e., all of the agents) while a component is a
sub-graph in which there exists a path between any two agents.

4Following Jackson and Wolinsky (1996), we define the “efficient network” as a network
that maximizes the total value of the network, which is equal to the total payoffs received
by all agents, and not in the Paretian sense.
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of forming or severing links in the future), then the network will evolve
following an improving path. An improving path is a sequence of networks
where each network differs by one link from the previous one in the sequence;
a link in a subsequent network is added when both agents (myopically) agree
to add it and an existing one is severed when at least one of the two agents
(myopically) prefers its deletion.

Starting from any network, Jackson and Watts (2002, Lemma 1) show
that improving paths lead to either a PWS network or a cycle. A set of
networks forms a cycle if there is an improving path from any network to
any other network in this set. A set of networks is in a closed cycle if
no network in the set is on the improving path of a network that is not
in the set. Since improving paths assume myopic behavior, they predict for
example that players will be stuck in an empty network when the initial costs
of developing networks exceed the link costs, but thereafter are beneficial.
Also, there might be multiple PWS networks, some more attractive than
others. In that case, depending on the starting network configuration, the
improving path will lead to one PWS network or another, independently of
their properties.

Two theoretical approaches have been proposed to deal with predictions
under multiplicity. One approach maintains myopic behavior but intro-
duces stochastic mutations in the formation of networks. This way, every
network is attained with positive probability and, from there, agents move
to a PWS network through a myopic improving path (Jackson and Watts,
2002). Another alternative is to explicitly consider the possibility of far-
sighted behavior. Here, agents realize the long run benefits of myopically
suboptimal choices and move away from one PWS network into another
one, also called farsighted-dominant network, by comparing for each sub-
ject involved the initial and final networks rather than the two consecutive
networks (Herings, Mauleon and Vannetelbosch, 2009). Finally but quite
importantly for our experiment, notice that different agents in a component
may receive different payoffs (they all have the same benefits but some may
have more direct links than others). This poses another multiplicity prob-
lem: even within a PWS network, agents have incentives to make or break
links in order to change their final position in the network (typically trying
to keep the same component size but have other agents bear most of the
link costs).
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3 Experimental setting and procedures

3.1 The basic configuration

Our experiment examines how well efficient networks, PWS networks and
farsighted dominant networks predict the outcome of a dynamic linking
game. We are interested in environments with a large number of network
configurations where mutual, pairwise consent is needed to form a link but
not to break it, and links are costly to individuals. To this end, we imple-
ment a stochastic dynamic linking game that slightly modifies the procedure
proposed by Jackson and Watts (2002). We consider networks with n = 6
players. This means n(n− 1)/2 = 15 possible bilateral undirected links be-
tween different players, and therefore 2n(n−1)/2 = 32, 768 possible networks
in our game. Naturally, the number of network architectures is substantially
smaller, since several networks are identical up to a permutation of the iden-
tity of subjects. With 6 players there are 20 minimally-connected network
architectures.5

We specifically look at a setting where the benefits from network mem-
berships are distributed equally across all members. An example of such a
setting is the formation of risk-sharing networks analyzed by Bramoullé and
Kranton (2007). As such, we deviate from much of the network experimen-
tal literature that implements the connections model where the benefits of
indirect links decay with distance. The advantage of our approach is that
payoffs from decisions are straightforward to calculate. This is made even
simpler by the fact that we maintain the unit cost of a link to be constant
both within and across treatments. By doing so, we dramatically reduce the
likelihood that some decisions are made out of payoff miscalculations.

Each match consists of multiple turns and starts with an empty network.
At each turn, the computer randomly assigns the six players into three pairs.
Once paired, players choose their actions with respect to their partner in
the pair. A new turn begins after all players have taken their actions. If all
players are satisfied with the network outcome, they can collectively end the
game. Ideally, we would like to have matches end only when all players have
agreed on the outcome. However, this would make sessions unmanageably
long. Furthermore, some agents could choose actions randomly knowing
that they always have the option to change it in the future. It would also

5Although six players may not seem like a large network, it is the biggest manageable
size given the exponential growth of possible combinations. For comparison, Pantz (2006)
and Kirchsteiger et al. (2011) have n = 4 players, which means 6 bilateral undirected
links, 64 possible networks and 6 minimally-connected network architectures.
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favor those who stubbornly refuse to give up until a specific configuration
is reached. We therefore decided to implement a match-ending rule that
provides enough opportunity for players to converge but, at the same time,
allows decisions to be meaningful and the experiment to be time manageable:
Subjects play for 12 turns unless all players are satisfied with the network;
afterwards, each turn is the last one with probability p = 0.2, providing
an additional 1/p = 5 turns on average. With this probabilistic match-end
rule, we hope to mitigate the last-round effects. At the same time, it allows
for an interesting comparison of behavior before and after the 12th turn.
Finally, notice that each turn is composed of six decisions, one for each
player, providing an average of 17× 6 = 102 individual decisions per match
(unless subjects decided to stop before).

Figure 1 shows the user interface. At each turn, players make decisions
by clicking on one of the action buttons. If a player is not linked to his
partner, he chooses whether to “Propose” a link or “Pass Turn”. If he is
linked, he chooses whether to “Remove” a link or “Pass Turn”. Once a pair
of partners have taken their actions, the result is displayed on the screen.
Hence, when each player makes his decision, he observes the latest state of
the network. Showing the latest network configuration within a turn allows
us to cleanly determine whether each individual decision reflects a myopic
rational behavior or otherwise. On the other hand, it may encourage a war
of attrition where players want to see what others are doing in a turn before
choosing their action.

Now, if a player is not only satisfied with the relationship with his partner
but also with the overall network, instead of choosing “Pass Turn”, he can
choose “Network OK”.6 As mentioned above, the match immediately ends
if all players within a turn choose “Network OK”.

The user interface displays all the pertinent information: the subject’s
role, the role of the person he is currently matched with, whether the cur-
rent turn is a potential terminal turn and, naturally, the current network
configuration. It also displays the benefit of the subject as a function of the
size of the component he is in, the cost as a function of his number of direct
links, and his net payoff given the current configuration. This succinct but
comprehensive visual display allows the subject to compute rather easily not
only the net value of adding or removing an existing link (i.e., the improving
path) but also his payoff in any other network configuration. Finally, notice

6Once a player chooses “Network OK”, he does not need to choose further actions until
the network changes. To avoid mistakes, all of his action buttons become inactive. These
buttons are immediately reactivated following a change in the network.

6



Figure 1: User interface for the linking game.

that the node representing the subject is always located at the center and
labeled “You” while the nodes representing the other players in a match are
labeled by their roles and surround the subject’s node at an equal distance
from it. By always putting the subject’s node at the center, even though
the underlying connections between subjects in a match are identical, each
subject sees different graphical representations. We therefore avoid leading
participants towards focal networks such as the star or wheel network.

3.2 Treatments

Since we are primarily interested in comparing observed and predicted out-
comes under different scenarios, the benefits are not based on any particular
functional form. With this freedom, we can set the payoffs such that we have
unique PWS equilibria with intermediate sizes, no equilibrium or multiple
equilibria. Meanwhile, each direct link incurs a constant cost. We avoid
potential confusion by maintaining the same cost per link across treatments
and only vary the benefits.

Our experiment includes four treatments. They are graphically depicted
in Treatments 1, 2, 3 and 4 that are inserted at the end of the paper for
future reference. These network graphics illustrate how we construct the
different equilibria. First, we draw a “supernetwork”, comprising the 20
possible minimally-connected six-node networks (labeled {A} to {T}) and
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all the arcs connecting pairs of networks that differ from one another by
a single link. We put all networks with identical number of links in the
same row and order them from top row (network with no links) to bottom
row (networks with 5 links).7 The direction of the arc in the supernetwork
represents the improving path (forming a new link or removing an existing
link).

The four treatments we consider differ on existence and number of PWS
equilibria. Treatment 1 has no PWS equilibrium. There is a unique closed
cycle comprised of networks {B,C,D, F,G,H,N} within which the dynamic
process is expected to stay. Treatment 2 has four PWS equilibria, networks
{A, I, J,K}, and network {K} farsightedly dominates the other three. If
players exhibit myopic behavior and follow the improving path, they will
all stay on the empty network {A}. If for some reason (a perturbation, a
mistake, etc.) they reach any of the other PWS networks, {I, J,K}, they
will also stay there. However, with some form of forward-looking behav-
ior, players might be able to reach the higher-return PWS network {K}.
Treatments 3 and 4 each has a unique PWS equilibrium, networks {H} and
{L}, with three components of two subjects and two components of three
subjects respectively.

Meanwhile, the efficient networks are identical across treatments, namely
all the minimally-connected networks that comprise the six players, that is,
networks {O,P,Q,R, S, T}. We choose to have the same efficient networks
in all treatments to facilitate comparisons. Also, we choose several efficient
networks and one of them focal ({T}, the line that comprises all agents)
in order to give a fair chance to the efficient outcome. The information is
summarized in Table 1.

3.3 Implementation details

The experiment was conducted in the California Social Science Experimental
Laboratory at the University of California at Los Angeles (UCLA) in August
2010. All experimental subjects were UCLA students. We conducted 8
experimental sessions with 12 subjects in each session. Subjects played two
sets of four treatments for a total of 8 matches in each session. We shuffled
the order of the treatments such that: (i) the orders of the treatments in the
first half and the second half of each session are different; (ii) no two sessions
have identical treatment sequences; and (iii) each treatment is implemented
in exactly two sessions for each order in the sequence. This shuffling was

7Networks that are not minimally connected are necessarily off the improving paths.
They are omitted unless a match ends in one of them.
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Table 1: Efficient and PWS networks

Treatment
Benefit for

component size
Cost

per link Efficient Pairwise stable

1 2 3 4 5 6

1 0 20 30 39 42 43 15 [6]{O,P,Q,R,S,T} None

2 0 10 17 22 38 44 15 [6]{O,P,Q,R,S,T} [1-1-1-1-1-1]{A}
[5-1]{I,J,K∗}

3 0 29 36 41 43 44 15 [6]{O,P,Q,R,S,T} [2-2-2]{H}

4 0 19 36 42 44 45 15 [6]{O,P,Q,R,S,T} [3-3]{L}

The number in brackets refers to the size of each component.
∗ is the farsighted dominant (FD) network.

done to neutralize the possible effects from the ordering of the treatments
within a session. In total, we obtained 128 match observations – 32 matches
for each treatment – from 96 distinct subjects.

With 12 subjects, there are always 2 groups in each session. To intro-
duce anonymity in game play, after each match we reshuffled subjects into
new groups and assigned a new role (1 to 6) to each subject. Each session
lasted for between 90 and 120 minutes. No subject took part in more than
one session. Participants interacted exclusively through computer terminals
without knowing the identities of the subjects they played against. Before
the paid matches, instructions were read aloud and two practice matches
were played to familiarize participants with the computer interface and pro-
cedure. After that, participants had to complete a quiz to ensure they
understood the rules of the experiment.

At the end of each match, subjects obtained a payoff based on the size of
the component they were in (benefit) and the number of other subjects they
were directly linked to (cost). Participants were endowed with experimental
tokens and they could earn or lose tokens. At the end of the session, the pay-
offs in tokens accumulated from all experimental games were converted into
cash, at the exchange rate of 4 tokens = $1. Participants received a show-
up fee of $5, plus the amount they accumulated during the paid matches.
Payments were made in cash and in private. Matches lasted for between 13
and 36 turns, with an average of 16.8 turns. There was a significant spread
in winnings: including the show-up fee, participants earned between $11
and $43 with an average of $29. A copy of the instructions is included in
Appendix B.
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4 Network outcomes

We first analyze the general properties of the network formation game. We
are particularly interested in studying convergence and stability of the final
network configuration as well as the empirical payoffs obtained by players.

4.1 Network convergence: efficiency vs. stability

Result 1 Agents recognize the underlying incentives of network formation
and avoid networks that are not minimally connected.

We begin by noting that players show understanding of the basic tenets
of the experimental game. Table 2 summarizes the network outcomes of the
four treatments in this experiment. We first focus on whether players end
up in networks that are not minimally connected. Remember that removing
links that do not reduce component size is always Pareto improving in our
game. The second column in Table 2 suggests that players understand this
idea. Out of 128 matches, only 5 matches (or 4%) end up in a network
that is not minimally connected. This is remarkable since Pareto-inferior,
non-minimally-connected networks can sometimes be necessary intermediate
steps towards farsighted goals.

Table 2: Summary of network outcomes

Treatment
Not Min.

Conn.
Efficient PWS FD Closed cycle

1 2 3
- -

21
(6.3%) (9.4%) (65.6%)

2 1 5 3∗ 14†
-

(3.1%) (15.6%) (9.4%) (43.8%)

3 0 0 15
- -

(0.0%) (0.0%) (46.9%)

4 2 2 10
- -

(6.3%) (6.3%) (31.3%)

N = 32 for each treatment.
∗ Includes networks {A, I, J}; † Includes network {K}.
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Result 2 The process tends to converge to the stable network when it exists
and not to converge when no stable network exists. It rarely leads to the
efficient networks.

Before discussing the results, we need an operational definition of con-
vergence. Callander and Plott (2005) suggest that a network has converged
if it maintains the same state in the last T turns before the end of the game.
Alternatively, in our experiment we can use the “Network OK” action. In
this case, a network is said to have converged if: (i) all agents are satisfied
with the current network, or (ii) when not all have done so by the end of the
match, those who have not did not unilaterally change the network when
given the opportunity, or were unable to unilaterally do so.

The first definition may “over-detect” convergence since it includes cases
where the lack of change is merely the result of how pairs were randomly
assigned in the last T turns before the random end of a match (naturally,
a longer T makes this possibility less likely). The second definition, on the
other hand, may “under-detect” convergence. Indeed, a player may delay
choosing “Network OK” not because she thinks she can improve her own
payoff, but hoping to benefit from a possible mistake by another player.

Table 3 presents the rate of convergence under the first definition with
T = 3 and under the second definition.8 Under the first definition, conver-
gence tends to occur only in treatments where a stable network (or networks)
exists. The convergence rate is lowest in Treatment 1 (around 20%), where
the improving paths lead to a closed cycle. For the other treatments, in-
cluding the one with multiple PWS equilibria, convergence is above 50%.
Convergence under the second definition is always low (15% or less) indicat-
ing that this notion is probably too strict.

We now go back to Table 2 and look at how well the theory predicts
the final network. The graphical illustrations of Treatments 1 to 4 elabo-
rates on this information: it displays the number of final outcomes for each
network architecture {A} to {T} both conditional on no change in the last
3 turns (labeled C) and unconditional on convergence (labeled U). In the
absence of a PWS network (Treatment 1), 65.6% of the matches end with
a network within the closed cycle.9 More interestingly and ignoring conver-

8Assuming 3 turns is arbitrary. It corresponds to 18 individual decisions to keep the
same configuration, which we believe is reasonably large. As a robustness check, we
performed the analysis with T = 5. With 5 turns, the frequency of convergence decreases
but the qualitative conclusions remain the same (data omitted for brevity but available
from the authors).

9Even more so, matches stay within the closed cycle most of the time: in 55.5% of all
the moves after Turn 6 subjects remain in a network that is within the closed cycle. Also,
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Table 3: Network convergence

Treatment
No change

last 3 turns‡
Network OK†

1 7 1
(21.9%) (3.1%)

2 20 3
(62.5%) (9.4%)

3 17 5
(53.1%) (15.6%)

4 18 3
(56.3%) (9.4%)

N = 32 for each treatment
† Either 6 players chose <Network OK> or 5
players did so with the remaining player unable or
unwilling to alter the network.
‡Includes <Network OK> networks.

gence for now, we find that 53.2%, 46.9% and 31.3% of the final networks in
Treatments 2, 3 and 4 are PWS networks, including the farsighted-dominant
one (FD). Finally, the dynamic formation process rarely leads to any of the
efficient networks.10

Table 4: Average distances from outcomes

Treatment PWS FD
Closed
cycle

Shortest
efficient

Efficient
line

1 - - 0.41 † 1.66 2.03
2 3.66 ‡ 0.91 - 1.41 1.66
3 1 - - 1.94 2.06
4 1.41 - - 1.28 1.41

† We calculate the distance to the closest network in the cycle.
‡ We only consider the empty network {A}.

the process ends at least once in all the networks of the cycle except in {B}.
10The treatment that ends with the efficient network the most is Treatment 2 (15.6%).

However, in this treatment, all efficient networks that became the final outcome are just
one link away from the farsighted-dominant stable architecture.
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To study in more detail the difference between observed and predicted
(stable or efficient) outcomes, we calculate the shortest (or “geodesic”) dis-
tance between the resulting networks and the closest network in the closed
cycle (for Treatment 1) or the PWS networks (for Treatments 2, 3 and 4)
as well as the distance between the resulting networks and the efficient net-
works. For the latter, we separately calculate the distance to the closest of
all the efficient networks {O,P,Q,R, S, T} and to the line network {T}.11

Table 4 shows that for Treatments 1 and 3, the distance to the closed cycle
and the PWS network respectively is substantially shorter than the distance
to the efficient networks. For Treatment 2, the distance is shorter to the far-
sighted dominant network (FD) but longer to the PWS empty network {A}
(PWS). For Treatment 4, however, the distance from the PWS network is
equal to the distance from the efficient line network and longer than the
distance from the closest efficient network, suggesting a larger dispersion in
behavior.

We next examine the following question: When stable networks exist,
how well do they predict the outcome conditional on convergence? Hereafter,
we employ the operational definition of convergence as the lack of change in
the last 3 turns. Table 5 suggests a mixed picture. For Treatments 2 and 3,
more than half of the convergent networks are stable. For Treatment 4, only
4 out of 18 convergent networks are PWS (Treatment 1 is not included in this
analysis as it predicts no convergence). The difference between Treatments
3 and 4 is intriguing. A possible reason is the asymmetry of players’ payoffs
within components. Indeed, with [2-2-2] all subjects earn equal amounts
and have little room for improvement. By contrast, with [3-3] the players
in the center of the component may deviate so as to keep the same network
structure but push someone else to bear the cost of having two links.

Table 6 presents the average distance of the network outcomes from the
different networks conditional on convergence. For Treatments 2 and 3, the
results provide further support for convergence to the FD PWS and the
unique PWS networks respectively. For Treatment 4, the distance from the
convergent network to the efficient networks is lower than to the PWS net-
work. This result (as well as that from Table 4) comes from the fact that
most of the network outcomes in this treatment, both conditional and uncon-
ditional on convergence, are split almost equally between the stable network
{L} and network {N}. Since the distance between these two networks is

11If agents were to aim at the efficient network, the line network is the most likely
outcome since it distributes payoffs most equally. For example {O}, which is never played
in our experiment, is efficient but requires one player to form 5 links and therefore bear
significant payoff losses (30 to 32 tokens).
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Table 5: Summary of network outcomes conditional on convergence

Treatment Efficient PWS FD N

2 4 1 ∗ 11 20
(20.0%) (5.0%) (55.0%)

3 0 9
-

17
(0.0%) (52.9%)

4 1 4
-

18
(5.6%) (22.2%)

∗ Includes networks {A, I, J}.

two and both of them are at a distance of one to the efficient networks, the
distance from the stable network and the efficient networks are similar. It is
therefore difficult to infer from the network outcomes alone where the for-
mation processes is leading toward. In our analysis of individual decisions
(Result 6), we provide a plausible explanation for our findings here.

Table 6: Average distance from outcomes conditional on convergence

Treatment PWS FD Any efficient Efficient line

2 3.75 ∗ 0.75 1.25 1.35
3 0.88 - 2.06 2.18
4 1.61 - 1.28 1.39

∗ We only consider the empty network {A}.

4.2 Network stability: myopic vs. farsighted

Result 3 Agents are able to “coordinate” away from the myopic improving
path to reach a higher return, farsightedly-dominant stable network.

As elaborated in the previous section, the strict use of myopic improving
paths may lead to suboptimal choices, especially in the presence of scale
economies. Treatment 2 implements such scale economies: agents with one
link obtain positive payoffs for components of size 2 and above and agents
with two links obtain positive payoffs for components of size 5 or 6 only.
Thus, starting from the empty network {A}, the improving path will stay
there. Meanwhile, {K}, the PWS networks that farsightedly dominate the
three other PWS networks have a [5-1] architecture.

14



Tables 2 and 5 show that the dynamic link formation process did lead by
and large to the farsighted-dominant stable network. Indeed, the percentage
of Treatment 2 matches that end in the farsighted-dominant stable network
is 43.8% (unconditional on convergence) and 55.0% (conditional). By con-
trast, only 9.4% (unconditional) and 5.0% (conditional) end in one of the
other three PWS networks. The results are further supported in Tables 4
and 6: the FD PWS network has a four to five times lower distance to the
average outcome than the empty PWS network, even though all games start
at the empty network {A}.

Our results are in line with Pantz (2006) who found that many of her
games did reach the forward-looking equilibrium architecture. Our setup,
however, is substantially more challenging for players. Indeed, there are
20 possible minimally-connected architectures. Starting from the empty
network {A}, players must go through three non-improving paths before
they reach networks {F,G}, and only from there they may converge to {K}
(if they reach {E}, the improving path will lead them to the stable networks
{I, J}, see the graphical illustration of Treatment 2). Despite the attraction
of the empty network, none of the 32 games ended in {A}.

4.3 Payoffs

Result 4 Aggregate payoffs are substantially lower than in the efficient net-
works and similar to the payoffs in the PWS networks.

Table 7 presents the average sum of payoffs generated by the network
in each treatment, also called “network value”. These values are compared
with the average value of the networks in the closed cycle (for Treatment 1),
with the values of the PWS networks (for Treatments 2, 3 and 4), and with
the values of the efficient networks (for all treatments). We find substantial
welfare losses due to individual maximization: the empirical payoffs are be-
tween 46% and 71% of the payoffs generated by efficient networks. In fact,
the observed payoffs are smaller but close to the payoffs in the FD PWS
equilibrium for Treatment 2 and to the payoffs in the unique PWS equilib-
rium for Treatments 3 and 4. For Treatment 1, the payoff is 50% higher than
the average payoff in the closed cycle. Similar results are obtained when we
focus on convergent networks.

4.4 Summary

Our results at the network level can be summarized as follows. Players
understand the strategic nature of network formation and avoid almost en-
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Table 7: Summary of network values

Treatment
Obtained

(all)
Obtained

(convergent)
PWS FD Closed cycle Efficient

1 63.13 - - - 43.1 † 108
(26.58)

2 52.91 62.70 0 ‡ 70 - 114
(44.68) (41.53)

3 81.47 79.35 84 - - 114
(12.33) (12.80)

4 85.38 84.78 96 - - 120
(17.88) (16.51)

† We calculate the unweighted average payoffs of all networks in the cycle.
‡ We only consider the empty network {A}.

tirely non-minimally-connected networks in all treatments. Network effi-
ciency does not appear to be an important motivation for players in any
treatment. The existence of one or several stable networks is necessary for
convergence: when no equilibrium exists (Treatment 1) the process hardly
converges. At the same time, it is not sufficient: convergence is much weaker
in Treatment 4 than in Treatments 2 or 3. Finally, subjects are reasonably
forward-looking when this is needed to reach higher-paying equilibria.

5 Individual decisions

Having analyzed aggregate outcomes, we now study each individual decision.
At each turn, each subject in a pair must choose to either “act” or “pass”. If
subjects in the pair are initially unlinked, acting implies proposing a link and
passing implies remaining unlinked. If, on the contrary, subjects are initially
linked, acting implies removing a link and passing implies remaining linked.
We are interested in the extent to which decisions are myopic rational in
each of these four cases and for each treatment. An individual decision is
myopic rational if it makes her weakly better off given the linking problem
she faced when making her decision.

5.1 Descriptive statistics

Remember that in every turn, all three pairs of players choose an action.
However, players observe the outcomes of the other pairs within that turn
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who have acted before them. This way, we always know whether the decision
of a subject conforms to myopic rationality or not. Table 8 summarizes
the share of individual actions that are myopic rational across turns. We
organize the data into four groups of turns. We use Turn 12, which is the last
certain turn that players get unless everyone agrees on the network outcome,
as a natural point to partition matches into “early” turns (or turns with a
certain future) and “late” turns (or turns with an uncertain future). We
further split the early turns into two equal groups of six turns. The late
turns are also split into two groups: up to Turn 18 and Turn 19 or later.

This split captures behaviors at different stages of the game. First, play-
ers may be attempting to get familiar with the particulars of the match
and try different strategies with almost no irreversible effect on final out-
comes (Turns [1-6]). Then, players adjust their behavior as the potential
ending turn approaches (Turns [7-12]). After that, players enter the random
stopping phase where, presumably, they behave under the assumption that
matches can be terminated at any time (Turns [13-18]). Finally, we consider
Turns 19 and above in a separate category because the sample size is dramat-
ically reduced as turns advance and the sample becomes non-representative
of the population.12 Overall, this gives us four groups, three of which have
identical number of turns.

We observe in Panel A of Table 8 that decisions are more myopic rational
as players get closer to the end of the match. There appears to be jumps
between [1-6] and [7-12] and also between [7-12] and [13-18], which indicates
that players adjust their strategies over the course of a match.

Panel B investigates myopic rationality further by grouping the data by
the types of decision problem that players faced. Here, we examine decisions
under four mutually exclusive conditions, namely when the rational action
is: (i) to pass and remain unlinked; (ii) to pass and remain linked; (iii) to
remove an existing link; and (iv) to propose a new link. Comparing the
myopic rationality under conditions (i) with (ii), and (iii) with (iv), we find
evidence that players tend to be less myopic rational in decisions that reduce
the number of links. Furthermore, by comparing conditions (i) with (iii),
and (ii) with (iv), individuals appear to deviate more from the improving
paths by failing to act when they should than by acting when they should
not. However, our regressions below suggest that this last result does not
hold once we control for individual fixed effects and the marginal payoff from
myopic rational choices.

Meanwhile, Panel C displays myopic rationality across treatments. In

12For instance, there were 2712 choices in Turns [13-18] and only 672 in Turns [19-24].
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Table 8: Myopic rationality of individual decisions

Turns

[1-6] [7-12] [13-18] ≥ 19

A. All 0.741 0.819 0.894 0.910
(0.438) (0.385) (0.308) (0.286)

B. By decision problem

B1. Passing is myopic rational

i. Stay unlinked 0.663 0.837 0.916 0.940
(0.473) (0.369) (0.277) (0.238)

ii. Stay linked 0.956 0.967 0.979 0.967
(0.206) (0.179) (0.144) (0.180)

B2. Acting is myopic rational

iii. Remove link 0.374 0.392 0.571 0.647
(0.484) (0.489) (0.496) (0.485)

iv. Propose link 0.882 0.878 0.877 0.846
(0.323) (0.328) (0.328) (0.362)

C. By treatment

Treatment 1 0.829 0.826 0.885 0.944
(0.377) (0.379) (0.320) (0.229)

Treatment 2 0.563 0.856 0.905 0.862
(0.496) (0.351) (0.294) (0.345)

Treatment 3 0.764 0.788 0.895 0.919
(0.425) (0.409) (0.306) (0.274)

Treatment 4 0.811 0.805 0.890 0.969
(0.392) (0.397) (0.313) (0.175)

D. By relative component size

Small 0.893 0.927 0.926 0.909
(0.310) (0.261) (0.263) (0.288)

Large or equal 0.711 0.786 0.883 0.911
(0.453) (0.410) (0.322) (0.285)

Standard deviations in parenthesis
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all four treatments, players are significantly less myopic rational before Turn
12 than after it. Interestingly, the difference in myopic rationality between
[1-6] and [7-12] is entirely driven by Treatment 2. This is quite natural since
subjects need to play against myopic rationality at least three times in order
to escape the empty network, zero payoff PWS equilibrium {A}.

Figure 2 illustrates the results in Panels B and C together. We plot for
each treatment the proportion of myopic rational behavior across turns when
passing is rational (B1) and when acting is rational (B2). In all treatments,
players maintain more links than what is myopically rational throughout the
match. The gap is bigger and the variation larger for decisions where acting
is myopic rational (figures on the right), although the difference narrows as
the match nears its end.

Panel D takes each pair of players and determines which one belongs
to the smallest component (pre-choice if they are initially not linked and
assuming a link removal if they are initially linked). Subjects in the small
component play the myopic rational strategy rather consistently (around
90% of the time for all groups of turns). By contrast, in the large component
they tend to stay there more often than predicted by myopic rationality,
especially in [1-6] and [7-12]. The result is consistent with Panel B, where
we showed that players have a tendency not to cut links as often as they
would if they followed the myopic rule.

Finally, to further illustrate how individual strategies change throughout
the match, we examine the turns in which individual decisions led them to
a PWS network in the middle of a match. Table 9 presents the number
of instances in which individuals choose to “enter”, “stay” and “leave” a
PWS network, broken down by treatment (2, 3 or 4) and turn (before vs.
after Turn 12). The last column reports the total number of turns in that
set. We observe that individuals are quite prone to leave the PWS network
in Turns [1-12], but this tendency is dramatically reduced when the ending
turn becomes uncertain, especially for Treatments 3 and 4. Surprisingly,
even though Treatment 2 has one of the most predictable outcomes (43.8%
of matches end up in the FD PWS network, see Table 2), individuals move
away from the stable network after Turn 12 more frequently than they do
in the other treatments.13

13In 7 out of the 9 cases, individuals move from {K} to {F}. This suggests an attempt
to place oneself at the edge of the network in the hope of increasing the individual’s payoff.
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Table 9: Movements to and from PWS networks

Turns Enter Stay Leave Total turns

Turns [1-12]
Treatment 2† 28 51 19 384
Treatment 3 30 69 24 384
Treatment 4 7 17 4 384

Turns [≥ 13]
Treatment 2† 14 67 9 177
Treatment 3 9 44 0 143
Treatment 4 8 19 1 128

† Refers to FD PWS network {K}

5.2 Regression analysis

To study more thoroughly individual decisions, we perform a binary choice
regression analysis. We regress the probability that an individual chooses
the myopic rational action on the attributes of the problem. That is, for each
treatment we estimate a linear probability model (LPM) for the following
specification:

P(Y ij
nt = 1 | Xij

nt, cn) = β0 + Xij
ntβ + cn (1)

where Y ij
nt indicates whether the action is myopic rational, Xij

nt captures the
attributes that move individual n from network i to j in the supernetwork
at turn t. Meanwhile, cn captures the unobservable characteristics of the
individual n which may affect how she makes decisions. We do not assume
that the unobservable individual characteristics are independent from the
attributes of the decisions, and hence, implement an individual fixed effects
specification. We also cluster standard errors by session.

We choose the fixed-effects linear probability model (LPM) instead of
a logit model because it is easier to interpret the marginal effects for the
former, especially with regards to the interaction terms (see e.g., Ai and
Norton, 2003).14 At the end of the section, we briefly discuss some extensions
and alternative representations.

We can use the regression framework to investigate the four types of de-

14We do not consider the fixed-effects probit model given its known bias (see Greene,
2004, for a discussion of its bias).
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cisions described in Panel B of Table 8. Consider the following specification:

Y ij
nt = β0 + β1 ·morelinkij + β2 · actij + β3 · (morelinkij × actij) + ε (2)

where morelinkij and actij are dummy variables and ε is the residual. The
variable morelinkij takes on a value of 1 if between networks i and j the
network with more links gives the individual a higher payoff; the variable
actij takes on a value of 1 if the myopic rational choice is to act.

Table 10: The regression coefficients and the types of decision problems

Interpretation
more

actij Function
linkij

i. P(M. rat. = 1 | M. rat. = Stay unlinked) 0 0 β0
ii. P(M. rat. = 1 | M. rat. = Stay linked) 1 0 β0 + β1
iii. P(M. rat. = 1 | M. rat. = Remove) 0 1 β0 + β2
iv. P(M. rat. = 1 | M. rat. = Propose) 1 1 β0 + β1 + β2 + β3

Under the LPM, the interpretation of these β-coefficients is straightfor-
ward. The coefficient β0 captures the probability that an individual does not
propose a link in accordance to the myopic rational strategy. Similarly, β0 +
β1 captures the probability that an individual does not remove a link in ac-
cordance to the myopic rational strategy. Table 10 provides interpretations
for the different combinations of coefficients.

This specification allows us to explore how the nature of the decision
problem affects game play. However, we also include three sets of additional
variables (and the individual fixed effects) to explore possible individual
strategies. The extended models are, therefore, variations based on the
following specification:

Y ij
nt = β0 + β1 ·morelinkij + β2 · actij + β3 · (morelinkij × actij)

+ γ ·mpayij + δ · chdistqij
+
∑4

t=1 χt · turn sp(t) + cn + ε

(3)

First, we want to investigate whether the size of the marginal payoff
affects the deviations from the improving path. The variablempayij contains
the marginal payoff from making a myopic rational choice between networks
i and j. With a myopic strategy, the sign (a marginal loss vs. a marginal
gain) of the decision should matter but not the magnitude of the loss or the
gain. However, if we assume imperfect choices (like in the Quantal Response
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Equilibrium model of McKelvey and Palfrey (1995)) it is reasonable to think
that deviations are less likely to occur the larger the marginal loss.

Second, we explore the possibility that individuals follow the shortest dis-
tance towards the efficient line network (Eff.Line) or the farsighted-dominant
FD) PWS network. The variable chdist(q)ij denotes the change in the
geodesic distance to network q ∈ {Eff.Line, FD} if an individual takes the
myopic rational choice in choosing between networks i and j. Each of these
variables can take a value of 1, 0, or -1 and they are included one at a time
in the regression. A negative coefficient on chdist(q) indicates that all else
the same, players are more likely to choose a myopic rational action if it
moves them closer to network q.

Finally, we control for possible turn effects using a linear spline on the
turn variables, turn sp, with knots at turns 6, 12, and 18.15 The knot
choices mimic the turn grouping we did for the descriptive analysis.

Result 5 The improving paths predict better individual decisions at later
turns than at earlier turns.

We first perform a test for pooling for all of our specifications to inves-
tigate whether there is a structural change after Turn 12. Table 11 presents
our results. In all but one specification, we can reject the null hypothesis
that the coefficients before and after Turn 12 are equal at 1% significance;
in all cases, we can reject the hypothesis at 5% significance.

We therefore analyze the two sets of turns separately. We begin by
examining the extent to which improving paths drive individual behaviors.
If improving paths were the sole driver of network evolution, the constant
terms in all of these specifications would be one and the coefficients on all
other variables would be zero. Table 12 presents the regression results of
our basic model with individual fixed effects. The constant terms are much
lower than one, and the coefficients of the other variables are significantly
different from zero, suggesting deviations from the improving paths.

To see more clearly the extent to which individuals deviate, we included
estimates of the linear combinations of the coefficients for the constant term,
morelink, act, and morelink × act. These linear combinations are derived
from Table 10 to allow immediate comparisons of the probabilities that
individuals make myopic rational choices for the different decision problems.

Pairwise comparisons of estimates confirm that, all else the same, indi-
viduals are more myopic rational in Turns [≥ 13] compared to [1-12]. Of the

15Hence, the variable turn sp(1) is the spline for Turns [1-6], turn sp(2) is for Turns
[7-12], turn sp(3) is for Turns [13-18] and turn sp(4) is for Turns greater than 18.
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16 combinations of treatments and decision problems, the point estimates
are always larger in later turns with only one exception: Treatment 2 when
the myopic rational choice is to propose.

Result 6 In early turns, individuals deviate from improving paths by main-
taining excessive links (over-proposing and not removing redundant links).
In later turns, individuals deviate mainly by not removing redundant links.

Panel B of Table 8 suggests that subjects keep, if anything, too many
links. We hypothesize that the asymmetry of the linking game may explain
this behavior. Since link formation requires mutual agreement while removal
does not, one possible strategy would be to form and maintain some redun-
dant links early on. As the game approaches the end, individuals begin to
unilaterally remove them. The exact turn when the individual removes the
last redundant link will depend on his risk preference and beliefs regarding
the likelihood that he will be able to remove it before the game ends.

We find some evidence in support of this hypothesis. As described in
Figure 2, deviations from myopic rationality are more pronounced in all
treatments when they imply excessive links (proposing unprofitable links
and keeping redundant links) than when they imply insufficient links. We
find evidence of this same behavior in our regressions. As shown in Table 12,
in Turns [1-12] the coefficient for myopic rationality in all four treatments
is highest when the myopic rational action is to stay linked (ii), followed
by propose a link (iv), stay unlinked (i), and remove a link (iii). For Turns
[≥ 13], the least myopic rational decision is still by far to remove a link (iii),
except for Treatment 2. The order of the other coefficients are somewhat
perturbed although it is difficult to make strong conclusions since most
coefficients are very high (90% and above).

Result 7 The size of marginal payoffs affects the likelihood of a deviation
from myopic rationality in early turns for Treatments 1, 2 and 4 and in all
turns for Treatment 2.

With a myopic rational strategy, the size of the marginal payoffs should
be irrelevant: individuals would choose actions that give them non-zero gain,
irrespective of their size. To investigate whether this is the case, we imple-
ment the extended specification of (3). We then interact the payoff variable
with the interactions between morelink and act to capture differential effects
of marginal payoffs across different decision problems.

The results of the regressions are presented in Table 13. We linearly
combine the coefficients for the payoff variables to explore the heterogeneity
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of the payoff-size effects across decision problems. We use a strategy simi-
lar to the way we linearly combined the coefficients of the morelink × act
interactions to examine the myopic rationality of the different decision prob-
lems. Hence, for example, γ0 measures how the size of the marginal payoff
affects the probability that individuals myopic-rationally stay unlinked; γ0

+ γ1 measures how the payoff size influences the probability that individuals
myopic-rationally stay linked, and so on.

For Turns [1-12] in Treatments 1, 3, and 4, we find that myopic rational
choices are positively correlated with the size of the marginal payoffs if
the myopic rational choice is to reduce the number of links (cases (i) and
(iii)). Almost all of these coefficients lose their significance in Turns [≥ 13].
Meanwhile, for Treatment 2, all of the payoff coefficients are significant in
both Turns [1-12] and [≥ 13] except when the myopic rational choice is to
remove a link.

These results provide an additional insight on how individuals deviate
from the improving paths, perhaps in an effort to explore shortcuts to higher-
paying networks. For Treatments 1, 3, and 4, the evidence suggests that in-
dividuals take the opportunity loss from removing a link more seriously than
that from staying unlinked. For Treatment 2, subjects take all losses equally
into consideration. As explored in the next result, they presumably see those
losses as an intermediary step towards the higher paying equilibrium.

Result 8 Individual strategies are strongly suggestive of forward-looking be-
havior.

Finally, we examine the crucial question of forward-looking behavior.
We begin with Treatment 2, where there are multiple PWS architectures
and one of them is farsighted-dominant. Our network outcomes analysis
suggests that individuals tend to reach the FD PWS architecture (Result 3).
We examine whether this conclusion is also supported by the individual-level
analysis. Table 14 presents the extended regression based on (3). Two pieces
of evidence corroborate the notion that individuals are forward looking.

First, remember that individuals in Treatment 2 would need to violate
myopic rationality in the first few turns to escape the zero-payoff PWS net-
work. However, once these initial “barriers” have been overcome, individuals
can reach the FD PWS network by following the improving paths. We there-
fore expect an increase in myopic rationality within the first six turns. As
shown in Table 14, the spline for the first six turns, turn sp1, is positive
and significant for Treatment 2 and only for that treatment. Moreover, all
other turn spline variables for Treatment 2 are not significant.
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Second, we find that the coefficient for the distance change to the FD
PWS network, chdist(FD), is negative and significant in both early and late
turns (columns (2) and (7) in the table). It suggests that individuals may
be implementing strategies that move them closer to the FD PWS network.
Notice, however, that the impact of this variable is similar to that of the
distance to the efficient-line network variable, chdist(Eff.Line) (columns (3)
and (8) in the table). Because the two networks differ by a mere one link,
we cannot identify which network is the individuals’ ultimate goal. However
the evidence regarding the (convergent) network outcomes for Treatment 2
(in Table 5) suggests that the FD PWS architecture is the ultimate goal.

Finally, Result 6 also supports the notion that individuals think more
than one-step ahead. The strategy of maintaining redundant links in earlier
turns only to shed them in later turns indicates that the PWS networks are
not reached exclusively through myopic improving paths.

5.3 Model predictions

We next examine the capacity of our empirical model to predict actions.
For this exercise, we include the regressors from our basic model, as well as
the marginal payoff variable interacted with the morelink variable, in line
with our previous findings. All of these variables are interacted with the
turn > 12 variable to account for coefficient differences before and after
the potentially terminal turn. We also include only the spline for the first
six turns, and interact it with a Treatment 2 indicator variable to account
for players’ forward-looking behavior in that treatment. For the prediction
model, we do not include the individual fixed effects.

We use this model to do out-of-sample predictions of all treatments: we
regress the above model while excluding one of the treatments, and then
predict the myopic rationality of the excluded treatment. Instead of using
LPM, we implemented a logit model to avoid irregularities such as having
probabilities outside the [0, 1] support. The results are presented in Table 15.

Figure 3 presents the plot of the actual and (out-of-sample) predicted
myopic rationality for the different treatments in the first 18 turns. The
model predicts aggregate behavior well. As expected, for Treatment 2 it
overestimates the myopic rationality at the early stages, when it is most im-
portant to deviate in order to reach the FD PWS equilibrium. However, the
predictions fit actual behaviors surprisingly well after Turn 6. In Treatments
1 and 3, the model slightly under-predicts the myopic rationality of actual
play in early turns. In contrast, the model tends to over-predict myopic
rationality in Treatment 4.
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Table 15: Logit model used for out-of-sample predictions

Treat. 1 Treat. 2 Treat. 3 Treat. 4
(1) (2) (3) (4)

1(turn>12) 1.831∗∗∗ 1.669∗∗∗ 2.193∗∗∗ 1.487∗∗∗

(4.35) (4.24) (3.67) (3.46)

morelink 2.817∗∗∗ 3.761∗∗∗ 3.246∗∗∗ 3.090∗∗∗

(7.95) (9.62) (9.13) (8.47)

. . .× 1(turn>12) -1.961∗∗ -1.323∗ -2.179∗∗ -1.737∗∗∗

(-2.67) (-1.97) (-3.16) (-3.39)

act -1.861∗∗∗ -1.763∗∗∗ -1.499∗∗∗ -1.465∗∗∗

(-12.04) (-21.76) (-8.52) (-7.87)

. . .× 1(turn>12) -0.139 -0.515 -0.705∗ -0.433
(-0.57) (-1.80) (-2.49) (-1.34)

morelink × act 1.244∗∗∗ -0.0600 0.803∗∗∗ 0.595∗

(4.97) (-0.18) (3.80) (2.45)

. . .× 1(turn>12) -1.353∗∗ -0.363 -0.578 -0.725∗

(-2.99) (-1.13) (-1.43) (-2.19)

turn sp(1) † 0.233∗∗∗ 0.0902∗ 0.206∗∗∗ 0.243∗∗∗

(8.62) (2.11) (6.90) (7.43)

. . .× 1(Treatment 2) -0.0520∗∗ -0.0479∗ -0.0749∗∗∗

(-2.95) (-2.36) (-7.72)

mpay 0.117∗∗∗ 0.0825∗∗∗ 0.143∗∗∗ 0.109∗∗∗

(6.93) (5.33) (5.52) (6.36)

. . .× 1(turn>12) -0.0686∗ -0.0511 -0.0756 -0.0291
(-2.14) (-1.56) (-1.46) (-0.76)

mpay × morelink -0.0863∗∗ -0.0876∗∗∗ -0.125∗∗∗ -0.0944∗∗

(-3.29) (-3.70) (-3.93) (-3.01)

. . .× 1(turn>12) 0.112∗ 0.0823∗∗ 0.110∗ 0.0701
(2.10) (2.64) (2.27) (1.54)

Constant -1.206∗∗∗ -0.0529 -1.459∗∗∗ -1.114∗∗∗

(-6.44) (-0.22) (-7.40) (-6.06)

Observations 9600 9510 9714 9804
Pseudo R2 0.206 0.173 0.190 0.183

t statistics in parentheses. Standard errors clustered at the session level.
† Spline coefficients are for the slope of the intervals.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

31



1
.8

.6
.4

.2
0M

yo
pi

c 
ra

tio
na

lit
y

0 6 12 18
Turn

Actual Predicted

Treatment 1

1
.8

.6
.4

.2
0M

yo
pi

c 
ra

tio
na

lit
y

0 6 12 18
Turn

Actual Predicted

Treatment 2
1

.8
.6

.4
.2

0M
yo

pi
c 

ra
tio

na
lit

y

0 6 12 18
Turn

Actual Predicted

Treatment 3

1
.8

.6
.4

.2
0M

yo
pi

c 
ra

tio
na

lit
y

0 6 12 18
Turn

Actual Predicted

Treatment 4

Figure 3: Out-of-sample logit prediction by treatment

5.4 Extensions and alternative representations

We have focused on the linear probability model (LPM) in the regression
analysis. As a robustness check, we also estimated fixed-effects logit models
for the specifications whose results we reported in Tables 12 and 14. The
results for these alternative estimations are presented in Appendix A.1. For
the most part, these logit estimates are qualitatively similar to those above,
except for the coefficients of the interactions between morelink and act.

We also entertain the possibility that experience matters. As elaborated
above, each of the four treatments were played twice in a session (in different
orders). We examine whether individuals play differently the first vs. the
second time they encountered them by running a test of pooling, similar to
the one used to examine whether individuals play differently before vs. after
Turn 12. The results are presented in Appendix A.2. In general, we find
little evidence of difference in behavior between the first and second half of
the experiment. The most notable difference is Treatment 2 where, in their
second encounter, players tend to be less myopic rational in decisions where
the myopic rational action is to either remove or propose.
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5.5 Summary

The results of the analysis at the individual decision level can be summa-
rized as follows. There is strong evidence that subjects play less myopically
rational if more turns are available for sure in the future (Turns 1-12) than if
their current choice may be final (Turns ≥ 13). Choices are also less myopi-
cally rational when deviations are necessary to escape the low-payoff PWS
network. Deviations more often take the form of excessive links than insuf-
ficient links (possibly because links can be removed unilaterally). They are
also more prevalent the smaller the marginal payoff loss, as expected under
a theory of imperfect choice. Overall and with some important exceptions,
the individual analysis provides support for theories of pairwise stability and
forward-looking behavior.

6 Heterogeneity across subjects

So far we have studied choices at the network outcome and single decision
levels. One question that remains unanswered is the degree of heterogeneity
between subjects. One simple way to address this question is to determine
how often each subject plays the myopic rational strategy.
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Figure 4: Empirical CDF of myopic rationality by treatment

Figure 4 plots the cumulative distribution function (CDF) of myopic ra-
tional behavior of subjects by treatment. A steeper CDF reflects a more
homogeneous behavior across subjects whereas a right shift captures a more
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myopic rational behavior of the population. In Treatments 1, 3 and 4, behav-
ior is homogeneous and myopically rational: 80% of the subjects or more
play the myopic rational strategy 75% of the time or more. The picture
changes in Treatment 2 where behavior is slightly more heterogeneous and
less myopically rational. A Kolmogorov-Smirnov test confirms this observa-
tion: the CDF of Treatment 2 is different from the CDF of Treatments 1, 3
and 4 at the 1% level, whereas no statistical difference is observed between
the CDFs in Treatments 1, 3 and 4 at the 10% level.

Another possibility is to search for clusters of people (as in Camerer and
Ho (1999)). This is one of many ways to organize the data and allows us to
quantify the degree of homogeneity of subjects within and between clusters.
Given the documented difference in behavior between early turns [1-12] and
late turns [≥ 13] and also between Treatment 2 and Treatments 1, 3 and 4,
we use these four variables to cluster the subjects. There are many clustering
methods but they usually require the number of clusters and the clustering
criterion to be set ex-ante rather than endogenously optimized. Mixture
models, on the other hand, treat each cluster as a component probability
distribution. Thus, the choice of the model and the number of clusters is
made using Bayesian statistical methods (Fraley and Raftery, 2002). We
implement model-based clustering analysis with the Mclust package in R
(Fraley and Raftery, 2009). A maximum of nine clusters are considered for
up to ten different models and the combination that yields the maximum
Bayesian Information Criterion (BIC) is chosen.

For our multidimensional data, the model that maximizes the BIC yields
five clusters. Table 16 shows the frequencies of subjects in each cluster, listed
from low to high according to the general frequency of their myopic rational
behavior. It also displays the average earnings by subjects in each cluster.

Clusters are clearly differentiated in terms of: (i) the total level of my-
opic rationality, (ii) the difference in behavior between Treatment 2 and the
other treatments, and (iii) the difference in behavior between early and late
turns. Subjects in cluster 1 are lowest on all three dimensions, followed by
subjects in cluster 2. Their erratic and undifferentiated behavior indicates
that one-quarter of our subjects have some difficulties in understanding the
strategic aspects of the game. Subjects in cluster 3 start with low myopic
rationality (between clusters 1 and 2 levels) but have the highest increase
after turn 12 (around 20%). The near perfectly myopic rational behavior
in later stages of Treatments 1, 3 and 4 (96%) suggests that, contrary to
subjects in previous clusters, these individuals understand the incentives in
our game and use early turns to try and reach an advantageous position.
Clusters 4 and 5, which comprise more than half of the population, play
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Table 16: Clustering based on myopic rational behavior

Cluster
Treat. 1, 3, 4 Treat. 2

Earnings N
[1-12] [≥ 13] [1-12] [≥ 13]

1 0.678 0.735 0.617 0.645 86.5 10
(0.132) (0.178) (0.134) (0.226)

2 0.786 0.850 0.708 0.814 95.8 13
(0.060) (0.060) (0.099) (0.082)

3 0.779 0.955 0.645 0.844 83.7 19
(0.125) (0.026) (0.147) (0.099)

4 0.843 0.909 0.746 1.000 96.6 46
(0.076) (0.076) (0.113) (0.000)

5 0.870 0.975 0.771 0.881 113.8 8
(0.038) (0.034) (0.059) (0.054)

Total 0.808 0.897 0.710 0.897 96
(0.104) (0.104) (0.127) (0.145)

Standard deviations in parenthesis

close to the theoretical predictions: high myopic rationality in later turns
of all treatments, a somewhat lower myopic rationality in early turns of
Treatments 1, 3 and 4 (due perhaps to costless experimentation), and a sig-
nificantly lower myopic rationality in earlier turns of Treatment 2 (due both
to experimentation and to escape the low-payoff PWS network). The main
difference between the two clusters lies in the late turn treatments where
myopic rationality is highest: Treatment 2 for cluster 4 and Treatments 1,
3, and 4 for cluster 5.

Earnings are correlated with behavior, with clusters 1 and 5 near the
bottom and top of the distribution. However, the mapping between payoffs
and myopic rationality is not monotonic. This can be expected for two
reasons. First, because the PWS equilibrium does not necessarily generate
the highest payoffs. Second, because each subject’s payoff depends on the
behavior of the five other players in the network.
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7 Conclusion

The paper has studied the dynamic formation of social networks. We found
that subjects rarely consider the total value of the network as a key criterion
when making their decisions. Instead, choices are roughly consistent with
individual maximization of payoffs. Many subjects exhibit forward-looking
behavior if (and only if) this strategy leads to a dominant network configura-
tion. Interestingly, a myopic rational behavior is less prevalent when actions
are reversible, when marginal payoff losses are smaller and when they involve
excessive links that can be removed unilaterally later on. There is, however,
a significant heterogeneity in behavior: some subjects play very close to the
theoretical predictions while others make relatively poor choices.

Despite the recent advances, there is still much to learn about network
formation, both theoretically and experimentally. On the theory front, it
would be desirable to incorporate behavioral imperfections into existing
models. The tendency observed in our data towards fewer deviations from
myopic rationality as marginal losses increase and as matches get closer to
the end strongly suggests that players optimize subject to imperfect choice,
imperfect foresight and/or an imperfect processing capacity. To our knowl-
edge, however, no model has yet been developed to capture these frictions.
On the experimental front, ecological validity is a concern. Indeed, although
the experiment is instructive, we feel that our cost and benefit representa-
tion of adding and removing links captures the essence of social networks
in an excessively abstract way. The use of laboratory studies in the field
or laboratory studies that exploit social technologies (e.g., facebook, twit-
ter, or second life) would add a more realistic dimension to the network
formation problem without compromising the controlled environment of the
laboratory.
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Notes. Letters refer to all minimally-connected network architectures. Numbers next to each
network refer to the frequency (and percentage) that the process ends in that network. U =
Unconditional on convergence, C = Conditional on no change in the last 3 turns. Networks
that are part of the closed cycle are inside the shaded region.

Treatment 1. Improving paths, closed cycle, and outcomes.
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network refer to the frequency (and percentage) that the process ends in that network. U =
Unconditional on convergence, C = Conditional on no change in the last 3 turns. Pairwise
stable equilibria are shaded (light shade for the farsighted dominant).

Treatment 2. Improving paths, stable networks, and outcomes.
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network refer to the frequency (and percentage) that the process ends in that network. U =
Unconditional on convergence, C = Conditional on no change in the last 3 turns. Pairwise
stable equilibrium is shaded.

Treatment 3. Improving paths, stable network, and outcomes.
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Unconditional on convergence, C = Conditional on no change in the last 3 turns. Pairwise
stable equilibrium is shaded.

Treatment 4. Improving paths, stable network, and outcomes.
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Appendices

A Additional analyses (not for publication)

A.1 Logit estimation

In Tables 17 and 18 we present the analogue of Tables 12 and 14 using
a fixed-effects logic estimation. Note that the sign and significance of the
morelink × act interaction-term coefficients often differ between the LPM
and logit models. This, however, does not necessarily indicate that the
two models contradict each other because, unlike in linear models (such as
LPM), the coefficients on the interaction terms in non-linear models (such
as logit) do not easily translate into their marginal effects (for a detailed
discussion, see Ai and Norton (2003)).

A.2 Effect of experience

Table 19 presents the results regarding the effect of experience on behavior.
For the basic specifications, we only find evidence of a difference in behavior
for Treatment 2. With additional variables, the hypothesis of no difference in
behavior is rejected for Treatment 4. Looking at the individual coefficients,
we find that in Treatment 2, coefficients that are significantly different in
the second half of the sessions are those for act and morelink × act. For
Treatment 4, none of the individual coefficients are significantly different in
the second half of the sessions at 5% significance, and only one coefficient,
namely turn, is significantly different at 10% significance.
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B Instructions (not for publication)

Welcome. This is an experiment on individual decision making in groups,
and you will be paid for your participation in cash at the end of the exper-
iment. The entire experiment will take place through computer terminals,
and all interactions between participants will take place through the com-
puters. You will remain anonymous to me and to all the other participants
during the entire experiment; the only person who will know your identity
is the Lab Manager who is responsible for paying you in the end. Moreover,
it is important that you do not talk or in any way try to communicate with
other participants during the experiment.

We will start with a brief instruction period. During the instruction
period, you will be given a complete description of the experiment and will be
shown how to use the computers. You must take a quiz after the instruction
period, so it is important that you listen carefully. If you have any questions
during the instruction period, raise your hand and your question will be
answered so everyone can hear. If any difficulties arise after the experiment
has begun, raise your hand, and an experimenter will come and assist you.
Please note that you are not being deceived and you will not be deceived:
everything I tell you is true.

Your earnings during the experiment are denominated in tokens. De-
pending on your decisions, you can earn more tokens or lose some tokens.
At the end of the experiment, we will count the number of tokens you have
earned in all of the matches and you will receive $1.00 for every 4 tokens.
You will be paid this amount plus the show-up fee of $5. Different partici-
pants may earn different amounts. Everyone will be paid in private and you
are under no obligation to tell others how much you earned.

The experiment will consist of 8 matches. In each match, you will be
put in a group with 5 other participants in the experiment. Since there
are 12 participants in today’s session, there will be 2 groups in each match.
You are not told the identity of the participants in your group. Your payoff
in each match depends only on your decisions, the decisions of the other 5
participants in your group and on chance. What happens in the other group
has no effect on your payoff and vice versa. Your decisions are not revealed
to participants in the other group.

We will now explain how each match proceeds. At the beginning of the
match, the computer randomly assigns each of you to a group consisting of
6 participants. Next, the computer randomly assigns with equal probability
a role to each of the participants as “Subject 1”, “Subject 2” and so on up
to “Subject 6”. Then, the match begins.
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Each match consists of several turns. At the beginning of each turn, the
computer randomly pairs all subjects within each group with one another.
We shall call the subject that you are paired with at each turn as your
“Current Partner”. Once everyone receives a Current Partner, a turn begins.

At the beginning of each turn, you will see a screen similar to that
shown here. The top panel provides the information and interface that you
will use to interact with other subjects within your group. Meanwhile, the
bottom panel lists your payoff history throughout the experiment. Payoff
information in each match, including the practice matches, is recorded here.
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This is the top panel. On the top-left is your role in this match. In this
example, you are Subject 1. The computer also informs you of your Current
Partner at each turn. In this turn, your Current Partner is Subject 2.

In the middle of the left panel, you will see a network representation of
the connections between all subjects in your group. Other subjects in your
group are represented by nodes with their role ID numbers. Meanwhile, you
are always represented by the center node labeled “YOU”. In each turn,
the node for your Current Partner is colored YELLOW unlike the rest of
the subjects. From the color, you can see here that your Current Partner is
Subject 2.

The lines connecting the nodes represent the links between subjects in
your group. Everyone in your group sees the same sets of links. In this
example, you have direct links to Subjects 5 and 6. Through Subject 6,
your are also indirectly connected with Subject 4. Subjects who are either
directly or indirectly connected belong in the same “Set”. In this example,
there are two sets. The first consists of You, Subjects 4, 5, and 6. The
second set consists of Subjects 2 and 3.

At each turn, the joint actions of you and your current partner affect
how the two of you are linked. You take actions by clicking one of the action
buttons below the network representation. Through your actions, you can
either propose a link, remove a link, or maintain how you are connected
with your partner.

In this first example, since you are not linked to Subject 2, only three
actions are available: “Propose”, “Pass Turn”, and “Network OK”. The
“Remove” button is not active. Clicking “Propose” lets the computer know
that you would like to propose a link with your Current Partner. If your
partner does the same, the computer will create a link between you and your
partner. Otherwise, no link will be created. In other words, a link is created
if and only if BOTH partners propose a link to each other.

If you don't want to link with your Current Partner, you can either click
“Pass Turn” or “Network OK”. In either case, a link will not be created.
However, notice the difference between the two actions. When you pass a
turn, you tell the computer that you want to keep the way you are linked with
your current partner in this turn. However, you may still want to change
how you are linked with some of the other subjects. So, your buttons will
remain active in the next turn

Meanwhile, if you choose “Network OK”, you tell the computer that as
long as the network doesn't change, you are happy with the way you are
linked with everyone in your group. Therefore, if you click “Network OK”,
you won't need to take further actions until the network changes. Your
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buttons will therefore be inactive. However, these buttons will immediately
become active once the decisions of other pairs either break or make a link.
If all active subjects choose “Network OK” in the same turn, then the match
ends.

The turn ends once everyone in your group has taken an action. The
computer then begins a new turn, and you will be randomly assigned a new
Current Partner. Please note that since pairs are selected randomly, you
may be paired with the same partner in consecutive turns.

This figure illustrates a new turn in which you are paired with Subject
6. Now, since you are already directly linked with this subject, the three
actions available to you are: “Remove”, “Pass Turn” and “Network OK”.
The “Propose” button is deactivated in this turn.

Your link with Subject 6 will remain intact only if BOTH you and Sub-
ject 6 don't want to remove it. If at least one subject in the pair wants to
remove it, your direct link with your Current Partner will be broken at the
end of the the turn. Obviously, the link will also be broken if both subjects
in a pair choose to remove it.

In each match, the computer will continue to generate new turns for at
least 12 turns unless all subjects choose “Network OK”. However, if a match
does not end after 12 turns, the match enters the random-end stage. In the
random-end stage, at each turn, the computer randomly decides whether
it will end the match or generate a new turn. Each time, there is a 20%
probability that it will decide to end the match. On average, this implies
about 5 additional turns in each match. The number of remaining turns
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before this random-end stage is displayed above the network representation.
The network representation updates links that are made and broken in

real time. You can see changes to the network immediately after each pair
makes their decisions within each turn. Similarly, you can also keep track of
changes within each turn through the “Status” indicator on the lower right
panel. This status indicator resets at each new turn.

We will next discuss about the payoff. Your payoff depends on the
size of your set and the number of direct links at the end of the match.
Your set size, which is the number of subjects who are either directly or
indirectly connected to you, determines your revenue. Meanwhile, your cost
is determined by the number of direct links you have.

The right panel provides you with all of the information necessary to
calculate your payoff. The table on the left gives you the revenue schedule
for different set sizes. Above it, you can see the list of subjects in your set.
In this example, your set consists of You and Subjects 4, 5, and 6. Therefore,
as part of a set of size 4, your revenue is 35.

Next to the revenue table is the cost schedule for different numbers of
direct links. Each direct link incurs a constant cost. In this particular
example, the cost for each link is 10 and, therefore, the total cost is 10 times
the number of subjects with whom you are directly linked. Above that table,
you can see that you are directly linked to Subjects 5 and 6. Since you have
two direct links, the current total cost is 20 tokens.

Your current revenue and cost at any stage of the game are highlighted
in YELLOW. They are updated in real time as the actions of subjects make
and break links within each turn. The rightmost box entitled “Current
Payoff” calculates your payoff at each stage of the game. The current payoff
is simply the revenue minus cost, which in this case is 15. This payoff
information is also updated in real time. Note that the revenue and cost
tables may change from match to match.
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This figure illustrates what you will see at the end of a match. Below
the status indicator, you will see your payoff for this match. At the end of
the match, please click “Continue to the Next Match”. In each new match,
you will be randomly assigned to a new group. A new match will begin only
after all groups have completed their matches. This continues for 8 matches,
after which the experiment ends.

At the end of the final match in the experiment, you will see the following
screen.
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This final screen tells you the total payoff that you will receive for this
experiment. When you see this screen, don't click OK until you have written
down your total payoff on the payoff sheet provided. After you have written
down your total payoff, click OK to conclude the session. (*)

The following slides summarize the rules of the experiment:
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We will now begin the Practice session and go through two practice
matches to familiarize you with the computer interface and the procedures.
During these practice matches, please do not hit any keys until you are
asked to. Remember, you are not paid for these matches. At the end of the
practice matches you will have to answer some review questions.

Throughout the session, pay attention to the network representation
display and status indicators. Also, notice the movements of the yellow
highlights on your Revenue and Cost tables, as well as updates to your
Current Payoff.

[START GAME]

You have just received a new turn. First, pay attention to your role. If you
are Subject 1, 2, or 3, please click “Propose”. For Subject 1, 2, or 3, notice
a link has just been created between you and your partner if your partner
is also Subject 1, 2 or 3.

Now, if you are Subject 4, 5, or 6, please click the “Pass Turn” button.
Notice here that a link is created if and only if BOTH partners propose a
link. If only one partner proposes a link, no link is created.

You have moved to a new turn. We will now see how the “Network OK”
action works. If you are either Subject 5 or 6, please click “Network OK”.
For the rest of the group, please click “Pass Turn”.

You have moved to a new turn. For Subjects 5 or 6, since the network
has not changed after you clicked “Network OK”, all of your buttons are
now inactive. Notice that they will become active following a change in the
network.

For others, please check your Current Partner. If your partner is not
Subject 5 or 6, click the “Remove” button if it's active or “Propose” oth-
erwise. For Subjects 5 and 6, notice how a change in the network activates
your buttons.

If you are not Subject 5 or 6 and your buttons are still active, please
click “Pass Turn”. If you are Subject 5 or 6 and your buttons are active,
please click “Pass Turn”. Notice here that if your buttons are inactive due
to a “Network OK” action in a previous turn, a change in the network will
immediately activate your buttons. In the following, we will do the same
exercise for Subjects 1 to 4.

You have moved to a new turn. If you are Subject 3 or 4, please click
“Network OK”. For the rest of the group, please click “Pass Turn”.
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You have moved to a new turn. Subjects 3 and 4, notice that your
buttons are inactive. If the network changes in this turn, your buttons will
become activated.

For all others, check your Current Partner. If your partner is not Subject
3 or 4, click “Remove” if it's active or click “Propose” otherwise. If you are
not Subject 3 or 4 and your buttons are still active, click “Pass Turn”. Now,
if you are Subject 3 or 4, please click “Pass Turn”.

You have moved to a new turn. If you are either Subject number 1 or 2,
please click “Network OK”. For the rest, please click “Pass Turn”.

You have moved to a new turn. For Subject 1 or 2, your buttons are
now inactive. For all others, if your Current Partner is not Subject 1 or 2,
click the “Remove” button if it's active, or click “Propose” otherwise. For
everyone else who has not taken an action, please click “Pass Turn”.

You have moved to a new turn. Notice from the message above the net-
work display that this is the last turn before the random-end stage. During
the paid match, you will have 12 turns before entering this stage. If the
match has not ended after 12 turns, the computer will randomly decide the
end of the match.

We will now deliberately end the match. If your buttons are active,
please click the “Network OK” button. This ends the first practice match.
The bottom part of your screen contains a table summarizing the results for
all matches you have participated in. This is called the history screen. It
will be filled out as the experiment proceeds. Now click “Continue to the
Next Match”. We will now begin with the second practice match.

[NEXT MATCH]

You are in a new match. Note here that the revenue and cost tables have
changed as they may during the real matches. We'll now examine the be-
havior of the “Remove” action.

If you are either Subject 2, 4, or 6, please click “Remove”. For Subjects
1, 3, and 5, please click “Pass Turn”. Hence, notice that a link is broken if
at least one of the partners chooses to remove it.

You have moved to a new turn. Next, we'll see what will happen if the
network changes within the turn in which you click “Network OK”. If you
are Subject number 1, 3, or 5, please click the “Network OK” button. For
all others, please click your “Remove” button.
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You have moved to a new turn. For Subjects 1, 3, or 5 notice that if
in the previous turn the network changed after you clicked “Network OK”,
your action buttons are active in this turn. If the network did not change
after you clicked “Network OK”, your buttons remain inactive. Now, if you
are either Subject 2, 4, or 6, click “Network OK”. For all others, if you
haven't taken an action in this turn, please click the “Remove” button if it's
active, or “Propose” otherwise.

You have moved to a new turn. Similarly for Subjects 2, 4, and 6, notice
that if in the previous turn the network changed after you clicked “Network
OK”, your buttons are now active. If the network did not change after
you clicked “Network OK”, your buttons are still inactive. If the network
changes in the same turn and after you choose “Network OK”, your buttons
stay active in the following turn.

We will now end the match. If your buttons are active, please click
“Network OK”. This ends the second practice match.

*** END OF PRACTICE SESSION ***

The practice matches are over. Please click “Continue to the next match”
and complete the quiz. It has 8 questions in two pages. You will move to the
next page once everyone in your group has completed the questions in that
page correctly. On your table, you will find the screenshots that you will
need to answer these questions. Raise your hand if you have any questions.

[WAIT for everyone to finish the quiz]

Are there any questions before we begin with the paid session? We will
now begin with the 8 paid matches. Please pull out your dividers. If there
are any problems or questions from this point on, raise your hand and an
experimenter will come and assist you.

[START MATCH 1]

[After MATCH 8, read:]
This was the last match of the experiment. Now, please write down

your ID on the payment sheet. Your ID is located on top of your physical
monitor and it began with CASSEL. At this point, if you haven't clicked
“Continue to the next match”, please do so. Your total payoff is displayed
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on your screen. Please record this payoff in the earned column of your sheet
and sign it. Once you have written it down, please click OK.

Your Total Payoff will be this amount rounded up to the nearest dollar
plus the show-up fee of $5. We will pay each of you in private in the next
room. Remember you are under no obligation to reveal your earnings to the
other subjects.

If you are done, please line up behind the yellow line until the lab man-
ager calls you to be paid. Do not converse with the other subjects or use
your cell phone. Thank you for your cooperation.
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