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ABSTRACT 

Sources of Risk in Currency Returns* 

We quantify the sources of risk in currency returns as a first step toward 
understanding the returns reported for the carry trade.  To do this, we develop 
and estimate an empirical model of exchange rate dynamics using daily data 
for four currencies relative to the US dollar:  the Australian dollar, the British 
pound, the Swiss franc, and the Japanese yen.  The model includes (i) 
Gaussian shocks with stochastic variance, (ii) jumps up and down in the 
exchange rate, and (iii) jumps in the variance.  We identify these components 
using data on exchange rates and at-the-money implied variances.  We find 
that the probability of a jump depreciation (appreciation) in the exchange rate 
is increasing in the domestic (foreign) interest rate.  The probability of jumps in 
variance is increasing in the variance but not related to interest rates.  Many of 
the jumps in exchange rates are associated with macroeconomic and political 
news, but jumps in variance are not.  Overall, jumps account for 25% of total 
currency risk over horizons of one to three months. 

JEL Classification: C58, F31 and G12 
Keywords: Bayesian MCMC, carry trades, exchange rates, implied volatility 
and jumps 

Mikhail Chernov 
London School of Economics  
Houghton Street  
London, WC2A 2AE  
  
  
 
 
Email: M.Chernov@lse.ac.uk  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=161968 

Jeremy Graveline 
Department of Finance  
University of Minnesota  
3-122 CSOM  
321 19th Ave S  
Minneapolis, MN  
USA  
 
Email: jeremy@umn.edu  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=174834 



Irina Zviadadze 
Department of Finance  
London Business School  
Sussex Place  
London NW1 4SA  
  
Email: 
izviadadze.phd2008@london.edu  
 
For further Discussion Papers by this author see: 
www.cepr.org/pubs/new-dps/dplist.asp?authorid=174835 

 

* We are grateful to many people who gave us advice, including David 
Backus, Magnus Dahlquist, Itamar Drechsler, Bjorn Eraker, Francisco Gomes, 
Michael Johannes, Igor Makarov, Guillaume Plantin, Nick Roussanov, Lucio 
Sarno, Paul Schneider, Ivan Shaliastovich, Vladimir Sokolov, Adrien 
Verdelhan, Christian Wagner, Amir Yaron, Stan Zin, as well as participants in 
seminars at, and conferences sponsored by, the Federal Reserve, Goldman 
Sachs, LBS, LSE, Moscow HSE, the New York Fed, NYU, UBC, Wharton. 
Zviadadze is the beneficiary of a doctoral grant from the AXA research fund; 
the support is greatly acknowledged. 

Submitted 21 December 2011 

 



1 Introduction

The time variation and high magnitude of currency (FX) carry trade returns have attracted
a lot of recent attention. The properties of these returns reflect the risk premia – a covari-
ation of the pricing kernel with risks that currencies are exposed to. Our objective in this
paper is to quantify these risks as a first step towards understanding risk premia in currency
markets.

We develop an empirical model of exchange rate dynamics that is rich enough to capture a
number of important properties in the data. We estimate the model with Bayesian MCMC
using a joint dataset of currency returns and short-term at-the-money-implied volatilities.
We use daily data from 1986 to 2010 (the options data start in 1994) on four spot exchange
rates: Australian dollar, Swiss franc, British pound, and Japanese yen. One of the key
advantages of our estimation methodology is that it provides estimates of the conditional
distribution of currency returns, as well as estimates of realised shocks. This feature allows
us to link “big” shocks, or jumps, to important macro-finance events and thereby illuminate
the potential economic channels that are responsible for crash risk in currencies.

Our model has three key elements. First, it is well-documented that currency returns are
heteroscedastic (e.g., Baillie and Bollerslev, 1989; Engel and Hamilton, 1990; Engle, Ito,
and Lin, 1990; Jorion, 1988). Casual observation of time-series variation in option-implied
exchange rate volatility also confirms this point. We capture this feature of the data with
a standard stochastic volatility component in our model.

Second, there is also strong empirical evidence that daily changes in exchange rates are
not conditionally Gaussian (as would approximately be the case in a model with only
stochastic volatility). To account for this feature of the data, our model includes jump risks
in exchange rates. We allow the probability of these jumps to be time-varying, in order to
capture the variation in conditional skewness that has been previously documented (e.g.,
Johnson, 2002; Carr and Wu, 2007; Bakshi, Carr, and Wu, 2008; Brunnermeier, Nagel, and
Pedersen, 2008).

Third, changes in the at-the-money implied volatility of a typical exchange rate exhibit
unconditional skewness of 1 and kurtosis of 10 or more. To accommodate this property,
our model allows for jumps in the variance of Gaussian shocks to exchange rates. The
importance of such jumps for modelling equity returns has been emphasized in Broadie,
Chernov, and Johannes (2007); Duffie, Pan, and Singleton (2000); Eraker, Johannes, and
Polson (2003), among others. To our knowledge, our paper is the first to investigate the
role of jumps in the volatility of exchange rates.

A jump in an exchange rate is qualitatively different from a jump in its variance. Almost by
definition, large jumps are relatively rare events. Therefore, when there is a direct jump in
the exchange rate, one doesn’t necessarily expect there to be many subsequent jumps in the
near future. By contrast, when there is a jump in the variance of the Gaussian shock to an
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exchange rate, one expects there to be many large subsequent moves in the exchange rate.
We use our model and empirical analysis to determine whether these qualitative distinctions
lead to materially quantitative differences.

Statistical tests strongly favour both jumps in exchange rates and in their variances. The
two types of jumps arise via different mechanisms. The probability of a jump in the variance
of currency returns is positively related to the variance itself. Thus, this component belongs
to the class of self-exciting processes. The probability of a jump up in the exchange rate,
which corresponds to a depreciation of the US dollar, is positively related to the domestic
(US) interest rate. The probability of a jump down, which corresponds to an appreciation
of the US dollar, is positively related to the foreign interest rate.

Although jumps in currencies and in variance are alternative channels for large currency
returns, we find that economically they are quite distinct. We can connect most of the jumps
in FX to important macro or political announcements. In contrast, jumps in variance cluster
at the moments of high uncertainty in the markets, which are captured by comments on
current events, political speculation and overall anxiety about upcoming events.

We use entropy (a generalized measure of variance) of exchange rate returns to measure
the amount of risk associated with currency positions and to decompose this risk into the
contributions from different sources of shocks (Alvarez and Jermann, 2005; Backus, Chernov,
and Martin, 2011). Appropriately scaled entropy is equal to the variance of an exchange rate
return if it is normally distributed, but otherwise includes high-order cumulants. Therefore,
entropy is a convenient measure that captures both normal and tail risk in one number.
We find that, depending on the currency, the time-series average of the joint contribution
of the three types of jumps can be as high as 25% of the total risk and on individual days
this contribution can be up to 40%. Jumps in variance contribute about a third to the
average contribution and can be as high as 15% of the total risk on individual days. Also,
the contribution of jumps in variance to the total risk increases with investment horizon.

Given the large contribution of jumps to the overall risk, it is natural to ask whether the
jump risk is priced. The full answer to this question requires an explicit model of the pricing
kernel and the use of assets, such as out-of-the-money options, that are particularly sensitive
to jumps for estimation. While such analysis is outside of the scope of this paper, we carry
out a limited option valuation exercise. We select representative implied volatility smiles for
currencies with positive and negative interest rate differential. Such smiles exhibit positive
and negative skewness, respectively, in the data. Our model can replicate the same sign of
skewness even when we assume zero premiums for jump risk. However, these theoretical
smiles cannot match the curvature of the smile observed in the data, even after accounting
for statistical uncertainty. In our view, this initial evidence suggests that jumps risk may
be priced.
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Related Literature

We limit our discussion of related literature to papers that highlight the importance of
jumps for understanding the properties of exchange rate returns. One exception are the
works of Brandt and Santa-Clara (2002) and Graveline (2006). These papers are early
antecedents of our paper in terms of methods and research questions. These authors also
estimate a time-series model of exchange rates using the time-series of FX and implied
variance. However, they do not allow for jumps.

Our paper is most closely related to recent empirical papers that investigate whether the
high returns to carry trades can be explained as compensation for jump, or crash, risk. Jurek
(2009) analyzes the returns on carry trade portfolios in which the exposure to currency
crashes is hedged with options. He concludes that exposure to currency crashes account for
15% to 35% of the excess returns on unhedged carry trade portfolios. Burnside, Eichenbaum,
Kleshchelski, and Rebelo (2011) investigate whether carry trade returns reflect a “peso
problem” (i.e., a low probability event that did not occur in the sample). They use carry
returns hedged with options to argue that any such peso event must be a modest negative
return on the carry trade combined with an extremely large value of the stochastic discount
factor (i.e., the marginal utility of a representative investor must be very high in the, as
yet, unobserved peso state). Jordà and Taylor (2009) propose to manage the risk of carry
positions by conditioning on macro information instead of options, but the resulting strategy
still yields a very high Sharpe ratio. The common thread in these papers is that they
provide indirect evidence on the magnitude of jumps risk. Our paper aims to complement
this previous work with a formal statistical model and analysis.

Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2009) use an explicit model of exchange
rates that allows for both normal and jump risks. Under the model assumptions, short-
dated at-the-money options are not exposed to crash risk. Therefore, hedged carry trades
are exposed to normal risk alone. In contrast, carry trades are exposed to both types of
risk. This property allows the authors to quantify the contribution of jump risk by observing
returns on hedged and unhedged portfolios. However, similar to the aforementioned papers,
the authors do not test the assumed model directly.

Our paper is also related to the option pricing literature, which has focused on modeling the
risk-adjusted (risk-neutral) distribution of exchange rates. By construction, these papers do
not consider risk premia. However, the shock structures under the risk-adjusted and actual
(true) distributions are usually modelled to be similar. Bates (1996) considers option prices
on the Deutsche Mark and is the earliest paper that argues for the inclusion of jumps. He
considers a single normally distributed jump in FX with a constant probability. Carr and
Wu (2007) distinguish jumps up and down in FX and also allow for time-varying jump
probabilities controlled by unobservable states. Bakshi, Carr, and Wu (2008) extend the
Carr-Wu model to a triangle of currencies (GBP, JPY, and USD) and estimate it using
2.25 years of data on exchange rates and option prices. Our analysis provides additional
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economic intuition, as time variation in jump probabilities are driven by observable interest
rates. None of these papers consider jumps in variance.

There is also an important literature that attempts to explain the behaviour of exchange
rates in macro-founded equilibrium.1 Our paper is silent about the prices of risk, but it
may have implications for how to best model the fundamentals in an equilibrium setting.
Gourio, Siemer, and Verdelhan (2010) and Guo (2007) propose production-based models
with recursive preferences. Productivity is allowed to experience a disastrous decline with
time-varying probability. Farhi and Gabaix (2008) consider a pure exchange economy with
additive preferences and a similar assumption of time-varying probability of a disaster in
consumption. Disasters are modelled as jumps down, and all three papers allow unobserv-
able processes to drive disaster probabilities. Exchange rates inherit these properties. Our
results suggest that it may also be important to allow for jumps in the volatility of these
processes and for the process driving probability of jumps in consumption to be related to
interest rates in equilibrium.

Our results speak also to the frictions-based equilibrium model of Plantin and Shin (2011).
These authors focus on endogenously generated dynamics of a carry trade. A carry trade
gets started in a high-liquidity environment, such as accommodative monetary policy. It is
self-enforcing because of the speculators’ belief that others will join the trade. The trade
crashes when the speculators hit funding constraints. As a result, extended periods of
slow appreciations of a high interest rate currency are randomly interrupted by endogenous
crashes. Because our analysis is implemented at the daily frequency, we are able to capture,
perhaps in reduced form, related phenomena.

2 Preliminaries

This section motivates our analysis and highlights properties of the data that our model is
designed to capture.

2.1 Excess Returns

Let rt be the continuously-compounded domestic (e.g. USD) interest rate, r̃t be the anal-
ogous foreign (e.g. GBP) interest rate, and St be the exchange rate expressed as units
of domestic currency per unit of foreign currency. Then borrowed exp(−rt) units of the
domestic currency buys 1/St · exp(−rt) units of the foreign currency at time t, which grows
at the foreign risk free interest rate to 1/St · exp(r̃t − rt) units at time t + 1, and can be

1Examples include, but not limited to Bekaert (1996); Backus, Gavazzoni, Telmer, and Zin (2010); Bansal
and Shaliastovich (2010); Colacito (2009); Colacito and Croce (2010).
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exchanged for St+1/St · exp(r̃t−rt). Then the amount borrowed in domestic currency (with
interest) can be repaid. Thus, the log excess return to investing in the foreign currency is

yt+1 = (st+1 − st)− (rt − r̃t),

where st = lnSt. In this paper, we will always treat USD as the domestic currency.

Figures 1 - 4 display the time series of log excess returns, yt+1 (panel (a)), and implied
volatilities (panel (b)) for the currencies we consider in this paper. We have selected
four currencies - Australian Dollar (AUD), Swiss Franc (CHF), British Pound (GBP), and
Japanese Yen (JPY) based on the availability of daily data, and cross-sectional and time-
series variation in the interest rate differential. We use one-month LIBOR to proxy for
interest rates. Using one-month rather than overnight rates implicitly assumes a flat term
structure at the very short end of the LIBOR curve and allows us to abstract from potential
high-frequency idiosyncratic effects associated with fixed-income markets. Because we treat
USD as a domestic currency, the movements up correspond to depreciation in the USD.

2.2 Properties of Excess Returns

We provide summary statistics of daily log excess returns and changes in the one-month
at-the-money implied volatility in Table 1. Means are close to zero at daily frequency.
Therefore, these summary statistics inform us primarily about the properties of shocks.

All currencies have volatility of about 10% per year. There is evidence of substantial kurtosis
(AUD and JPY are the most notable in this regard), which is suggestive of non-normalities.
Skewness of all currencies is mild. It turns out that this is a manifestation of time-varying
and sign-switching conditional skewness. We produce a rough estimate of conditional skew-
ness by computing a six-month rolling window. The time-series of these estimates are
displayed in panels (a) of Figures 1 - 4. Depending on the currency, conditional skewness
ranges from -2 to 2. Thus, excess returns are not only fat-tailed, but also asymmetric with
the degree of asymmetry changing over time.

The implied volatility is itself quite variable at about 60% per year (the number in the table
multiplied by

√
252) and highly non-normal with skewness and kurtosis much higher than

that of the currency returns themselves. The implied volatility from the short-dated options
should be very close to the true volatility of exchange rates (which is unobservable) and
therefore its properties provide insight into the features that a realistic model of variance
must require.

As a reference, we report the same summary statistics for S&P 500 whose risks were thor-
oughly studied in the literature. The index returns are more volatile and exhibit much
stronger departures from normality as compared to currencies. In particular, negative un-
conditional skewness is evident (in fact, a measure of conditional skewness becomes positive

5



rarely). In contrast, changes in VIX, a cousin of implied variance display weaker non-
normalities than currencies. These statistics suggest that a model of currency risks could
be substantively different from that of equity risks even though one clearly has to use similar
building blocks.

2.3 Risks and Expected Excess Returns

We can generically represent excess returns as:

yt+1 = Et(yt+1) + shocks. (2.1)

Most of the research is focused on conditional expected excess returns Et(yt+1). For example,
if currencies do not carry a risk premium, then uncovered interest rate parity (UIP) holds
and Et(yt+1) = 0. However, Bilson (1981), Fama (1984), and Tryon (1979) establish that
the regression

st+1 − st = a1 + a2(ft − st) + shocks, (2.2)

where ft is is the log of the one-month forward exchange rate, typically yields estimates of
a2 of approximately −2. If covered interest rate parity (i.e., no-arbitrage) holds, then the
log forward exchange rate is given by ft = st + rt− r̃t, therefore this result is equivalent to:

yt+1 = a1 + (a2 − 1)(rt − r̃t) + shocks, (2.3)

with a slope coefficient of about −3. Subsequent research has extended the specification of
risk premiums Et(yt+1) (e.g., Beber, Breedon, and Buraschi, 2010; Bekaert and Hodrick,
1992; Lustig, Roussanov, and Verdelhan, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf,
2011, among others).

Our objective in this paper is to carefully model all the shocks that drive currency re-
turns and their relative contributions to the overall risk. To measure shocks, we need to
model conditional means as well. We use a simple specification that encompasses the UIP
regressions result by allowing for linear dependence on the domestic and foreign interest
rates, and includes variance of FX returns as an extra variable.2 Because we are working
with daily returns, the magnitude of the drift term is much smaller than the higher order
moments and so any omitted variables that might affect expected returns are not likely to
introduce much bias in our results.3 As such, to avoid overfitting, we did not include any
other variables in the drift of the exchange rate. Moreover, as noted in Cheung, Chinn, and

2This addition can be supported in various theoretical settings (Bacchetta and van Wincoop, 2006;
Brennan and Xia, 2006). Empirical work with such a term includes Bekaert and Hodrick (1993), Bekaert
(1995), Brandt and Santa-Clara (2002), Domowitz and Hakkio (1985), Lustig, Roussanov, and Verdelhan
(2011), and Menkhoff, Sarno, Schmeling, and Schrimpf (2011).

3A recent literature suggests improving inference about conditional mean of excess returns by considering
portfolios of currencies (e.g., Barroso and Santa-Clara, 2011; Lustig, Roussanov, and Verdelhan, 2011; Lustig
and Verdelhan, 2007; Menkhoff, Sarno, Schmeling, and Schrimpf, 2011).
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Pascual (2005), it is notoriously difficult for any model to beat a random walk for exchange
returns in terms of forecasting.

While our focus is on careful modelling of currency risks, our conclusions should have
implications for expected excess returns, that is premiums for bearing these risks. The
expected excess returns depend on how the risks that affect currencies covary with investors’
marginal rate of substitution, a.k.a. the pricing kernel. To this end, our model can be used
to construct portfolios that isolate jump risks and serve as inputs to traditional factor
models that examine the pricing of these risks. Moreover, our extensive analysis of the
shocks to currency returns provides useful guidance for specifying shocks to fundamentals
in equilibrium models.

3 Empirical Model

We start by presenting our empirical model in Section 3.1. Section 3.2 discusses how we
arrived at the assumed functional forms.

3.1 Currency Dynamics

In this paper we model each exchange rate in isolation from others. A large fraction of cur-
rency analysis, such as UIP regressions or equilibrium modelling is conducted on a currency-
by-currency basis. This approach is able to identify the normal and non-normal shocks, and
how they should be modelled. However, we cannot say which fraction of shocks can be ex-
plained by common variation in the exchange rates, and which fraction is country-pair
specific. The important question of modelling the joint distribution of currency risks goes
hand-in-hand with modelling of the pricing kernel and we leave this investigation for future
research.4

We model log excess FX returns as

yt+1 ≡ (st+1 − st)− (rt − r̃t) = µt + v
1/2
t wst+1 + zut+1 − zdt+1 , (3.1)

where wst+1 is a standard Gaussian shock (i.e. zero mean and unit variance), zut+1 is a jump
up (i.e. depreciation of USD) and the negative of zdt+1 is a jump down (i.e. appreciation
of USD). The conditional spot variance is vt and the jump intensities of zut+1 and zdt+1 are
hut and hdt respectively. The discussion of µt is postponed until we have further described
these three shocks.

4Lustig, Roussanov, and Verdelhan (2011); Sarno, Schneider, and Wagner (2011) perform such modelling
allowing normal shocks only. Bakshi, Carr, and Wu (2008) model a triangle of currencies (GBP, JPY, and
USD) allowing for jumps in FX.

7



The conditional spot variance vt is assumed to follow a mean-reverting “square-root” pro-
cess,

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1 , (3.2)

which itself can jump with intensity hvt .
5 The shocks to excess returns ws and to conditional

spot variance wv have a correlation coefficient corr (ws, wv) = ρ. Finally, to ensure positivity
of the variance when jumps are present, we only allow for upward jumps so that zvt+1 has
non-negative support.

The jump arrival rate is controlled by a Poisson distribution. The assumed jump intensities
imply that the number of jumps takes non-negative integer values j with probabilities

Prob(jkt+1 = j) = e−h
k
t (hkt )

j/j! , k = u, d, v . (3.3)

We allow all of the jump intensities to depend on the domestic and foreign interest rates,
as well as on the conditional spot variance,

hkt = hk0 + hkrrt + h̃kr r̃t + hkvvt , k = u, d, v . (3.4)

For a given number of jumps per period, the magnitude of a jump size is assumed to be
random with a Gamma distribution,

zkt |j ∼ Gamma(j, θk) , k = u, d, v . (3.5)

Intuitively, because we consider daily data, a Bernoulli distribution is a very good approxi-
mation to our model as it is reasonable to assume no more than one jump per day. Then, the
probability of a jump is 1− e−hkt ≈ hkt and the distribution of the jump size is exponential
with mean parameter θk.

6

We complement our data on exchange rate rates with variances implied from option prices.
In this respect we follow the rich options literature that highlights the importance of us-
ing information in options for model estimation (e.g., see Aı̈t-Sahalia and Kimmel, 2007;
Brandt and Santa-Clara, 2002; Chernov and Ghysels, 2000; Jones, 2003; Pan, 2002; Pas-
torello, Renault, and Touzi, 2000). Many authors use implied variance in empirical work
by interpreting it as a very accurate approximation of the risk-adjusted expectation of the
average future variance realized over an option’s lifetime. This is certainly true for models
with stochastic volatility only. If this is the case, one can derive αiv and βiv as explicit func-
tions of risk-adjusted parameters (e.g., Chernov, 2007, and Jones, 2003). The one-for-one

5In continuous time, the Feller condition σ2
v ≤ 2v ensures that the variance stays positive if there are

no jumps. A formal modelling of this process in discrete time is achieved via a Poisson mixture of Gamma
distributions (e.g., Gourieroux and Jasiak, 2006; Le, Singleton, and Dai, 2010). We use a direct discretization
of the continuous-time counterpart so that the model parameters can be easily interpreted. We ensure that
the variance stays positive at the estimation stage by a careful design of the simulation strategy.

6Our choice of the variance jump size distribution is frequently used when modelling variance to ensure
its positivity as discussed above. The model of variance is also capable of generating quite rapid variance
declines after jumps. A jump leads to a large deviation from the long-run mean v, and mean-reversion
controlled by parameter ν ensures that the variance is pulled back.
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relationship between implied variance and risk-adjusted expected variance may break down
in the presence of jumps. For example, Chernov (2007) has to assume that the risk-adjusted
mean of jumps in FX is equal to zero to retain the simple relationship. Importance of care-
ful accounting for jumps is manifested more clearly in the literature on model-free implied
variance, such as VIX for S&P 500, where analytic expressions are feasible. Martin (2011)
shows that, in the presence of jumps, VIX is equal to risk-adjusted expected variance plus
additional terms reflecting the higher order risk-adjusted cumulants of returns.

We treat the Black-Scholes implied variance of a short-term (one-month) at-the-money
option, IVt, as a noisy and biased observation of the conditional spot variance v. Such
a view allows us to avoid the aforementioned difficulties in explicit connection between
implied variance and risk-adjusted expected future variance. The cost of such approach is
our inability to estimate risk-adjusted parameters of the model. Specifically,

IVt = αiv + βivvt + σivvt
√
λt εt , (3.6)

where IVt is expressed in daily terms, εt is N (0, 1) and λt is IG(ν/2, ν/2), so the product√
λtεt is tν−distributed (Cheung, 2008; Jacquier, Polson, and Rossi, 2004).7 We have

considered a version of (3.6) with non-zero loadings on rt and r̃t, but this specification did
not find empirical support.8

The model implies that expected log excess return is equal to

Et [yt+1] = µt + hut θu︸︷︷︸
Et[zut+1]

− hdt θd︸︷︷︸
Et[zdt+1]

. (3.7)

As discussed in the previous section, we assume that

µt = µ0 + µrrt + µ̃rr̃t + µvvt. (3.8)

The resulting expected excess return is

Et [yt+1] = µ∗0 + µ∗rrt + µ̃∗r r̃t + µ∗vvt (3.9)

where

µ∗0 = µ0 + hu0θu − hd0θd , (3.10a)

µ∗r = µr + hur θu − hdrθd , (3.10b)

µ̃∗r = µ̃r + h̃ur θu − h̃drθd , (3.10c)

µ∗v = µv + huvθu − hdvθd . (3.10d)

7Jones (2003) makes a strong case for heteroscedastic measurement errors in implied variance. His
specification sets λt = 1. Cheung (2008) generalizes the specification to the Student t−error. We tried using
a normal error with volatility σiv, a normal error with volatility σivvt, and the Student t−error described
above. We find that heavy-tailed t3 works very well.

8The error specification in (3.6) is very flexible. Therefore, it could be the case that the contribution of
interest rates to the variation in implied variance cannot be empirically distinguished from the error, if the
former is reasonably small.
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Thus, our risk premium encompasses the UIP regressions which set

µ̃∗r = −µ∗r , (3.11)

µ∗v = 0 . (3.12)

We conclude with a discussion of our approach to modelling interest rates. We do not
need an explicit model of interest rates to estimate our model of FX excess returns if we
are willing to assume that one-day rt and r̃t can be reasonably proxied with short-term
yields. We view this feature as a strength of our approach because explicitly modelling
the behaviour of spot interest rates entails a massive effort. There is a separate literature
dedicated to this task and the state-of-the-art models rely on five factors for capturing the
interest rate dynamics. These studies are typically conducted with monthly or quarterly
data, so they do not take into account the higher-frequency movements in interest rates
which are susceptible to jumps themselves (e.g., Johannes, 2004; Piazzesi, 2005). Moreover,
interest rates and currencies have low conditional correlation and variability in interest rates
is much smaller than that in currencies. In summary, elaborate modelling and estimation
of interest rates does not appear to be worthwhile in our case.

Nonetheless, we use the estimated model to compute some useful objects (expectations
of future variance, or expected excess returns over multiple horizon) that depend on the
distribution of interest rates. In order to obtain reasonable quantities, we assume the
simplest possible model for the interest rates:

rt+1 = (1− br)ar + brrt + σrr
1/2
t wrt+1, (3.13a)

r̃t+1 = (1− b̃r)ãr + b̃rrt + σ̃rr̃
1/2
t w̃rt+1. (3.13b)

As in the case with the variance process, a square root process for interest rates is subject
to caveats in discrete time. We calibrate the models to match the mean, variance and serial
correlation of the respective observed short-term interest rates. Our computations with
reasonable variation in parameters confirm our intuition that they have minimal impact on
the role of normal and non-normal currency risks.

3.2 Qualitative Features of the Model

In this section we explain how we arrived at the specified functional form of the model.
We evaluated too many models to provide a detailed account of our analysis, so we briefly
summarize the results that led us to the above specification. Our initial specifications
were motivated by the well-developed literature on equity returns (Andersen, Benzoni, and
Lund, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Eraker, Johannes, and Polson,
2003; Eraker, 2004; Jones, 2003) and some of the few models of currencies (Bates, 1996;
Johnson, 2002; Jorion, 1988; Maheu and McCurdy, 2008). The salient features of equity
data are presence of substantial moves up and down and a pronounced negative skewness in
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the return distribution. Therefore, jumps in equity returns are often modelled via a single
compound Poisson process with a normally distributed size of non-zero mean. However,
in contrast to equity returns, currency returns have very mild skewness over long samples,
which suggests a zero-mean normal distribution for jump sizes.

Further, Bates (1996), Campa, Chang, and Reider (1998), Carr and Wu (2007), and Johnson
(2002) emphasize the time-varying and sign-switching nature of the risk-adjusted skewness
of exchange rates. The key to modelling this feature successfully is to allow the conditional
expected jump to vary over time. A single jump process with a zero mean jump size
implies a zero conditional expected jump. Two jump processes have a potential to generate
the requisite variation either via time-varying jump intensities, or time-varying jump size
distributions, or both. We do not explore time-varying jump means as such specifications do
not allow for tractable option valuation in the affine framework, and we eventually want our
model to be used for option analysis. As can be seen from the expression for the currency
risk premium (3.9), the conditional jump expectation is hut θu − hdt θd, and is capable of
producing the needed variation. We have also considered normally distributed jump sizes
in excess returns with means of the jump size distribution having opposing signs. However,
because normal distributions have infinite support, it was hard to distinguish empirically
the down and up components. The exponential distribution does not have this issue because
the support is on the positive line.

Another interesting feature of our specification is that we allow not only for two different
Poisson processes in currency returns, but also for a third one in the variance. Our starting
point was again in the equity literature where all jumps in returns and variance are guided
by the same (or at least correlated) Poisson processes. First, we found that the model with
correlated Poisson processes poorly fitted the data. Second, it was very hard to establish
what such a model was lacking.

4 Empirical Approach

We employ the Bayesian MCMC approach to estimate the model. This method was suc-
cessfully implemented in many applications (see Johannes and Polson, 2009 for a review).
For our purposes, the key advantage of this approach over other methodologies is that es-
timation of unobserved variance and jump times and sizes is a natural by-product of the
procedure. Online appendix describes all the details of the implementation.

It is worth pointing out how we distinguish jumps and normal shocks in the model. Formally,
all shocks are discontinuous in our discrete-time formulation. We think of jumps as relatively
infrequent events with relatively large variance. We use priors on jump arrival and jump
size parameters to express this view.

It proved to be extremely fruitful to use option implied variances in our estimation. Ignoring
information in option prices made it very hard to settle on a particular model. Parameters
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were estimated imprecisely and the algorithm had poor convergence properties – both are
manifestations of the data being not sufficiently informative about the model. We had a
similar experience when estimating the most general model, even when using the options
data. Complicated dependencies of jump intensities on state variables, and the sheer number
of separate Poisson processes was too much for the available data.

As such, we pursue the following model selection strategy. First, we treat implied vari-
ances as observed spot variances and estimated the model of variance (3.2). At this stage
we select the best model by checking the significance of parameters on the basis of both
confidence intervals and Bayes odds ratios. Specifically, the parameters of concern are the
ones controlling the jump intensity in (3.4) for k = v. It turns out that, regardless of the
currency, only the loading on variance is significant. In other words, the probability of
jumps in the variance is affected by the variance itself. Thus, jumps in the variance are
self-exciting (Hawkes, 1971).9 Pinning down the model of variance is an extremely useful
step in our estimation procedure.

Second, we use the lessons from the estimation exercise on the basis of implied variance
alone to guide us in a formal search in the context of our full model. That is, we take
the model (3.1), (3.2) and combine it with equation (3.6) that recognizes implied variances
as noisy observations of the spot variance. As a benchmark, we estimate the stochastic
variance model with no jumps. Next, we estimate a model with jumps in variance but no
jumps in exchange rates (hut = hdt = 0). We refer to this model as stochastic variance with
jumps.

Finally, we allow for the full model with jumps in both exchange rates and variance. Here,
we focus on the significance of the parameters controlling the jump intensities in (3.4) for
k = u and d. We are not reporting all the details here, but we find that h̃ur , h

u
v , h

d
r and

hdv are insignificant. Thus, the probability of jumps up in the exchange rate is driven by
the domestic rates only, and the probability of jumps down in the exchange rate is driven
by the foreign rate only. We also test if some interesting parameters, or combinations of
parameters, are equal to zero. First, we can test the UIP regression restrictions on the risk
premia in Eq. (3.11) (whether interest rates affect the risk premium as a differential) and Eq.
(3.12) (whether the variance affects the risk premium). As we noted earlier, the behaviour
of the FX skewness is dramatically affected by expected effect of jumps, which is equal to
hut θu − hdt θd. Here we are interested in testing whether θu = θd = θ, hu0 = hd0 = h0, and
hur = h̃dr = hr. These hypotheses are interesting because if they cannot be jointly rejected
then expected jump would be equal to θhr(rt − r̃t). Thus, the excess return asymmetries
will be directly driven by the interest rate differential as noted in Brunnermeier, Nagel, and
Pedersen (2008). The final version of this model that incorporates all the unrejected null
hypotheses is referred to as the preferred.

9The recent literature on equity returns also finds support for self-exciting jumps. See, for example,
Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2011); Carr and Wu (2011); Nowotny (2011); Santa-Clara and Yan
(2010).
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We implement a series of informal diagnostics and specification tests to establish the pre-
ferred model. The diagnostics test the null hypothesis that the shocks to the observable
excess return, ws, and implied variance, ε, should be normal under the null of a given
model. We can construct the posterior distribution of these shocks and evaluate how they
change from model to model and whether they are normal. Online appendix describes the
procedure.

One has to exhibit caution when interpreting the evidence on normality of ε. The variance
of the error term in the implied variance equation (3.6), σ2

ivv
2
t λt is very flexible. If a model is

misspecified, λt will adjust so that the ε is close to a normal variable. Therefore, diagnostics
of ε are not enough. We should be tracking the size of the variance of the error term. A
better specified model should have smaller variance. We keep track of the time-series average
of this variance – which we refer to as IVvar – and report its posterior distribution.

Bayes odds ratios offer a formal specification test of the models. The test produces a number
that measures the relative odds of two models given the data (the posterior distribution of
the null model is in the denominator of the ratio). Following Kass and Raftery (1995), we
interpret a log odds ratio that is greater than 3 as strong evidence against the null. Odds
ratios do not necessarily select more complex models because the ratios contain a penalty
for using more parameters (so-called automatic Occam’s razor). Online appendix details
the computations.

5 Results

We start by highlighting statistical properties of the estimated models. Next, we study
economic implications.

5.1 Statistical Properties of Currency Risks

Tables 2 - 5 report the parameter estimates and Tables 6 - 9 report the corresponding model
diagnostics. Table 10 displays the results of specification tests on the basis of Bayes odds
ratios. Table 11 summarises parameters of the calibrated interest rate processes.

The results exhibit a lot of commonalities across the different currencies. As we move from
models with stochastic variance to stochastic variance with jumps, we observe a change
in two key parameters: both the persistence ν of variance and the long-run mean of its
conditionally normal component v decline. Taking AUD as an example, ν declines from
0.9943 to 0.9855. This seemingly small change translates into drop in the half-life of the
conditionally normal component, log 2/(1 − ν), from 122 to 48 days. The high persistence
of variance in the model without jumps is a sign of misspecification. Variance has to take
high values occasionally to generate the observed exchange rates in the data. In the absence
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of jumps, variance builds up to the high values gradually via the high persistent channel.
Additionally, in the case of GBP only, the volatility of variance σv declines significantly
from 0.0321 to 0.0272. High σv helps the misspecified model with stochastic variance in
generating high values of variance. The diagnostics support this interpretation. IV var
drops by 50% across all currencies; this change is statistically significant. As expected,
diagnostics for ε show that it is close to a normal variable for both models because of the
flexibility in λt. Bayes odds ratios strongly favour stochastic variance with jumps.

Continuing with AUD, its volatility (
√
v) declines from 0.70% to 0.53% per day (11.19% to

8.43% per year). This happens because the total variance has contributions from the regular
and jump components in the model with stochastic variance with jumps. When there are
no jumps in FX, the long-run variance is equal to vJ = [(1− ν)v+hv0θv]/[1− ν −hvvθv]. See
Appendix A.1 for more details. This expression produces the average volatility of 0.65%,
much closer to the figure in the model with stochastic variance.

To aid in interpreting the parameters controlling jumps in variance, consider the impact of
a jump in variance. Suppose the current variance is at its long-run mean and the variance
jumps by the average amount θv. Then in the case of AUD, the resulting volatility will
move from 0.65% to (vJ + θv)

1/2 = 0.90%, a nearly 40% increase in volatility (this increase
ranges from 20% to 40% for the different currencies). The average jump intensity is equal
to hv0 + hvvvJ = 0.0053 jumps per day, or 1.34 per year (this number ranges from 1.34 to
2.61 for the the different currencies). Jumps in variance are self-exciting, so that a jump
increases the likelihood of another jump. When the variance jumps by θv, intensity changes
to 1.71 for AUD (the range is from 1.71 to 3.41 for all the currencies).

Also note that ρ, the “leverage effect,” has the same sign as the average interest rate
differential. It is positive for JPY and CHF, and negative for AUD and GBP. This result is
consistent with the analysis in Brunnermeier, Nagel, and Pedersen (2008) and the common
wisdom among market participants that investors who are long carry are essentially short
volatility. For example, consider the position of a carry trade investor who borrows money
in USD and invests in AUD. This investor can loose money when the AUD depreciates
against the USD. We estimate that ρ is negative for this currency pair, so the volatility of
this exchange rate tends to increase during times when the AUD depreciates.

The preferred version of the full model is the one with all of the aforementioned restrictions
imposed (θu = θd = θ, hu0 = hd0 = h0, and hur = h̃dr = hr). That is, the size of the jumps in
FX up and down are symmetric and their intensities have numerically identical functional
form (but they depend on different interest rates). As a result, the overall structure of jump
arrivals differs from the one used in popular models of S&P 500 returns, where jumps in
variance and the index are simultaneous.

Parameters reflecting the average jump size have a different interpretation as compared to
jump in variance. The latter is a jump in the level of the variable, while the former is the
jump in return. Therefore, it is scale-free: it is not daily or annual, it reflects by how much
the return changes at the moment of the jump. Thus, on average, AUD returns increase
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(decline) by 1.69% when there is a jump up (down). Average intensities of down and up
jumps are similar to each other for a given currency and, overall, are lower than those of
variances: they range from 0.44 to 1.33 jumps per year (we use sample averages of interest
rates to compute average hut and hdt ).

The diagnostics of residuals ws indicate that the major improvement in moving from
stochastic variance with jumps to the preferred model comes from a statistically signifi-
cant drop in kurtosis from roughly 4 to 3.5 across all currencies. The absolute value of
skewness of w experiences a significant drop for all currencies except for GBP, where it was
insignificantly different from zero in the model with stochastic variance with jumps already.
Serial correlation is slightly negative for all currencies except for GBP (where it is zero in
the model with stochastic variance with jumps already), and the change from one model
to another is insignificant. IV var does not change appreciably because we did not change
our model for variance. Bayes odds ratios strongly favor the preferred model. In summary,
the preferred is clearly a superior model, but there are some residual non-normalities left
in the fitted shocks to exchange rates. We leave improvements to future research.

The expected excess return in (3.9) can be simplified for the preferred model to

Et(yt+1) = µ0 + (µr + hrθ)rt + (µ̃r − hrθ)r̃t + µvvt. (5.1)

Thus, by testing if µr = −µ̃r and µv = 0, we test the UIP regression specification (3.11)
- (3.12) of currency excess returns across all three models. For all currency pairs, we
cannot reject that µr = −µ̃r at the conventional significance levels. Moreover, µr ≈ −3
for all currencies that is consistent with our earlier discussion of UIP regression results. In
addition, the loading on the variance µv is significantly negative in all currencies except for
JPY which has a significantly positive estimate. The tiny serial correlation of the residuals
ws suggests that this model is adequate in capturing conditional mean of excess returns
and, therefore, potentially omitted variables cannot affect materially our conclusions about
the structure of currency risks.

The probability of USD depreciation, hut , depends positively on the US interest rate. This
result seems to contradict basic intuition about the relationship between changes in FX
and interest rates. It is important to note that this connection is applicable to jumps only.
Parameter estimates and expression (5.1) imply that, all else equal, the expected excess
return on the USD is higher when the difference between the U.S. and foreign interest rate
is higher. However, when the interest rate differential is positive, our model says that the
probability of a large depreciation in the USD (a jump up) is higher than the probability
of a large appreciation (a jump down).

5.2 Jumps and Events

In this section we study the economic properties of the documented jumps. We ask basic
questions regarding the structure of the jump components, examine whether jumps can be
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related to important economic events, and gauge their impact on the overall risk of carry
trades. Our discussion is based on Figures 1 - 4 and Table 12.

For each exchange rate, the figures display the time series of data (excess returns and
implied volatilities) complemented with the estimated unobservable model components:

spot volatility v
1/2
t and jumps. Regarding the latter, the model produces an estimate of

a jump size and an ex-post probability that a jump actually took place on a specific day.
However, all of this information is not easy to digest as there are a lot of small jumps
and jumps with small ex-post probability of taking place. Thus, to simplify the reporting,
we stratify the jump probabilities by assigning them a value of one if their actual value
is 0.5 or higher, and zero otherwise. Then we plot the estimated jumps sizes on the days
with the assigned value of one. Our strategy yields 219 jumps overall across all currencies.
Approximately 25% of these jumps take place simultaneously in at least two currencies. We
call such jumps international. There are only 8 episodes when FX and variance jumped at
the same time. We overlay the plots of the estimated jumps sizes with the state-dependent
ex-ante jump probabilities hvt , h

u
t , and hdt .

To interpret the plots better, we have to reference the jump magnitudes against the summary
statistics available in Table 1. Let us use JPY in Figure 4 as an example. Table 1 tells
us that the volatility of JPY is 0.7% per day and the mean is approximately zero. Thus,
a “regular” excess return can be within the range of ±2% (µ ± 3σ). The upper left panel
of Figure 4 shows that there are quite a few days when excess returns are outside of this
range. In practice, the volatility is time-varying and unobserved. Therefore, the “regular”
range is time-varying also and uncertain. The estimation procedure takes this uncertainty
into account by producing ex-post probability of a jump taking place. We arbitrarily select
the level of uncertainty about jumps that we are comfortable with by discarding the jumps
with such probabilities less than 50%. The bottom left panel confirms this by showing the
estimated jumps in excess returns. Their magnitude ranges from 2% to 6% in absolute
value. Interestingly, the larger jumps coincide with spikes in the moving-window estimates
of skewness across all currencies.

However, not all of the big spikes in excess returns are attributable to jumps in FX. For
example, on October 28, 2008, the plot of excess returns shows a big drop of 5.5%. The
model tells us that there were no jumps on that day. The model is capable of generating such
a big move via a normal component because of the jump in variance. Volatility jumped by

(vt−1 + zvt )1/2− v1/2
t−1 = 0.18% (2.9% annualized), on average, on each of three days between

October 22 and 24. Each day the jump in variance was increasing the probability of a jump
the following day. Over these three days volatility moved from 1.35% (21.5% annualized)
to 1.8% (28% annualized). To put this number into a perspective, the long-run volatility

mean is v
1/2
J = 0.66% (10.4% annualized). Thus, the increase in volatility over these three

days was roughly equal to the average level of volatility. Moreover, there is no significant
news associated with either October 22-24 or October 28. Thus, we attribute these events
to pure uncertainty in the markets.
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GBP generates large movements via jumps in variance in the most transparent way. The
exchange rate itself exhibits only 11 jumps throughout the sample, none of which take
place after 2000. In fact, even the famous “Black Wednesday” – the GBP devaluation on
September 16, 1992 – is attributed primarily to a jump in variance on September 8. The
volatility moved from 0.93% (14.7% annualised) to 1.13% (17.9% annualised), then it drifted
up to 1.15% (18.3% annualised) on the day of the crash. These values of volatility are high,

as the average volatility of GBP is v
1/2
J = 0.55%. Nonetheless, this level of volatility is

still insufficient to generate the whole drop of -4.10%. Of course, these rough computations
assume that vt is known with certainty. It is not, and a small deviation in the estimate may
be able to attribute the whole return to a normal shock in FX. This is why the estimated
probability of a jump is only 26% on this day (and the estimated jump size is -0.42%).

As a next step, we check if the jumps we detect are related to economic, political or financial
events. For each day a currency has experienced a jump, we check if there were significant
news. This strategy is effectively opposite to the one employed in studies of the news
impact on financial assets (see, e.g., Andersen, Bollerslev, Diebold, and Vega, 2003 for FX).
Usually one measures news surprise by computing a standardised difference between an
announcement’s expectation and realisation and then checks, usually at intra-day frequency,
if the surprise had an impact on values of financial assets. Our approach does not require
us taking a stand on measuring a surprise. In addition, we are careful in distinguishing
announcements, a clear public release of a fact, from uncertainty: anticipation, comments
on the current economic situation and overall market anxiety that is sometimes evident
in the news. Table 12 provides a summary of the types of events associated with jumps.
Online appendix provides a jump-by-jump description of all events.

Consistent with Figures 1 - 4, we see that there are many more jumps in variance than
in the exchange rates. Almost all jumps are associated with important events, however
there is a critical difference between jumps in FX and those in variance. The former is
most commonly associated with announcements and the latter is related to uncertainty.
We document a lot of common jumps across the currencies, particularly jumps in variance.
Thus, it appears promising to extend the existing research on common and currency-specific
factors affecting risk premiums (e.g., Lustig, Roussanov, and Verdelhan, 2010) by allowing
for common and currency-specific jump risk.

The plots of jump intensities provide a partial insight into why jumps in variance are so
prominent. Probabilities of jumps in FX are moving together with interest rates, which
experienced secular decline in our sample in all countries. As we highlighted earlier, the
probability of a jump in variance is primarily driven by the variance itself. This probability
went through a couple of cycles of high and low values as volatility is less persistent than
interest rates.
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5.3 Decomposing the total risk

Are these risks important quantitatively? Jumps in FX and variance should affect the tail
events the most. The properties of tails are captured by high-order moments or cumulants.
Intuitively, jumps in FX affect the conditional odd cumulants of exchange rate returns as
they generate asymmetries directly. Jumps in variance can lead to both large negative
and positive outcomes, so they must have an impact on even cumulants. Armed with this
intuition, we measure the total risk corresponding to investment horizon n using entropy of
changes in FX:

Lt(St+n/St) = logEt(e
st+n−st)− Et(st+n − st). (5.2)

Entropy is a loaded term. Our use of entropy is similar to that of Backus, Chernov, and
Martin (2011) and Backus, Chernov, and Zin (2011), who characterise entropy of the pricing
kernel, and the closest to the way it is used in Martin (2011) who uses entropy of equity
index returns. Entropy’s connection to cumulants of log FX returns makes it attractive for
our purposes. Specifically, the definition (5.2) implies that

Lt(St+n/St) = kt(1; st+n − st)− κ1t(st+n − st)
= κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . , (5.3)

where kt(1; st+n− st) is the conditional cumulant-generating function of st+n− st evaluated
at the argument equal to 1, κjt(st+n − st) is the jth conditional cumulant of st+n − st, and
we used the fact that kt(1; st+n − st) is equal to the infinite sum of κjt(st+n − st)/j! over
j starting with j = 1. The significance of the property (5.3) is that if currency changes
are normally distributed, then entropy is equal to a half of their variance (the first term in
the sum). All the higher-order terms arise from non-normalities. Thus, entropy captures
tail behaviour of returns in a compact form. As a result, we view entropy as a natural
generalisation of variance as a risk measure. For this reason, Alvarez and Jermann (2005)
explicitly refer to Lt as generalised variance.

We decompose the total risk of currency returns into the contribution of the jump and
normal components. Appendix A.2 explains how we compute the full entropy. We can
compute the individual components by zeroing out the rest.10 Figures 5 and 6 display
the contributions of these components for the investment horizons of 1 months (n = 21)
and 3 months (n = 63). We overlay these contributions with a time-series plot of entropy.
We scale entropy to ensure that it is equal to variance in the normal case and to adjust
for the horizon. Finally, to make the number easily interpretable, we take the square-root

10If two variables xs and ys are conditionally independent, then Lt(xsys) = Lt(xs) + Lt(ys). Therefore,
our decomposition approach correctly separates the contributions of the two jumps in currencies. Because
probability of the jump in variance depends on the variance itself, the normal shock to variance and the
jump are conditionally independent only over one period, n = 1. When n > 1 our procedure attributes all
the covariance terms, which are positive because of the estimated functional form of jump probabilities, to
the jump in variance. We think that this approach is sensible because the presence of these covariance terms
is due to jumps.
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and express it in percent. Thus, we plot
√

2Lt/n. Finally, Table 13 supports the plots by
reporting summary statistics of the relative contributions of the different components.

We start by characterising the contribution of the different components at a given point
in time. We see that the regular, or normal, risk is the most prominent regardless of the
horizon. The average total contribution of jumps at a one-month horizon ranges from 11.03
% for GBP to 20.19% for AUD. The risk of jump in FX (up or down) [the range is between
6.82% and 9.17%] is higher than that of the jump in variance [the range is between 3.76%
and 4.83%] and has higher time-variation at a one-month horizon (GBP is the exception
as jumps in variance contribute 4.37% as compared to 2.98% for jumps up and 3.68% for
jumps down). Therefore, in the short-term the risk of the jump in variance has the smallest
contribution to the overall currency risk. However, this conclusion changes as we extend
the investment horizon to three months. The average total contribution of jumps at this
horizon increases – the range is from 17.71% for GBP to 25.19% for JPY. In this case
individual contribution of jumps in variance [the range is 8.94% to 11.48%] is higher than
those of jumps in FX [the range is 2.78% to 8.57%] (in the case of GBP the contribution of
the jump in variance is greater than the sum of jumps up and down).

The contribution of jumps in FX declines towards the end of our sample thereby making
the contribution of jumps in variance more important. We connect this result to the secular
decline in the probability of FX jumps that we highlighted earlier. This effect diminishes
expected contribution of such jumps to the overall risk. In contrast, the probability of
jumps in variance is less persistent and, therefore, exhibits mean-reversion in our sample.

The time-series variation in total risk resembles the time-series variation in the spot variance
vt. This is not surprising because Lt is a linear function of vt (Appendix A.2). Thus,
whenever spot variance moves, especially jumps, we observe a clear move in entropy. We
conclude that the risk of jumps in variance are at least as important as the risk of jumps
in FX, but the two types of jumps serve a different purpose.

5.4 Preliminary evidence of priced jump risk

The large amount of jump risk prompts a natural question of whether this risk is priced. An-
swering this question has important implications for the carry trade literature. In particular,
one should be able to attribute a specific fraction of carry risk premium to compensation
for bearing crash risk.

The full answer to this question requires an explicit model of the pricing kernel and the use
of assets that are sensitive to jump risk for estimation. In this regard, out-of-the-money
options are particularly informative about the price of jump risks (i.e., the covariance of
the pricing kernel with jumps). However, such analysis is outside of the scope of this paper.
Instead, we provide a back-of-the-envelope computation, which we view as preliminary
evidence of priced jump risk.
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Our idea is to explore the shape of the implied volatility smile that is derived from our
model. If the jump risk is not priced, then we would be able to replicate the smile without
additional assumptions about risk premiums. To capture the diversity of the smile shapes,
we consider examples of a currency with a positive average interest rate differential (GBP)
and a negative one (JPY). The reason we focus on the interest rate differential is that
our model connects it to asymmetry of the conditional distribution of an exchange rate.
Indeed, the third conditional cumulant can be obtained by taking the third derivative of
the cumulant-generating function of log currency returns (provided in Appendix A.2). For
example,

κ3t(st+1 − st) = 6θ3hr(rt − r̃t)

in the preferred model.

For both currencies we pick a day in which the variance and interest rate differential are
roughly equal to the sample averages: November 12, 2007 (GBP) and April 20, 2004 (JPY).
Figure 7 displays the implied volatility smiles observed on these days. Consistent with our
expectations, GBP exhibits positive asymmetry (defined as the difference between implied
volatility corresponding to moneyness less than one and the one with moneyness greater
than one, with moneyness symmetric around at-the-money), and JPY exhibits negative
asymmetry. The solid black lines in Figure 7 are the option-implied volatilities that corre-
spond to our model estimates with no risk premia. The model can generate both the smile
and the correct direction of asymmetry. However, the level and curvature of the smile that
are implied by the model cannot match those observed in the data. The natural question
is whether the omitted risk premiums are responsible for this disparity.

Before we conclude that the disparity is due to risk premia, we first evaluate whether statis-
tical uncertainty about parameter values and the unobserved spot variance could account
for the difference in levels and curvatures. The theoretical implied volatility is a function
of observable states, option contract characteristics (strike and time to maturity), model

parameters, and the unobservable variance: IV
1/2
t = F (St, rt, r̃t,K, T − t,Θ, vt). The solid

black lines in Figure 7 display F (St, rt, r̃t,K, T − t, Θ̂, v̂t). We can take the uncertainty
about these estimated values into account by computing confidence bounds. One of the

by-products of our estimation procedure is a set of draws {Θ(g), v
(g)
t }

250,000
g=1 from the pos-

terior distribution p(Θ, vt|full dataset). We obtain the corresponding set of draws from the

posterior distribution of implied volatilities by evaluating F (St, rt, r̃t,K, T − t,Θ(g), v
(g)
t ).

The blue dashed lines in Figure 7 display the (2.5%, 97.5%) posterior coverage interval for
theoretical implied volatilities.

The only case where the posterior interval covers observed implied volatilities corresponds
to six-month options on GBP. Thus, statistical uncertainty, on its own, cannot explain the
gap between the model and the data. The fact that the curvature is much more pronounced
in the data suggests that jump risk premiums are present (variance risk premiums may be
helpful in adjusting the level of the smile but not its curvature). See, for instance, Backus,
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Chernov, and Martin (2011) who provide a detailed discussion of how risk adjustment in the
jump parameters affects the shape of the smile (Figure 3). While by no means conclusive,
this initial evidence warrants further more detailed investigation of the magnitude of jump
risk premiums.

6 Conclusion

We explore sources of risk affecting currency returns. We find a large time-varying com-
ponent that is attributable to jump risk. The most interesting part of this finding is that
jumps in currency variance play an important role, especially at long (quarterly) invest-
ment horizons, yet there is no obvious link between macroeconomic fundamentals and these
jumps. We interpret this evidence as a manifestation of economic uncertainty.

We see at least two important directions in which our analysis can be extended. First,
we should use prices of financial assets associated with currencies (e.g., bonds, options) to
estimate the pricing kernel. This would allow us to characterize how the risks documented
in this paper are valued in the marketplace. Second, existing research presents evidence
of common and currency-specific factors affecting risk premiums. Our evidence suggests
that common jump risks are shared across the different currencies. It would be useful
to establish a model of joint currency behaviour that explicitly incorporates common and
country-specific jump components and how they contribute to risk premiums.
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Table 1
Properties of excess log currency and S&P 500 returns and changes in
implied volatility

Mean Std Dev Skewness Kurtosis Nobs

AUD Excess return 0.0186 0.7435 -0.3870 13.7202 6332

∆
√
IV 0.0109 3.7661 0.9077 9.7290 3933

CHF Excess return 0.0057 0.7232 0.1194 4.7841 6521

∆
√
IV 0.0073 3.8057 0.9966 9.8095 3823

GBP Excess return 0.0096 0.6197 -0.2337 5.6832 6521

∆
√
IV 0.0142 4.0001 1.3884 44.2683 3823

JPY Excess return 0.0003 0.6950 0.3626 8.0878 6393

∆
√
IV -0.0045 4.8277 1.0395 10.7764 3934

S&P 500 Excess return 0.0090 1.1803 -1.3584 32.9968 6521

∆
√
V IX 0.0089 5.8997 0.5096 6.7502 3914

Notes. Descriptive statistics for daily log currency and log S&P 500 excess returns and
changes in implied volatility, in percent, per day: AUD return from September 25, 1986,
to December 31, 2010, and AUD IV from December 6, 1995, to December 31, 2010; CHF
return from January 3, 1986, to December 31, 2010, and CHF IV from May 8, 1996, to
December 31, 2010; GBP return from January 3, 1986, to December 31, 2010, and GBP IV
from May 8, 1996, to December 31, 2010; JPY return from July 2, 1986, to December 31,
2010, and GBP IV from December 5, 1995, to December 31, 2010; S&P 500 return from
January 3, 1986, to December 31, 2010 and VIX from January 2, 1996, to December 31,
2010. The interest rates used to compute returns are one-month LIBOR rates. Source:
Bloomberg.
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Table 2
AUD Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 -0.0004 0.0003 0.0014
(-0.0181,0.0173) (-0.0175, 0.0182) (-0.0166, 0.0194)

µr -2.4893 -2.5200 -2.7643
(-3.5895, -1.3910) (-3.6170, -1.4190) (-3.8613, -1.6801)

µv -0.0150 -0.0152 -0.0147
(-0.0247, -0.0053) (-0.0249, -0.0056) (-0.0244, -0.0051)

v 0.4968 0.2819 0.2819
(0.2903, 0.8984) (0.2101, 0.3728) (0.2110, 0.3734)

ν 0.9943 0.9855 0.9857
(0.9925, 0.9961) (0.9837, 0.9873) (0.9838, 0.9875)

σv 0.0391 0.0343 0.0342
(0.0379, 0.0404) (0.0330, 0.0357) (0.0329, 0.0356)

ρ -0.2924 -0.2770 -0.2839
(-0.3279, -0.2563) (-0.3156, -0.2378) (-0.3237, -0.2435)

θv 0.3864 0.3837
(0.3392, 0.4406) (0.3367, 0.4362)

θ 1.6910
(1.5208, 1.8779)

hv0 0.0037 0.0036
(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0038 0.0038
(0.0031, 0.0040) (0.0031, 0.0040)

h0 0.0017
(0.0000, 0.0038)

hr 0.1737
(0.1177, 0.1992)

αiv 0.0033 0.0027 0.0033
(0.0009, 0.0064) (-0.0002, 0.0056) (0.0005, 0.0063)

βiv 1.0006 1.0021 1.0022
(0.9958, 1.0054) (0.9983, 1.0059) (0.9984, 1.0061)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 3
CHF Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0340 0.0353 0.0324
(0.0150, 0.0531) (0.0163, 0.0543) (0.0132, 0.0516)

µr -2.9851 -3.0674 -3.2501
(-4.3345, -1.6354) (-4.4174, -1.7169) (-4.5952, -1.8996)

µv -0.0198 -0.0199 -0.0199
(-0.0333, -0.0064) (-0.0335, -0.0065) (-0.0334, -0.0064)

v 0.5088 0.3502 0.3427
(0.3136, 0.8364) (0.2564, 0.4741) (0.2507, 0.4639)

ν 0.9891 0.9789 0.9785
(0.9863, 0.9919) (0.9758, 0.9818) (0.9755, 0.9815)

σv 0.0388 0.0337 0.0337
(0.0373, 0.0404) (0.0321, 0.0352) (0.0321, 0.0352)

ρ 0.0875 0.0856 0.0856
(0.0480, 0.1271) (0.0439, 0.1273) (0.0416, 0.1298)

θv 0.2205 0.2145
(0.1845, 0.2622) (0.1804, 0.2550)

θ 1.3582
(1.1771, 1.5744)

h0 0.0037 0.0037
(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0145 0.0144
(0.0131, 0.0150) (0.0130, 0.0150)

h0 0.0051
(0.0011, 0.0078)

hr 0.2175
(0.0615, 0.2973)

αiv 0.0061 0.0041 0.0056
(0.0009, 0.0113) (-0.0013, 0.0093) (0.0003, 0.0104)

βiv 0.9919 0.9934 0.9946
(0.9753, 1.0091) (0.9795, 1.0071) (0.9802, 1.0096)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 4
GBP Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0348 0.0360 0.0337
(0.0128, 0.0565) (0.0138, 0.0584) (0.0116, 0.0556)

µr -3.0632 -3.1692 -3.1897
(-4.4127, -1.7209) (-4.5046, -1.8351) (-4.5138, -1.8673)

µv -0.1326 -0.1377 -0.1341
(-0.1928, -0.0720) (-0.1986, -0.0773) (-0.1952, -0.0731)

v 0.3773 0.2227 0.2180
(0.1855, 0.8002) (0.1631, 0.2989) (0.1619, 0.2909)

ν 0.9941 0.9810 0.9809
(0.9919, 0.9963) (0.9786, 0.9834) (0.9786, 0.9833)

σv 0.0321 0.0272 0.0273
(0.0311, 0.0332) (0.0262, 0.0283) (0.0263, 0.0284)

ρ -0.1341 -0.1295 -0.1303
(-0.1713, -0.0965) (-0.1692, -0.0896) (-0.1709, -0.0895)

θv 0.1953 0.1959
(0.1728, 0.2206) (0.1731, 0.2211)

θ 1.1680
(0.9593, 1.4127)

hv0 0.0038 0.0038
(0.0033, 0.0040) (0.0033, 0.0040)

hv 0.0121 0.0121
(0.0110, 0.0125) (0.0110, 0.0125)

h0 0.0012
(0.0001, 0.0020)

hr 0.1223
(0.0634, 0.1491)

αiv 0.0109 0.0063 0.0089
(0.0063, 0.0155) (0.0009, 0.0109) (0.0039, 0.0137)

βiv 0.9905 0.9951 0.9940
(0.9855, 0.9955) (0.9905, 0.9996) (0.9895, 0.9985)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 5
JPY Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0253 0.0253 0.0203
(0.0064, 0.0441) (0.0062, 0.0443) (0.0018, 0.0389)

µr -3.1861 -3.2046 -3.4590
(-4.4200, -1.9526) (-4.4540, -1.9531) (-4.6992, -2.2266)

µv 0.0151 0.0152 0.0152
(0.0054, 0.0248) (0.0055, 0.0249) (0.0054, 0.0248)

v 0.4816 0.3143 0.3012
(0.2926, 0.8111) (0.2328, 0.4223) (0.2207, 0.4079)

ν 0.9896 0.9762 0.9771
(0.9868, 0.9924) (0.9730, 0.9794) (0.9739, 0.9802)

σv 0.0496 0.0438 0.0436
(0.0476, 0.0516) (0.0419, 0.0458) (0.0417, 0.0455)

ρ 0.3681 0.3505 0.3631
(0.3316, 0.4040) (0.3098, 0.3902) (0.3205, 0.4047)

θv 0.3917 0.3771
(0.3313, 0.4622) (0.3198, 0.4447)

θ 1.2351
(1.0847, 1.4071)

hv0 0.0037 0.0037
(0.0031, 0.0040) (0.0029, 0.0040)

hvv 0.0077 0.0076
(0.0068, 0.0080) (0.0067, 0.0080)

h0 0.0052
(0.0034, 0.0060)

hr 0.4447
(0.3133, 0.4984)

αiv 0.0140 0.0116 0.0159
(0.0086, 0.0193) (0.0062, 0.0169) (0.0099, 0.0214)

βiv 1.0052 1.0083 1.0248
(0.9871, 1.0248) (0.9916, 1.0256) (1.0069, 1.0431)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 6
Model diagnostics for AUD

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC -0.3080 -0.3074 -0.2004
(-0.3308, -0.2860) (-0.3304, -0.2855) (-0.2408, -0.1599)

kurtosisC 4.1472 4.0822 3.4892
(4.0677, 4.2366) (4.0006, 4.1810) (3.3802, 3.6055)

autocorrelationC -0.0281 -0.0271 -0.0324
(-0.0311, -0.0252) (-0.0303, -0.0241) (-0.0406, -0.0242)

skewnessIV 0.0402 0.0303 0.0310
(-0.0373, 0.1181) (-0.0466, 0.1070) (-0.0459, 0.1080)

kurtosisIV 3.0618 3.0385 3.0375
(2.9103, 3.2314) (2.8902, 3.2034) (2.8896, 3.2033)

autocorrelationIV 0.1043 0.0634 0.0637
(0.0749, 0.1336) (0.0331, 0.0937) (0.0334, 0.0940)

IV var 0.0064 0.0034 0.0034

(0.0041, 0.0122) (0.0021, 0.0070) (0.0021, 0.0070)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return return and from the IV equations. Superscript C stands
for the residuals from the currency return equation, superscript IV stands for the residuals
from the IV equation.
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Table 7
Model diagnostics for CHF

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.1178 0.1282 0.0586
(0.0994, 0.1365) (0.1078, 0.1486) (0.0182, 0.0983)

kurtosisC 3.9497 3.9438 3.4333
(3.8825, 4.0198) (3.8919, 4.0011) (3.3373, 3.5405)

autocorrelationC -0.0203 -0.0198 -0.0272
(-0.0227, -0.0179) (-0.0226, -0.0170) (-0.0352, -0.0192)

skewnessIV 0.0224 0.0201 0.0210
(-0.0574, 0.1022) (-0.0585, 0.0985) (-0.0573, 0.0995)

kurtosisIV 3.0648 3.0399 3.0406
(2.9091, 3.2378) (2.8887, 3.2097) (2.8890, 3.2094)

autocorrelationIV 0.0777 0.0565 0.0564
(0.0459, 0.1094) (0.0247, 0.0883) (0.0246, 0.0881)

IV var 0.0010 0.0006 0.0006

(0.0007, 0.0017) (0.0004, 0.0011) (0.0004, 0.0011)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. C stands for the residuals
from the currency return equation, superscript IV stands for the residuals from the IV
equation.
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Table 8
Model diagnostics for GBP

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC -0.0407 -0.0211 -0.0232
(-0.0606, -0.0202) (-0.0436, 0.0012) (-0.0609, 0.0143)

kurtosisC 3.9181 3.8540 3.4947
(3.8427, 4.0061) (3.7784, 3.9423) (3.4006, 3.5969)

autocorrelationC 0.0009 0.0006 -0.0027
(-0.0024, 0.0040) (-0.0038, 0.0047) (-0.0094, 0.0037)

skewnessIV 0.0352 0.0212 0.0215
(-0.0443, 0.1146) (-0.0565, 0.0995) (-0.0568, 0.0998)

kurtosisIV 3.0710 3.0293 3.0296
(2.9160, 3.2461) (2.8798, 3.1972) (2.8786, 3.1977)

autocorrelationIV 0.0791 0.0510 0.0510
(0.0483, 0.1096) (0.0204, 0.0814) (0.0204, 0.0815)

IV var 0.0011 0.0004 0.0004

(0.0007, 0.0019) (0.0003, 0.0008) (0.0003, 0.0008)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. C stands for the residuals
from the currency return equation, superscript IV stands for the residuals from the IV
equation.
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Table 9
Model diagnostics for JPY

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.3348 0.3360 0.1298
(0.3060, 0.3650) (0.3038, 0.3668) (0.0799, 0.1800)

kurtosisC 4.8254 4.7148 3.6054
(4.7109, 4.9645) (4.5982, 4.8361) (3.4829, 3.7445)

autocorrelationC -0.0146 -0.0140 -0.0221
(-0.0176 -0.0116) (-0.0174, -0.0108) (-0.0312, -0.0131)

skewnessIV 0.0568 0.0278 0.0311
(-0.0210, 0.1349) (-0.0495, 0.1054) (-0.0465, 0.1087)

kurtosisIV 3.0707 3.0430 3.0423
(2.9175, 3.2420) (2.8940, 3.2100) (2.8923, 3.2098)

autocorrelationIV 0.1042 0.0758 0.0768
(0.0733, 0.1349) (0.0443, 0.1070) (0.0453, 0.1083)

IV var 0.0061 0.0029 0.0037

(0.0036, 0.0125) (0.0017, 0.0059) (0.0021, 0.0078)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. C stands for the residuals
from the currency return equation, superscript IV stands for the residuals from the IV
equation.
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Table 10
Log-Bayes-Odds Ratios

AUD CHF GBP JPY

SVJ/SV 22.03 52.05 44.50 34.89
Preferred/SVJ 26.36 18.77 13.43 61.22

Notes. Formal model comparison. We compare the SV (θ = 0, θv = 0), SVJ (θ = 0) and
the preferred models pairwise. In the first row, we consider the SV and SVJ models and
quantify evidence against the SV model; in the second row, we consider the SVJ and the
preferred models and quantify evidence against the SVJ model.

Table 11
Calibration of the interest rates

AUD CHF GBP JPY

ar 0.0181 0.0184 0.0184 0.0182
ãr 0.0291 0.0121 0.0269 0.0077

br 0.9999 0.9997 0.9997 0.9998

b̃r 0.9991 0.9995 0.9998 0.9997

σr 0.0012 0.0016 0.0016 0.0014
σ̃r 0.0035 0.0030 0.0018 0.0027

Notes. We calibrate processes for domestic (US)

rt+1 = (1− br)ar + brrt + σrr
1/2
t wrt+1

and foreign interest rates

r̃t+1 = (1− b̃r)ãr + b̃rr̃t + σ̃rr̃
1/2
t w̃rt+1

Parameters correspond to daily interest rates in percent. There are four versions of the
parameters corresponding to the US interest rate. This is because the foreign data have
different starting dates, and we calibrated the US rate in the matching samples.
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Table 12
Summary of events associated with jumps

Type of event/uncertainty Jump Up Jump Down Jump in Vol

AUD
Trade 1 1 –
Macro-Economic 2 2 9
Intervention – 4 1
Monetary policy 2 7 10
Spillover from financial markets 1 5 20
Other 1 3 3
Total 6 21 34
International 2 5 17

CHF
Trade 6 – –
Macro-Economic 1 2 11
Intervention 6 2 2
Monetary policy 1 1 10
Spillover from financial markets 4 1 18
Other 2 – 12
Total 17 6 45
International 9 3 23

GBP
Trade – – 1
Macro-economic 1 2 13
Intervention 2 1 3
Monetary policy 2 2 17
Spillover from financial markets 1 – 19
Other – 2 14
Total 5 6 56
International 3 1 25

JPY
Trade 11 3 6
Macro-Economic 4 3 11
Intervention 8 4 4
Monetary policy 2 – 16
Spillover from financial markets 7 1 15
Other 3 3 7
Total 34 13 52
International 12 4 19

Notes: We match each jump in the preferred model with economic, political or financial events. If we cannot attribute

a jump to a specific event then we indicate type of uncertainty dominating FX markets on that date. We compute how

many jumps correspond to every economic source of risk. We distinguish trade, intervention, and monetary policy

events (inflation, interest rate policy, monetary union) from events connected to other macro-economic factors (growth,

employment, sales, payroll, etc.) We group episodes of dramatic movements in stock and commodity markets under

the “Spillover from financial markets.” All remaining episodes fall under rubric “Other”. We report total number

of jumps in prices (up and down) and volatility in the row “Total”. We provide the number of jumps that occur

simultaneously in two or more currencies in the row “International”. Every jump episode can be generated by multiple

sources of economic uncertainty. In such a case, we assign the jump to every important source of risk. Thus in our

table the number in the row “Total” can be lower than the columnwise sum of the inputs.
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Table 13
Decomposition of the total risk

Jump Up Jump Down Jump in Vol Normal

n = 21 n = 63 n = 21 n = 63 n = 21 n = 63 n = 21 n = 63
AUD

Mean 6.90 6.37 9.17 8.40 4.12 10.18 79.81 75.05
Std 3.70 2.97 5.22 4.13 1.10 1.99 9.60 8.38
Min 0.31 0.38 0.60 0.74 1.58 4.45 55.17 56.33
Max 15.84 12.41 26.24 21.34 7.14 14.73 97.45 94.32

CHF
Mean 6.82 6.66 5.48 5.37 3.76 8.94 83.94 79.04
Std 2.56 2.03 1.82 1.50 0.27 0.39 4.32 3.34
Min 1.02 1.31 0.98 1.26 3.13 8.01 66.78 69.49
Max 16.34 11.88 12.04 10.55 4.84 9.91 94.87 89.38

GBP
Mean 2.98 2.78 3.68 3.45 4.37 11.48 88.96 82.29
Std 1.51 1.19 1.68 1.38 0.80 1.35 3.73 3.42
Min 0.18 0.23 0.25 0.32 2.64 7.79 74.21 72.60
Max 8.84 5.83 9.87 8.45 7.70 15.48 96.87 91.58

JPY
Mean 9.10 8.57 5.80 5.43 4.83 11.19 80.27 74.82
Std 4.18 3.32 3.53 2.96 0.71 1.08 7.56 6.10
Min 0.93 1.23 0.69 0.91 3.05 7.96 54.70 57.34
Max 22.04 18.05 17.68 13.89 6.82 13.61 65.20 89.67

Notes. We report summary statistics of the percentage contribution of the different risks
to the total risk of currency returns (horizon n = 21 and n = 63 days).
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Figure 1: AUD data and estimated states
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(d) Jumps in volatility

Panel (a): thin red line displays observed log currency returns; thick blue line displays the conditional

6-months skewness of the log currency returns. Panel (b): thick red line shows observed one-month

at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt. The bottom

panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities. Panel

(c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of the

jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Australia; light blue vertical lines with the the thin solid border indicate recessions in the US.

39



Figure 2: CHF data and estimated states
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(d) Jumps in volatility

Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Switzerland; light blue vertical lines with the the thin solid border indicate recessions in the US.
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Figure 3: GBP data and estimated states
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(d) Jumps in volatility

Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in the UK; light blue vertical lines with the the thin solid border indicate recessions in the US.
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Figure 4: JPY data and estimated states
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(d) Jumps in volatility

Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Japan; light blue vertical lines with the the thin solid border indicate recessions in the US.
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Figure 5: Conditional decomposition of the total risk for monthly returns
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Notes. We display cumulative contribution of the different risks to the total risk of excess returns
(the left axis). We measure the total amount of risk using entropy

Lt(St+n/St) = κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,

where κjt(st+n− st) is the jth cumulant of log FX returns. Investment horizon is n = 21 days. The

contribution of the down jumps in FX is displayed in light blue, contribution of the up jumps in FX

is in brown, and the contribution of the jumps in variance is in red. Gray area is the contribution

of the normal shocks. The blue line shows
√

2Lt/n in percent (the right axis). This quantity has

an interpretation of one-period volatility in the case of normally distributed returns.
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Figure 6: Conditional decomposition of the total risk for quarterly returns
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Notes. We display cumulative contribution of the different risks to the total risk of excess returns
(the left axis). We measure the total amount of risk using entropy

Lt(St+n/St) = κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,

where κjt(st+n− st) is the jth cumulant of log FX returns. Investment horizon is n = 63 days. The

contribution of the down jumps in FX is displayed in light blue, contribution of the up jumps in FX

is in brown, and the contribution of the jumps in variance is in red. Gray area is the contribution

of the normal shocks. The blue line shows
√

2Lt/n in percent (the right axis). This quantity has

an interpretation of one-period volatility in the case of normally distributed returns.
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Figure 7: Implied volatility
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Notes. We check the ability of the model to generate the implied volatility (IV) smiles and varying

IV skewness. We select a currency with a positive average interest rate differential (GBP) and a

negative one (JPY). For both currencies we pick a day with an approximately average variance and

interest rate differential: November 12, 2007 (GBP) and April 20, 2004 (JPY). The asterisks indicate

observed implied volatilities. The solid black lines depict theoretical implied volatilities evaluated

at the estimated parameters and spot variance under the assumption that investors do not demand

compensation for the variance or jump risks. The dashed blue lines show the 95% posterior coverage

intervals for the theoretical smiles.

45



A Appendix

A.1 Expected future variance

We do not consider the most general model to streamline the presentation. We focus on
the empirically relevant case where intensity of jumps in variance depends on variance
only, and jumps up (down) in FX depend on domestic (foreign) interest rate only. We
start by computing expectation of the variance process in (3.2). Conditional expectation
Et(vt+i) ≡ vt,i can be computed via a recursion. Note that vt,0 = vt. Suppose we know
vt,i−1. Then

vt,i = (1− ν)v + νvt,i−1 + σvEt(Et+i−1(v
1/2
t+i−1w

v
t+i)) + Et(Et+i−1z

v
t+i)

= (1− ν)v + νvt,i−1 + θvh
v
0 + θvh

v
vvt,i−1 = (1− ν)v + θvh

v
0 + (ν + θvh

v
v)vt,i−1.

We can solve this recursion analytically:

vt,i = [(1− ν)v + θvh
v
0](1 + (ν + θvh

v
v)) + (ν + θvh

v
v)

2vt,i−2

= [(1− ν)v + θvh
v
0](1− (ν + θvh

v
v)
i)/(1− (ν + θvh

v
v)) + (ν + θvh

v
v)
ivt.

Next, we can compute expectation of average future v :

Et

(
n∑
i=1

vt+i

)
/n = 1/n

n∑
i=1

Etvt+i = 1/n
n∑
i=1

vt,i

= 1/n
n∑
i=1

[(1− ν)v + θvh
v
0](1− (ν + θvh

v
v)
i)/(1− (ν + θvh

v
v)) + 1/n

n∑
i=1

(ν + θvh
v
v)
ivt

=
(1− ν)v + θvh

v
0

1− (ν + θvhvv)

[
1− ν + θvh

v
v

n

1− (ν + θvh
v
v)
n

1− (ν + θvhvv)

]
+
ν + θvh

v
v

n

1− (ν + θvh
v
v)
n

1− (ν + θvhvv)
vt

≡ (1− ν)v + θvh
v
0

1− (ν + θvhvv)
[1− βn]︸ ︷︷ ︸

αn

+βnvt.

Similarly, we can obtain conditional expectations of future interest rates:

rt,i ≡ Et(rt+i) = ar(1− bir) + birrt,

and the expectations of average future interest rates:

Et

(
n∑
i=1

rt+i

)
/n = 1/n

n∑
i=1

Etrt+i = 1/n
n∑
i=1

rt,i

= ar

[
1− br

n

1− bnr
1− br

]
+
br
n

1− bnr
1− br

rt
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and the similar expression holds for expectations associated with r̃t.

Now, we can characterize the variance of excess returns:

vyt ≡ vart(yt+1) = vt + 2hut θ
2
u + 2hdt θ

2
d.

Therefore, the conditional expectation of this variance can be computed on the basis of our
results for the variance of the normal component vt and the expectations of interest rates:

vyt,i ≡ Et(v
y
t+i) = vt,i + 2θ2

uh
u
0 + 2θ2

uh
u
rEt(rt+i) + 2θ2

dh
d
0 + 2θ2

dh̃
d
rEt(r̃t+i).

This expression implies that the unconditional expectation, or long-run mean, of the vari-
ance is:

vJ = lim
i→∞

vyt,i = [(1− ν)v + θvh
v
0]/(1− (ν + θvh

v
v))

+ 2θ2
uh

u
0 + 2θ2

uh
u
rar + 2θ2

dh
d
0 + 2θ2

dh̃
d
r ãr.

When there are no jumps, that is, θv = 0, θu = 0, and θd = 0, then vJ = v.

Next, we compute Et(
∑n

i=1 v
y
t+i)/n

Et

(
n∑
i=1

vyt+i

)
/n = 1/n

n∑
i=1

Etv
y
t+i = 1/n

n∑
i=1

vyt,i

= αn + 2θ2
uh

u
0 + 2θ2

uh
u
rar

[
1− br

n

1− bnr
1− br

]
+ 2θ2

dh
d
0 + 2θ2

dh̃
d
r ãr

[
1− b̃r

n

1− b̃nr
1− b̃r

]

+ βnvt + 2θ2
uh

u
r

br
n

1− bnr
1− br

rt + 2θ2
dh̃

d
r

b̃r
n

1− b̃nr
1− b̃r

r̃t.

A.2 Computing entropy

Entropy of currency changes over a horizon of n days is equal to:

Lt(St+n/St) = logEt(e
xt,n)− Et(xt,n) = kt(1;xt,n)− κ1t(xt,n),

where xt,n = log(St+n/St) =
∑t+n

i=t (si+1 − si), kt(s;xt,n) is a cumulant-generating function
of xt,n, and κ1t(xt,n) is the first cumulant of xt,n. Thus, we need to compute the cumulant-
generating function of xt,n :

kt(s;xt,n) = logEte
sxt,n .

The first cumulant can be recovered as ∂kt(s;xt,n)/∂s at s = 0. Denote the the drift of log
currency changes by µ̄t = µt + (rt − r̃t).
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Guess

kt(s;xt,n) = A(n) +Bv(n)vt +Br(n)rt + B̃r(n)r̃t.

Then

A(n) +Bv(n)vt +Br(n)rt + B̃r(n)r̃t

= k(s;xt,n) = logEt[e
sxt,1Et+1e

sxt+1,n−1 ]

= logEt[e
sxt,1eA(n−1)+Bv(n−1)vt+1+Br(n−1)rt+1+B̃r(n−1)r̃t+1 ]

= A(n− 1) + logEte
sxt,1+Bv(n−1)vt+1 + logEte

Br(n−1)rt+1+B̃r(n−1)r̃t+1

= A(n− 1) + sµ̄t +Bv(n− 1)((1− ν)v + νvt)

+ Br(n− 1)((1− br)ar + brrt) + B̃r(n− 1)((1− b̃r)ãr + b̃rr̃t)

+ logEte
s(1−ρ2)1/2v

1/2
t ws

t+1+sρv
1/2
t wv

t+1+szut+1+szdt+1+Bv(n−1)σvv
1/2
t wv

t+1+Bv(n−1)zvt+1

+ logEte
Br(n−1)r

1/2
t σrwr

t+1+B̃r(n−1)r̃
1/2
t σ̃rw̃r

t+1

= A(n− 1) + sµ̄t +Bv(n− 1)((1− ν)v + νvt)

+ Br(n− 1)((1− br)ar + brrt) + B̃r(n− 1)((1− b̃r)ãr + b̃rr̃t)

+ s2vt/2 + vtsρσvBv(n− 1) +B2
v(n− 1)σ2

vvt/2 + hut ((1− sθu)−1 − 1) + hdt ((1 + sθd)
−1 − 1)

+ hvt ((1−Bv(n− 1)θv)
−1 − 1) +B2

r (n− 1)σ2
rrt/2 + B̃2

r (n− 1)σ̃2
r r̃t/2

= A(n− 1) + s(µ+ (µr + 1)(rt − r̃t) + µvvt) +Bv(n− 1)((1− ν)v + νvt)

+ Br(n− 1)((1− br)ar + brrt) + B̃r(n− 1)((1− b̃r)ãr + b̃rr̃t)

+ s2vt/2 + vtsρσvBv(n− 1) +B2
v(n− 1)σ2

vvt/2 + sθu(hu0 + hur rt)/(1− sθu)− sθd(hd0 + h̃dr r̃t)/(1 + sθd)

+ (hv0 + hvvvt)Bv(n− 1)θv/(1−Bv(n− 1)θv) +B2
r (n− 1)σ2

rrt/2 + B̃2
r (n− 1)σ̃2

r r̃t/2.

Collect terms, match them with the corresponding terms in the first line, solve for the
coefficients:

A(n) = A(n− 1) + sµ+Bv(n− 1)(1− ν)v + sθuh
u
0/(1− sθu)− sθdhd0/(1 + sθd)

+ hv0Bv(n− 1)θv/(1− θvBv(n− 1)) +Br(n− 1)(1− br)ar + B̃r(n− 1)(1− b̃r)ãr
Bv(n) = sµv +Bv(n− 1)ν + s2/2 + sρσvBv(n− 1) +B2

v(n− 1)σ2
v/2

+ hvvBv(n− 1)θv/(1−Bv(n− 1)θv),

Br(n) = s(µr + 1) +Br(n− 1)br + sθuh
u
r/(1− sθu) +B2

r (n− 1)σ2
r/2,

B̃r(n) = −s(µr + 1) + B̃r(n− 1)b̃r − sθdh̃dr/(1 + sθd) + B̃2
r (n− 1)σ̃2

r/2.

To compute initial conditions for the above recursion, write down the cumulant generating
function of a one-period return:

kt(s;xt,1) = sµ̄t + s2vt/2 + (hu0 + hur rt)
sθu

1− sθu
− (hd0 + h̃dr r̃t)

sθd
1 + sθd

.
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Therefore,

A(1) = sµ+ hu0
sθu

1− sθu
− hd0

sθd
1 + sθd

,

Bv(1) = sµv + s2/2,

Br(1) = s(µr + 1) + sθuh
u
r/(1− sθu),

B̃r(1) = −s(µr + 1)− sθdh̃dr/(1 + sθd).
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