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1. Introduction

Many collective decisions share the following features. A group of individ-

uals need to decide which of two possible actions to take. The members of

the group agree that the optimal action depends on whether certain premises

or pieces of evidence are established as being true. For example, in a crimi-

nal trial, a jury (or alternatively, judges in an appeals court) needs to decide

whether the defendant is guilty or innocent. The jurors may agree that the

defendant should be convicted if certain premises are found to be true, e.g.,

if there are reliable eyewitnesses who saw him at the scene of the crime, if a

weapon was found with the defendant�s �ngerprints, if he could not produce

a credible alibi, etc. Another example is that of a tenure decision in acad-

emia. The members of the committee may agree that the person should be

granted tenure if it is established that the candidate has had an impact on the

profession, and/or he has su¢ ciently many quality publications, and/or he is

a good citizen, etc. Similar considerations arise when the representatives of

a nation or a group of nations need to decide whether or not to implement

sanctions against some country. The decision will depend on whether the in-

dividuals members believe that some set of premises are true, e.g., the country

in question is developing weapons of mass destruction, it is committing crimes

against humanity, it has violated international treaties, and so forth.

The most common procedure for reaching a group decision is to hold a vote.

Oftentimes, individual members of the group have only partial or imprecise

information on the truthfulness of the relevant premises, hence, a vote may

help in aggregating the members�beliefs about the validity of the premises. A

natural question that arises is whether the group decision depends on whether

one aggregates the individual members�beliefs about the relevant premises or

over the action to be taken. This question is at the heart of the �doctrinal

paradox�or �discursive dilemma,��rst introduced and studied by Kornhauser

and Sager (1986), Pettit (2001), and Brennan (2001), and which has received

an increased interest over the past decade in varied academic literatures in-

cluding computer science, economics, law, philosophy, and political science

(see e.g. List and Puppe (2009) for a survey).
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The �paradox�or �dilemma�stems from the fact that the group decision

may be di¤erent depending on which aggregation method is used: premise-

based or outcome-based. To illustrate this, consider the jury example described

above. Suppose the jurors agree that the defendant is guilty if and only if

two pieces of evidence are established. Each juror has formed an opinion

regarding the validity of the relevant pieced of evidence, and these opinions

are aggregated by a majority vote. Suppose that a third of the jury is convinced

that both pieces of evidence are established, a second third is convinced that

only the �rst piece of evidence is established, while the rest is convinced that

only the second piece of evidence is established. If members of the jury vote

truthfully, then the defendant will go free if the vote is on the �nal verdict,

while both pieces of evidence would pass - resulting in a guilty verdict - if

voting on evidence. Beyond this simple example of logical conjunction over

two premises, numerous results have been established to show the impossibility

of �nding aggregation methods that deliver logically consistent judgments.

Various applications have been cited in the literature, including those listed

above.

These impossibility results motivate the next question to investigate, which

is to determine which approach �aggregating opinions about premises versus

outcomes � is best. The purpose of the present paper is to compare the

outcome-based versus the premise-based procedures in terms of their ability

to aggregate information in the presence of strategic individuals with common

interest. Inspired by the Condorcet Jury theorem, we assume that each in-

dividual independently receives some noisy signals regarding the truth value

of the premises. Much of the literature on voting and information aggrega-

tion has focused on the case of common interest: there is a �truth�out there

(e.g., guilty/innocent), as well as an unambiguous optimal action, given the

truth. Opinions may vary because of di¤erent interpretations or realizations

of signals.1 We, therefore, assume that individuals all share the same standard

1Some notable examples include Austen-Smith and Banks (1996), Feddersen and Pe-
sendorfer (1998), McLennan (1998) and the references therein, and more recently, Persico
(2004).
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regarding which combinations of premises must lead to a positive decision. As

in the doctrinal paradox, we consider two aggregation procedures, whereby

individuals submit their opinions regarding either premises or outcomes. A

critical di¤erence, though, is that these reports need not be truthful (in the

sense of systematically reporting their signals). For instance, an individual is

free to report that some premise is positive while he received a null signal, or

to report that a positive decision should be taken while his signal is such that

a null decision should be taken. Why might he be inclined to do so? There

are at least two reasons. First he may be more concerned about incorrectly

taking a positive decision versus incorrectly taking the null decision, or vice

versa. Second, an individual can in�uence the truth value of a premise, or the

�nal decision, only when he is pivotal, and his opinion conditional on being

pivotal may be di¤erent from his signal. We will thus investigate and compare

the outcomes that can be supported by Bayesian Nash equilibrium (BNE)

strategies in both the premise and the outcome-based games.2

Our results go as follows. First, gathering opinions about premises is sys-

tematically at least as good as gathering opinions about outcomes, in the sense

that any symmetric3 BNE outcome in the latter game is a symmetric BNE

outcome in the former game (see Proposition 1). This result holds true for any

super-majority rule that is not unanimous, for a large class of common prefer-

ences, independently of the logical connection between premises and outcomes,

independently of the probability distribution of the true states, and indepen-

dently of the probability distributions of the signals conditional on the states.

Second, the converse is not true, and in particular there are cases where the

ex-ante welfare of a symmetric BNE of the premise-based game is strictly

larger than the ex-ante welfare of any symmetric BNE in the outcome-based

game (see Example 1). Third, while making collective decisions by gathering

opinions regarding premises can lead to a strictly higher ex-ante welfare in the

2We do not model any communication that may occur between the individual members
of the group. This direction is left for future research.

3We will focus on symmetric BNEs throughout the paper because these are the most
natural in our symmetric environment, but all our results remain true over the set of all
BNEs.
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presence of �nitely many individuals, we also show that, generically, gains over

the outcome-based approach can only be marginal when numerous individuals

express independent opinions. Indeed, we prove that the outcome-based game

is almost always asymptotically e¢ cient (see Proposition 3).4 To the best of

our knowledge, this is the most general result concerning the asymptotic ef-

�ciency of outcome-based voting. Hence, as a corollary of Proposition 1, the

premise-based game is almost always asymptotically e¢ cient, as well. Yet we

also provide an alternative su¢ cient condition for asymptotic e¢ ciency in the

premise-based game (see Proposition 2) that is useful to show that there exist

(non-generic) cases where the premise-based game is asymptotically e¢ cient,

while the outcome-based game is not (see Example 2).

Related Literature

Strategic considerations were �rst introduced to the literature on the doc-

trinal paradox by Dietrich and List (2007). Instead of investigating informa-

tion aggregation, they investigate which of the two rules is more robust against

strategic manipulations in a context where individuals want the �nal decision

to be as close as possible to their exogenous opinion (private value setting).

In our model, instead, individuals share the common preference of taking a

collective decision that is best given the true state, while their opinions are

derived from noisy signals of that state. Their results are then quite di¤erent.

For instance, truth-telling is a weakly dominant strategy in the outcome-based

game of their model, while it need not even be a Bayesian Nash equilibrium

in ours.

Bozbay et al. (2011) are interested in characterizing procedures for ag-

gregating reports on the truthfulness of premises for which truth-telling is an

e¢ cient BNE. Note that they take a mechanism-design approach, while we

study a �xed mechanism (any given super-majority) in two di¤erent scenarios

(premise vs. outcome-based). Bozbay et al. (2011) focus on the case of two in-

dependent signals on two premises, where the disutility from making a mistake
4Our treatment of asymptotic e¢ ciency follows the tradition of virtually all works on

information aggregation (e.g., Feddersen and Pesendorfer (1997,1998) and more recently,
Ahn and Oliveros (2011a,b) and the references therein).
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is independent of its type (e.g. convicting an innocent versus letting a guilty

person go free). Their main results are concerned with a class of mechanisms,

referred to as �quota rules�, that precludes the outcome-based voting rule.5

These rules are characterized by two numbers representing the percentage of

positive votes needed on each of the two premises to make it pass before apply-

ing the society standard to determine the �nal decision.6 The authors provide

a condition on the parameters of their model that is necessary and su¢ cient

to guarantee the existence of a quota rule for which truth-telling forms an

e¢ cient BNE of the premise-based game.7

The existence of a quota rule that induces an e¢ cient BNE in truthful

strategies may be viewed as a knife-edge result in the following sense: when-

ever such a rule exists, the pair of premise-speci�c thresholds must be unique

(see their Theorem 4 and Corollary 2). Their results are irrelevant for our

model whenever these two thresholds di¤er. A di¢ culty with their approach

is that the mechanism designer needs to know precisely the parameters of the

model if his objective is to design a quota rule for which truth-telling is an

e¢ cient BNE. Furthermore, he would have to change the mechanism whenever

a new situation with di¤erent parameters occurs. Even though truth-telling

need not be a BNE when the same quotas are applied to all premises, there

will always be other BNEs. The best BNEs may have some focal attractive-

ness, and changing the equilibrium play as the underlying parameters of the

model change may be viewed as a milder requirement compared to the need

of changing the mechanism altogether. Nevertheless, the results of Bozbay et

al. may be helpful in deriving conditions on the parameters of a model that

are necessary and su¢ cient for a given mechanism- such as the premise-based

5The outcome-based procedure violates their independence axiom. It also violates their
monotonicity axiom when the society standard is di¤erent from classical conjunction or
disjunction (or, in their terminology, when individuals have consequentialist preferences of
the �rst type). Results that rely on these axioms cannot apply to our outcome-based game.

6Our premise-based game is thus a special case of quota rule where both quotas are
equal.

7Bozbay et al. also present other results (their Corollary 1, Proposition 1, and Theorem
5) that extend beyond the class of quota rules, and which also apply to outcome-based
voting.
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or outcome-based voting rule - to admit an e¢ cient truthfull equilibrium.

We now turn our attention to papers that relate only to our asymptotic

results. A few authors have investigated the �truth-tracking� properties of

outcome-based and premise-based aggregation methods - see List (2005) and

Bovens and Rabinowicz (2006) for the earliest results on the topic (see also List

(2006, Section 6)). The di¤erence between our approaches is that they assume

that individuals report their opinions truthfully (as in the original Condorcet

Jury theorem). Accounting for the incentives of strategic individuals leads to

fundamentally di¤erent asymptotic results. Indeed, the main point of the small

truth-tracking literature is that premise-based and outcome-based aggregation

methods are not systematically comparable, as one may dominate the other

and vice versa as a function of the relative reliability of the signals on each

premise.

The systematic study of strategic multi-issue voting and information ag-

gregation has been initiated by Ahn and Oliveros (2011a, 11b). The �rst paper

is less relevant as it focuses on pure private values. The second paper, on the

other hand, compares the asymptotic e¢ ciency of a joint trial vs. two separate

trials for two defendants in an environment with common values. Given the

generality of Ahn and Oliveros�(2011b) framework, our premise-based game

could essentially be seen as a particular case of their joint trial scenario with

only a binary decision to be chosen. On the other hand, our outcome-based

game bears little resemblance with their split trial scenario. Comparing the

type of asymptotic results we derive,8 two di¤erences are worth noting. First,

we provide an example where the premise-based game is asymptotically strictly

superior to the outcome-based game, while their main result shows that the

joint trial game is asymptotically e¢ cient if and only if their split trial game is.

Second, the translation of their su¢ cient condition for asymptotic e¢ ciency

in our setting is much less permissive than the ones we derive. In particular,

their condition would be far from being generic in the outcome based approach.

This point will be further discussed in Section 5.

8Ahn and Oliveros (2011b) focus exclusively on asymptotic results.
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2. Model

There exists a set of K issues or premises that are relevant for some binary

decision. Each premise may be either true (denoted by the value 1) or false

(denoted by 0). The actual state of nature is thus a vector ! 2 f0; 1gK .
The relative likelihood of these various states is captured by a probability

distribution � 2 �(f0; 1gK). There are n individuals and each individual i
receives only a noisy signal of the actual state - si 2 f0; 1gK . Signals are
drawn independently (conditional on the state) across individuals. Let p :

f0; 1gK ! �(f0; 1gK) be the function that describes the relative likelihood of
the various signals as a function of the actual state: p!(x) is the probability of

receiving the signal x 2 f0; 1gK conditional on the fact that the actual state
is !.

The society�s standard, f : f0; 1gK ! f0; 1g, determines which decision to
take ��0 = fail�vs. �1 = pass��as a function of the validity of the various

underlying premises. In order for the problem to be non-trivial, we assume

that there exist a state ! such that f(!) = 0 and another state !0 such that

f(!0) = 1. Simple examples include logical conjunction (unanimity) �all the

underlying premises must be true in order for the decision to be positive �,

logical disjunction �at least one underlying premise must be true in order for

the decision to be positive�, and majority �at least K+1
2
of the underlying

premises must be true in order for the decision to be positive. Obviously, a

society�s standard may also include more complicated logical relations between

premises and decisions. For instance, the �rst premise together with a majority

of the remaining ones must be true in order for the decision to be positive.

All the standards provided so far happen to be monotone: a positive deci-

sion is taken at a state ! whenever there exists a state !0 such that ! � !0 and
a positive decision is taken at !0. Note that one can think of yet other natural

examples where the standard is not monotone. For instance, a country may

decide that it needs to expand its military capability only if there is a threat

either from the north or the south, but not if intelligence shows that neither

the north nor the south have hostile plans, nor if both the north and the south

have hostile plans (e.g. because there is no way to defend oneself against a
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coordinated attack). Our results do not rely on monotonicity, and are valid

for any non-trivial standard.

It is assumed that each individual shares the same standard as the society.

Individuals have the common objective of trying to take the decision that is

right for the actual state. This means that individuals�utilities are de�ned

by comparison between the actual decision and f(!): 0 if match, �q if the
decision is strictly below f(!), and �(1 � q) if the decision is strictly above
f(!).

A super-majority voting rule is a general method to make collective judge-

ments. Given a threshold � 2 (1
2
; 1), a judgement is positive if at least �%

of the population votes in its favor. Given a �-majority voting rule, decisions

can then be taken via two di¤erent natural mechanisms. In a premise-based

approach, individuals are asked to submit ballots regarding the validity of all

premises. The �-majority rule is then applied premise-by-premise to deter-

mine their respective validity, as judged by the collectivity, and the society�s

standard is applied to determine the �nal decision. Formally, individual i�s

ballot in the premise-based game is a vector bi 2 f0; 1gK . Let then � k(bk) be
premise k�s revealed truth value: 1 if

P
i2I b

k
i � �n, and 0 otherwise. The �nal

outcome associated with the pro�le b of ballots is f((� k(bk))Kk=1). Individual i�s

strategy in this game is a function �i : f0; 1gK ! �(f0; 1gK), where �i(si) is
the probability distribution with which he will decide which ballot to submit,

conditional on his signal si.

In an outcome-based approach, each individual is only asked to submit his

opinion regarding the �nal decision - not the premises. Individual i�s ballot in

that case is just an element b̂i 2 f0; 1g. The decision is positive if and only if
at least �% of the ballots are equal to 1. Individual i�s strategy in this game

is a function �̂i : f0; 1gK ! �(f0; 1g). With slight abuse of notation, �̂i(si)
will denote the probability with which he will vote for the decision to pass,

conditional on his signal si.

In either game, a pro�le of strategies form a Bayesian Nash equilibrium

(BNE) if the action prescribed by the strategy of each player is optimal for

each signal he might receive. While not needed in any of our results, we will
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restrict attention to symmetric BNEs. Given that both games are symmetric,

these equilibria are more intuitive and more focal.

3. Superiority of the Premise-Based Approach

Proposition 1 Let �̂ = (�̂1; : : : ; �̂n) be a symmetric BNE in the outcome-

based game. Then there exists a symmetric BNE in the premise-based game,

� = (�1; : : : ; �n); such that for every vector of signal realizations, the strategy

pro�le � induces the same probability distribution over decisions as �̂:

Proof: By assumption, there exists a state ! such that f(!) = 0. For

notational simplicity, one may rede�ne the truth value of premises so that

f(0; : : : ; 0) = 0. The rest of the proof is written under this assumption. We

also know by assumption that there exists �! such that f(�!) = 1.

For every voter i; and for every signal realization si; de�ne �i(si) to be a

mixed strategy that plays action �! with probability �̂i(si) and plays the action

(0; : : : ; 0) with probability 1� �̂i(si). It follows that for a given vector of signal
realizations, the probability that the decision is passed under � is equal to the

probability that at least �% of the voters chose �!; which in turn, equals to the

probability that at least �% of the voters chose the action 1 under �̂.

We now check that � forms a symmetric BNE in the premise-based game.

Fix an individual i. When other voters play according to ��i, the pro�le

of ballots that voter i faces will involve k actions of the form (0; : : : ; 0) and

n � 1 � k actions of the form �!, where k varies between 0 and n � 1. Voter
i�s action has an impact on the outcome against such distributions of ballots

if and only if k is equal to the integer k� that is larger or equal to �n � 1
and strictly smaller than �n. Voter i�s set of actions can then be partitioned

into two subsets: A0 which contains all those actions that lead to the zero

outcome when played against n� 1� k� ballots �! (e.g. (0; : : : ; 0) 2 A0), and
A1 which contains all other actions, i.e. all those actions that lead to the

positive outcome when played against n� 1� k� ballots �! (e.g. �! 2 A1).
Let �0i(si) be some strategy in the premise-based game that assigns proba-

bility �0i(a; si) to an action a after receiving the signal si. Consider the strategy
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�̂
0
i in the outcome-based game that picks 1 with probability

P
a2A1 �

0
i(si) after

receiving the signal si. It is then easy to see that playing �̂
0
i against �̂�i in the

outcome-based game leads to the same distribution over outcomes as playing

�0i against ��i in the premise-based game. The impossibility of �nding a prof-

itable deviation against �̂�i in the outcome-based game, thus implies that it

is impossible to �nd a pro�table deviation against ��i in the premise-based

game. It follows that � constitutes a BNE in the premise-based game. �
The next example shows that the converse does not hold. There are robust

situations where symmetric BNE outcomes of the premise-based game cannot

be achieved by any symmetric BNE of the outcome-based game. The next

example illustrates an even stronger point, namely that the maximal ex-ante

welfare achievable by a symmetric BNE can be strictly larger in the premise-

based than in the outcome-based game.

Example 1 Consider a problem with three premises, and three individuals.

The society�s standard is to take a positive decision if and only if two of three

premises are positive. Suppose that q = 1=2, meaning that the disutility from

a false positive is equal to the disutility from a false negative. Let � be any

prior such that �101 = 0:4 and �100 = �001 = 0:15. Suppose that conditional

probabilities are such that p101(101) = 1=2, p101(100) = 1=4, and p101(001) =

1=4, while p!(!) = 1 for all ! 6= (1; 0; 1). We start by computing the best ex-
ante welfare that can be achieved by a symmetric BNE in the outcome-based

game. Given McLennan�s (1998) result, it amounts to computing the largest

ex-ante welfare that can be achieved via any symmetric strategy pro�le. Given

the signal structure, it is easy to check that an optimal strategy pro�le will

have �̂(s) = 0 for all s such that f(s) = 0 and s is di¤erent from (1; 0; 0) and

(0; 0; 1), and �̂(s) = 1 for all s such that f(s) = 1. Symmetry then allows us to

restrict attention without loss of generality to the case �̂(1; 0; 0) = �̂(0; 0; 1).

If � denotes this common number, then rather straightforward computations

allow to show that the ex-ante welfare of an individual (same for all, given
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that they share a common interest) is equal to:

1

4
�3 � 9

20
�2 +

3

20
�� 1

10
:

This expression is maximized at � = 1=5. One can check that the ex-ante

welfare from truth-telling in the premise-based game is already strictly larger

than the maximal welfare achievable in the outcome-based game (the exact

di¤erence is equal to 0:0235).

Observe that this example is robust in the sense that there exists an open

set of conditional probabilities in �(
)
 around p such that the maximal ex-

ante welfare associated to a symmetric BNE is strictly larger in the premise-

based game than in the outcome-based game, for any of pro�le r of conditional

probabilities in that set. For each strategy pro�le, the ex-ante welfare (in both

games) is a linear function of the probabilities associated with each pro�le of

votes conditional on the various states. These probabilities vary continuously

with r, and hence the sequence of functions that determines the ex-ante welfare

as a function of the strategy pro�le converges uniformly to the ex-ante welfare

function associated with p as r approaches p. The maximal value of the ex-ante

welfare (derived from choosing the optimal strategy pro�le) will thus converge

to the maximal value at p when r approaches p, and it must thus be that

the premise-based becomes strictly superior compared to the outcome-based

whenever q is close enough to p.

Remarks. In Example 1 we have relied on McLennan (1998) to obtain
the maximal ex-ante welfare for outcome-based voting. Note, however, that

while any pro�le of mixed strategies that is collectively optimal forms a BNE

in common-interest games, the converse is false (i.e. common-interest games

often admit numerous other BNEs). In addition, McLennan (1998) does not

allow us to conclude whether the distribution over outcomes induced by any

equilibrium (not necessarily the e¢ cient one) in one mechanism can be repli-

cated by some equilibrium in another mechanism. Furthermore, his results

cannot point at an environment (such as that in Example 1) where the e¢ -

cient equilibrium of one mechanism achieves a strictly higher ex-ante welfare
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than the e¢ cient equilibrium of another mechanism.

Note also that from Proposition 1 alone we cannot conclude that the con-

verse is false. Indeed, in the related paper by Ahn and Oliveros (2011b) it is

shown that while any equilibrium in the trial-by-trial mechanism can be repli-

cated with combined voting, the converse is also true. The di¤erence in results

comes from the fact that our outcome-based game is di¤erent from their split

trial scenario, as we explain in the Introduction.

4. Large Groups and Efficiency at the Limit

We start by proving a simple lemma that will allow us to derive a useful

su¢ cient condition for asymptotic e¢ ciency in the premise-based game.

Lemma 1 Let � 2 [1=2; 1), and (�l)Ll=1, (�l)Ll=1 be two vectors with compo-
nents in [0; 1]. If minl �l > maxl �l, then there exists (x; y) 2 [0; 1]� [0; 1] such
that

(8l = 1; : : : L) : �lx+ (1� �l)y > �

(8l = 1; : : : L) : �lx+ (1� �l)y < �

Proof: Let � = minl �l and � = maxl �l. Consider the vector

(x; y) = (�; �) + (�;� �
2
[
�

1� � +
�

1� � ]):

If � is small is enough, then (x; y) 2 [0; 1]2. Observe that �lx + (1 � �l)y �
�x+ (1� �)y, for all l, because x > y and �l � �. In addition,

�x+(1��)y = �+���(1��) �
2
[
�

1� �+
�

1� � ] > �+���(1��)
�

2
[
�

1� �+
�

1� � ] = �;

where the inequality follows from the fact that � > �. Hence �lx+(1��l)y >
�, as desired.

Similarly, observe that �lx + (1� �l)y � �x + (1� �)y, for all l, because
x > y and �l � �. In addition,

�x+(1��)y = �+���(1��) �
2
[
�

1� �+
�

1� � ] < �+���(1��)
�

2
[
�

1� �+
�

1� � ] = �;
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where the inequality follows from the fact that � > �. Hence �lx+(1��l)y <
�, as desired. �
The lemma is useful in the following way. Suppose that the objective is to

implement some positive decision when the state falls in some subset A of 
,

and to implement the other decision when the state falls in a disjoint subset

B of 
. Suppose also that there is a set S of signals such that the probability

of getting a signal in S given any true state in A (cf. the �l�s) is strictly larger

than the probability of getting a signal in S given any true state in B (cf.

the �l�s). Then it is possible to �nd a �separating mixed strategy� - voting

for the positive decision with probability x when the signal falls in S, and

with probability y when the signals falls outside of S �such that the desired

decisions are implemented for sure in a large population of independent voters

who follow this strategy in a super-majority game with threshold �. The next

proposition applies this idea issue by issue.

Proposition 2 Suppose that, for all k 2 f1; : : : ; Kg, there exists a set Sk �
f0; 1gK of signals such that the probability of receiving a signal in Sk at any

state ! such that !k = 1 is strictly larger than the probability of receiving a

signal in Sk at any state ! such that !k = 0:

min
! s.t. !k=1

X
s2Sk

p!(s) > max
! s.t. !k=0

X
s2Sk

p!(s):

Then there exists a sequence of symmetric BNEs in the premise-based game

such that the probability of error in each state goes down to zero as n grows.

Proof: Observe that McLennan�s (1998) result allows to limit ourselves to

prove a weaker statement, namely that there exists a sequence of symmetric

strategies (not necessarily in equilibrium) in the premise-based game such that

the probability of error in each state decreases to zero as n grows. Indeed, any

symmetric strategy pro�le will be dominated by another strategy pro�le that is

ex-ante e¢ cient, and which will thus be a symmetric BNE, as well as achieving

e¢ ciency at the limit.

14



Fix a premise k, and let (x; y) be the two numbers derived in the previous

Lemma, with the various ��s being equal to
P

s2Sk p!(s), with ! varying in

f0; 1gK such that !k = 1, and the ��s being equal to
P

s2Sk p!(s), with !

varying in f0; 1gK such that !k = 0. Let then �̂ be a strategy such that

each individual votes positively on premise k with probability x whenever the

signal falls in Sk, and with probability y otherwise. The previous Lemma and

the law of large numbers imply that the probability of having a number of

positive votes on premise k larger than � converges to 1 at any state ! such

that !k = 1, and that the probability of having a number of positive votes on

premise k smaller than � converges to 1 at any state ! such that !k = 0. In

other words, the probability of error on any premise goes down to zero as n

grows if these strategies are followed, and the probability of making the wrong

decision also goes down to zero, a fortiori. �
A similar technique would allow us to prove the following result for asymp-

totic e¢ ciency in the outcome-based game: if there exists a set S � f0; 1gK of
signals such that the probability of receiving a signal in S at any state ! with

f(!) = 1 is strictly larger than the probability of receiving a signal in S at

any state ! with f(!) = 0, then there exists a sequence of symmetric BNEs in

the outcome-based game such that the probability of error in each state goes

down to zero as n grows. Instead of proving this claim, we establish an even

weaker su¢ cient condition for the outcome-based game. This new condition

will allow us to derive several key results in this section and the next. From

now on, let 
 := f0; 1gK denote the set of states (or signals), let I be the set
of states ! such that f(!) = 0, and let G = 
 n I.

Proposition 3 Fix � 2 [1=2; 1). Suppose that the collection of vectors (p!)!2

describing the probability distribution of signals as a function of the true state

satisfy the following condition:

(9x 2 R
) : p! � x > 0, for all ! 2 G and p! � x < 0, for all ! 2 I:

Then there exists a sequence of symmetric BNEs in the outcome-based game

such that the probability of error in each state goes down to zero as n grows.
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Proof: As in the proof of the previous Proposition, McLennan�s (1998)

result allows to limit ourselves to prove a weaker statement, namely that there

exists a sequence of symmetric strategies (not necessarily in equilibrium) in the

outcome-based game such that the probability of error in each state decreases

to zero as n grows.

Notice that x can be taken as close as desired to the null vector in R
, as �x
satis�es the same set of inequalities as x, for each � > 0. Hence consider an x

small enough so that (�; : : : ; �)+x 2 [0; 1]
. Consider then the mixed strategy
� where an individual votes positively on the �nal decision with probability

� + x(s) if he receives the signal s. Trivially, we have that p! � � > �, for all
! 2 G, and p! �� < �, for all ! 2 I. The law of large numbers implies that the
probability of having a number of positive votes on the �nal decision larger

than � converges to 1 at any state ! 2 G, and that the probability of having a
number of positive votes on the �nal decision smaller than � converges to 1 at

any state ! 2 I. In other words, the probability of making the wrong decision
goes down to zero when n grows, as desired. �
The stronger su¢ cient condition, stated right before Proposition 3, can

now be derived as a corollary of that proposition and Lemma 1.

Corollary 2 Suppose that there exists a set S � 
 of signals such that:

min
!2G

X
s2S

p!(s) > max
!2I

X
s2S

p!(s):

Then there exists a sequence of symmetric BNEs in the outcome-based game

such that the probability of error in each state goes down to zero as n grows.

Proof: By Lemma 1, there exists (y; z) 2 [0; 1]2 such that y
P

s2G p!(s) +

z
P

s2I p!(s) is strictly larger that �, for all ! 2 G, and strictly smaller than �
for all ! 2 I. Hence the assumption of Proposition 3 is satis�ed for x de�ned
as follows: x(s) = y � � if s 2 G and = z � � if s 2 I. �
Another immediate corollary of Proposition 3 establishes that the outcome-

based game is generically asymptotically e¢ cient.
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Corollary 3 Fix � 2 [1=2; 1). Suppose that the collection of vectors (p!)!2f0;1gK
describing the probability distribution of signals as a function of the true state

are linearly independent. Then there exists a sequence of symmetric BNEs in

the outcome-based game such that the probability of error in each state goes

down to zero as n grows. In particular, asymptotic e¢ ciency is guaranteed at

almost all p 2 �(
)
.

Proof: Fix � > 0. Consider now the system of equations p! � x = �, for all

! 2 G and p! �x = ��, for all ! 2 I. This system admits a solution x since the
matrix (p!)!2f0;1gK is invertible, and the previous proposition thus applies. �
By Proposition 1, asymptotic e¢ ciency is guaranteed in the premise-based

game whenever it happens in its outcome-based variant. We conclude this

section by providing an example showing that the converse does not hold. It

also shows that the su¢ cient condition stated in Proposition 3 does not imply

the one stated in Proposition 2.

Example 2 Consider a problem with three premises �K = 3 � and the

society�s standard being the simple majority �f(!) = 1 if and only if at least

two premises are positive. Suppose that conditional probabilities are de�ned

as follows: p010 picks (1; 1; 1) with probability � and (0; 0; 0) with probability

1��, p110 picks (1; 1; 1) with probability � and (0; 0; 0) with probability 1��,
p011 picks (1; 1; 1) with probability 
 and (0; 0; 0) with probability 1� 
, p111
picks (1; 1; 0), (1; 0; 1) and (0; 1; 1) with equal probability, while p! picks ! for

sure for any other state !. We claim that, whenever 
 > 0 and maxf
; 1=3g <
� < minf�; 2=3g, there exists a sequence of symmetric strategy pro�les in the
premise-based game such that the probability of error converges to zero in

every state, but not in the outcome-based game.

We begin by showing that Proposition 2 applies. Take S1 as the set of all

signals for which the �rst component is positive. The probability of getting

a signal in S1 is 2=3 in (1; 1; 1), � in (1; 1; 0), and 1 in any other ! such that

!1 = 1. The probability of getting a signal in S1 is � in (0; 1; 0), 
 in (0; 1; 1),

and 0 in any other ! such that !1 = 0. It is thus true that the probability

of getting a signal in S1 is larger at any state ! for which !1 = 1 than at
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any state !0 for which !01 = 0. Take S2 as the set of all signals for which the

second component is positive. It is easy to check that the minimal probability

of getting a signal in S2, conditional on the second component of the state

being positive, is equal to minf2=3; �; �; 
g, while the probability of getting a
signal in S2, conditional on the second component of the state being zero, is

zero. Finally, take S3 as the set of signals for which the third component is

positive, minus (1; 1; 1), plus (0; 0; 0). The probability of getting a signal in

S3 is 2=3 in (1; 1; 1), 1� 
 in (0; 1; 1), and 1 in any other ! such that !3 = 1.
The probability of getting a signal in S3 is 1� � in (0; 1; 0), 1� � in (1; 1; 0),
and 0 in any other ! such that !1 = 0. It is thus true that the probability of

getting a signal in S3 is larger at any state ! for which !1 = 1 than at any

state !0 for which !01 = 0.

We now show that it is impossible to reach asymptotic e¢ ciency in the

outcome-based game. Consider a group of size n. The distribution of the

number of positive votes when the state is (0; 1; 0) is the sum of n independent

draws of a variable that picks 1 with probability �xn(111) + (1 � �)xn(000)
and 0 with the complementary probability, where xn denotes the probability

ascribed by an optimal strategy for a group of size n to send a positive mes-

sage as a function of the signal. Similarly, the distribution of the number of

positive votes when the state is (1; 1; 0) is the sum of n independent draws

of a variable that picks 1 with probability �xn(111) + (1 � �)xn(000) and 0
with the complementary probability. Also, the distribution of the number of

positive votes when the state is (0; 1; 1) is the sum of n independent draws of

a variable that picks 1 with probability 
xn(111) + (1� 
)xn(000) and 0 with
the complementary probability. Given that � falls strictly in between 
 and �,

it must be that �xn(111) + (1� �)xn(000) is larger or equal to the minimum
of �xn(111) + (1 � �)xn(000) and 
xn(111) + (1 � 
)xn(000). Hence, if the
probability of having a super-majority of positive votes increases to 1 in both

(1; 1; 0) and (0; 1; 1), then it also increases to 1 in (0; 1; 0). This shows that

asymptotic e¢ ciency cannot be reached in the outcome-based game.

18



5. Further Comparison with Ahn and Oliveros (2011b)

In this last section, we show that a natural analogue of Ahn and Oliveros�

(2011b) su¢ cient condition for asymptotic e¢ ciency to our outcome-based

game is signi�cantly stronger than the one derived in Proposition 3. Here is

the natural analogue of their condition in our framework:

There exists SI and SG � 
 such that SI \ SG = ; and (1)

1. (8! 2 I) :
P

s2SI p!(s) >
P

s2SG p!(s), and

2. (8! 2 G) :
P

s2SG p!(s) >
P

s2SI p!(s).

In other words, it is strictly more likely to get a signal in SG rather than

a signal in SI when the true state is associated with a positive decision, and

vice versa when the optimal decision at the true state is zero.

First observe that condition (1) trivially implies the condition stated in

Proposition 3, simply by taking x(s) = 1 if s 2 SG, �1 if s 2 SI , and 0

otherwise. On the other hand, condition (1) is signi�cantly stronger than

the condition appearing in Proposition 3. For instance, it does not allow to

establish the generic asymptotic e¢ ciency of the outcome-based game, as we

did in Corollary 3. To see this, consider for instance the case of two premises,

with a society standard where the positive decision is optimal if and only if

both premises are positive. It is easy to check that condition (1) does not

apply for any collection of conditional probabilities such that p11(11) < 1=2

and p00(11) < 1=2. Such a set clearly contains an open subset of �(
)
.

Notice that such distributions are not unreasonable at all. It is quite possible,

for instance, that signals on the two premises are drawn independently, and

that the probability of getting a positive signal is systematically rather low

(e.g. it is overall di¢ cult to establish the evidence of a crime even if they are

factually true). Asymptotic e¢ ciency at the limit can be guaranteed, though,

if the probability of getting a positive signal conditional on the premise being

true is larger than the probability of receiving a positive signal conditional

on the premise being false. Indeed, let �k be the probability of receiving a
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positive signal when premise k is true, and �k be the probability of receiving

a positive signal when premise k is false. Corollary 2 implies that asymptotic

e¢ ciency is guaranteed in the outcome-based game whenever �k > �k (simply

take S = f11g, since �1�2 > �1�2; �1�2 > �1�2). Yet both p11(11) and

p11(00) will be smaller than 1=2 (and hence condition (1) does not apply) if

�1�2 < 1=2.
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