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ABSTRACT 

Pricing Liquidity Risk with Heterogeneous Investment Horizons* 

We develop a liquidity-based asset pricing model featuring investors with 
heterogeneous investment horizons and stochastic transaction costs. In an 
equilibrium where all investors invest in all assets (integration), we find that 
the existence of investors with heterogeneous horizons, as opposed to 
homogeneous horizons, reduces the importance of liquidity risk relative to the 
standard CAPM market risk and generates a more complex effect of expected 
liquidity. In an equilibrium where short-term investors do not invest in some 
more illiquid assets (partial segmentation), our model generates an additional 
segmentation premium for these assets. We estimate the model for the cross-
section of U.S. stocks using GMM and find that our heterogeneous-horizon 
asset pricing model fares better than a standard liquidity-adjusted CAPM. The 
segmented version of our model delivers the best cross-sectional fit and 
generates a substantial effect of expected liquidity on expected returns. 
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1 Introduction

The investment horizon is a key feature distinguishing different categories of investors,

with high-frequency traders and pension funds at the two extremes of the investment

horizon spectrum. Most of the literature on multi-period portfolio choice and asset pricing

builds on the theoretical insight of Merton’s (1971) hedging demands and demonstrates

that multi-period decisions differ substantially from single-period decisions in different

model specifications (e.g., Campbell and Viceira, 1999; Balduzzi and Lynch, 1997; Brandt,

1999).

Surprisingly, the interaction between investment horizons and liquidity has attracted

much less attention. Even in the absence of hedging demands, heterogeneous investment

horizons can have important asset pricing effects for the simple reason that different

horizons imply different trading frequencies. More specifically, liquidity plays a distinct

role for investors with diverse horizons insofar as trading costs only matter when trading

actually takes place. The investment horizon then becomes a key element in the asset

pricing effects of liquidity.

We explicitly take this standpoint and derive a new liquidity-based asset pricing model

featuring investors with heterogeneous investment horizons and stochastic transaction

costs. Investors with longer investment horizons are clearly less concerned about trading

costs, because they do not trade every period. A longer investment horizon then may

allow to earn higher returns that can cover the higher trading costs of illiquid assets.

Previous theories of liquidity and asset prices have largely ignored heterogeneity in

investor horizons, with the exception of the seminal paper of Amihud and Mendelson

(1986), who study the existence of clienteles that have different liquidity preferences in a

setting where transaction costs are constant. However, there is large empirical evidence

that liquidity is time-varying. The most influential asset pricing model with liquidity

risk, Acharya and Pedersen (2005), features stochastic transactions costs, but includes

only one type of investors, who trade every period. Our paper effectively bridges these

two seminal papers, because our model entails different clienteles, as in Amihud and

Mendelson (1986), with stochastic illiquidity, as in Acharya and Pedersen (2005).

This theoretical setup delivers a number of novel and interesting predictions in two

basic alternative equilibriums. If transaction costs are relatively small, we obtain an

equilibrium where all investors trade all assets (integration). In this case, the importance

of liquidity risk relative to standard CAPM market risk is lower than in a setting where all

investors trade every period, because of the presence of investors with longer investment

horizons. More specifically, the relative importance of the two risk premiums depends
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crucially on the risk aversion of long-term versus short-term investors. For example, if

long-term investors are more risk-averse, liquidity risk becomes more important because

short-term investors, who care more about liquidity, hold a relatively larger fraction of

the asset supply in equilibrium.

Another important prediction of this setup is that, given that some investors do not

trade every period, the effect of expected liquidity is smaller and varies in the cross-section

of stocks according to the covariance between returns and illiquidity costs. Interestingly,

we identify cases in the cross-section in which high liquidity risk may actually lead to a

lower premium on expected liquidity due to the presence of long-term investors.

Alternatively, if transaction costs on some assets are sufficiently large, we obtain an

equilibrium where short-term investors do not invest in some more illiquid assets (partial

segmentation). In this case, our model shows that expected stock returns contain again

a larger proportion of market risk premiums relative to liquidity risk premium, plus an

additional segmentation premium reflecting the supply for the segmented asset. This

segmentation premium is due to imperfect risk sharing: only long-term investors hold

these illiquid assets. We also find that the effect of expected liquidity on returns is

naturally larger for the assets that are held by all investors. In this setup, an increasing

and concave relationship between expected returns and trading costs arises naturally,

since excessive trading costs exclude the clientele that is more sensitive to liquidity costs.

These theoretical predictions are borne out in the empirical estimation. Specifically,

we explore the cross-sectional predictions of the model using the cross-section of U.S.

stocks over the period 1964 to 2009. We use the illiquidity measure of Amihud (2002)

to proxy for liquidity costs. We find that our heterogeneous-horizon asset pricing model

fares better than a standard or a liquidity-adjusted CAPM in terms of R-squared for the

cross-section of expected returns.

We also find that segmentation is an important feature of our model with heterogenous

horizons. Specifically, when some investors do not invest in the most illiquid assets, the

model delivers a much more accurate cross-sectional fit. Interestingly, our model empirical

estimates can also be used to make inferences about the implied number of investors in

each horizon class. We also find that the estimated effect of expected liquidity on returns

is much larger when we allow for segmentation.

Our paper contributes to the existing literature on liquidity and asset pricing along

three general dimensions. First, our model is related to other theoretical papers on

the effects of liquidity on portfolio choice and prices, besides Amihud and Mendelson

(1986) and Acharya and Pedersen (2005). Starting with the work of Constantinides

(1986), several researchers have examined multi-period portfolio choice in the presence

2



of transaction costs. Our key distinguishing feature is the introduction of heterogenous

investment horizons and liquidity risk, while we simplify the analysis in some other less

crucial dimensions to obtain a tractable asset pricing model. In particular, we assume

that long-term investors do not rebalance at intermediate dates and that transaction

costs are i.i.d. over time.

Our empirical results contribute to a rich literature that has shown the asset pricing

implications of liquidity and liquidity risk. Amihud (2002) finds that stock returns are

increasing in the level of illiquidity both in the cross-section (consistent with Amihud and

Mendelson, 1986) and in the time-series. Pástor and Stambaugh (2003) show that the

sensitivity of stock returns to aggregate liquidity is priced. Acharya and Pedersen (2005)

integrate these effects into a liquidity-adjusted CAPM that performs better empirically

than the standard CAPM. The liquidity-adjusted CAPM is such that, in addition to the

standard CAPM effects, the return on a security increases with the level of illiquidity

and is influenced by three different liquidity risk covariances. Several articles build on

these seminal papers and document the pricing of liquidity and liquidity risk in various

asset classes.1 However, none of these papers study the liquidity effects of heterogenous

investment horizons.

Finally, our paper is also related to research showing the relations between liquidity

and investors’ holding periods. For example, Chalmers and Kadlec (1998) find evidence

that it is not the spread, but the amortized spread that is more relevant as a measure of

transaction costs, as it takes into account the length of investors’ holding periods. Cremers

and Pareek (2009) study how investment horizons of institutional investors affect market

efficiency. Cella, Ellul, and Giannetti (2011) demonstrate that investors’ short horizons

amplify the effects of market-wide negative shocks. All these articles use turnover data

for stocks and investors to capture investment horizons. In contrast, we estimate the

degree of heterogeneity in investment horizons by fitting our asset pricing model to the

cross-section of U.S. stock returns.

The remainder of the paper is organized as follows. Section 2 illustrates our multi-

period liquidity asset pricing model in the most intuitive setting with two investment

horizons (one-period and two-periods) and two assets. Section 3 generalizes the model

to arbitrarily many investment horizons and assets. We describe our estimation method-

ology in Section 4. Section 5 illustrates the data and Section 6 presents our empirical

findings. We conclude with a summary of our findings in Section 7.

1For example, Bekaert, Harvey, and Lundblad (2007) focus on emerging markets, Sadka (2010) studies
hedge funds, Franzoni, Nowak, and Phalippou (2011) focus on private equity, Bao, Pan, and Wang (2011)
study corporate bonds, and Bongaerts, De Jong, and Driessen (2011) focus on credit default swaps.
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2 Simple Example: Two Assets and Two Horizons

In this section we present a simple version of our asset pricing model, with two investor

types and two assets. We have overlapping generations, and assume that two one-period

investors and one two-period investor enter the market in each period. Asset i pays a

per-period dividend Dit and selling the asset costs Cit. The first investor type has a

one-period horizon and mean-variance preferences with risk-aversion A1. At time t, these

one-period agents solve a maximization problem where they choose the quantity of stocks

purchased y1t (a vector with one element for each asset) to maximize utility

max
y1t

E[Wt+1]−
1

2
A1Var(Wt+1) (1)

Wt+1 = (Pt+1 +Dt+1 − Ct+1)
′y1t +Rf (e1 − P ′ty1t),

where Rf is the gross risk-free rate, Wt+1 is wealth at time t + 1, Pt+1 is the vector of

prices, and e1 is the endowment.

The two-period investors are also mean-variance optimizers, but care about their

wealth two periods ahead. For simplicity, we do not allow these two-period agents to

rebalance after one period. In essence, we assume that rebalancing trades of long-term

investors are relatively small and can be ignored. The utility maximization is then given

by2

max
y2t

E[Wt+2]−
1

2
A2Var(Wt+2) (2)

Wt+2 = (Pt+2 +RfDt+1 +Dt+2 − Ct+2)
′y2t +R2

f (e2 − P ′ty2t).

For simplicity, we assume that both dividends and costs are i.i.d. Then, given that

optimal demand is independent of wealth, given a fixed asset supply, and with the same

type of investors entering the market each period, we obtain a stationary equilibrium

where the price of each asset Pit will be constant over time. At any point in time, the

market clears with new investors buying the supply of stocks minus the amount held by

the two-period investor that entered the market one period ago,

2y1t + y2t = S − y2,t−1, (3)

where S is vector with supply of assets (in amount of each of the assets). Given the i.i.d.

setting, we have constant demand over time, y1t = y1,t−1 and y2t = y2,t−1.

2It is assumed that the proceeds of the dividend at t+ 1 are added to the risk-free deposit.
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Below, we work out the equilibrium expected returns for various cases. To set the

stage, we start with the case where all investors have the same horizon. Then we allow for

horizon heterogeneity, and consider two potential equilibria. In the first case (integration),

both investors have strictly positive holdings in both assets. In the second case (partial

segmentation), the short-term investor only invests in the asset with low transaction costs

(i.e., his optimal position in the high-cost asset is equal to zero, since the transaction costs

prevent this investor from buying or selling the asset).

2.1 Case 0, homogeneity : both investors have the same horizon

If all investors have the same one-period horizon, we obtain an i.i.d. version of Acharya

and Pedersen’s liquidity CAPM. This can be seen as follows. The optimal demand of the

investor is

y1 =
1

A1

diag(Pt)
−1Var(Rt+1 − ct+1)

−1(E[Rt+1 − ct+1]−Rf ) (4)

where Rt+1 denotes the vector of gross asset returns, Ri,t+1 = (Di,t+1 + Pi,t+1)/Pit, and c

the percentage costs, cit = Cit/Pit. Solving the equilibrium condition 2y1t = S, with two

investors entering the market each period, gives

E[Rt+1]−Rf = E[ct+1] +
A1

2
S̃ ′ιCov(Rt+1 − ct+1, R

m
t+1 − cmt+1) (5)

where S̃ = diag(Pt)S is dollar supply (which is constant over time given that prices are

constant over time), and where Rm = S̃ ′R/S̃ ′ι.

Alternatively, if all investors are two-period investors (with a new two-period investor

entering the market each period), the Appendix shows that the optimal demand is

y2 =
1

A2

diag(Pt)
−1Vart(RfRt+1 +Rt+2− ct+2)

−1(E[RfRt+1 +Rt+2−Rf − ct+2]−R2
f ) (6)

Using the equality Var(RfRt+1 + Rt+2 − ct+2) = Var(RfRt+1) + Var(Rt+2 − ct+2), valid

in our i.i.d. setting, equilibrium expected returns,

E[Rt+1]−Rf =
1

1 +Rf

E[ct+1] + (7)

A2

2(1 +Rf )
S̃ ′ι(R2

fCov(Rt+1, R
m
t+1) + Cov(Rt+1 − ct+1, R

m
t+1 − cmt+1)).

Comparing equilibrium expected returns in equation (7) to the one-period case in equation

(5), we observe that, due to the longer horizon, the coefficient on expected liquidity
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decreases from 1 to 1/(1 + Rf ) (and we have 1/(1 + Rf ) ≤ 0.5 if Rf ≥ 1). In addition,

the role of liquidity risk is smaller, given that the first-period return is not affected by

liquidity costs.

2.2 Case 1, integration : both investors invest in both assets

We now turn to the case with heterogeneous horizons. We first consider the case

where the optimal demands y1 and y2 are strictly positive, so that both investor types

have positive holdings of both assets. This corresponds to a situation where the liquidity

costs are sufficiently small. Using the market clearing condition (3) and optimal demands

in (4) and (6), the Appendix derives the equilibrium expected returns

E[R]−Rf = ΦE[c] + (λ1 + λ2)Cov(R− c, Rm − cm) + λ2Cov(R,Rm), (8)

where

Φ = γ1I − γ2(r2fVar(R− c)−1Var(R) + I)−1 (9)

and where we suppress all time subscripts given the i.i.d. nature of the equilibrium. The

Appendix shows that λ1, λ2, γ1, and γ2 are scalars that are functions of the risk aversion

levels and covariance matrices of returns and costs and that λ1 > 0, λ2 > 0, γ1 > 0 and

γ2 > 0.

Equation (8) shows that the risk premium term is a mixture of the net-of-cost covari-

ance and the regular CAPM covariance. This is the expected outcome of the presence of

long-term investors, who care more about regular market risk and relatively less about

liquidity risk. The weights on these two covariances depend, amongst others, on the risk

aversion of the one-period and two-period investors. For example, in the Appendix we

show that as the long-term investors become relatively more risk averse (or short-term

agents become less risk averse), the liquidity risk covariance becomes more important

relative to the market covariance (formally λ1+λ2
(λ1+λ2)+λ2

↑ as A2/A1 ↑). This makes intu-

itive sense. When long-term investors are more risk averse (or short-term investors less

risk averse), the long-term investors hold a relatively smaller fraction of the supply in

equilibrium, and hence the demand of the short-term investors is the predominant factor

determining expected returns. Since short-term investors care more about liquidity risk,

the liquidity risk premium becomes relatively more important in equilibrium.

Next, we turn to the loading on expected liquidity, as defined by the matrix Φ in

equation (9). This term provides two important insights. First, if there is no liquidity

risk, i.e. Var(c) = 0, we obtain Var(R − c)−1Var(R) = I, and the effect of expected

liquidity is the same for both assets and equal to γ1− 1
1+R2

f
γ2. The Appendix shows that
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γ1 − 1
1+R2

f
γ2 < 1, so that the coefficient on expected liquidity is smaller than 1 (which

is the coefficient in the baseline one-period model in Section 2.1), due to the presence of

two-period investors who care less about expected liquidity.

If Var(c) > 0, the coefficients on expected liquidity may vary across the two assets due

to covariance between costs and returns. This reflects the fact that short-term investors

care more about liquidity risk covariances than long-term investors. For example, suppose

the second asset has no liquidity risk (Var(c2) = 0), while the first asset has liquidity

risk (Var(c1) > 0). In addition, suppose that for asset 1, Cov(R1, c1) < 0, so that

Var(R1 − c1) > Var(R1). The first asset is then less attractive for short-term investors

since high costs coincide with low returns, while this liquidity risk is less important for

long-term investors. Consider for simplicity the case that both Var(R) and Var(R − c)
are diagonal. It then follows directly that the expected liquidity matrix Φ is diagonal,

with the coefficient on expected liquidity for asset 2 equal to Φ2,2 = γ1 − 1
1+R2

f
γ2, while

for asset 1 we obtain

Φ1,1 = γ1 −
1

1 +R2
fVar(R1)/Var(R1 − c1)

γ2 < Φ2,2. (10)

It thus follows that for asset 1 the coefficient on expected liquidity is smaller than for

asset 2: since the first asset is relatively less attractive for short-term investors, it will be

held in equilibrium mostly by long-term investors that care less about liquidity, leading

to a smaller coefficient for the expected liquidity effect. Hence, we see that in the cross-

section higher liquidity risk may actually lead to a smaller expected liquidity premium.

2.3 Case 2, partial segmentation : only the long-term investor

invests in both assets

We now turn to the case where the costs on one asset are so high that, in equilibrium,

the one-period investors optimally invest only in the low-cost asset and have a zero

position in the high-cost asset. Suppose asset 1 has higher costs than asset 2. In fact,

costs are so high that, in equilibrium, y1(1) < 0 (and y1(2) > 0). This means that short-

term investors do not want to buy asset 1. Of course, it is still possible that the investor

wants to short asset 1, but this is unlikely given the high transaction costs. To see this

formally, if the optimal position in asset 1 were negative (and positive for asset 2), the

optimal portfolio would be

z1 =
1

A1

diag(Pt)
−1Var(Rt+1 − δ1ct+1)

−1(E[Rt+1 − δ1ct+1]−Rf ) (11)
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where δ1 = diag(−1, 1), hence δ1 is a diagonal matrix with elements equal to 1 if the

investor is long in the respective asset, and -1 if he is short (see Bongaerts, De Jong, and

Driessen, 2011). If z1(1) < 0, this is indeed the solution to the optimal portfolio rule,

but this is unlikely if costs are high for this asset. In turn, if z1(1) > 0 and y1(1) < 0, it

is optimal for the investor to have a zero position in asset 1. We thus focus here on the

case in which costs are high enough so that the investor optimally has a zero position in

asset 1.

This simplifies the optimal allocation of agent 1,

ỹ1 =

(
0

1
A1

Var(R2 − c2)−1(E[R2 − c2]−Rf )

)
(12)

The demand of agent 2 is unchanged from above. The Appendix derives the equilibrium

expected returns,

E[R]−Rf = Λ−11 Λ2E[c] + (13)

φ1(R
2
fCov(R,Rm) + Cov(R− c, Rm − cm)) +

(
φ2S̃1

0

)
,

where

Λ1 = A−11

(
0 0

0 Var(R2 − c2)−1

)
+ (1 +Rf )A

−1
2 (R2

fVar(R) + Var(R− c))−1)

Λ2 = A−11

(
0 0

0 Var(R2 − c2)−1

)
+ A−12 (R2

fVar(R) + Var(R− c))−1)

and where the parameters φi are scalars, and the Appendix shows that φ1 > 0 and φ2 > 0.

This shows that we get two deviations from the case of homogeneity of investors. First,

the effect of the liquidity risk covariances is smaller (relative to the market covariance).

Second, we get a segmentation result. The expected return on the first asset is higher

by an extra term that reflects the fact that only a subset of the investors holds this

asset. This is in the spirit of the international asset pricing literature (e.g. de Jong and

de Roon, 2005), where segmentation also leads to additional effects on expected returns,

that depend on the size of the supply of the segmented asset (S̃1). The Appendix shows

that the coefficient on the segmented supply, φ2, increases with the risk-aversion of long-

term investors A2, since these are the investors that have to hold this asset in equilibrium.
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In Figure 1 we illustrate a numerical example about the segmentation effect φ2. using

variation in the risk aversion of the long-term investor (A2) and in the degree of idiosyn-

cratic risk of the illiquid asset. More specifically, we assume R1 = R2+ε, where ε captures

the degree of idiosyncratic risk (relative to the liquid asset). Figure 1 shows that higher

variance of ε implies a higher segmentation coefficient φ2. This effect makes intuitive

sense. As the illiquid asset is only held by the long-term investor, its idiosyncratic risk is

priced due to imperfect risk sharing. Furthermore, Figure 1 also confirms our analytical

result that φ2 depends positively on the risk aversion of the long-term investor.

Then we turn to the expected liquidity coefficients, Λ−11 Λ2. To obtain some intuition,

consider the case where there is zero covariance between returns on the two assets (both

before and after costs). In this case, in the Appendix we show that

Λ−11 Λ2 =

(
1

1+Rf
0

0 1+η
1+Rf+η

)
(14)

with η = A2

A1

Var(R2−c2)+R2
fVar(R2)

Var(R2−c2) > 0. This setup reveals several interesting effects. First,

we see that the coefficient on expected liquidity is larger for the low-cost asset 2. Thus

if we graph the relation between expected returns and expected costs, we get a piecewise

linear and concave relation, like in Amihud and Mendelson (1986). Intuitively, when costs

on an asset are too high, short-term investors drop out and only long-term investors invest

in the asset. Given that long-term investors care less about liquidity, the effect of liquidity

on expected returns is smaller. In this two-period, two-asset example, the coefficient is

equal to 1/(1 +Rf ) ≤ 1/2 for asset 1, because the holding period of all investors holding

this asset is two periods. Hence the expected liquidity coefficient for asset 1 is the same

as in the homogenous two-period model (equation (7)).

Finally, note that Amihud and Mendelson (1986) find that long-term investors only

invest in high-cost assets, and not in the low-cost assets. This is because they assume

risk-neutrality. In our model with risk averse agents, long-term investors will diversify

and invest in low-cost assets as well.

3 Full Model with Multiple Assets and Horizons

The baseline model with two assets and two investors can be generalized to a set-

ting with many assets and many investors with heterogenous investment horizons. This

general framework is more realistic and, most importantly, is suitable for empirical esti-

mation. We now list the assumptions in our general setting:
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• There are K assets, with asset i paying each period a dividend Dit. Selling the asset

costs Cit. Transaction costs and dividends are i.i.d. in order to obtain a stationary

equilibrium.

• We model N classes of investors, indexed by j = 1, 2, . . . , N, with distinct invest-

ment horizons h1, h2, . . . , hN .

• Investors have mean-variance utility over terminal wealth with risk aversion Aj for

type j.

• We have an overlapping generations (OLG) setup. Each period, a fixed quantity

Qj > 0 of type j investors enters the market and invests in some or all of the K

assets.

• Investors with horizon hj only trade when they enter the market and at their

terminal date, hence they do not rebalance their portfolio at intermediate dates.

As before, we let Rt+1 denote the K × 1 vector of gross asset returns, and ct+1 the

K × 1 vector of percentage costs. The Appendix shows that under these assumptions we

obtain a stationary equilibrium with the following equilibrium expected returns

E [Rt+1]−Rf =

(
N∑
j=1

γjρjVj

)−1 N∑
j=1

γjVjE [ct+1] (15)

+

(
N∑
j=1

γjρjVj

)−1
Cov

(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
,

where γj = Qj/(AjS̃
′ι) (where supply S̃t is constant over time), ρj =

∑hj
k=1R

hj−k
f and

Vj = hjVar (Rt+1 − ct+1) Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1 .
We compute the long-term covariance matrices using the i.i.d. assumption. The details

are given in the Appendix. Regarding the interpretation of Vj, we consider the case of

diagonal covariance matrices. We may then write the `-th diagonal element of Vj, that

corresponds to asset `, as

V`,j =
Var (Rt+1 − ct+1) /1

Var
(∑hj

k=1R
hj−k
f Rt+k − ct+hj

)
/hj

.
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That is, we have a variance ratio between the return variances corresponding to horizons

of 1 month and hj months.

Equation (15) corresponds to the case of integration described in the basic version of

the model in Section 2.2. We now consider the alternative case of segmentation, i.e. the

possibility that some classes of investors do not hold some assets because the associated

trading costs are too high relative to the expected return over the investment horizon.

To this end, we introduce sets Dj (j = 1, . . . , N) that are subsets of 1, . . . , K, where K

is the number of tradable assets. The set Dj represents the set of assets that investors

j will invest in in equilibrium. As discussed in Section 2, a short-horizon investor will

endogenously avoid investing in assets for which the associated transaction costs are too

large. The sets Dj thus depend on the level of transaction costs of the assets. Note that

without loss of generality we may assume that for some j it holds that Dj = {1, . . . , K}.
That is, there are some investors who may invest in all assets.

We denote by ADj
the |Dj| × |Dj| matrix containing only the rows and columns of A

that are in Dj. In addition, we write A−1Dj ,p
for the inverse of ADj

with zeros inserted at

the locations where rows and columns of A were removed. The Appendix shows that, in

this setting, equilibrium excess returns are defined by the following equation:

E [Rt+1]−Rf =

(
N∑
j=1

γjρjV
Dj

j

)−1 N∑
j=1

γjV
Dj

j E [ct+1] (16)

+

(
N∑
j=1

γjρjV
Dj

j

)−1
Cov

(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
,

where γj = Qj/(AjS̃
′ι), ρj =

∑hj
k=1R

hj−k
f , and

V
Dj

j = hjVar (Rt+1 − ct+1) Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1
Dj ,p

.

Regarding the interpretation, the dependence on the parameters remains qualitatively

the same. The only difference lies in the sensitivity of different classes of investors to the

variances and covariances of returns and costs. To see this in more detail, consider the

11



case of diagonal covariance matrices. In that case we obtain for asset ` that

E [R`,t+1]−Rf =

∑N
j=1 γjV

Dj

`,j∑N
j=1 γjρjV

Dj

`,j

E [c`,t+1] (17)

+
1∑N

j=1 γjρjV
Dj

`,j

Cov
(
R`,t+1 − c`,t+1, R

m
t+1 − cmt+1

)
,

where

V
Dj

`,j = 1{`∈Dj}
hjVar (R`,t+1 − c`,t+1)

Var
(∑hj

k=1R
hj−k
f R`,t+k − c`,t+hj

) .
This shows the effect of segmentation in a simple way. The coefficient on the covariance

term (1/
∑N

j=1 γjρjV
Dj

`,j ) is larger for assets that are not held by all investors as V
Dj

`,j

will be zero for investors j that do not hold this asset. This additional effect generates

the segmentation premium. One can also derive easily that the coefficient on expected

liquidity is smaller for the segmented assets (if the variances of the different assets are of

similar size). Both results are in line with the simple example in Section 2.

The full model derived in this section can be directly related to the liquidity CAPM

of Acharya and Pedersen (2005). It is instructive to consider the case where N = 1

and h1 = 1, so that there is just one class consisting of one-month investors and no

segmentation. For ease of comparison, we write it in beta form. This gives

E [Rt+1]−Rf = E [ct+1] +
Var

(
Rm
t+1 − cmt+1

)
γ1

Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
Var

(
Rm
t+1 − cmt+1

) , (18)

which is an i.i.d. version of the equilibrium relation found in Acharya and Pedersen

(2005). Empirically, we follow AP and allow for a slope coefficient κ on E [ct+1] , although

formally the AP model implies a coefficient on expected liquidity equal to one.

4 Empirical Methodology

The theoretical setup developed in the previous section generates two liquidity-based

asset pricing models, with either integration or segmentation. In this section, we explain

how these models can be estimated. We also explore the economic mechanism that allows

the identification of the parameters. We then discuss alternative approaches for a robust

computation of standard errors.
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4.1 GMM Estimation

We use a Generalized Method of Moments (GMM) methodology to estimate the

equilibrium condition in the general case, as defined by equation (15). The key esti-

mated parameters are the risk aversion coefficients of the different classes of investors or,

more generally, risk aversion divided by the number of agents per holding period. More

specifically, we estimate γj = Qj/(AjS̃
′ι). Based on the asset pricing model in case of

segmentation (which has the integration model as special case), we can define the vector

of pricing errors of all assets g(ψ, γ) as

g(ψ, γ) = E [Rt+1]−Rf −

(
N∑
j=1

γjρjV
Dj

j

)−1 N∑
j=1

γjV
Dj

j E [ct+1] (19)

−

(
N∑
j=1

γjρjV
Dj

j

)−1
Cov

(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
,

where γ is the vector of parameters, and ψ is a vector containing the underlying expecta-

tions and covariances that enter the pricing errors. Specifically, ψ contains all expected

returns, expected costs, covariances entering the V
Dj

j matrices, and the covariances with

the market return. In a first step, we estimate all elements of ψ by their sample moments.

In a second step, we then perform a first-step GMM estimation of γ, using an identity

weighting matrix across all assets. We thus minimize the sum of squared pricing errors

over γ,

min
γ

g(ψ̂, γ)′g(ψ̂, γ). (20)

In the Appendix we derive the asymptotic covariance matrix of this GMM estimator,

which incorporates the estimation error in the underlying sample moments. The resulting

standard errors take into account the estimation error in all sample moments in ψ, in line

with the approach of Shanken (1992).

4.2 Identification

To gain insight into the economic mechanism that allow the identification of the

parameters, it is useful to illustrate some comparative statics results. Specifically, a

change in γi means that the horizon hi investors become either more numerous, or less

risk averse, or both. In the segmented model (which has the integrated model as special

13



case), the effect of such a change on expected returns is given by

∂ (E [Rt+1]−Rf )

∂γi
=

(
N∑
j=1

γjρjV
Dj

j

)−1
V Di
i (E [ct+1]− ρi (E [Rt+1]−Rf )) . (21)

We see that there are two opposing effects. The first effect is an increase in the risk

premium due to the impact of liquidity. The second effect is the increased risk sharing,

which leads to a decrease in the risk premium proportional to the original risk premium.

As ρi > 1 for all i (assuming that Rf > 1), ρi increases with hi, and the level of liquidity

is comparable in magnitude to the risk premium (see Table 1), we see that for the longer

horizon investors, the risk sharing effect tends to dominate the liquidity effect. This is

what we would expect: they incur the liquidity cost less frequently than the short term

investors and hence care less about liquidity. As the matrix premultiplying the difference

between the liquidity cost and the scaled risk premium can reverse the sign, we see that

hedging considerations could also play a different role for short-term versus long-term

investors.

To obtain more insight, we consider the case of diagonal covariance matrices, in which

case we obtain

∂ (E [R`,t+1]−Rf )

∂γi
=

V Di
`,i∑N

j=1 γjρjV
Dj

`,j

(E [c`,t+1]− ρi (E [R`,t+1]−Rf )) . (22)

Since the factor multiplying the cost and excess return terms is positive, we find that the

sign of the comparative statics for γi is completely determined by the size of the scaled

risk premium compared to the transaction cost. An additional effect is that in the case of

segmentation, a change in risk aversion of investor class i has a zero effect on the expected

return of asset ` if investors i do not invest in that asset. With non-diagonal covariance

matrixes, this is not necessarily the case. The cross-asset hedging effect can have an

indirect impact on the assets in which investors i do not invest through the allocations

of other investors who do invest in those assets.

4.3 Bootstrap Standard Errors

To check the robustness of our results, we employ two kinds of bootstrap tests. For

each test we generate bootstrap samples by resampling the data and then carrying out the

first step of the estimation procedure so that we have estimates for the various moments

that arise in the vector of pricing errors. The first test is a bootstrap t-test based on

the bootstrap estimate of the standard error. The second test is based on the quantiles
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of the distribution of the bootstrap estimates. The latter approach is known as the per-

centile method. Both of these tests do not provide asymptotic refinement, but they have

the advantage that they do not require direct computation of asymptotically consistent

standard errors.

Test based on bootstrap standard error

Let B be the number of bootstrap replications, yielding estimates γ̂∗1 , . . . , γ̂
∗
B. For

testing γi = γi,0 we compute

ti =
γ̂i − γi,0
sγ̂i,boot

, (23)

where

s2γ̂i,boot =
1

B − 1

B∑
b=1

(γ̂∗i,b − ¯̂γ
∗
i )

2. (24)

The t-statistic is compared to critical values from the standard normal distribution.

Percentile method test

For this test we find the 2.5% and 97.5% quantiles of the bootstrap estimates γ̂∗1 , . . . , γ̂
∗
B.

If γi,0 falls outside these quantiles, the null hypothesis that γi = γi,0 is rejected.

5 Data

We largely follow Acharya and Pedersen (2005) in our data selection and construction.

We use daily stock return and volume data from CRSP from 1964 until 2009 for all

common shares listed on NYSE and AMEX. As our empirical measures of liquidity rely

on volume, we do not include Nasdaq since the volume data includes interdealer trades

(and only starts in 1982). Overall, we consider a number of stocks ranging from 1056 to

3358, depending on the month. To correct for survivorship bias, we adjust the returns

for stock delisting (see Shumway, 1997; Acharya and Pedersen, 2005). Some descriptive

statistics are given in Table 1.

The relative illiquidity cost is computed as in Acharya and Pedersen (2005). The

starting point is the Amihud (2002) illiquidity measure, which is defined as

ILLIQj
t =

1

Dj
t

Dj
t∑

d=1

∣∣Rj
td

∣∣
V j
td

(25)

for stock j in month t, where Dj
t denotes the number of observations available in month

t, Rj
td and V j

td denote the volume in millions of dollars on day d in month t, respectively.

We follow Acharya and Pedersen (2005) and define a normalized measure of illiquidity
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that deals with non-stationarity and is a direct measure of trading costs, consistent with

the model specification. The normalized illiquidity measure can be interpreted as the

dollar cost per dollar invested and is defined by

cjt = min
{

0.25 + 0.30ILLIQj
tP

m
t−1, 30.00

}
, (26)

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end of

month t− 1 divided by the value at the end of July 1962. The product with Pm
t−1 makes

the cost series cjt relatively stationary and the coefficients 0.30 and 0.25 are chosen as

in Acharya and Pedersen (2005) to match approximately the level and variance of cjt for

the size portfolios to those of the effective half spread reported by Chalmers and Kadlec

(1998). The value of normalized liquidity cjt is capped at 30% to make sure the empirical

results are not driven by outliers.

Turnover is computed as dollar volume divided by market capitalization. As the

monthly turnover series contains some outliers (e.g. exchange traded funds with relatively

low market capitalization), we censor the turnover series at 500%. This affects 1023 data

points.

We obtain the book-to-market ratio using fiscal year-end balance sheet data from

COMPUSTAT in the same manner as Ang and Chen (2002). They follow Fama and

French (1993) in defining the book value of a firm as the sum of common stockholders’

equity, deferred taxes, and investment credit minus the book value of preferred stocks.

The ratio is obtained by dividing the book value by the fiscal year-end market value.

We construct the market portfolio on a monthly basis and only use stocks that have

a price on the first trading day of the corresponding month between $5 and $1000. We

include only stocks that have at least 15 observations of return and volume during the

month.

We construct 25 illiquidity portfolios, 25 illiquidity variation portfolios, and 25 book-

to-market and size portfolios, similarly to Acharya and Pedersen (2005). The portfolios

are formed on an annual basis. For these portfolios, we require again for the stock price

on the first trading day of the corresponding month to be between $5 and $1000. For the

illiquidity and illiquidity variation portfolios, we require to have at least 100 observations

of the illiquidity measure in the previous year.

Table 1 shows the estimated average costs and average returns across the 25 illiquidity

portfolios. The values correspond closely to those found in Table 1 of Acharya and

Pedersen (2005). Most importantly, we see that average returns tend to be higher for

illiquid assets. Also, the table shows that returns on more illiquid portfolios are more
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volatile. This holds for returns net of costs as well. The returns (net of costs) on more

illiquid portfolios tend to co-move more strongly with market returns (also net of costs).

6 Empirical Results

In this section, we take the model to the data. First, we estimate the parameters of the

models for both the integrated and the segmented case. We also explore the implications

of the estimates for the importance of the different components of expected returns. We

then study the robustness of our results to the choice of the investor horizon, to the extent

of segmentation, and to pricing different set of portfolios.

6.1 Estimation of the Integrated and Segmented Models

We estimate the parameters of the equilibrium relations corresponding to the inte-

grated case of equation (15) and the segmented case of equation (16) for the sample

period 1964–2009 using the GMM methodology outlined in Section 4.1. The sample con-

sists of 25 portfolios of stocks listed on NYSE and AMEX, sorted on illiquidity. In the

next subsection, we also estimate the model for 25 illiquidity-variation portfolios and 25

Book/Market-by-Size portfolios.

Our benchmark estimation hinges on two classes of investors.3 The first class (short

horizon) has an investment horizon h1 of one month, the second class (long horizon)

has an investment horizon h2 of 240 months (20 years). We estimate the parameters

γj = Qj/(AjS̃
′ι), and the constant term α. We denote the model without the constant

term as specification 1 (INT) and the model including the constant term as specification

2 (INT). The interpretation of the estimated parameters can offer interesting insights. In

fact, the parameters γj are equal to the ratio of the number Qj of investors with horizon

hj entering the market each period to their risk aversion Aj, scaled by the inverse of the

total market capitalization S̃ ′ι.

We also estimate a segmented version of the model, where the one-month investors

invest only in the 19 most liquid portfolios. We choose this threshold by maximizing the

cross-sectional R2 across all possible thresholds. A segmentation threshold equal to 19 is

in line with Table 1. For the six least liquid portfolios, the expected costs are roughly 2

to 9 times higher than the expected monthly excess return. As the one-month investors

3Adding a third class of investors does not yield substantial empirical improvement. In the case of
integration, the coefficient of the additional investment horizon class goes to zero, effectively removing
the impact of the new class of investors. In the case of segmentation, the coefficient does not necessarily
go to zero, but the R2 remains essentially unchanged, with little gain in terms of explanatory power.
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incur the costs each period, these assets can be seen as prohibitively costly. We denote

the segmented model specifications as 3 (SEG) (without the constant term) and 4 (SEG)

(including the constant term).

We compare our model with a baseline Acharya and Pedersen (2005) version (18),

where N = 1 and h1 = 1. In this case, we allow for a coefficient κ on the cost term. This

coefficient is necessary in Acharya and Pedersen (2005) to obtain sensible estimates and

to provide a fair comparison to the heterogeneous horizon specification. We denote these

specifications 5 (AP) (without the constant term) and 6 (AP) (with the constant term

included). We also include the conditional version of the Acharya and Pedersen (2005)

model, using AR(2) residuals to compute the covariances. We denote by 7 (APc) and 8

(APc) these specifications without and with a constant term, respectively.

Table 2 shows the results for the illiquidity portfolios. We find that the first spec-

ification of the segmented model 3 (SEG), without a constant term, improves the R2

obtained by Acharya and Pedersen (2005) by about 20%. Importantly, this improvement

is achieved retaining the parsimony of the original model – both models depend on two

parameters. The fit is graphically displayed in Figure 2. The graphs indicate that ac-

counting for segmentation leads to smaller pricing errors in the case of the more illiquid

portfolios. The descriptives in Table 1 give an additional indication why this is so. The

risk premium levels off after portfolio 19, but the cost term keeps rising. The AP model

implies a linear relation between costs and expected returns, and thus has difficulty fitting

the cross-section of liquid versus illiquid portfolios. Our model with segmentation reduces

the impact of the expected liquidity term on the least liquid portfolios, thus improving

the fit in those cases (see also Figure 2).

The estimates in Table 2 also yield some interesting economic implications. For ex-

ample, if we assume for simplicity that risk aversion is constant across investor classes

(i.e., A1 = A2), we can make inferences about the number of investors in each class. More

specifically, we examine the ratio (h1γ1)/(h2γ2) = (h1Q1)/(h2Q2).
4 The results for the

first and second specification (non-segmented model without and with constant term)

both indicate that there are about 20 times as many long horizon investors as there are

short horizon investors. If we use the segmented version, we see that the difference is

smaller. For specifications three and four (segmented without and with constant term),

we see that the estimates imply that there are respectively 2.8 and 3.5 times as many

long horizon investors as there are short horizon investors. What we do see is that the

direction of the difference is consistent across all specifications: the number of long term

4As Qj investors with horizon hj enter each period, at each point in time the total number of type-j

investors equals hjQj . Also note that including S̃′ι in the γj does not influence our comparison.
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investors is larger than the number of short term investors. Of course, an alternative

interpretation would be that the long-term investors are less risk averse than short-term

investors (if one assumes that there are as many long-term investors as short-term in-

vestors (h1Q1 = h2Q2)).

We use the estimated model to decompose expected returns in the two fundamental

terms of the equilibrium equation. We depict these decomposition for different portfolios

and different model specifications in Figure 3 and Figure 4. We notice that the covariance

term provides the largest contribution to the expected excess returns, in most cases by

far. The impact of the cost term increases with the level of illiquidity, as expected. In

the segmented case, we observe a drop in the impact of the cost term after portfolio 20,

which shows that the level of illiquidity is indeed of lesser importance to long horizon

investors. Moreover, the total model-implied expected return drops when we move from

portfolio 19 to 20. This drop indicates that the decrease for the lower importance of

illiquidity more than offsets the increase in the risk premium due to lower risk sharing

(the segmentation premium).

The impact of segmentation on risk premia is shown in Figure 5. In the figure we

see risk premia for (i) the observed returns; (ii) the integrated model; (iii) the segmented

model with the coefficients from the integrated version; and (iv) the segmented model.

As the total effect is composed of an liquidity level effect and a covariance effect, we show

these in Figure 6. The decomposition indicates clearly the source of the changes. The

impact of the liquidity level is increased, while the impact of the covariance is decreased.

It is noteworthy that, compared to the integrated case, the liquidity level impact is much

less pronounced for the most illiquid portfolios due to the segmentation effect. The

graph shows that the increase in importance of the cost term is caused by the segmented

estimates, which imply a much greater number of short-term investors (or much more

risk averse long-term investors). This makes sense, as the short-term investors are the

ones who care about liquidity the most.

The comparative statics for each model parameter (see (21) for the analytical expres-

sion) are shown in Figure 7. The graphs show the impact on the risk premium of an

increase in the quantity of a certain class of investors, a decrease in their risk aversion, or

both. For long-term investors, the effect of an increase in γ2 is always negative. This is

consistent with the theoretical result that the risk sharing effect dominates the liquidity

effect for long term investors (absent hedging considerations). In other words, the finding

confirms empirically that long term investors are less concerned about liquidity. For the

short term investors, we even see that the effect is positive for the most illiquid portfo-

lios. Here we have another indication that they are very concerned about liquidity to
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the extent that the compensation that they require crowds out the risk sharing benefit.

This also further motivates our choice of the segmentation structure, where the short

term investors do not invest in the six most illiquid portfolios. In sum, these comparative

statics show that γ1 and γ2 have quite different effects on expected returns, which shows

that these parameters are well identified empirically.

6.2 Robustness across horizons, segmentation, and portfolios

To test the sensitivity of model performance to the choice of the long term investor

horizon, we compute the R2 for h2 = 30, 60, 120, 240, 480. The results are given in Table 3,

Panel A, and show that the explanatory power of the model is relatively insensitive to

the choice of horizon. In addition, the coefficients do not vary much across the different

choices. The performance is also robust to varying h1, the short term investor horizon,

as long as it does not grow too large. More specifically, h1 = 6 yields results similar to

the case where h1 = 1, but for h1 = 30 the performance deteriorates. This shows that

including a short horizon class is material to the explanatory power of the model. On the

other hand, performance is not harmed if the short horizon is increased to the point where

deviations from the i.i.d. assumption should not be too large. In unreported results, we

find that the time-series persistence in liquidity decreases with horizon: there is much less

persistence in liquidity at a semi-annual frequency than at a monthly frequency.

Table 3, Panel B, shows the sensitivity of the R2 to the choice of the segmentation

threshold. The results show that the R2 is not too sensitive to the choice, but has a clear

maximum at 19 for both of the segmented specifications.

The bootstrap t-values, which are given in Table 4, Panel A, indicate that for the non-

segmented model the t-values are in the same range as those for the Acharya and Pedersen

(2005) specification. In the case of specification 4 (SEG), we obtain lower t-values. The

bootstrap 95% confidence intervals are given in Table 4, Panel B.

Table 5, Panel A, shows similar improvements in the cross-sectional fit of our in-

tegrated and segmented model for the σ(illiquidity) portfolios. For the B/M-by-size

portfolios, the improvement is slightly less pronounced (see Table 5, Panel B).

7 Conclusions

Heterogeneous investment horizons can have important asset pricing effects through

the distinct role of liquidity, simply because trading costs only matter when trading

actually takes place.
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We model investors with heterogeneous investment horizons and stochastic illiquidity

costs. Investors with longer investment horizons are less concerned about trading costs

because they do not trade every period and earn larger risk premia that can potentially

cover the higher trading costs of the more illiquid assets.

We find that in an equilibrium where all investors trade all assets (integration), the

existence of investors with heterogeneous horizons, as opposed to homogeneity of horizons,

reduces the importance of liquidity risk relative to the standard CAPM market risk. More

specifically, the relative importance of the two risk premiums depends crucially on the risk

aversion of long-term versus short-term investors. For example, if long-term investors are

more risk-averse, liquidity risk becomes more important because short-term investors,

who care more about liquidity, hold a relatively larger fraction of the asset supply in

equilibrium.

In an equilibrium where short-term investors do not invest in some more illiquid assets

(partial segmentation), our model shows that expected stock returns contain an additional

segmentation premium reflecting the extent of supply for the segmented asset. The effect

of expected liquidity on returns is naturally larger for the assets that are traded by all

investors. In this setup, an increasing and concave relationship between expected returns

and trading costs arises naturally, since excessive trading costs exclude the clientele that

is more sensitive to liquidity costs.

Empirically, our heterogeneous-horizon asset pricing model fares better than a stan-

dard or a liquidity-adjusted CAPM, with a covariance liquidity risk term providing the

largest contribution to expected returns. The segmented model delivers a more accurate

cross-sectional fit and improved parameter significance.

Segmentation is an important feature of our model with heterogenous horizons. Specif-

ically, when some investors do not invest in the most illiquid assets, the model delivers

a much more accurate cross-sectional fit and improved parameter significance. Inter-

estingly, our model empirical estimates can also be used to make inferences about the

implied number of investors in each horizon class.
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8 Appendix

8.1 Two-period two-asset model

In this Appendix we provide derivations for several equations in Section 2.

Optimal demand two-period investors

Two-period agents solve

max
y2

E[Wt+2]−
1

2
A2Var(Wt+2) (27)

Wt+2 = (Pt+2 +RfDt+1 +Dt+2 − Ct+2)
′y2 +R2

f (e2 − P ′ty2)

The solution to this problem is

y2 =
1

A2

Var(Pt+2 +RfDt+1 +Dt+2 − Ct+2)
−1 (28)

× (E[Pt+2 +RfDt+1 +Dt+2 − Ct+2]−R2
fPt)

or

y2 =
1

A2

diag(Pt)
−1Var(RfRt+1 +Rt+2

Pt+1

Pt
−Rf −

Pt+2

Pt
ct+2)

−1 (29)

× (E[RfRt+1 +Rt+2
Pt+1

Pt
−Rf −

Pt+2

Pt
ct+2]−R2

f )

In equilibrium, prices Pt are constant over time, and we obtain equation (6).

Equilibrium in case of integration

Filling in the optimal demands into the equilibrium condition 2y1 + y2 = S − y2 and

defining S̃ = diag(Pt)S gives

S̃ =
2

A1

Var(Rt+1 − ct+1)
−1(E[Rt+1 − ct+1]−Rf ) (30)

+
2

A2

Var(RfRt+1 +Rt+2 − ct+2)
−1(E[Rf (Rt+1 −Rf ) +Rt+2 − ct+2]−Rf )

Dropping time subscripts, this equilibrium condition can be rewritten as

E[R]−Rf =

(
A−11 Var(R− c)−1 +

1 +Rf

A2

(R2
fVar(R) + Var(R− c))−1)

)−1
S̃

2
(31)

+
(
A−11 Var(R− c)−1 + (1 +Rf )A

−1
2 (R2

fVar(R) + Var(R− c))−1)
)−1

×
(
A−11 Var(R− c)−1 + A−12 (R2

fVar(R) + Var(R− c))−1)
)
E[c]
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In the two-asset case, the term

(
A−11 Var(R− c)−1 + (1 +Rf )A

−1
2 (R2

fVar(R) + Var(R− c))−1)
)−1

S̃/2

can be written as

1

d0
(

1

d1
+

1

d2
)
S̃ ′ι

2
Cov(R− c, Rm − cm) +

1

d0d2

S̃ ′ι

2
Cov(R,Rm)

using

Var(Rt+1 − ct+1)S̃ = S̃ ′ιCov(Rt+1 − ct+1, R
m
t+1 − cmt+1) (32)

with Rm = S̃ ′R/S̃ ′ι, and with

d0 = det(A−11 Var(R− c)−1 + (1 +Rf )A
−1
2 (R2

fVar(R) + Var(R− c))−1) (33)

d1 = A1 det(Var(R− c))

d2 =
1

1 +Rf

A2 det(R2
fVar(R) + Var(R− c))

The equilibrium terms for Cov(R,Rm) and Cov(R − c, Rm − cm) in equation (8) then

follow directly with λ1 = 1
d0d1

S̃′ι
2

and λ2 = 1
d0d2

S̃′ι
2
. Both λ1 and λ2 are positive because

the determinants of covariance matrices are positive. It is easy to see that the liquidity

premium, relative to the total risk premium, λ1+λ2
(λ1+λ2)+λ2

, can be written as 1 − 1
d2/d1+2

which is increasing in A2/A1.

Next we turn to the expected liquidity effect

(
A−11 Var(R− c)−1 + (1 +Rf )A

−1
2 (R2

fVar(R) + Var(R− c))−1)
)−1

×
(
A−11 Var(R− c)−1 + A−12 (R2

fVar(R) + Var(R− c))−1)
)
E[c]

which in the two-asset case can be rewritten as

I × E[c]−
(

1

d0
(

1

d1
+

1

d2
)Var(R− c) +

1

d0

1

d2
Var(R)

)
×
(
A−12 (R2

fVar(R) + Var(R− c))−1)
)
E[c]

which can be simplified into

(1− 1

d0d2A2

)I × E[c]− (
1

d0d1A2

−
R2
f − 1

d0d2A2

)(R2
fVar(R− c)−1Var(R) + I)−1E[c]

With γ1 = 1 − 1
d0d2A2

and γ2 = ( 1
d0d1A2

− R2
f−1

d0d2A2
) we then obtain the expression for Φ in
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equation (8). Finally, we show that γ1 − 1
2
γ2 < 1. This inequality follows directly as all

determinants di are positive.

Equilibrium in case of segmentation

In this case the equilibrium condition is

Λ1 (E[R]−Rf ) = S̃/2 + Λ2E[c], (34)

where

Λ1 =

(
A−11

(
0 0

0 Var(R2 − c2)−1

)
+ (1 +Rf )A

−1
2 (R2

fVar(R) + Var(R− c))−1)

)

Λ2 =

(
A−11

(
0 0

0 Var(R2 − c2)−1

)
+ A−12 (R2

fVar(R) + Var(R− c))−1)

)

First, the liquidity risk implications follow from working out the terms in the matrix Λ1,

Λ−11 S̃/2 = φ1(R
2
fCov(R,Rm) + Cov(R− c, Rm − cm)) +

(
φ2S̃1

0

)
(35)

where φ1 and φ2 are scalars, with

φ1 =
2

(1 +Rf )A2d3d4
S̃ ′ι > 0 (36)

φ2 =
1

2A1d4Var(R2 − c2)
> 0 (37)

d3 = det(R2
fVar(R) + Var(R− c)) (38)

d4 = det(Λ1) (39)

From the definition of d4 it directly follows that φ2 is increasing in A2. Then we turn

to the expected liquidity coefficients, Λ−11 Λ2. If the covariances are zero, we obtain(after

some algebra)

Λ−11 Λ2 =

(
1

1+Rf
0

0 1+η
1+Rf+η

)
(40)

with η = A2

A1

Var(R2−c2)+R2
fVar(R2)

Var(R2−c2) > 0.

8.2 Multi-period multi-asset model

Equilibrium in case of integration

The equilibrium for equation (15) follows as a special case of the equilibrium in case of
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segmentation, which we discuss below. It corresponds to the case where Dj = {1, . . . , K}
for j = 1, . . . , N .

Equilibrium in case of segmentation

We start by introducing sets Dj (j = 1, . . . , N) that represent the assets that investor

j considers for his or her portfolio. We let the Dj be subsets of 1, . . . , K, where K is the

number of assets. To motivate this setup, think of a short horizon investor, who is able

to rule out certain assets a priori on the basis of their high transaction cost. Without

loss of generality we assume that for some j it holds that Dj = {1, . . . , K}.
To derive the results, we first need some notation. For a K ×K matrix A, we denote

by ADj
the |Dj| × |Dj| (with | · | the cardinality of a set) matrix with the rows and

columns that are elements of {1, . . . , K} \ Dj removed. As it will be used frequently,

we also introduce the notation A−1Dj ,p
for the inverse of ADj

with zeros inserted at the

locations where rows and columns of A were removed, so that A−1Dj ,p
is a K ×K matrix.

Note that formally, for A−1Dj ,p
to be well-defined, it is not necessary that A be invertible.

It is only required that ADj
be invertible.

For example, let

A =

 1 3 2

2 2 4

3 5 7


and let Dj = {1, 3}. Then

ADj
=

[
1 2

3 7

]
and detADj

= 1, which implies A−1Dj
= adjADj

, so that

A−1Dj
=

[
7 −2

−3 1

]
.

It follows that

A−1Dj ,p
=

 7 0 −2

0 0 0

−3 0 1

 .
To derive the equilibrium, we first consider each investor’s optimization problem. For the
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investors with horizon hj it is given by

max
yj,t

E
[
Wj,t+hj

]
− 1

2
AjVar

(
Wj,t+hj

)
(41)

Wj,t+hj =

Pt+hj +

hj∑
k=1

R
hj−k
f Dt+k − Ct+hj

′ yj,t +R
hj
f (ι− P ′tyj,t) .

Taking into account the restriction that the investor only invests in assets that are ele-

ments of Dj, the solution is

yj,t =
1

Aj
Var

Pt+hj +

hj∑
k=1

R
hj−k
f Dt+k − Ct+hj

−1
Dj ,p

(42)

×

E

Pt+hj +

hj∑
k=1

R
hj−k
f Dt+k − Ct+hj

−Rhj
f Pt

 .

Using the i.i.d. assumption, we obtain a stationary equilibrium with constant prices and

i.i.d. returns. It is then straightforward to derive that yj,t can be written as (derivation

available on request)

yj,t =
1

Aj
diag (Pt)

−1 Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1
Dj ,p

(43)

×

E

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

− hj−1∑
k=0

R
hj−k
f

 .

Similarly, it is also straightforward to show that

E

 hj∑
k=1

R
hj−k
f Rt+k

− hj−1∑
k=0

R
hj−k
f = ρj (E [Rt+1]−Rf ) , (44)

where ρj =
∑hj

k=1R
hj−k
f . Making further use of the i.i.d. assumption by which E(ct+hj) =
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E(ct+k) for all j and k, the allocations can thus be written as

yj,t =
1

Aj
diag (Pt)

−1 Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1
Dj ,p

(45)

× (ρj (E [Rt+1]−Rf )− E [ct+1]) .

Each period a fixed quantityQj > 0 of type j investors enters the market. The equilibrium

condition at time t is
N∑
j=1

Qjyj,t = St −
N∑
j=1

hj−1∑
k=1

Qjyj,t−k, (46)

which is equivalent to
N∑
j=1

hj−1∑
k=0

Qjyj,t−k = St. (47)

Under the iid assumption we have yj,t−k = yj,t for all k, so that

N∑
j=1

hjQjyj,t = St. (48)

Scaling by price we obtain

N∑
j=1

hjQj diag (Pt) yj,t = S̃t. (49)

Multiplying both sides by (1/S̃ ′tι)Var (Rt+1 − ct+1), using the expression for the alloca-

tions and noting that, as we assume that S̃t is constant over time,

Var (Rt+1 − ct+1) S̃t = Cov
(
Rt+1 − ct+1, S̃

′
tRt+1 − S̃ ′tct+1

)
(50)

= S̃ ′tιCov

(
Rt+1 − ct+1,

S̃ ′tRt+1

S̃ ′tι
− S̃ ′tct+1

S̃ ′tι

)
= S̃ ′tιCov

(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
,

where Rm
t+1 = S̃ ′tRt+1/S̃

′
tι, and cmt+1 = S̃ ′tct+1/S̃

′
tι, it now follows that

N∑
j=1

hj
Qj

AjS̃ ′tι
Var (Rt+1 − ct+1) Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+1

−1
Dj ,p

(51)

× (ρj (E [Rt+1]−Rf )− E [ct+1]) = Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
.
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We define γj = Qj/(AjS̃
′ι) (given that S̃t is constant over time) and

V
Dj

j = hjVar (Rt+1 − ct+1) Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1
Dj ,p

.

This allows us to write

N∑
j=1

γjV
Dj

j (ρj (E [Rt+1]−Rf )− E [ct+1]) = Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
. (52)

From this we find that

N∑
j=1

γjρjV
Dj

j (E [Rt+1]−Rf ) =
N∑
j=1

γjV
Dj

j E [ct+1] (53)

+ Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
.

We can now write the equilibrium condition as

E [Rt+1]−Rf =

(
N∑
j=1

γjρjV
Dj

j

)−1 N∑
j=1

γjV
Dj

j E [ct+1] (54)

+

(
N∑
j=1

γjρjV
Dj

j

)−1
Cov

(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
.

Comparative statics

We consider an increase in γi, so that the horizon hi investors become either more

numerous, or less risk averse, or both. We find

∂ (E [Rt+1]−Rf )

∂γi
= −

(
N∑
j=1

γjρjV
Dj

j

)−1 (
ρiV

Di
i

)( N∑
j=1

γjρjV
Dj

j

)−1
(55)

×
N∑
j=1

γjV
Dj

j E [ct+1]

+

(
N∑
j=1

γjρjV
Dj

j

)−1
V Di
i E [ct+1]

−

(
N∑
j=1

γjρjV
Dj

j

)−1 (
ρiV

Di
i

)( N∑
j=1

γjρjV
Dj

j

)−1
× Cov

(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
.
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Rearranging gives

∂ (E [Rt+1]−Rf )

∂γi
=

(
N∑
j=1

γjρjV
Dj

j

)−1
V Di
i (E [ct+1]− ρi (E [Rt+1]−Rf )) . (56)

Computing the long term covariance matrix

We use the i.i.d. assumption to rewrite part of the moment conditions as follows

Var (Rt+1 − ct+1) Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1 (57)

= Var (Rt+1 − ct+1) Var

hj−1∑
k=1

R
hj−k
f Rt+k +Rt+hj − ct+hj

−1

= Var (Rt+1 − ct+1)

Var

hj−1∑
k=1

R
hj−k
f Rt+k

+ Var
(
Rt+hj − ct+hj

)−1

= Var (Rt+1 − ct+1)

hj−1∑
k=1

R
2(hj−k)
f Var (Rt+k) + Var

(
Rt+hj − ct+hj

)−1

= Var (Rt+1 − ct+1)

hj−1∑
k=1

R
2(hj−k)
f

Var (Rt+1) + Var (Rt+1 − ct+1)

−1 .
This allows us to compute the covariance terms using only one-period covariances, which

leads to greater numerical stability.
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8.3 Estimation Methodology: Obtaining Standard Errors

We denote the required moments that enter the asset pricing model by the vector

ψ. This vector contains expected returns, expected costs, and all required covariances of

returns and costs. It is straightforward to derive the asymptotic covariance matrix of the

sample estimator of these moments (since covariances can be written as second moments

plus products of first moments),

√
T
(
ψ̂ − ψ

)
d→ N (0, Sψ) . (58)

We can now use the delta method to find the standard errors for γ̂, as γ̂ is implicitly

given as the solution of the elementary zero function in the second stage or, equivalently,

as the solution of the GMM minimization problem.

We start with the GMM minimization problem

min
γ

g(ψ̂, γ)′g(ψ̂, γ), (59)

which has solution

2G(ψ̂, γ)′g(ψ̂, γ) = 0, (60)

where

Gγ(ψ, γ) =
∂g(ψ, γ)

∂γ
. (61)

Dividing both sides of (60) by 2 and evaluating at γ̂, we may write

Gγ(ψ̂, γ̂)′g(ψ̂, γ0) +Gγ(ψ̂, γ̂)′
(
g(ψ̂, γ̂)− g(ψ̂, γ0)

)
= 0. (62)

Next, we expand g(ψ̂, γ̂) around γ0:

g(ψ̂, γ̂)− g(ψ̂, γ0) ≈ Gγ(ψ̂, γ̂) (γ̂ − γ0) . (63)

It follows that

Gγ(ψ̂, γ̂)′g(ψ̂, γ0) +Gγ(ψ̂, γ̂)′Gγ(ψ̂, γ̂) (γ̂ − γ0) = 0. (64)

We now expand g(ψ̂, γ0) around ψ0 and use the fact that g(ψ0, γ0) = 0:

g(ψ̂, γ0) ≈ Gψ(ψ̂, γ̂)
(
ψ̂ − ψ0

)
, (65)

where

Gψ(ψ, γ) =
∂g(ψ, γ)

∂ψ
. (66)
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Hence

Gγ(ψ̂, γ̂)′Gγ(ψ̂, γ̂) (γ̂ − γ0) = −Gγ(ψ̂, γ̂)′Gψ(ψ̂, γ̂)
(
ψ̂ − ψ0

)
. (67)

Using this result we obtain

√
T (γ̂ − γ0) ≈ −

(
Gγ(ψ̂, γ̂)′Gγ(ψ̂, γ̂)

)−1
Gγ(ψ̂, γ̂)′Gψ(ψ̂, γ̂)

√
T
(
ψ̂ − ψ0

)
. (68)

It follows that

√
T (γ̂ − γ0)

d→ N
(

0,
(
G′γGγ

)−1
G′γGψSψG

′
ψGγ

(
G′γGγ

)−1)
. (69)

This result allows us to compute standard errors for the γ estimates taking into account

the pre-estimation of the various moments ψ. For the final estimation procedure, we

restrict the γj pertaining to the horizons hj to be positive by estimating the logs. We

use the usual, additional, delta method correction for the computation of the standard

errors.
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Table 1: Descriptive statistics.

This table shows some descriptive statistics pertaining to the data that are used to estimate the model.

The data used are monthly data corresponding to 25 value-weighted portfolios sorted on illiquidity

with sample period 1964–2009. The average excess return E [Rt+1]− Rf , standard deviation of returns

σ (Rt+1), standard deviation of returns net of costs σ (Rt+1 − ct+1), and covariance between portfolio

and market level returns net of costs Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
are computed from the time-series

observations using the corresponding method of moments estimators.

Portfolio E [Rt+1]−Rf E [ct+1] σ (Rt+1) σ (Rt+1 − ct+1) Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
(%) (%) (%) (%) (·100)

1 0.3282 0.2519 4.2063 4.2065 0.1772
2 0.3748 0.2568 4.6173 4.6182 0.2138
3 0.4253 0.2611 4.6465 4.6479 0.2213
4 0.5580 0.2664 4.7630 4.7651 0.2287
5 0.5892 0.2732 5.0549 5.0585 0.2447
6 0.5365 0.2828 4.8567 4.8613 0.2374
7 0.5531 0.2928 4.8044 4.8092 0.2380
8 0.5405 0.3084 4.9590 4.9679 0.2444
9 0.6029 0.3252 4.9624 4.9733 0.2476

10 0.6232 0.3449 4.8947 4.9079 0.2444
11 0.6646 0.3727 5.1488 5.1660 0.2576
12 0.5538 0.4039 4.8977 4.9184 0.2447
13 0.6466 0.4379 4.8907 4.9177 0.2464
14 0.7310 0.4762 5.0650 5.0967 0.2541
15 0.6452 0.5455 5.0824 5.1289 0.2562
16 0.6244 0.6216 5.0356 5.0894 0.2528
17 0.7943 0.7243 5.0766 5.1531 0.2532
18 0.6752 0.8290 5.0326 5.1159 0.2507
19 0.8586 0.9753 5.1913 5.2908 0.2564
20 0.6753 1.2792 5.3195 5.4833 0.2596
21 0.8088 1.5535 5.3987 5.5626 0.2596
22 0.8322 1.9896 5.3905 5.5833 0.2556
23 0.8147 2.8093 5.4869 5.9004 0.2684
24 0.7453 4.4678 5.5583 6.3610 0.2733
25 0.8754 8.0711 6.0520 7.8366 0.2786
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Table 2: Illiquidity portfolio regressions.

This table shows the results from estimation of the various specifications of the model. The estimates are
based on monthly data corresponding to 25 value-weighted portfolios sorted on illiquidity with sample
period 1964–2009. An equal-weighted market portfolio is used. The specifications are special cases of
the relation

E [Rt+1]−Rf = α+ κ

 N∑
j=1

γjρjV
Dj

j

−1 N∑
j=1

γjV
Dj

j E [ct+1]

+

 N∑
j=1

γjρjV
Dj

j

−1 Cov
(
Rt+1 − ct+1, R

m
t+1 − cmt+1

)
,

where γj = Qj/(AjS̃
′ι), ρj =

∑hj

k=1R
hj−k
f , and

V
Dj

j = hjVar (Rt+1 − ct+1) Var

 hj∑
k=1

R
hj−k
f Rt+k − ct+hj

−1
Dj ,p

.

We set N = 2, h1 = 1, and h2 = 240. The parameters are estimated using GMM. For each coefficient

the t-value is given in parentheses. The pseudo-R2 is reported in the rightmost column. The label INT

denotes the integrated model. The segmented version, where short term investors invest only in the 19

most liquid portfolios, is denoted by SEG. AP indicates that the specification corresponds to a variant

of the Acharya and Pedersen (2005) specification (18). APc is used to denote the original Acharya and

Pedersen (2005) model, where AR(2) residuals of individual and market level returns and costs are used

to compute the covariance. Where the value of κ is unreported, it is set to 1.

γ1 γ2 α κ R2

1 (INT) 0.0349 0.0028 0.6504
(0.6264) (2.5507)

2 (INT) 0.0149 0.0013 -0.0075 0.7758
(0.2589) (1.3054) (-0.7742)

3 (SEG) 0.2261 0.0026 0.8247
(0.6057) (1.8843)

4 (SEG) 0.0949 0.0014 -0.0046 0.8669
(0.2922) (1.1111) (-0.5081)

5 (AP) 0.4024 0.0299 0.6281
(2.2212) (0.1761)

6 (AP) 0.1773 -0.0076 0.0104 0.7657
(0.8494) (-0.5435) (0.0257)

7 (APc) 0.3884 0.0377 0.6105
(2.4514) (1.4990)

8 (APc) 0.1597 -0.0086 0.0267 0.7609
(2.7018) (-1.8791) (1.1411)
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Table 3: Illiquidity portfolio regressions – sensitivity of R2.

This table shows the sensitivity of the R2 to varying the horizons and to varying the segmentation

threshold. The data and the specifications are the same as in Table 2. Setting h1 = 1, we let h2 =

30, 60, 120, 240, 480. Alternatively, we fix h2 = 240 and let h1 = 1, 3, 6, 12, 36. For the segmentation level

we take h1 = 1, h2 = 240 and let the short-term investors invest in the 16, . . . , 25 most liquid portfolios.

The case of 25 corresponds to integration.

Panel A: Sensitivity of R2 to choice of horizon

h2 = 240 h1 = 1 h1 = 3 h1 = 6 h1 = 12 h1 = 36

1 (INT) 0.6504 0.6310 0.6237 0.6195 0.5707
2 (INT) 0.7758 0.7655 0.7612 0.7587 0.7214

3 (SEG) 0.8247 0.8140 0.7485 0.6885 0.6376
4 (SEG) 0.8669 0.8620 0.8206 0.7793 0.7430

h1 = 1 h2 = 30 h2 = 60 h2 = 120 h2 = 240 h2 = 480

1 (INT) 0.6294 0.6422 0.6478 0.6504 0.6514
2 (INT) 0.7635 0.7713 0.7745 0.7758 0.7763

3 (SEG) 0.7816 0.8220 0.8263 0.8247 0.8232
4 (SEG) 0.8475 0.8734 0.8714 0.8669 0.8642

Panel B: Sensitivity of R2 to choice of segmentation threshold

16 17 18 19 20

3 (SEG) 0.7334 0.7770 0.7545 0.8247 0.7360
4 (SEG) 0.7918 0.8243 0.8076 0.8669 0.7922

21 22 23 24 25

3 (SEG) 0.7528 0.7623 0.7109 0.6225 0.6504
4 (SEG) 0.8076 0.8305 0.7886 0.7269 0.7758
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Table 4: Illiquidity portfolio regressions (bootstrap results).

This table shows the results from the bootstrap procedure. The data and the specifications are the same

as in Table 2. The bootstrap procedure is based on 120 replications. In Panel A we report the bootstrap

t-value for each coefficient in parentheses. In Panel B we give the bootstrap confidence intervals for each

parameter.

Panel A: Bootstrap t-values

γ1 γ2 α κ R2

1 (INT) 0.0349 0.0028 0.6504
(1.4649) (1.1855)

2 (INT) 0.0149 0.0013 -0.0075 0.7758
(1.1545) (0.8687) (-2.7977)

3 (SEG) 0.2261 0.0026 0.8247
(0.3881) (0.4608)

4 (SEG) 0.0949 0.0014 -0.0046 0.8669
(0.4670) (0.3667) (-2.2218)

5 (AP) 0.4024 0.0299 0.6281
(1.1301) (1.4297)

6 (AP) 0.1773 -0.0076 0.0104 0.7657
(0.8673) (-3.0349) (0.4702)

7 (APc) 0.3884 0.0377 0.6105
(1.1374) (1.8214)

8 (APc) 0.1597 -0.0086 0.0267 0.7609
(0.9688) (-3.1879) (1.2253)

Panel B: Bootstrap confidence intervals

γ1 γ2 α κ R2

1 (INT) [0.0125, 0.1070] [0.0016, 0.0106] 0.6504
2 (INT) [0.0054, 0.0564] [0.0009, 0.0067] [-0.0093, -0.0012] 0.7758

3 (SEG) [0.0616, 2.3869] [0.0013, 0.0208] 0.8247
4 (SEG) [0.0353, 0.8159] [0.0008, 0.0144] [-0.0065, 0.0000]

5 (AP) [0.2507, 1.3973] [0.0016, 0.0787]
6 (AP) [0.1362, 0.9252] [-0.0088, -0.0010] [-0.0167, 0.0697]

7 (APc) [0.2403, 1.3447] [0.0073, 0.0807]
8 (APc) [0.1182, 0.7595] [-0.0096, -0.0015] [-0.0048, 0.0746]
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Table 5: σ(Illiquidity) and B/M-by-size portfolio regressions.

This table shows the results from estimation of the various specifications of the model for different

portfolio types. The setup is the same as in Table 2. Panel A shows the results for 25 portfolios sorted

on illiquidity variation. For Panel B 25 value-weighted portfolios sorted on book-to-market value and

size are used.

Panel A: σ(Illiquidity) portfolios

γ1 γ2 α κ R2

1 (INT) 0.0290 0.0029 0.6469
(0.4961) (2.5975)

2 (INT) 0.0107 0.0013 -0.0075 0.7773
(0.1819) (1.4548) (-0.8410)

3 (SEG) 0.2186 0.0027 0.8681
(0.5680) (1.9343)

4 (SEG) 0.0890 0.0014 -0.0044 0.9064
(0.3029) (1.3999) (-0.7564)

5 (AP) 0.4043 0.0286 0.6425
(2.2224) (0.1792)

6 (AP) 0.1787 -0.0075 0.0028 0.7824
(0.9476) (-0.6091) (0.0073)

7 (APc) 0.3901 0.0362 0.6203
(2.4381) (1.2600)

8 (APc) 0.1638 -0.0082 0.0181 0.7659
(2.7319) (-1.8711) (0.6898)

Panel B: B/M-by-size portfolios

γ1 γ2 α κ R2

1 (INT) 0.0379 0.0032 0.2110
(0.5607) (2.2392)

2 (INT) 0.0843 0.0057 0.0028 0.2671
(0.7500) (0.8208) (0.9630)

3 (SEG) 0.0578 0.0032 0.3075
(0.7452) (2.1224)

4 (SEG) 0.1783 0.0080 0.0035 0.3923
(0.5609) (0.5692) (1.1984)

5 (AP) 0.4632 0.0351 0.2789
(2.0754) (0.2065)

6 (AP) 1.0142 0.0031 0.0498 0.3491
(0.6737) (1.0357) (0.6460)

7 (APc) 0.4473 0.0449 0.2787
(2.1795) (1.5019)

8 (APc) 0.9903 0.0031 0.0545 0.3444
(0.6239) (0.9761) (2.0009)
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Figure 1: Segmentation effect in two-asset, two-investor model. This figure plots the
segmentation coefficient φ2 in equation (13) as a function of the risk aversion of the
long-term investor (A2) and the idiosyncratic variance of the illiquid asset (asset 1). The
idiosyncratic variance is defined as Var(ε), with R1 = R2 + ε. This variance Var(ε) varies
between 0 and (0.5)2. The variance of R2 is fixed at (0.2)2, the transaction costs are
assumed to be the same for both assets and equal to a constant minus 0.25R2. Also, we
set A1 = 1 and Rf = 1.03, while A2 varies from 1 to 3.
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Figure 2: Fitted excess returns vs. realized excess returns. The top left panel shows the
goodness of fit for the Acharya and Pedersen (2005) specification 5 (AP). The top-right
panel shows the fit for the non-segmented specification 1 (INT). The bottom panel shows
the fit for the segmented specification 3 (SEG). The graphs correspond to the estimation
results as given in Table 2.
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Figure 3: Decomposition of predicted excess returns in the cost term and the covariance
term. In each panel the lower part shows the cost term and the upper part the covariance
term. The line indicates the actual excess return. The top left panel shows the decom-
position for the Acharya and Pedersen (2005) specification 5 (AP). The top-right panel
shows the decomposition for the non-segmented specification 1 (INT). The bottom panel
shows the decomposition for the segmented specification 3 (SEG). The graphs correspond
to the estimation results as given in Table 2.
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Figure 4: Decomposition of predicted excess returns in the cost term and the covariance
term as a percentage of the total predicted excess return. In each panel the lower part
shows the percentage of the risk premium generated by the cost term and the upper
part the percentage generated by the covariance term. The top left panel shows the
decomposition for the Acharya and Pedersen (2005) specification 5 (AP). The top-right
panel shows the decomposition for the non-segmented specification 1 (INT). The bottom
panel shows the decomposition for the segmented specification 3 (SEG). The graphs
correspond to the estimation results as given in Table 2.
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Figure 5: Impact of segmentation. The lines correspond to the risk premia generated by
the integrated model 1 (INT), the segmented model with the coefficient values obtained
from estimation of the integrated case, and the fully segmented model 3 (SEG). In all
cases the specification without a constant term is used. The coefficient values correspond
to the estimation results as given in Table 2.
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Figure 6: Impact of segmentation decomposed. The lines correspond to the risk premia
generated by the integrated model 1 (INT), the segmented model with the coefficient
values obtained from estimation of the integrated case, and the fully segmented model
3 (SEG). In all cases the specification without a constant term is used. The coefficient
values correspond to the estimation results as given in Table 2. The top panel shows the
impact of the cost term. The bottom panel shows the impact of the covariance term.
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Figure 7: Comparative statics for both parameters. The comparative statics are com-
puted according to (21). The top panel shows the comparative statics for the Acharya
and Pedersen (2005) specification 5 (AP). The middle row shows the comparative statics
for the non-segmented specification 1 (INT). The bottom row shows the comparative
statics for the segmented specification 3 (SEG). The graphs correspond to the estimation
results as given in Table 2.
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