DISCUSSION PAPER SERIES

No. 8673
MULTIPLICATIVE AND FRACTIONAL STRATEGIES WHEN JOURNALS ARE ASSIGNED TO SEVERAL SUB-FIELDS

Neus Herranz and Javier Ruiz-Castillo

INDUSTRIAL ORGANIZATION

Cenitre for Econonilic Policy Research www.cepr.org

MULTIPLICATIVE AND FRACTIONAL STRATEGIES WHEN JOURNALS ARE ASSIGNED TO SEVERAL SUB-FIELDS

Neus Herranz, University of Illinois, Urbana-Champaign Javier Ruiz-Castillo, Universidad Carlos III de Madrid and CEPR

Discussion Paper No. 8673
November 2011

Centre for Economic Policy Research
77 Bastwick Street, London EC1V 3PZ, UK
Tel: (44 20) 7183 8801, Fax: (44 20) 71838820
Email: cepr@cepr.org, Website: www.cepr.org

Abstract

This Discussion Paper is issued under the auspices of the Centre's research programme in INDUSTRIAL ORGANIZATION. This paper was produced as part of the SCIFI-GLOW Collaborative Project supported by the European Commission's Seventh Framework Programme for Research and Technological Development, under the Socio-economic Sciences and Humanities theme (Contract no. SSH7-CT-2008-217436). Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and nonpartisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Neus Herranz and Javier Ruiz-Castillo

November 2011

Abstract

Multiplicative and fractional strategies when journals are assigned to several sub-fields*

In many datasets, articles are classified into sub-fields through the journals in which they have been published. The problem is that many journals are assigned to a single sub-field, but many others are assigned to several subfields. This paper discusses a multiplicative and a fractional strategy to deal with this situation, and introduces a normalization procedure in the multiplicative case that takes into account differences in mean citation rates across sub-fields. The empirical part studies different aspects of citation distributions under the two strategies, namely: (i) the number of articles, (ii) the mean citation rate, (iii) the broad shape of the distribution, (iv) the characterization in terms of size- and scale-invariant indicators of high- and low-impact, and (v) the presence of extreme distributions, or distributions that behave very differently from the rest. It is found that, in spite of large differences in the number of articles according to both strategies, the similarity of the citation characteristics of articles published in journals assigned to one or several sub-fields guarantees that choosing one of the two strategies may not lead to a radically different picture in practical applications. Nevertheless, the evaluation of citation excellence through a high-impact indicator may considerably differ depending on that choice.

JEL Classification: O31, Y80 and Z00
Keywords: citation analysis, European paradox, journal classification, normalization, research performance and Web of Science categories

Neus Herranz
Department of Economics
University of Illinois, Urbana-
Champaign
1206 South Sixth Street
Champaign, IL 61820
USA

Email: herranz@uiuc.edu

For further Discussion Papers by this author see: www.cepr.org/pubs/new-dps/dplist.asp?authorid=173577

Javier Ruiz-Castillo
Department of Economics
Universidad Carlos III de Madrid
c/Madrid 126
28903 Getafe (Madrid)
SPAIN

Email: jrc@eco.uc3m.es

For further Discussion Papers by this author see: www.cepr.org/pubs/new-dps/dplist.asp?authorid=130945

* This is the second version of a paper under the same title published in this series in August 2011. The authors acknowledge financial support by Santander Universities Global Division of Banco Santander. Ruiz-Castillo acknowledges financial support from the Spanish MEC through grant SEJ2007-67436. Conversations with Pedro Albarrán, Félix de Moya, Vicente Guerrero, Nees Jan van Eck and, above all, Ludo Waltman, are deeply appreciated. All shortcomings are the authors' sole responsibility.

Submitted 15 November 2011

I. INTRODUCTION

Assume that we are given a hierarchical Map of Science that distinguishes between several aggregation levels, say between scientific sub-fields, disciplines, and fields from the lowest to the highest aggregation level. Each category at any aggregate level is assumed to belong to only one item at the next level, so that each sub-field belongs to a single discipline, and each discipline to a single field. Assume also that, as in the Thomson Scientific and Scopus databases, publications in the periodical literature are assigned to sub-fields via the journal in which they have been published. Many journals are assigned to a single sub-field, but many others are assigned to two, three, or more sub-fields. This is an important problem. For example, in the dataset used in this paper 42% of the 3.6 million articles published in 1998-2002 are assigned to two or more, up to a maximum of six sub-fields, where sub-fields are identified with the 219 Web of Science (WoS hereafter) categories distinguished by Thomson Scientific.

This paper investigates the practical implications arising from this situation. Two issues must be addressed. Firstly, the allocation of individual publications over the category set at each aggregate level. Secondly, the normalization procedure when closely related but heterogeneous sub-fields are brought together into some aggregate category.

We study two ways to solve the problem created when a journal is assigned to several subfields. The first follows a fractional strategy, according to which each publication is fractioned into as many equal pieces as necessary, with each piece assigned to a corresponding sub-field. Since each sub-field is assigned to a single discipline and the same rule applies at higher aggregate levels, the fractional assignment of individual papers to disciplines, and fields poses no additional problem, and the total number of publications at each level coincides with the total number of publications in the original dataset (This is the approach often followed in the literature; see inter alia Waltman et al., 2011a). The second procedure follows a multiplicative strategy according to which each paper is wholly counted as many times as necessary in the several sub-fields to which it is assigned. In this way, the space of articles is expanded as much as necessary beyond the initial size in what we call the
sub-field extended count. When this strategy is applied at higher aggregate levels, we end up with different extended counts in which the total number of publications is always greater than the total number in the original dataset. However, for reasons explained below, the size of the extended counts decrease as we move upwards in the aggregation scheme.

Secondly, it is generally agreed that widely different citation practices at the sub-field level require some normalization when considering aggregate categories consisting of closely related but nevertheless heterogeneous sub-fields. Under the fractional strategy, the standard procedure is to use the sub-field fractional mean citation rate (MCR hereafter) as the normalization factor (see inter alia Waltman et al., 2011a, in the context of average-based indicators of citation impact). However, as will be seen below, under the multiplicative strategy the normalization procedure is not obvious at all. To the best of our knowledge, this paper is the first to suggest a reasonable normalization procedure in this case.

The two strategies and their normalization procedures should be evaluated in terms of the properties they satisfy. However, quite apart from the a priori advantages that may make a strategy preferable to another one, it is important to verify the order of magnitude of the empirical differences that the alternative methods may bring. In particular, this paper studies the following three empirical issues.

1. Using size- and scale-invariant statistical techniques it is possible to focus solely on the shape of citation distributions independently of their size and MCR differences. Applying the Characteristic Scores and Scales (CSS hereafter) approach that satisfies these properties, Albarrán et al. (2011a) find that the partition of un-normalized citation distributions in the multiplicative case over three broad classes is strikingly similar across 219 sub-fields, as well as across other aggregate categories built according to several aggregation schemes. Thus, an important issue is whether or not the above regularities are maintained for the un-normalized distributions in the fractional case, as well as for the normalized distributions in both cases.
2. Using limited evidence that, nevertheless, spans broad areas of science, Radicchi et al. (2008) claim that normalization by sub-field means leads to a universal distribution (see also Glänzel, 2010). However, for the multiplicative case Albarrán et al. (2011a) present evidence against the universality claim across scientific sub-fields and other aggregate categories (see also Waltman et al. 2011b). In this paper we evaluate this issue in terms of the size- and scale-invariant indicators of high- and lowimpact introduced in Albarrán et al. (2011b, c, d). The lack of universality will manifest itself through the presence of what we call extreme distributions, or citation distributions characterized by truly extreme indicator values.
3. It turns out that the broad shape of citation distributions, as well as the set of extreme distributions under both strategies is very similar indeed at all aggregate levels. These results seem to suggest that the choice between a multiplicative and a fractional strategy is of lesser importance. But this conclusion is not warranted. Even if citation distributions under both strategies may share a number of basic general characteristics, it is important for the user to isolate those categories at each aggregation level for which there are dramatic differences between the two strategies.

The rest of this paper consists of four Sections and three Appendices. Section II introduces the multiplicative and the fractional strategies, while Appendix I contains a numerical example that illustrates the normalization procedures under both strategies. Section III presents the data, and the empirical results about the similarities between the multiplicative and the fractional strategies, while Section IV is devoted to the differences between them. Appendix II contains some descriptive statistics at the individual category level, while the properties of the family of indicators used in the empirical part are summarized in Appendix III. Section V offers some concluding comments.

II. THE TWO STRATEGIES

Suppose we have an initial citation distribution $c=\{c\}$ consisting of N distinct articles, indexed by $l=1, \ldots, N$, where c_{l} is the number of citations received by article l. The total number of citations is denoted by $\gamma=\Sigma_{l} c_{l}$. There are S sub-fields, indexed by $s=1, \ldots, S$. Assume for the
moment that there is only one other aggregation level consisting of $D<S$ disciplines, indexed by d $=1, \ldots, D$, as well as a rule that indicates the discipline to which each sub-field belongs. As indicated in the Introduction, the problem is that only about 58% of all the articles in our dataset are assigned to a single sub-field.

II. 1. The Sub-field Level

Let X_{l} be the non-empty set of sub-fields to which article l is assigned, and denote by x_{l} the cardinal of this set, that is, $x_{l}=\left|X_{l}\right|$. Since, at most, an article is assigned to six sub-fields, $x_{\in} \in[1,6]$. In the first step in the multiplicative strategy each article is wholly counted as many times as necessary in the several sub-fields to which it is assigned. Thus, if an article l is assigned to three subfields, so that $x_{l}=3$, it should be independently counted three times, once in each of the sub-fields in question, without altering the original number of citations in each case. Consequently, as long as $x_{l}>1$ for some article l and some area k, the total number of articles in what we call the sub-field extended count, $N_{S F}$, is greater than N. Formally, let N_{s} be the number of distinct articles, indexed by i $=1, \ldots, N_{s}$, which are assigned to sub-field s. Then, $c_{s}=\left\{c_{s i}\right\}$ is the citation distribution in sub-field s, where $c_{s i}$ is the number of citations received by article i, and $c_{s i}=c_{l}$ for some article l in the original distribution. The sub-field extended count, $S F$-count, is the union of all sub-field distributions, namely, $S F$-count $=\cup_{s} c_{s}$, where $N_{S F}=\Sigma_{s} N_{s}$. For later reference, the MCR in sub-field s, M_{s} is defined by

$$
\begin{equation*}
M_{s}=\left(\Sigma_{i} c_{s i}\right) / N_{s} \tag{1}
\end{equation*}
$$

In the fractional strategy, sub-field s 's citation distribution can be described by $c f_{s}=\left\{w_{s i} c_{s i}\right\}$, where $w_{s i}=\left(1 / x_{j}\right)$ for all $s \in X_{l}$ and some article l in the initial distribution for which $c_{s i}=c_{l}$ Therefore, $\Sigma_{s \in X l} w_{s i}=1$. The fractional number of articles in sub-field s is $n_{s}=\Sigma_{i} w_{s j}$ the citations received by each fractional article are $w_{s i} c_{s i}$, and the fractional number of citations in sub-field s is Σ_{i} $w_{s i} c_{s i}$ Sub-field s 's MCR, m_{s}, is defined by

$$
\begin{equation*}
m_{s}=\left(\sum_{i} w_{s i} c_{s i}\right) /\left(\sum_{i} w_{s i}\right) \tag{2}
\end{equation*}
$$

By comparing expressions (1) and (2), it should be clear that the difference between the multiplicative and the fractional strategies amounts to a question of weighting. In the first strategy, the N_{s} distinct articles belonging to sub-field s receive a weight equal to one, while in the second strategy each of these articles is weighted by $w_{s i}=\left(1 / x_{p}\right)$ for some article l in the initial distribution. It should be noted that $\Sigma_{s} n_{s}=\Sigma_{s} \Sigma_{i} w_{s i}=\Sigma_{l} \Sigma_{s \in X l} w_{s i}=N$ and $\Sigma_{s} c_{s}=\Sigma_{s} \Sigma_{i} w_{s i} c_{s i}=\gamma$, that is, in the fractional strategy the total number of articles and citations in the original dataset are preserved at the sub-field level.

II. 2. The Discipline Level

Since each sub-field belongs to a single discipline at the next aggregation level, there is no particular problem in associating the sub-field fractional numbers of articles and citations to the corresponding discipline. As a matter of fact, the discipline distribution in the fractional strategy, $c f_{d}$, is equal to the union of the corresponding sub-field distributions, that is, $c f_{d}=\cup_{s} c f_{s}$. Again, the number of articles and citations in a particular discipline, $n_{d}=\sum_{s \in d} \Sigma_{i} w_{s i}$ and $\sum_{s \in d} \Sigma_{i} w_{s i} c_{i s}$, may typically be fractional. However, the sum of these numbers over all disciplines necessarily coincides with the original ones:

$$
\Sigma_{d} n_{d}=\Sigma_{d} \Sigma_{s \in d} \Sigma_{i} w_{s i}=\Sigma_{s} \Sigma_{i} w_{s i}=N
$$

and

$$
\Sigma_{d} \Sigma_{s \in d} \Sigma_{i} w_{s i} c_{i s}=\Sigma_{s} \Sigma_{i} w_{s i} c_{i s}=\gamma
$$

In other words, in the fractional strategy the total number of articles and citations in the original dataset are preserved at the discipline level. Consequently, discipline $d \mathrm{~s}$ MCR, $m_{d}=\left(\sum_{s \in d} \Sigma_{i} w_{s i}\right.$ $\left.c_{i s}\right) /\left(\sum_{s \in d} \Sigma_{i} w_{s i}\right)$, is equal to the weighted sum of its sub-fields MCRs, with weights equal to the proportion that the number of articles in each sub-field represents in the total number of articles in the discipline, that is,

$$
\begin{equation*}
m_{d}=\Sigma_{s \in d} \beta_{s} m_{s} \tag{3}
\end{equation*}
$$

where $\beta_{s}=\left(\Sigma_{i} w_{s}\right) /\left(\Sigma_{s \varepsilon_{d}} \Sigma_{i} w_{s}\right)$.
Instead, according to the multiplicative strategy, at the next aggregate level each article is wholly counted as many times as necessary given the several disciplines to which it belongs. Formally, for any article l, let Y_{l}, be the non-empty set of disciplines to which article l is assigned, and let $y_{l}=\left|Y_{l}\right|$ be the cardinal of this set. At the discipline level, article l is counted y_{l} times with c_{l} citations each time. Of course, $y_{l} \leq x_{l}$ for all l. Let N_{d} be the number of distinct articles in discipline d, and denote by $c_{d}=\left\{c_{d j}\right\}$ the citation distribution in discipline d, where $\mathrm{c}_{d j}$ is the number of citations received by article $j=1, \ldots, N_{d}$. Thus, there must exist at least one sub-field s belonging to d, some $i=1, \ldots, N_{s}$, and some article l in the original distribution such that $c_{d j}=c_{s i}=c_{r}$. The discipline extended count, D-count, is the union of all discipline distributions, namely, D-count $=\cup_{d} c_{d}$, where $N_{D}=\Sigma_{d} N_{d}$ is the number of articles in the discipline extended count. Since $D<S$, as long as there exists some l and some d for which $y_{l}<x_{b}, N_{d}<\Sigma_{s d} N_{s}$ and $N_{D}<N_{S F}$. The MCR of distribution c_{d}, M_{d}, is defined by

$$
\begin{equation*}
M_{d}=\gamma_{d} / N_{d,} \tag{4}
\end{equation*}
$$

where $\gamma_{d}=\Sigma_{j} c_{d j}$ is the total number of citations in c_{d}. Since the link between the two levels is broken,

$$
M_{d} \neq \sum_{s \in d} \alpha_{s} M_{s},
$$

where $\alpha_{s}=N_{s} / N_{d}$, and the mean M_{s} and M_{d} are defined in equations (1) and (4), respectively. However, there is an expression similar to (3) for M_{d}. To show this, we need to introduce some more notations. For any $d \in Y_{b}$, let $X_{l d} \subseteq X_{l}$ be the non-empty set of sub-fields in X_{l} that belong to discipline d, and let $x_{l d}=\left|X_{l d}\right|$ be the number of sub-fields in $X_{l d}$. Finally, for any s, let $c^{\prime}{ }_{s}=\left\{v_{s i} c_{s i}\right\}$ be a new sub-field distribution where

$$
v_{s i}=1 / x_{l d} \text { for all } s \in X_{l d}
$$

so that $\Sigma_{\text {eXXd }} v_{s i}=1$. It turns out that the number of articles and citations in the union of the new sub-field distributions, $\cup_{s d} c_{s}$, coincides with N_{d} and γ_{d}, respectively. To see this, for any article l assigned to some sub-field s that belongs to some discipline d, we must consider two possibilities depending on the cardinality of $x_{\text {, }}$
(i) Assume that $x_{l}=1$, so that $X_{l}=\{s\}$ is a singleton. Then, there exists some $i=1, \ldots, N_{s}$ for which $c_{s i}=c_{l}$ Since sub-field s belongs to discipline d, we have: $Y_{l}=\{d\}$. Then there exists a single article $j=1, \ldots, N_{d}$ with $c_{d j}=c_{s i}=c_{l}$. On the other hand, $X_{l d}=X_{b}$, and $y_{l}=x_{l d}=x_{l}=1$, so that $v_{s i}=$ $1 / x_{l d}=1$, and $v_{s i} c_{s i}=c_{r}$. Therefore, article l is counted once in $\cup_{s d d} c_{s}^{\prime}$ and receives c_{l} citations.
(ii) Assume that $x_{l}>1$, so that X_{l} consists of several sub-fields. Note that, for every $s \in X_{l}$, there exists some $i=1, \ldots, N_{s}$ for which $c_{s i}=c_{r}$. Next, we must consider three cases. (ii.a) If all subfields in X_{l} belong to a single discipline, then $Y_{l}=\{d\}$ with $y_{l}=1$, and there exists a single $j=1, \ldots$, N_{d} such that $c_{d j}=c_{s i}=c_{l}$ for every $s \in X_{l}$. On the other hand, $X_{l d}=X_{l}$ with $x_{l d}=x_{b} \Sigma_{s \in X d d} v_{s i}$ is always equal to one, and $\Sigma_{s \in X I d} v_{s i} c_{s i}=\sum_{s e X I d}\left(c_{l} / x_{k d}\right)=c_{r}$ Therefore, as before, article l is counted once in $\cup_{s e_{d}}$ c_{s}^{\prime} and receives c_{l} citations. (ii.b) If each sub-field in X_{l} belongs to a different discipline, then $y_{l}=x_{l}$ and article l is counted y_{l} times at the discipline level with c_{l} citations each time. In particular, for each $d \in Y_{l}$ there exists some $j=1, \ldots, N_{d}$ with $c_{d j}=c_{l}$. On the other hand, for each $d \in Y_{l}$ we have that X_{l} is a singleton with $x_{l d}=1$, so that $\Sigma_{s \in X\rangle} v_{s i}=\Sigma_{d \in Y l} \Sigma_{s \in X d} v_{s i}=x_{b}$, and $v_{s i} c_{s i}=c_{l}$ for each $s \in X_{l}$. Therefore, article l will be counted $y_{l}=x_{l}$ times in $\cup_{s \in d} c_{s}^{\prime}$, each time receiving c_{l} citations. (ii.c) If some sub-fields in X_{l} belong to a certain discipline and some others belong to one or several more disciplines, then $1<y_{l}<x_{l}$ and article l is counted y_{l} times at the discipline level with c_{l} citations each time. On the other hand, $X_{l}=\cup_{d \in Y l} X_{l d}$ with $x_{l}=\Sigma_{d \in Y l} x_{l d}$. In this case, $\Sigma_{k \in X l d} v_{s i l}=1$ for each $d \in Y_{\text {b }}$, so that $\Sigma_{s \in X l} v_{s i}=y_{l}$. Therefore, article l is counted y_{l} times in $\cup_{s \in d} c_{s}$, each time receiving $\Sigma_{s \in X I d} v_{s i} c_{s i}=c_{l}$
citations. Thus, in the previous example with $x_{l}=3$ for some l, assume that the first two sub-fields belong to one discipline whereas the third belongs to another discipline, so that $y_{l}=2$. In the multiplicative strategy, article l is counted three times at the sub-field level but only twice at the discipline level.

As announced above, we conclude that the total number of citations in $\bigcup_{s \in d} c_{s}$ is equal to γ_{d}, and the total number of articles, $\Sigma_{s d} N_{s}^{\prime}$, where $N_{s}^{\prime}=\Sigma_{i} v_{s i}$ is the possibly fractional number of articles in the new sub-field distribution \dot{c}_{s}^{\prime}, is equal to N_{d}. Thus, we can obtain an expression analogous to expression (3), namely:

$$
\begin{aligned}
& M_{d}=\left(\sum_{s d} \Sigma_{i} v_{s i} c_{s i}\right) /\left(\sum_{s \delta_{d}} \Sigma_{i} v_{s j}\right)=\left(\sum_{s d}\left[N_{s}^{\prime}\left[\Sigma_{i} v_{s i} c_{s j} / N_{s}^{\prime}\right]\right] /\left(\sum_{s d} \Sigma_{i} v_{s j}\right)\right. \\
& =\Sigma_{s d}\left(N_{s}^{\prime} / N_{d}\right) M_{s}^{\prime}
\end{aligned}
$$

where M^{\prime} is the new sub-field s 's MCR defined by

$$
\begin{equation*}
M_{s}^{\prime}=\left(\Sigma_{i} v_{s i} c_{i j}\right) /\left(\Sigma_{i} v_{s i}\right), \tag{5}
\end{equation*}
$$

By comparing expressions (1) and (5), it should be clear that the difference between the multiplicative strategy at the sub-field and the discipline level amounts to a question of weighting. In the first case, the N_{s} distinct articles belonging to sub-field s receive a weight equal to one, while in the second case an article l in the original distribution belonging to a new sub-field s and discipline d is weighted by the inverse of the number of sub-fields belonging to discipline d, namely, is weighted by $v_{s i}=\left(1 / x_{l d}\right)$, so that the MCR at the discipline level is seen to be equal to the weighted sum of its new sub-fields MCRs, with weights equal to the proportion that the number of articles in each new sub-field represents in the total number of articles in the discipline.

II. 3. Normalization Procedures

As indicated in the Introduction, whenever possible we must normalize aggregate distributions, say at the discipline level, taking into account differences in citation practices across their sub-fields. In the fractional case, normalization is straightforward. The normalized distribution
of sub-field $s, Z f_{s}$, is simply equal to the original one where each fractional article is divided by the fractional sub-field mean m_{s} defined in equation (2). Discipline d s normalized distribution, $\vee f_{d}$, is simply equal to the union of the corresponding ∇f_{s} distributions. Thus, $\vee f_{s}=\left\{\nabla f_{s} / m_{s}\right\}=\left\{\left(w_{s i}\right.\right.$ $\left.\left.c_{s i}\right) / m_{s}\right\}$ for all s belonging to d, and $\vee f_{d}=\bigcup_{s_{d}} \not \mathcal{F}_{s}$. Of course, the MCRs of distributions $\vee f_{s}$ and $\vee f_{d}$ for all s and all d are equal to one.

Discipline d s normalized distribution in the multiplicative case is $z_{d}=\left\{z_{d j}\right\}$, where

$$
z_{d j}=c_{d j} \Sigma_{s \in X \mid d}\left(v_{i j} / M_{s}^{\prime}\right)=\left(c_{l} / x_{l d}\right) \sum_{s \in X \mid d}\left(1 / M_{s}^{\prime}\right),
$$

and M_{s}^{\prime} is defined in expression (5). For each s belonging to d, let $\boldsymbol{\chi}_{s}^{\prime}=\left\{c_{s}^{\prime} / M_{s}^{\prime}\right\}=\left\{\left(v_{s i} c_{s i}\right) / M_{s}^{\prime}\right\}$ be the new sub-field normalized distribution. As before, the MCR of the normalized distribution z_{d} is seen to be equal to the MCR of the union $\bigcup_{s d d} z^{\prime}$. Of course, the MCRs of distributions z^{\prime}, and z_{d} for all s and all d are equal to one. (Appendix I in the Working Paper version of this paper, Herranz and Ruiz-Castillo, 2011a, -HR-C hereafter- contains a numerical example in which the two strategies and the corresponding normalization procedures are illustrated).

To understand the procedure at higher aggregate levels, say for F fields with $F<D$, indexed by $f=1, \ldots, F$, it suffices to redefine Y_{l} as the non-empty set of fields to which article l is assigned, and $X_{l f}$ as the non-empty set of sub-fields in X_{l} that belong to field f in Y_{l}. Then, as before, if $X_{l f}$ $=\left|X_{l f}\right|$ is the number of sub-fields in $X_{l p}$ then for any s let $c^{\prime \prime}{ }_{s}=\left\{u_{s i} c_{s i}\right\}$ be a new sub-field distribution where $u_{s i}=1 / x_{l_{f}}$ for all $s \in X_{\mathscr{L}}$ so that $\sum_{s \in X f f} u_{s i}=1$. The new fractional number of articles in sub-field s is equal to $N^{\prime \prime}{ }_{s}=\Sigma_{i} u_{s \text { s }}$ and the new MCR of distribution c ", is denoted by $M^{\prime \prime}$. The number of distinct articles in the field distribution c_{f}, N_{f} is seen to be equal to $\Sigma_{s f} N^{\prime \prime}$, and the MCR of c_{f}, M_{p} is equal to the weighted sum of its new sub-fields MCRs, with weights equal to the proportion that the number of articles in each new sub-field represents in the total number of articles in the field:

$$
M_{f}=\Sigma_{s f}\left(N_{s}{ }_{s} / N_{j}\right) M_{s}^{\prime \prime}
$$

The field extended count, F-count, is the union of all discipline distributions, namely, F-count $=\cup_{f} \boldsymbol{c}_{f}$, where $N_{F}=\Sigma_{f} N_{f}$ is the number of articles in the field extended count with $N<N_{F}<N_{D}<N_{S F}$. From this point, normalization proceeds as in the discipline case. Eventually, when we reach the maximum aggregation level the weighting system in the multiplicative strategy coincides with the one in the fractional strategy.

II. 4. A priori Evaluation of Both Procedures

The preservation of the total number of papers and citations at each aggregate level in the fractional case, lends this strategy an aura of "normalcy". However, the fractional strategy is not beyond criticism. Firstly, assume that there are two articles assigned to a certain sub-field. The first article is only assigned to this sub-field, while the second is also assigned to other sub-fields. Why should the weights associated to both articles in computing any statistic -such as the MCR, for example- be entirely different as implied by the fractional strategy? It can be argued that in the study of any sub-field all articles should count equally regardless of the role some of them may play on other sub-fields. ${ }^{1}$ Of course, as we have seen, at the lowest aggregation level this leads to an artificially large sub-field extended count. However, this is not that worrisome in the sense that, since this strategy does not create any interdependencies among the sub-fields involved, it is still possible to separately investigate every sub-field in isolation, independently of what takes place in any other sub-field. Similarly, consider a situation in which two articles are assigned to the same discipline, but one is assigned only to a single sub-field, and hence to only that discipline, and the other is assigned to several sub-fields and possibly to other disciplines. In the fractional strategy the second article will be weighted by $1 / x_{k}$, while in the new sub-field according to the multiplicative strategy it will be weighted only by $1 / x_{l d}$ where $x_{l d}<x_{l}$. Consequently, in this discipline the second article's citations in the multiplicative approach will be c, while in the fractional approach will be

[^0]$\Sigma_{s \in X l d} w_{s i} c_{s i}=\Sigma_{s \in X l d}\left(1 / x_{j}\right) c_{l}=\left(x_{l d} / x_{j}\right) c_{l}$. Why should the role of the second article be diminished as much as demanded by the fractional strategy, when in the study of any discipline all articles should count equally regardless of the role some of them may play in other disciplines? This is the reason why, in their study of citation distributions, Albarrán et al. (2011a) follow a multiplicative strategy at all aggregate levels.

Secondly, assume without loss of generality that we want to evaluate the citation impact of different research units in a certain sub-field (as before, a similar argument can be offered when the evaluation is performed at any other aggregate level). In the computation of any citation impact indicator a fractional strategy reduces the role of articles published in journals assigned to several sub-fields. Therefore, this strategy would hurt relatively more those research units with highly cited articles of this type. It can be argued that, from a normative point of view, this implication distorts the evaluation of research units in a given sub-field. This is the additional reason why, in their comparison of citation impact performance in a partition of the world into three geographical areas (the U.S., the European Union, and the rest of the world), Herranz and Ruiz-Castillo (2011b, c, d, e) also follow a multiplicative strategy.

Admittedly, others will see the issue differently. However, we may all agree that knowing the empirical consequences of following the two strategies is worthwhile investigating. This is the topic explored in the rest of the paper.

III. DATA, AND SIMILARITIES BETWEEN THE MULTIPLICATIVE AND THE FRACTIONAL STRATEGIES

III. 1. The Data

Since we wish to address a homogeneous population, in this paper only research articles or, simply, articles are studied. The dataset consists of about 3.6 million articles published in 1998-2002, and the 28 million citations they receive after a common five-year citation window for every year,
namely, citations received from 1998 to 2002 for articles published in 1998, up to 2002 to 2006 for articles published in 2002.

As indicated in the Introduction, sub-fields are identified with the 219 WoS categories distinguished by Thomson Scientific. To facilitate the reading of results, it will be useful to classify these sub-fields into other aggregate categories. The difficulty, of course, is how to construct a Map of Science -a question that is known to have no easy answer. Among the many alternatives, Albarrán et al. (2011a) focus on the schemes recommended by Tijssen and van Leeuwen (2003) and Glänzel and Schubert (2003). Borrowing from these two schemes with the aim of maximizing the possibility that a power law represents the upper tail of each of the corresponding citation distributions, Albarrán et al. (2011a) constructed a third scheme consisting of 80 intermediate categories, or disciplines, and 19 fields. The existence of a power law cannot be rejected in 59 of 80 disciplines and 16 of 19 fields. For our purposes, we separate Computer Sciences from Engineering to work with a total of 20 fields. ${ }^{2}$

Table 1 provides the number of articles in the different extended counts. The sub-field extended count has more than 5.7 million articles, or 57.1% more than the number of articles in the original dataset. Disciplines, and fields lead to extended counts about 47%, and 34% larger than the original dataset.

Table 1 around here

III.2. Characteristics of the Shape of Citation Distributions

We know that the broad shapes of un-normalized citation distributions in the multiplicative case are highly skewed and strikingly similar at all aggregation levels (see inter alia Schubert et al., 1987, Seglen, 1992, Albarrán and Ruiz-Castillo, 2011, and Albarrán et al., 2011a). Therefore, it is very important to verify whether this is also the case for the original distributions in the fractional

[^1]strategy at the sub-field level, and for the normalized distributions according to both strategies at all aggregate levels.

Size- and scale-independent descriptive tools permit us to focus on the shape of distributions. In particular, the CSS approach, pioneered by Schubert et al. (1987) in citation analysis, permits the partition of any distribution of articles into five convenient classes according to the citations they receive. Denote by s_{1} the MCR; by s_{2} the mean of articles above s_{1}, and by s_{3} the mean of articles above s_{2}. The first category includes articles without citations. As for the remaining four, articles are said to be poorly cited if their citations are below s_{1}; fairly cited if they are between s_{1} and s_{2}; remarkably cited if they are between s_{2} and s_{3}, and outstandingly cited if they are above s_{3}.

By way of example, the individual information for the un-normalized distributions at the subfield level according to the fractional strategy is in Table A in Appendix II (To save space, the individual information for the normalized distributions according to both strategies is available on request. On the other hand, the individual information for the un-normalized distributions at all aggregate levels according to the multiplicative strategy is in Table D in the Appendix in the Working Paper version of Albarrán et al., 2011a). For the partition of citation distributions at the sub-field level into three broad classes -comprising categories $1+2$, 3 , and $4+5$ - the relevant information at different aggregate levels according to both strategies is in Table 2.

Table 2 around here

According to Albarrán et al. (2011a), approximately 69% of all articles in the multiplicative case at the sub-field level receive citations below the mean and account for about 21% of all citations, while articles with a remarkable or outstanding number of citations represent about 10% of the total, and account for approximately 45% of all citations. This is exactly what we find for the un-normalized distributions in the fractional case at the sub-field level, as well as for the normalized distributions according to both strategies at the discipline and field levels. In brief, the partition into three broad citation categories is, approximately, 69/21/10 of all articles, accounting for 34/21/45 of all citations.

However, when we move inside the union of categories 1 and 2 and categories 4 and 5 differences across categories at all aggregation levels become much larger. For example, taken separately, categories 1 and 2 at the sub-field level in the fractional case represent on average 23.6% and 44.7% of all articles, with large standard deviations equal to 12.3 and 11.3 , respectively. ${ }^{3}$ Perhaps this is partly due to the fact that we have taken a common five-year citation window for all sub-fields in spite of the large differences in the time that it takes for citation processes to reach a given degree of completion. Be that as it may, since the size of both categories has a strong negative correlation the union of the two categories in Table 2 has a very small standard deviation. Something similar takes place for categories 4 and 5 . At the sub-field level in the fractional case, these two categories represent 7.0% and 3.2% of all articles with standard deviations equal to 1.1 and 0.6 and, therefore, coefficient of variations equal to 0.15 and 0.20 , respectively. ${ }^{4}$ However, as observed in Table 2, these measures of dispersion for the union of categories 4 and 5 are 1.6 and 0.16. As far as the proportion of citations is concerned, the union of categories 4 and 5 account for 44.7% of the total with a coefficient of variation of 0.09 , while category 5 alone accounts for 22.4% of the total with a coefficient of variation of 1.12.

Similar phenomena are observed at higher aggregate levels. Thus, dispersion statistics formally reveal that the universality of citation distributions breaks down at both the lower and the upper tails at all aggregation levels. This conclusion contrasts with the more optimistic view offered by Radicchi et al. (2008) with a methodology that does not explain whether a multiplicative or a fractional strategy has been used, omits articles without citations, examines distributions at a limited set of points and, above all, covers only 14 of the 219 sub-fields. In addition, Albarrán et al. (2011a) find considerable differences in the power law characteristics of 140 un-normalized sub-field distributions and a variety of un-normalized aggregate distributions in the multiplicative case. Thus, the lack of universality is

[^2]particularly apparent at one key segment of citation distributions: the tip of the upper tail, or the place where citation excellence resides. The estimation of power laws is beyond the scope of this paper. However, in the remainder of this Section we pursue the study of the lack of universality by detecting the presence of extreme distributions, or citation distributions characterized by extreme values of certain indicators.

III.3. High- and Low-impact Citation Indicators

As we have seen, citation distributions are highly skewed in the sense that a large proportion of articles receive none or few citations while a small percentage of them account for a disproportionate amount of all citations. An important consequence is that average-based indicators may not adequately summarize these distributions for which the upper and the lower part are typically very different. This leads to the idea of using two indicators to describe any citation distribution: a bighand a low-impact measure defined over the set of articles with citations above or below a critical citation line (CCL hereafter). In the first empirical application of this methodology, Albarrán et al., (2011c) use a family of high- and low-impact indicators, briefly introduced in Appendix III, that satisfies a number of desirable properties. In this paper, we use one high- and one low-impact indicator, denoted by H and L, which are members of these families. The reason for using these indicators is twofold.

Firstly, while average-based measures are silent about the distributive characteristics on either side of the mean, H and L are sensitive to the citation inequality in the sense that an increase in the coefficient of variation increases both of them. Secondly, it is well known that wide differences in publication and citation practices give rise to wide differences in size and MCR across sub-fields. However, in this paper we are interested in studying the presence of distributions that are very different from the rest abstracting from differences in those two characteristics. Fortunately, H and L allow us to pursue this aim because they are size- and scale-invariant, namely, the value they take is invariant under replications and scalar multiplication of citation distributions.

III.4. Extreme Distributions

Individual information about high- and low-impact levels according to the H and L indicators in the multiplicative and the fractional case at the sub-field level is included in Table B in Appendix II. The CCL is always fixed at the $80^{\text {th }}$ percentile of all citation distributions.

Starting with the low-impact phenomenon, it is observed that the mean and the median of the distribution of L at the sub-field level in the multiplicative case practically coincide -the values are 0.46 and 0.45 - the standard deviation is small and equal to 0.05 . Only 32 out of 219 sub-fields are slightly above a value equal to $0.46+0.05=0.51$, and 27 below a value equal to $0.46-0.05=0.41$. In brief, only four distributions with L greater than or equal to 0.60 ((i) Engineering, Petroleum; (ii) Engineering, Marine; (iii) Transportation Science \& Technology; (iv) Materials Science, Characterization \& Testing), and Behavioral Sciences with L equal to 0.33 can be considered as mildly extreme. The correlation coefficient of L values according to the two strategies is 0.96 , and the analysis in the fractional case leads to exactly the same five mildly extreme distributions isolated in the multiplicative case. At the discipline and the field levels (individual information available on request), only the Multidisciplinary category with L equal to 0.55 under both strategies deserves to be mentioned as a potential extreme distribution. The conclusion is that for truly different behavior we must turn to what we call the structure of excellence at the upper tail of citation distributions.

Turning towards the high-impact phenomenon, we begin by noting that the distributions of H values at the sub-field level for the two strategies are highly correlated (correlation coefficient equal to 0.96), and present similar general characteristics. In the multiplicative case, for example, the standard deviation and the coefficient of variation take very large values, 2.4 and 2.2 , respectively, and the mean, 1.1 , is very much greater than the median, 0.57 . All of which indicates that the distribution of H values is highly skewed to the right and it is likely to present some important extreme cases. Panel A in Table 3 includes 17 sub-fields with the highest H values in the multiplicative case, as well as five sub-fields with high H values in the fractional case that are not included in the previous set.

Table 3 around here

The following three points should be emphasized.

1. If we consider sub-fields with H values greater than 3.5 according to either strategy as extreme, there are eight of them, the first seven of which are common to both strategies. A weaker criterion, according to which a sub-field with H greater than or equal to 1.8 in either strategy should be considered as a mildly extreme distribution, would add 14 more sub-fields, of which nine have an H value above 1.8 in both strategies. In brief, the set of extreme distributions according to both strategies is very similar indeed.
2. There are twelve sub-fields with a H value according to the fractional strategy greater than or equal to the value according to the multiplicative strategy. In the remaining ten cases the opposite is the case. Therefore, there is no systematic tendency for H values to be greater according to one of the two strategies. Surely the most notable case is Statistics \& Probability where the H value in the multiplicative case is almost 100% greater than in the fractional case. Both the MCR and the coefficient of variation within high-impact articles are also much larger in the multiplicative case for this sub-field.
3. Within the set of extreme distributions, the following comments are in order. Firstly, two subfields -Crystallography, and Medicine, Research \& Experimental- were already characterized as "residual sub-fields" in Albarrán et al. (2011a). Secondly, six out of eight sub-fields in Computer Science are considered extreme. The conclusion is inescapable: this field's structure of excellence is entirely different from the rest. Thirdly, two important sub-fields within Physics are classified as extreme: Physics, Particle \& Fields, and Physics, Multidisciplinary. Fourthly, perhaps not surprisingly the Multidisciplinary category behaves as a mildly extreme distribution at the sub-field level. Fifthly, only two Social Sciences can be considered as mildly extreme sub-fields: International Relations, and Ethnic Studies.

At higher aggregate levels, together with the original distributions, we should take into account the normalized distributions according to both strategies. Individual information in the multiplicative
and the fractional case is available in Table C in Appendix II, while Panel B in Table 3 lists the disciplines and fields with the highest H values in both scenarios.

1. As expected, extreme H values decrease with normalization. The ranking of the first two disciplines remains unchanged after normalization, but as soon as differences in sub-field MCRs are taken into account, Applied Mathematics and Particle \& Nuclear Physics, which appear as third and fifth disciplines among the original distributions, now occupy rank four and seven among normalized distributions. A similar phenomenon takes place among fields: due to the extreme behavior displayed by the Statistics \& Probability sub-field, Mathematics appears as the first extreme distribution among un-normalized fields. However, as soon as the low MCRs of other mathematical sub-fields is taken into account in the normalization process, Mathematics goes down to occupy rank three among normalized field distributions.
2. Interestingly enough, there is now complete agreement between the multiplicative and the fractional strategies about extreme sets. The main difference is the ranking of Applied Mathematics and Mathematics at the discipline and the field levels, which is always higher in the multiplicative case. The reason, of course, is the large difference already noted about Statistics and Probability at the subfield level.
3. Not surprisingly, disciplines consisting of single extreme sub-fields remain extreme at the discipline level. This is the case of Crystallography; Medicine, Research \& Experimental, and the Multidisciplinary category. The first two cause the field Residual Sub-fields to become an extreme field. Not surprisingly either in view of results at the sub-field level, Computer Science \& Information Technology among disciplines, and Computer Science among fields are clear extreme distributions at their aggregate level.

IV. DIFFERENCES BETWEEN THE MULTIPLICATIVE AND THE FRACTIONAL STRATEGIES

IV. 1. The Number of Articles According to the Two Strategies

By construction, differences between the multiplicative and the fractional strategies start with the number of articles. The individual information in this respect is in the first part of Table D in Appendix II. At each aggregation level, the last three rows report the mean number of articles the standard deviation, and the coefficient of variation. The second part of this Table contains the distribution of the total number of articles by categories at each aggregation level. The difference between the distributions has a positive (negative) sign when the difference between the numbers of articles according to the two strategies is above (below) the mean. The following three points should be emphasized.

1. In our dataset there is no information about the distribution of sub-fields, disciplines or fields by size, measured by the number of people working in them, but the numbers must be very different indeed. Moreover, publication practices vary very much across categories at every aggregate level. In some cases authors publishing one article per year would be among the most productive, while in other instances authors -either alone or as members of a research team- are expected to publish several papers per year. Consequently, distribution sizes measured by the number of articles in Table D are expected to differ at all aggregation levels. In particular, judging by the large dispersion measures sub-field sizes according to both strategies are very different indeed. In the multiplicative case, for example, the range of variation goes from a minimum of 403 and 418 articles (Engineering, Marine; and Biology, Miscellaneous), and thirteen more sub-fields with fewer than 3,000 articles, to eight sub-fields with more than 100,000 articles and a maximum of 213,036 articles in Biochemistry and Molecular Biology. Discipline sizes are also very different. The range of variation goes from two out of 80 disciplines with fewer than 12,000 articles, to six with more than 100,000 articles. There are four large fields with more than 450,000 articles, three around 350,000 , three with fewer than 100,000 , and the remaining 10 with intermediate sizes.
2. Interestingly enough, the correlation coefficient between sub-field sizes according to the multiplicative and the fractional strategies is 0.98 . However, as has already been observed in Table 1, the two procedures lead to very large size differences. The question the potential user needs to
know is whether or not the differences are uniform across categories at each aggregate level. Focusing on the important sub-field case, the median of the distribution of the differences between the numbers of articles is about 64%, or seven points above the mean. Correspondingly, there are 58 out of 219 sub-fields in which the number of articles in the multiplicative case is at least 100% greater than in the fractional case, while there are only 17 sub-fields in which this difference is below 20%. The relative importance of each of the former 58 sub-fields in the multiplicative case is at least 27% greater than in the fractional case, while the relative importance of each of the latter 17 sub-fields in the multiplicative case is at least 24% smaller than in the fractional case. ${ }^{5}$

On the other hand, differences between the two strategies tend to diminish as we proceed towards higher aggregate levels. Thus, there are three out of 80 disciplines (and two out of 20 fields) in which the number of articles in the multiplicative case is at least 100% (or 60%) greater than in the fractional case, while only in the Multidisciplinary sub-field -that appears as a single discipline and a single field- this difference is below $10 \% .{ }^{6}$
3. A final interesting question is whether size differences increase with size. A correlation coefficient of -0.19 between these two variables in the sub-field case indicates that this is not the case.

IV.2. Other Characteristics: MCR, L, and H

The final question that needs to be investigated is the differences between the two strategies in other dimensions different from size. In particular, we study differences in MCR, and the L and H indicators that are size- and scale-invariant. The individual information about the MCRs according to both strategies at the sub-field level is in Table E in Appendix II. It deserves the following three comments.

[^3]1. In a majority of cases -136 sub-fields- the MCR is greater according to the multiplicative strategy. However, the opposite is the case in a non-negligible number of cases: 82 sub-fields. Only in Neuroimaging do the MCRs according to both strategies coincide.
2. In spite of very large differences in the number of articles according to both strategies, differences in MCRs are not that large: they amount to less than 5% in 114 sub-fields, and between 5% and 10% in another 59 cases. There are only 36 sub-fields with differences amounting between 10% and 20%, and 10 with differences above $20 \% .^{7}$ In other words, MCRs in journals with single or multiple assignments to sub-fields are not that different. On the other hand, the correlation coefficient between MCRs according to both strategies is very high: 0.98 .
3. The correlation coefficient between differences in MCRs in absolute terms and differences in size is -0.01 , an indication that to have a large number of articles in journals with multiple assignments is not a sufficient condition for large MCR differences between the multiplicative and the fractional strategies.

Turning now to the low-impact phenomenon, it is observed that the L values according to the two strategies at the sub-field level are very close to each other (see Table B in Appendix II): in only five sub-fields does the difference in favor of the multiplicative strategy amount to more than 5%, while this is the case in favor of the fractional strategy in 17 cases. Only for Women's Studies and Transportation does the L value for the fractional strategy exceeds that of the multiplicative strategy by more than 10%. Aggregation and normalization further reduces differences between the two alternatives: only in three out of 80 normalized disciplines, as well as in Computer Science among 20 fields, is this difference is greater than 5\% (individual data is available on request). On the other hand, as we saw in Section III. 4 the correlation coefficient of L values according to the two

[^4]strategies at both the sub-field and the discipline level is 0.96 . All of which indicates that, as far as low-impact is concerned, choosing either of the two strategies has truly minor consequences.

As we have seen, differences in MCRs are not that large, while differences in low-impact values are negligible. However, differences in H values are rather significant. As can be seen in Table 4 (that summarizes the individual information in Tables B and C in Appendix II), in 120 out of 219 sub-fields, 17 out of 80 disciplines, and four out of 20 fields, differences in H values between the two strategies are greater than 10%. Moreover, in 30 sub-fields and one discipline these differences exceed 30%. Thus, when we measure citation impact excellence with the H indicator with a CCL fixed at the $80^{\text {th }}$ percentile of world distributions, the quantitative picture drawn through the multiplicative and the fractional strategies is quite different indeed. Nevertheless, it should be emphasized that the two strategies coincide in other respects. On the one hand, the correlation coefficient of this indicator for the two strategies is 0.85 and 0.99 at the sub-field and discipline levels. On the other, as we saw in Section III. 4 the set of high-impact extreme distributions for the two strategies is very similar indeed.

Table 4 around here

V. CONCLUSIONS

The assignment of a number of journals to multiple sub-fields poses serious practical problems in many datasets. In this paper we have compared two alternative strategies to cope with this situation: a multiplicative strategy, according to which articles should be wholly counted as many times as necessary when the journal in which they have been published is assigned to several subfields, and a fractional strategy in which articles should be weighted by the inverse of the number of sub-fields to which the publishing journal is assigned. We have introduced a novel normalization procedure that in the construction of aggregate categories in the multiplicative case takes into account differences in citation practices across sub-fields at the lowest aggregation level.

At every aggregate level, the fractional strategy preserves the number of articles in the original dataset. However, in the multiplicative strategy the number of articles in each extended count is always greater than in the original dataset, and decreases as we move up in the aggregation scheme. The key to the normalization procedure in this approach is the reconciliation of every aggregate level with the sub-field level. This is done as follows. Given the number of sub-fields to which an article is assigned, consider the subset of them that belongs to a given aggregate category, for example the subset of sub-fields that belong to a given discipline. Then the multiplicative strategy reconciles the discipline with the sub-field level by weighting this article by the number of sub-fields in that subset. This opens the way for the normalization procedure to proceed as in the fractional case.

Quite independently from the fact that we prefer the first solution on a priori grounds, the main empirical conclusions can be summarized in the following three points.

1. By construction, the number of articles according to the multiplicative strategy is always greater than the number of articles in the fractional strategy. At a maximum -at the lowest aggregation level- on average this difference is 57%. More importantly, differences between the two strategies are far from uniform across categories at different aggregation levels. For example, there are 58 out of 219 sub-fields in which the number of articles in the multiplicative case is at least 100% greater than in the fractional case, while in 17 sub-fields this difference is below 20%.
2. The two strategies differ in the way they treat articles coming from journals assigned to multiple sub-fields. It turns out that -in certain respects- the citation characteristics of these articles do not differ much from those of articles coming from journals assigned to a single sub-field. Thus, in spite of the wide differences in the mix between the two types of articles -which give rise to the differences in the number of articles just reviewed-, the two strategies lead to un-normalized and normalized citation distributions that have many important features in common. Firstly, MCRs for individual sub-fields according to the two strategies are not very different from each other. Specifically, MCR differences amount to less than 5% in 114 out of 219 sub-fields, and between 5% and 10% in another 59 cases. Furthermore, the MCR distributions according to the two strategies
are highly correlated. Secondly, normalized and un-normalized citation distributions according to either the multiplicative or the fractional strategies share the same skewed shape. The proportion of articles that receive (1) none or few citations, (2) are fairly cited, and (3) are remarkably or outstandingly cited is, approximately, $69 / 21 / 10$. These three classes of articles account for the proportions $34 / 21 / 45$ of all citations. Thirdly, the measures of low-impact according to both strategies are very close to each other: for example, differences between the two strategies amount to less than 5% in 197 out of 219 sub-fields. Furthermore, the two distributions are very highly correlated in this respect at all aggregate levels.
3. There is no question that the more important part of citation distributions is the upper tail. By fixing the CCL at the $80^{\text {th }}$ percentile, this paper focuses the attention on the 20% of most highly cited articles. The main conclusion is that excellence is not equally structured in all citation distributions. It turns out that this structure is differently captured by our high-impact indicator under the two strategies in contention: in 63 out of 219 sub-fields, 16 out of 80 disciplines, and two out of 20 fields, differences in H values between the two strategies are greater than 20%. On the other hand, there is a set of extreme citation distributions that behave very differently from the rest in the sense that they are characterized by a very high H value. An important finding in this paper is that this set essentially coincides under the multiplicative and the fractional strategies. In particular, at the lowest aggregation level there are about eight sub-fields with H values that are well above the mean over the entire sub-field set according to both strategies.

In brief, although the similarity of citation characteristics of articles published in journals assigned to one or several sub-fields guarantees that choosing one of the two strategies may not lead to a radically different picture in practical applications, the list of categories with high-impact values at any aggregate level may considerably differ depending on that choice.

Four possible extensions might be mentioned. Firstly, it is worthwhile to explore whether the main conclusions of the paper are robust to the CCL choice. Secondly, as indicated in Section III. 2 Albarrán et al. (2001a) investigated the existence of a power law representing the very top of the
upper tail of un-normalized citation distributions in the multiplicative case. It would be certainly interesting to extend this work to the fractional case, as well as to normalized distributions under both strategies. Thirdly, it should be noted that our high-impact indicator is not robust to the presence of a handful of articles with a truly phenomenal number of citations. Therefore, it would also be interesting to explore the issue of extreme distributions using indicators of citation excellence robust to extreme observations. Fourthly, an important research question is to explain why excellence is not equally structured in all citation distributions, and why in some of them it behaves so differently from the rest.

We should not end this paper without pointing out how convenient it would be to have a classification system available in which each article could be assigned to a single sub-field. Thomson Scientific does that for the dataset used in this paper, but only for a notion of "sub-field" that leads to a set of only 22 broad categories (This is the classification system used in Albarrán and RuizCastillo, 2011, and Albarrán et al., 2011b, c). In this context, we should welcome the recent work by Archambault et al. (2011) in which individual journals are assigned to single, mutually exclusive categories using a hybrid approach that combines algorithmic methods and expert judgment. Nevertheless, in our view it would be important to verify whether citation distributions at every aggregation level in the new classification system satisfy the broad features that in both Albarrán et al. (2011a) and this paper have been seen to characterize distributions under the multiplicative and the fractional strategies.

REFERENCES

Albarrán, P. and J. Ruiz-Castillo (2011), "References Made and Citations Received By Scientific Articles", Journal of the American Society for Information Science and Technology, 62: 40-49.

Albarrán, P., J. Crespo, I. Ortuño, and J. Ruiz-Castillo (2011a), "The Skewness of Science In 219 Sub-fields and A Number of Aggregates", Scientometrics, 88: 385-397.

Albarrán, P., I. Ortuño, and J. Ruiz-Castillo (2011b). "The Measurement of Low- and High-impact In Citation Distributions: Technical Results", Journal of Informetrics, 5: 48-63.

Albarrán, P., I. Ortuño and J. Ruiz-Castillo (2011c), "High- and Low-impact Citation Measures: Empirical Applications", Journal of Informetrics, 5: 122-145.

Albarrán, P., I. Ortuño, and J. Ruiz-Castillo (2011d), "Average-based versus High- and Low-impact Indicators For The Evaluation of Citation Distributions With", forthcoming in Research Evaluation.

Archambault, E., O. Beauchesne, and J. Caruso (2011), "Towards a Multilingual, Comprehensive, and Open Scientific Journal Ontology", paper presented at the $13^{\text {th }}$ International Conference on Scientometrics and Informetrics held in Durban, Republic of South-Africa.

Foster, J.E., J. Greeer, and E. Thorbecke (1984), "A Class of Decomposable Poverty Measures", Econometrica, 52: 761-766.
Glänzel, W. (2010), "The Application of Characteristics Scores and Scales to the Evaluation and Ranking of Scientific Journals", forthcoming in Proceedings of INFO 2010, Havana, Cuba: 1-13.

Glänzel, W. and A. Schubert (2003), "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes", Scientometrics, 56: 357-367.

Herranz, N. and Ruiz-Castillo, J. (2011a), "Sub-field Normalization Procedures In the Multiplicative Case", mimeo.
Herranz, N. and Ruiz-Castillo, J. (2011b), "The End of the European Paradox", Working Paper 11-27, Universidad Carlos III.

Herranz, N. and Ruiz-Castillo, J. (2011c), "The Size of the Space in Sub-field Normalization", mimeo.
Radicchi, F., Fortunato, S., and Castellano, C. (2008), "Universality of Citation Distributions: Toward An Objective Measure of Scientific Impact", PNAS, 105: 17268-17272.

Schubert, A., W. Glänzel and T. Braun (1987), "A New Methodology for Ranking Scientific Institutions", Scientometrics, 12: 267-292.

Seglen, P. (1992), "The Skewness of Science", Journal of the American Society for Information Science, 43: 628-638.
Tijssen, J. W., and T. van Leeuwen (2003), "Bibliometric Analysis of World Science", Extended Technical Annex to Chapter 5 of the Third European Report on Science and Technology Indicators, Directorate-General for Research. Luxembourg: Office for Official Publications of the European Community.

Waltman, L, N. J. van Eck, T. N. van Leeuwen, M. S. Visser, and van Raan (2011a), "Towards a New Crown Indicator: Some Theoretical Considerations", Journal of Informetrics, 5: 37-47.

Waltman, L, N. J. van Eck, and A. F. J. van Raan (2011b), "Universality of Citation Distributions Revisited", Center for Science and Technological Studies, Leiden University, The Netherlands, mimeo, http://arxiv.org/pdf/1105.2934v1.

Table 1. Number of Articles in the Extended Counts According to the Multiplicative Strategy at Different Aggregation Levels
Number of Articles Index

Original Dataset and Fractional Strategy

3,648,524
100.0

EXTENDED COUNTS:

Sub-field	$5,735,512$	157.1
Discipline	$5,371,569$	147.2
Field	$4,876,818$	133.7

Table 2. Characteristic Scores and Scales. Means (and Standard Deviations)

Percentage Of Articles In Categories:

$$
1+2 \quad 4+5
$$

A. UN-NORMALIZED SUB-FIELDS

Multiplicative Strategy*	68.6	10.0	21.1	44.9
	(3.7)	(1.7)	(5.0)	(4.6)
Fractional Strategy	68.3	10.2	21.5	44.7
	(3.4)	(1.6)	(4.2)	(3.9)

B. NORMALIZED DISCIPLINES:

Multiplicative Strategy	68.4	10.0	22.3	43.9
	(2.6)	(1.3)	(3.2)	(2.9)
Fractional Strategy	68.4	10.0	21.8	44.5
	(2.8)	(1.3)	(3.3)	(3.0)

C. NORMALIZED FIELDS

Multiplicative Strategy	68.7	9.7	21.6	44.6
	(1.8)	(1.0)	(3.4)	(3.3)
Fractional Strategy				
	$(2.7$	9.7	21.1	45.1
		(1.1)	(3.5)	(3.3)

* The information in this row is taken from Table 6 in the Working Paper version of Albarrán et al. (20011a)

Table 3.A. Extreme Un-normalized Sub-field Distributions According to the Multiplicative and the Fractional Approach

High-impact Values:	Multiplicative $\mathbf{(1)}$	Fractional $\mathbf{(2)}$	$\mathbf{(3)}=$ $\mathbf{(1)} \mathbf{- (2)} \mathbf{I n}$ \%
1. Medicine, General \& Internal	20.7	22.3	-7.2
2. Crystallography	17.7	17.2	2.7
3. Mathematical \& Computational Biology	15.5	11.8	32.0
4. Statistics \& Probability	14.8	7.6	93.1
5. Computer Science, Interdisciplinary Applications	12.9	9.9	29.5
6. Biochemical Research Methods	5.2	3.7	40.8
7. Physics, Particles \& Fields	3.7	4.0	-6.6
8. Medicine, Research \& Experimental	3.0	3.5	-15.2
9. Engineering, Petroleum	1.1	4.7	-76.7
10. Physics, Multidisciplinary	3.1	3.3	-7.7
11. Computer Science, Information Systems	3.3	2.8	20.1
12. Computer Science, Hardware \& Architecture	2.8	2.3	25.6
13. Computer Science, Theory \& Methods	2.8	1.9	42.2
14. Multidisciplinary Sciences	2.1	2.2	-0.7
15. Computer Science, Artificial Intelligence	2.1	1.8	15.8
16. Biotechnology \& Applied Microbiology	2.1	2.1	-2.7
17. Telecommunications	2.0	1.7	13.0
18. International Relations	1.9	2.3	-16.1
19. Materials Science, Characterization \& Testing	1.8	1.8	-3.6
20. Psychology, Multidisciplinary	1.4	2.0	-31.1
21. Mining \& Mineral Processing	1.3	2.0	-36.2
22. Ethnic Studies	1.1	2.3	-51.2
	2.4		
Mean Sub-field Value		1.1	
Standard Deviation	2.2		

Standard Deviation
2.4
2.2

Table 3.B. Extreme Discipline and Field Distributions In the Un-normalized and the Normalized Case

Un-normalized Discipline Distributions:

Multiplicative	Fractional	(3) $=$
(1)	(2)	$(1)-(2)$ In $\%$

(2)
(1) - (2) In \%

Normalized Discipline Distributions:

Multiplicative Fractional (3) =
(1)
(2)
(1) - (2) In \%

1. Crystallography	17.7	17.2	2.7	1. Crystallography	17.7	17.2	2.7
2. General \& Int. Med.	8.4	8.3	1.0	2. General \& Int. Med.	4.6	5.1	-9.0
3. Applied Mathematics	5.9	2.5	136.3	3. Comp. Sc. \& Inf. Tech.	3.6	2.8	29.5
4. Comp. Sc. \& Inf. Tech.	5.4	5.5	-2.4	4. Applied Mathematics	3.5	2.5	36.3
5. Part. \& Nuclear Physics	3.2	3.5	-8.1	5. Medicine, Res. \& Exp.	3.0	3.5	-15.2
6. Medicine, Res. \& Exp.	3.0	3.5	-15.2	6. Multidisciplinary Physics	2.2	2.4	-7.2
7. Mult. Physics	2.9	2.8	4.2	7. Part. \& Nuclear Physics	2.2	2.7	-20.2
8. Multidisciplinary	2.1	2.2	-0.7	8. Multidisciplinary	2.1	2.2	-0.7
Mean Values	1.3	1.2		Mean Values	1.1	1.1	
Standard Deviation	2.2	2.1		Standard Deviation	2.0	2.0	

Un-normalized Field Distributions:

Multiplicative Fractional (3) =
(1)

MATHEMATICS	6.3	2.2	180.8
COMPUTER SCIENCE	5.4	5.5	-2.4
RESID. SUB-FIELDS	4.1	4.8	-15.1
MULTIDISCIPLINARY	2.1	2.2	-0.7
Mean Values	1.6	1.5	
Standard Deviation	1.7	1.4	

Normalized Field Distributions:

Multiplicative Fractional (3) =

$$
(1)
$$

(2)
(1) - (2) In \%

COMPUTER SCIENC	3.6	2.8
RESID. SUB-FIELDS	3.0	3.7
MATHEMATICS	2.4	1.6
MULTIDISCIPLINAR	2.1	2.2
Mean Values	1.2	1.2
Standard Deviation	0.9	0.8

Table 4. Differences In High-impact values Between the Multiplicative and the Fractional Strategies at Different Aggregation Levels
Multiplicative > Fractional
Multiplicative < Fractional
Total

	$\mathbf{0 - 1 0 \%}$	$\mathbf{1 0 - 2 0} \%$	$\mathbf{2 0 - 3 0 \%}$	$\mathbf{> 3 0 \%}$
Multiplicative > Fractional	16	9	7	1
Multiplicative < Fractional	29	10	4	4
Total	45	19	11	5

Multiplicative > Fractional
Multiplicative < Fractional
Total

$\mathbf{0 - 1 0 \%}$	$\mathbf{1 0 - 2 0} \%$	$\mathbf{2 0 - 3 0 \%}$	$\mathbf{3 0 - 5 0 \%}$	$\mathbf{> 5 0 \%}$
40	30	17	12	3
59	26	16	12	3
99	56	33	24	6

B. DISCIPLINES
C. FIELDS

$\mathbf{0 - 1 0} \%$	$\mathbf{1 0 - 2 0} \%$	$\mathbf{> 2 0} \%$
3	2	2
8	5	-
11	7	2

Appendix I. A numerical example

Assume that there are $N=16$ articles, five sub-fields, indexed by $s=1, \ldots, 5$, and two disciplines, d_{1} and d_{2}, consisting of the first two and the last three sub-fields, respectively. All articles are assigned to a single sub-field, except an article that receives 8 citations and is assigned to the five sub-fields.

Fractional strategy. For the article with 8 citations, X_{l} contains the five sub-fields, so that $x_{l}=5$. Subfield distributions can be expressed as $c_{i}=\left\{w_{s i} c_{s i}\right\}$ where $w_{s i}=1 / x_{l}$ for all $s \in X$, and $c_{s i}$ is the number of citations received by article i in sub-field s in the multiplicative strategy. Of course, $\Sigma_{s \times l} w_{s i}=1$. Therefore, the five sub-fields and their corresponding means in the fractional strategy are:

$$
\begin{array}{ll}
c f_{1}=(1,2,8 / 5,10), & m_{1}=4.5625 \\
c f_{2}=(1,1,8 / 5,2), & m_{2}=1.75 \\
c f_{3}=(1,4,8 / 5,6), & m_{3}=3.9375 \\
c f_{4}=(1,3,8 / 5,5), & m_{4}=3.3125 \\
c f_{5}=(4,4,8 / 5,4), & m_{5}=4.25 .
\end{array}
$$

Note that $\Sigma_{i} w_{s i}=16 / 5$ is the (fractional) number of articles in sub-field $s=1, \ldots, 5$, so that $\sum_{i} \Sigma_{i} w_{s i}=N=16$. In this strategy, the two disciplines are the union of the corresponding sub-fields:

$$
\begin{aligned}
& c f_{d 1}=(1,2,8 / 5,10) \cup(1,1,8 / 5,2), \\
& c f_{d 2}=(1,4,8 / 5,6) \cup(1,3,8 / 5,5) \cup(4,4,8 / 5,4)
\end{aligned}
$$

The (fractional) number of articles in the two disciplines are $\Sigma_{s \in d f} \Sigma_{i} w_{s i}=2(16 / 5)=32 / 5$, and $\Sigma_{s d d p} \Sigma_{i} w_{s i}=3$ $(16 / 5)=48 / 5$, so that the total number of articles at the discipline level is $80 / 5=16=N$. In this case, the discipline MCRs are equal to the sum of the corresponding sub-field MCRs

$$
\begin{aligned}
& m_{d f f}=3.15625=(1 / 2) 4.5625+(1 / 2) 1.75 \\
& m_{d f 2}=3.8333=(1 / 3)(3.9375+3.3125+3.3125) .
\end{aligned}
$$

Finally, the normalized sub-field and discipline distributions are:

$$
\begin{gathered}
i f_{1}=\left(1 / m_{1}, 2 / m_{1}, 8 / 5 m_{1}, 10 / m_{1}\right) \quad \text { if } f_{2}=\left(1 / m_{2}, 1 / m_{2}, 8 / 5 m_{2}, 2 / m_{2}\right) \quad \text { if } f_{3}=\left(1 / m_{3}, 4 / m_{3}, 8 / 5 m_{3}, 6 / m_{3}\right) \\
i f_{4}=\left(1 / m_{4}, 3 / m_{4}, 8 / 5 m_{4}, 5 / m_{4}\right) \quad \text { V } f_{5}=\left(4 / m_{5}, 4 / m_{5}, 8 / 5 m_{5}, 4 / m_{5}\right)
\end{gathered}
$$

and

$$
\Sigma i f d_{1}=\varepsilon f_{1} \cup \Sigma f_{2}, \quad \nabla f d_{2}=\Sigma f_{3} \cup \Sigma f_{4} \cup \Sigma f_{5}
$$

Of course, the MCR in all these distributions is equal to one.
Multiplicative strategy. The five sub-fields and their corresponding means are:

$$
\begin{array}{ll}
c_{1}=(1,2,8,10), & M_{1}=5.25 \\
c_{2}=(1,1,8,2), & M_{2}=3 \\
c_{3}=(1,4,8,6), & M_{3}=4.75 \\
c_{4}=(1,3,8,5), & M_{4}=4.25 \\
c_{5}=(4,4,8,4), & M_{5}=5 .
\end{array}
$$

Thus, $N_{s}=4$ for all s, so that in the sub-field extended count $N_{s F}=\Sigma_{s} N_{s}=20$.

For the article with 8 citations, Y_{l} contains the two disciplines, so that $y_{l}=2$. In this strategy, the two disciplines and their corresponding means are:

$$
\begin{array}{ll}
c_{d 1}=(1,1,1,2,2,8,10) & M_{d 1}=3.5714 \\
c_{d 2}=(1,1,3,4,4,4,4,8,5,6), & M_{d 2}=4 .
\end{array}
$$

Note that $N_{d 1}=7$, and $N_{d 2}=10$, so that $N_{D}=\Sigma_{d} N_{d}=17$, with $N_{S F}>N_{D}>N$. Discipline MCRs are not equal to the weighted sum of the original sub-fields MCRs, that is:

$$
\begin{aligned}
& M_{d \prime} \neq \sum_{s d l}\left(N_{s} / \Sigma_{s} N_{s}\right) M_{s}=(1 / 2) 5.25+(1 / 2) 5.25=4.125 ; \\
& M_{d 2} \neq \sum_{s d 2}\left(N_{s} / \Sigma_{s} N_{s}\right) M_{s}=(1 / 3) 4.75+(1 / 3) 4.25+(1 / 3) 5=4.666 .
\end{aligned}
$$

The two disciplines partition the set X_{l} of sub-fields as follows: $X_{l}=X_{l l} \cup X_{l 2}$, with $x_{l 1}=2$, and $x_{l 2}=3$, so that $x_{l l}$ $+x_{l 2}=2+3=5=x_{l}$. The new sub-field distributions, $c_{i}^{\prime}=\left\{v_{s i} \mathrm{c}_{s i}\right\}$ where $v_{s i}=1 / x_{l d}$ and $c_{s i}=c_{l}$ for all $s \in X_{l d}$ and their corresponding means are:

$$
\begin{array}{ll}
c_{1}^{\prime}=(1,2,8 / 2,10), & M_{1}^{\prime}=4.8571 \\
c_{2}^{\prime}=(1,1,8 / 2,2), & M_{2}^{\prime}=2.2857 \\
c_{3}^{\prime}=(1,4,8 / 3,6), & M_{3}^{\prime}=4.1 \\
c_{4}^{\prime}=(1,3,8 / 3,5), & M_{4}^{\prime}=3.5 \\
c_{5}^{\prime}=(4,4,8 / 3,4), & M_{5}^{\prime}=4.4 .
\end{array}
$$

Note that $\Sigma_{i} v_{s i}=3.5$ is the (fractional) number of articles for $s=1,2$, and $\Sigma_{i} v_{s i}=3.33$ for $s=3,4$, 5, so that $\Sigma_{s} \Sigma_{i} v_{s i}$ $=17=N_{D}$. The discipline MCRs are seen to be equal to the weighted means of the corresponding new sub-field MCRs:

$$
\begin{aligned}
& M_{d l}=3.5714=\sum_{s d 1}\left(N_{s}^{\prime} / N_{d 1}\right) M_{s}^{\prime}=(1 / 2) 4.8571+(1 / 2) 2.2857 \\
& M_{d 2}=4=\sum_{s d 2}\left(N_{s}^{\prime} / N_{d 2}\right) M_{s}^{\prime}=(1 / 3) 4.1+(1 / 3) 3.5+(1 / 3) 4.4=4 .
\end{aligned}
$$

Finally, the normalized new sub-field distributions are constructed as in the fractional case:

$$
\begin{gathered}
z_{1}^{\prime}=\left(1 / M_{1}^{\prime}, 2 / M_{1}^{\prime}, 8 / 2 M_{1}^{\prime}, 10 / M_{1}^{\prime}\right) \quad z_{2}^{\prime}=\left(1 / M_{2}^{\prime}, 1 / M_{2}^{\prime}, 8 / 2 M_{2}^{\prime}, 2 / M_{2}^{\prime}\right) \\
z_{3}^{\prime}=\left(1 / M_{3}^{\prime}, 4 / M_{3}^{\prime}, 8 / 3 M_{3}^{\prime}, 6 / M_{3}^{\prime}\right) \quad z_{4}^{\prime}=\left(1 / M_{4}^{\prime}, 3 / M_{4}^{\prime}, 8 / 3 M_{4}^{\prime}, 5 / M_{4}^{\prime}\right) \quad z_{5}^{\prime}=\left(4 / M_{5}^{\prime}, 4 / M_{5}^{\prime}, 8 / 3 M_{5}^{\prime}, 4 / M_{5}^{\prime}\right) .
\end{gathered}
$$

The normalized discipline distributions are:

$$
\begin{gathered}
\mathfrak{z}_{d 1}=\left(1 / M_{1}^{\prime}, 2 / M_{1}^{\prime},(8 / 2)\left[\left(1 / M_{1}^{\prime}\right)+\left(1 / M_{2}^{\prime}\right)\right], 10 / M_{1}^{\prime}, 1 / M_{2}^{\prime}, 1 / M_{2}^{\prime}, 2 / M_{2}^{\prime}\right), \\
\mathfrak{z}_{d 2}=\left(1 / M_{3}^{\prime}, 4 / M_{3}^{\prime},(8 / 3)\left[\left(1 / M_{3}^{\prime}+\left(1 / M_{4}^{\prime}\right)+\left(1 / M_{5}^{\prime}\right)\right], 6 / M_{3}^{\prime}, 1 / M_{4}^{\prime}, 3 / M_{4}^{\prime}, 5 / M_{4}^{\prime}, 4 / M_{5}^{\prime}, 4 / M_{5}^{\prime}, 4 / M_{5}^{\prime}\right) .\right.
\end{gathered}
$$

Of course, the MCR in all the normalized distributions is equal to one.

APPENDIX II

Table A.I. Characteristic Scales and Scores for the Original, Un-normalized Distributions at the Sub-field Level According to the Fractional Strategy

I. BIOSCIENCES

1. BIOLOGY
2. BIOLOGY, MISCELLANEOUS
3. EVOLUTIONARY BIOLOGY
4. BIOCHEMICAL RESEARCH METHODS
5. BIOCHEMISTRY \& MOLECULAR BIOLOGY
6. BIOPHYSICS
7. CELL BIOLOGY
8. GENETICS \& HEREDITY
9. DEVELOPMENTAL BIOLOGY
```
II. BIOMEDICAL RESEARCH
10. PATHOLOGY
11. ANATOMY & MORPHOLOGY
12. ENGINEERING, BIOMEDICAL
13. BIOTECH. & APPLIED MICROBIOLOGY
14. MEDICAL LABORATORY TECHNOLOGY
15. MICROSCOPY
16. PHARMACOLOGY & PHARMACY
17. TOXICOLOGY
18. PHYSIOLOGY
```

III. CLINICAL MEDICINE I (INTERNAL) 19. CARDIAC \& CARDIOVASCULAR SYSTEMS 20. RESPIRATORY SYSTEM
21. ENDOCRINOLOGY \& METABOLISM
22. ANESTHESIOLOGY
23. CRITICAL CARE MEDICINE
24. EMERGENCY MEDICINE
25. GASTROENTEROLOGY \& HEPATOLOGY
26. MEDICINE, GENERAL \& INTERNAL
27. TROPICAL MEDICINE
28. HEMATOLOGY
29. ONCOLOGY
30. ALLERGY
31. IMMUNOLOGY
32. INFECTIOUS DISEASES
IV. CLIN. MED. II (NON-INTERNAL) 33. GERIATRICS \& GERONTOLOGY
34. OBSTETRICS \& GYNECOLOGY
35. ANDROLOGY
36. REPRODUCTIVE BIOLOGY
37. GERONTOLOGY
38. DENTISTRY, ORAL SURGERY
39. DERMATOLOGY

Percentage of Observations By Category:

1	2	$1+2$	3	4	5	$4+5$

21.4	48.6	70.0	20.0	6.7	3.2	10.0
28.3	42.7	71.0	18.9	6.3	3.8	10.1
5.7	60.4	66.0	23.6	7.4	3.0	10.4
7.8	62.2	70.0	21.8	6.2	2.0	8.1
5.9	62.6	68.5	22.2	6.6	2.7	9.3
9.0	57.1	66.0	23.1	7.3	3.5	10.9
5.7	65.3	71.0	20.0	6.1	2.8	9.0
8.1	63.6	71.7	20.0	5.7	2.5	8.2
3.5	63.7	67.1	22.0	7.4	3.5	10.9

11.5	56.2	67.7	21.9	7.0	3.4	10.4
15.9	51.5	67.4	22.7	6.8	3.1	9.9
13.4	52.5	65.9	22.1	8.1	4.0	12.1
13.7	55.8	69.5	22.3	6.0	2.2	8.2
16.8	52.6	69.5	21.4	6.2	2.9	9.1
14.1	54.8	68.9	21.5	6.5	3.1	9.6
10.6	57.6	68.2	21.7	6.7	3.4	10.1
11.3	57.4	68.8	21.7	6.6	2.9	9.6
7.1	55.9	63.0	24.0	8.5	4.5	13.0

15.9	54.2	70.1	21.0	6.1	2.8	8.8
10.8	54.2	65.0	23.1	8.2	3.7	11.9
5.8	60.8	66.6	22.9	7.4	3.0	10.5
14.6	51.1	65.8	23.2	7.4	3.6	11.0
9.8	58.3	68.1	21.8	6.7	3.3	10.1
19.7	47.4	67.1	22.2	7.1	3.6	10.7
11.6	57.6	69.2	21.5	6.4	2.9	9.3
29.4	53.1	82.5	13.0	3.3	1.2	4.5
17.7	50.4	68.1	20.3	7.7	3.9	11.6
8.3	61.0	69.3	20.8	6.7	3.1	9.8
7.2	61.1	68.4	21.9	6.9	2.8	9.7
17.8	49.1	66.9	22.4	7.4	3.3	10.7
6.2	62.9	69.2	21.7	6.3	2.8	9.1
10.2	56.3	66.6	22.7	7.3	3.5	10.8

16.2	50.3	66.5	22.6	7.3	3.6	10.9
16.4	51.0	67.4	22.1	7.0	3.4	10.5
12.1	54.4	66.4	22.4	7.3	3.9	11.2
6.9	59.0	66.0	22.9	7.4	3.8	11.2
16.6	49.9	66.4	21.9	7.5	4.1	11.6
14.7	53.4	68.2	20.6	7.8	3.4	11.2
16.8	53.4	70.2	20.1	6.6	3.1	9.7

40. UROLOGY \& NEPHROLOGY	14.5	55.0	69.5	21.3	6.4	2.8	9.2
41. OTORHINOLARYNGOLOGY	21.4	40.7	62.1	25.7	8.2	4.0	12.2
42. OPHTHALMOLOGY	15.2	51.1	66.3	23.2	7.3	3.2	10.5
43 INTEGRATIVE \& COMPLEMENTARY MEDICINE	23.3	38.1	61.4	25.6	9.5	3.5	13.0
44. CLINICAL NEUROLOGY	13.1	56.0	69.1	21.1	6.7	3.2	9.9
45. PSYCHIATRY	14.9	53.5	68.4	21.4	6.8	3.3	10.2
46. RADIOLOGY, NUCLEAR MED. \& IMAGING	14.6	53.6	68.1	21.8	6.9	3.2	10.1
47. ORTHOPEDICS	17.8	49.7	67.5	21.4	7.3	3.8	11.1
48. RHEUMATOLOGY	10.7	56.2	66.9	22.6	7.5	3.0	10.4
49. SPORT SCIENCES	20.4	44.5	64.9	22.6	8.5	4.0	12.5
50. SURGERY	17.6	52.2	69.8	20.4	6.8	3.0	9.8
51. TRANSPLANTATION	17.6	50.6	68.2	21.9	6.8	3.1	9.8
52. PERIPHERAL VASCULAR DISEASE	10.0	59.4	69.4	21.3	6.5	2.8	9.2
53. PEDIATRICS	20.2	46.6	66.8	22.8	7.2	3.2	10.4

V. CL MED. III (HEALTH \& OTHER SCS.)
54. HEALTH CARE SCIENCIES \& SERVICES
55. HEALTH POLICY \& SERVICES
56. MEDICINE, LEGAL
57. NURSING
58. PUBLIC, ENVIRON. \& OCCUP. HEALTH
59. REHABILITATION
60. SUBSTANCE ABUSE
61. EDUCATION, SCIENTIFIC DISCIPLINES
62. MEDICAL INFORMATICS
VI. NEUROSCIENCE \& BEHAVIOR
63. NEUROIMAGING
64. NEUROSCIENCES
65. BEHAVIORAL SCIENCES
66. PSYCHOLOGY, BIOLOGICAL
67. PSYCHOLOGY
68. PSYCHOLOGY, APPLIED
69. PSYCHOLOGY, CLINICAL
70. PSYCHOLOGY, DEVELOPMENTAL
71. PSYCHOLOGY, EDUCATIONAL
72. PSYCHOLOGY, EXPERIMENTAL
73. PSYCHOLOGY, MATHEMATICAL
74. PSYCHOLOGY, MULTIDISCIPLINARY
75. PSYCHOLOGY, PSYCHOANALYSIS
76. PSYCHOLOGY, SOCIAL
77. SOCIAL SCIENCES, BIOMEDICAL

VII. CHEMISTRY

78. CHEMISTRY, MULTIDISCIPLINARY
79. CHEMISTRY, INORGANIC \& NUCLEAR
80. CHEMISTRY, ANALYTICAL
81. CHEMISTRY, APPLIED
82. ENGINEERING, CHEMICAL
83. CHEMISTRY, MEDICINAL
84. CHEMISTRY, ORGANIC
85. CHEMISTRY, PHYSICAL
86. ELECTROCHEMISTRY
87. POLYMER SCIENCE

18.2	49.0	67.2	23.0	6.9	2.9	9.8
16.1	50.2	66.4	23.3	7.2	3.1	10.3
18.0	48.9	66.9	21.6	8.0	3.5	11.5
25.8	33.5	59.3	29.0	7.8	3.9	11.7
13.5	54.5	67.9	21.9	6.8	3.3	10.2
23.4	40.2	63.5	24.1	8.0	4.4	12.4
9.0	56.2	65.2	22.8	8.1	3.9	12.0
32.0	34.1	66.1	22.0	7.9	4.0	11.9
27.5	38.2	65.7	24.4	7.2	2.7	9.9

17.2	52.7	69.9	20.3	6.5	3.3	9.8
7.2	62.5	69.7	20.8	6.3	3.2	9.5
4.6	57.6	62.2	24.8	8.8	4.2	13.0
7.3	60.7	68.1	22.5	6.6	2.8	9.5
14.3	51.2	65.5	22.7	7.9	3.9	11.8
17.0	47.5	64.6	23.4	7.6	4.4	12.0
13.2	53.1	66.3	22.6	7.5	3.6	11.1
11.2	57.0	68.2	21.3	7.0	3.4	10.4
23.7	44.0	67.7	21.3	7.7	3.3	11.0
16.4	50.4	66.8	22.1	7.6	3.6	11.1
19.1	50.1	69.2	21.6	5.8	3.4	9.2
31.4	44.1	75.4	17.6	4.9	2.1	7.0
45.7	28.7	74.4	17.7	5.7	2.2	7.9
15.2	53.9	69.1	20.5	6.9	3.5	10.4
16.7	53.2	69.8	20.7	6.4	3.1	9.5

21.8	49.1	70.9	19.8	6.3	3.0	9.3
16.2	48.1	64.3	23.5	8.3	4.0	12.2
13.7	53.5	67.2	22.3	7.2	3.3	10.5
30.5	36.1	66.6	22.9	7.0	3.5	10.5
28.0	43.1	71.1	19.2	6.7	3.0	9.7
8.8	56.5	65.3	23.0	8.1	3.7	11.7
10.7	51.9	62.6	25.3	8.4	3.7	12.1
14.3	51.8	66.1	23.2	7.4	3.4	10.7
16.9	47.2	64.0	23.2	8.7	4.0	12.8
16.7	52.0	68.7	21.7	6.5	3.1	9.6

VIII. PHYSICS

88. PHYSICS, MULTIDISCIPLINARY
89. SPECTROSCOPY
90. ACOUSTICS
91. OPTICS
92. PHYSICS, APPLIED
93. PHYSICS, ATOMIC, MOLECULAR \& CHEMICAL
94. THERMODYNAMICS (CLASSICAL PHYSICS)
95. PHYSICS, MATHEMATICAL
96. PHYSICS, NUCLEAR
97. PHYSICS, PARTICLES \& FIELDS
98. PHYSICS, CONDENSED MATTER
99. PHYSICS OF SOLIDS, FLUIDS \& PLASMAS
IX. SPACE SCIENCES
100. ASTRONOMY \& ASTROPHYSICS

X. MATHEMATICS

101. MATHEMATICS, APPLIED
102. STATISTICS \& PROBABILITY
103. MATHEMATICS, INTERDISC. APPL.
104. SOCIAL SCIENCES, MATH. METHODS
105. PURE MATHEMATICS

XI. COMPUTER SCIENCE

106. COMP. SC, ARTIFIFICIAL INTELLIGENCE. 107. COMPUTER SCIENCE, CYBERNETICS 108. COMP SC, HARDWARE \& ARCHITECTURE 109. COMP. SC., INFORMATION SYSTEMS
107. COMP. SC., INTERDIS. APPLICATIONS
108. COMP. SC., SOFTWARE ENGINEERING
109. COMP. SC, THEOTY \& METHODS
110. MATHEMATICAL \& COMPUT. BIOLOGY

XII. ENGINEERING

114. ENG., ELECTRICAL \& ELECTRONIC
115. TELECOMMUNICATIONS
116. CONSTRUCTION \& BUILDING TECH.
117. ENGINEERING, CIVIL
118. ENGINEERING, ENVIRONMENTAL
119. ENGINEERING, MARINE
120. TRANSPORTATION SC. \& TECHNOLOGY
121. ENGINEERING, INDUSTRIAL
122. ENGINEERING, MANUFACTURING
123. ENGINEERING, MECHANICAL
124. MECHANICS
125. ROBOTICS
126. INSTRUMENTS \& INSTRUMENTATION
127. IMAGING SC. \& PHOTOGRAPHIC TECH.
128. ENERGY \& FUELS
129. NUCLEAR SCIENCE \& TECHNOLOGY
130. ENGINEERING, PETROLEUM
131. AUTOMATION \& CONTROL SYSTEMS
132. ENGINEERING, MULTIDISCIPLINARY

26.5	48.3	74.8	17.7	5.3	2.1	7.5
18.3	49.3	67.6	21.6	7.2	3.6	10.8
23.0	39.8	62.8	24.4	8.1	4.7	12.8
22.8	47.6	70.4	20.1	6.5	3.0	9.5
19.2	51.7	70.9	20.6	5.9	2.5	8.4
7.8	58.8	66.6	23.1	6.9	3.4	10.3
21.8	46.1	67.9	21.4	7.4	3.3	10.7
18.1	49.0	67.1	22.9	7.0	3.0	10.1
24.8	44.3	69.0	21.7	6.4	2.9	9.3
20.4	53.6	74.0	18.9	5.1	2.0	7.1
20.6	49.9	70.6	20.5	6.2	2.7	8.9
12.4	52.3	64.7	23.2	8.2	4.0	12.1

15.1	53.0	68.1	22.4	6.7	2.8	9.5

34.3	32.7	67.0	21.8	7.9	3.2	11.2
31.6	41.6	73.2	20.0	5.1	1.6	6.7
23.1	48.6	71.8	19.6	5.7	2.9	8.7
26.7	39.4	66.1	23.6	6.9	3.4	10.3
40.9	21.1	62.0	25.6	8.7	3.8	12.5

36.9	36.2	73.1	19.5	5.3	2.1	7.4
45.9	27.1	73.0	19.2	5.5	2.4	7.8
40.8	30.3	71.1	20.1	6.3	2.6	8.9
39.7	30.8	70.5	21.4	5.8	2.3	8.1
30.2	40.0	70.2	21.8	6.0	2.0	7.9
40.2	30.4	70.5	20.6	5.8	3.0	8.9
48.6	28.2	76.8	17.1	4.3	1.8	6.1
13.4	60.4	73.8	20.6	4.5	1.1	5.6

34.4	37.4	71.7	19.8	5.9	2.5	8.5
46.1	26.4	72.6	20.2	5.1	2.1	7.2
32.8	34.6	67.4	20.4	8.3	3.9	12.2
41.7	30.6	72.3	19.7	5.6	2.4	8.0
18.0	49.7	67.7	21.8	7.2	3.3	10.5
58.9	19.9	78.8	13.4	4.7	3.1	7.8
59.5	16.2	75.8	15.6	6.1	2.6	8.6
38.0	33.4	71.4	18.2	7.3	3.1	10.4
33.4	34.8	68.2	19.8	8.5	3.5	12.0
33.6	34.0	67.6	22.2	7.0	3.1	10.2
25.5	40.0	65.5	22.6	7.8	4.2	12.0
37.6	34.9	72.4	19.4	5.6	2.6	8.2
33.0	35.9	68.8	20.4	7.3	3.5	10.8
30.9	41.9	72.8	18.4	6.3	2.5	8.8
33.6	36.6	70.1	21.3	6.1	2.5	8.6
35.7	31.5	67.3	21.8	7.9	3.1	11.0
68.4	0.0	68.4	22.7	5.3	3.6	8.9
38.1	29.1	67.3	21.8	7.8	3.2	10.9
41.1	30.3	71.4	20.3	5.6	2.7	8.2

133. ERGONOMICS
134. OPERATIONS RES. \& MANAG. SCIENCE

XIII. MATERIALS SCIENCE

```
135. MATERIALS SCIENCE, BIOMATERIALS
136. MATERIALS SCIENCE, CERAMICS
137. MAT. SC., CHARAC. & TESTING
138. MAT. SC., COATINGS & FILMS
139. MATERIALS SCIENCE, COMPOSITES
140. MATERIALS SCIENCE, PAPER & WOOD
141. MATERIALS SCIENCE, TEXTILES
142. METALLURGY & METALL. ENGIN.
143. NANOSCIENCE & NANOTECHNOLOGY
```

XIV. GEOSCIENCES
144. GEOCHEMISTRY \& GEOPHYSICS
145. GEOGRAPHY, PHYSICAL
146. GEOLOGY
147. ENGINEERING, GEOLOGICAL
148. PALEONTOLOGY
149. REMOTE SENSING
150. OCEANOGRAPHY
151. ENGINEERING, OCEAN
152. METEOROLOGY \& ATMOSPH. SCS.

153 ENGINEERING, AEROSPACE
154. MINERALOGY
155. MINING \& MINERAL PROCESSING
XV. AGRICULT. \& ENVIRONMENT
156. AGRICULTURAL ENGINEERING
157. AGRICULTURE, MULTIDISCIPLINARY
158. AGRONOMY
159. LIMNOLOGY
160. SOIL SCIENCE
161. BIODIVERSITY CONSERVATION
162. ENVIRONMENTAL SCIENCES
163. ENVIRONMENTAL STUDIES
164. FOOD SCIENCE \& TECHNOLOGY
165. NUTRITION \& DIETETICS
166. AGRIC., DAIRY \& ANIMAL SCIENCE
167. HORTICULTURE

XVI. BIOLOGY

(ORGANISMIC AND SUPRAORG. LEVEL) 168. ORNITHOLOGY
169. ZOOLOGY
170. ENTOMOLOGY
171. WATER RESOURCES
172. FISHERIES
173. MARINE \& FRESHWATER BIOLOGY
174. MICROBIOLOGY
175. PARASITOLOGY
176. VIROLOGY
177. FORESTRY

24.5	45.5	70.0	20.2	6.6	3.1	9.8

6.8	57.3	64.1	23.3	8.5	4.1	12.6
33.6	33.9	67.5	22.2	7.0	3.3	10.3
57.4	16.8	74.2	17.7	5.4	2.7	8.1
17.9	48.5	66.4	22.4	7.6	3.5	11.1
32.3	32.1	64.4	24.4	7.8	3.4	11.2
44.2	19.5	63.8	24.0	8.0	4.3	12.2
40.9	23.0	63.9	25.2	7.0	3.9	10.9
41.3	27.7	68.9	21.3	6.7	3.0	9.7
20.2	50.2	70.4	21.3	6.0	2.3	8.3

14.9	51.6	66.6	22.1	7.7	3.7	11.4
11.8	51.1	62.8	24.4	8.5	4.3	12.8
15.8	50.6	66.4	22.6	7.5	3.5	11.0
27.3	35.4	62.6	23.7	9.7	4.0	13.6
23.4	39.8	63.3	23.9	8.8	4.0	12.8
17.9	50.1	68.1	21.6	7.6	2.8	10.3
14.2	48.8	63.0	23.6	9.2	4.2	13.4
43.6	27.2	70.8	20.4	6.2	2.6	8.9
10.9	54.2	65.1	23.5	7.9	3.6	11.4
45.5	20.3	65.8	23.2	7.8	3.2	11.0
17.3	51.1	68.3	22.0	6.7	2.9	9.6
49.6	24.2	73.7	18.9	5.0	2.3	7.3

24.6	34.9	59.5	25.0	10.3	5.2	15.5
38.0	33.6	71.6	19.3	6.2	2.9	9.1
26.5	39.7	66.2	22.5	7.4	3.9	11.3
12.7	55.1	67.8	20.9	7.6	3.7	11.3
17.3	47.9	65.3	22.7	8.0	4.0	12.0
22.6	46.6	69.2	20.8	6.8	3.2	10.0
15.0	52.7	67.7	21.5	7.5	3.3	10.8
22.7	45.2	67.9	20.9	7.4	3.8	11.2
21.5	44.2	65.7	23.0	7.5	3.7	11.3
12.8	53.7	66.5	22.9	7.0	3.6	10.6
30.4	37.7	68.1	20.6	7.3	4.1	11.4
25.1	44.8	69.9	21.5	5.9	2.6	8.5

18.8	50.5	69.4	20.8	7.1	2.8	9.9
19.1	45.5	64.6	23.6	8.2	3.6	11.8
25.4	40.5	65.9	23.7	6.7	3.8	10.5
21.1	46.6	67.7	20.8	7.5	4.0	11.6
17.3	46.1	63.3	23.6	8.9	4.2	13.1
12.6	50.3	62.9	24.5	8.6	4.0	12.6
8.2	56.2	64.4	23.7	8.0	3.9	11.9
12.2	56.1	68.3	20.8	7.4	3.5	10.9
3.5	62.5	65.9	22.8	7.4	3.9	11.2
15.3	52.1	67.4	21.5	7.5	3.6	11.1

178. MYCOLOGY
179. PLANT SCIENCES
180. PURE AND APPLIED ECOLOGY
181. VETERINARY SCIENCES

XVII. MULTIDISCIPLINARY

 182. MULTIDISCIPLINARY SCIENCESXVIII. RESIDUAL SUB-FIELDS 183. MATERIALS SCIENCE, MULT.
184. CRYSTALLOGRAPHY
185. GEOSCIENCES, MULT.
186. MED., RES. \& EXPERIMENTAL
XIX. SOCIAL SCIENCES, GENERAL
187. CRIMINOLOGY \& PENOLOGY
188. LAW
189. POLITICAL SCIENCE
190. PUBLIC ADMINISTRATION
191. ETHNIC STUDIES
192. FAMILY STUDIES
193. SOCIAL ISSUES
194. SOCIAL WORK
195. SOCIOLOGY
196. WOMEN'S STUDIES
197. EDUCATION \& EDUCATIONAL RES.
198. EDUCATION, SPECIAL
199. AREA STUDIES
200. GEOGRAPHY
201. PLANNING \& DEVELOPMENT
202. TRANSPORTATION

2003 URBAN STUDIES
204. ETHICS
205. MEDICAL ETHICS
206. ANTHROPOLOGY
207. COMMUNICATION
208. DEMOGRAPHY
209. HISTORY OF SOCIAL SCIENCES
210. INFORMATION SC. \& LIBRARY SC.
211. INTERNATIONAL RELATIONS
212. LINGUISTICS
213. SOCIAL SCIENCES, INTERD.

24.0	45.0	69.0	20.1	7.7	3.1	10.9
15.8	54.7	70.4	20.4	6.2	3.0	9.2
11.4	53.9	65.3	23.5	7.4	3.7	11.1
33.7	37.7	71.5	19.0	6.2	3.3	9.5

$\begin{array}{lllllll}42.0 & 28.1 & 70.1 & 20.8 & 6.1 & 2.9 & 9.0\end{array}$

28.0	43.4	71.4	19.8	6.3	2.5	8.8
28.8	39.8	68.6	22.5	7.0	1.9	8.9
19.6	47.8	67.4	21.6	7.4	3.7	11.0
21.3	56.2	77.5	15.7	4.6	2.2	6.8

31.9	36.5	68.4	20.2	7.6	3.9	11.5
28.8	40.9	69.7	20.6	6.5	3.1	9.6
41.8	29.8	71.6	20.2	5.8	2.4	8.2
34.0	33.9	67.9	21.8	7.1	3.2	10.3
47.8	22.4	70.2	20.9	6.4	2.5	8.9
21.4	42.4	63.8	23.9	8.3	4.0	12.4
39.2	31.5	70.7	21.3	5.6	2.5	8.0
31.4	35.7	67.1	21.6	7.5	3.8	11.3
37.3	36.9	74.2	18.4	5.1	2.3	7.4
39.0	31.6	70.6	20.0	6.4	2.9	9.4
38.0	34.1	72.1	20.0	5.5	2.4	7.9
23.7	45.2	68.9	22.1	6.0	3.0	9.0
47.7	24.9	72.6	17.7	7.1	2.6	9.7
23.4	47.3	70.7	20.7	6.0	2.5	8.6
28.6	34.9	63.5	24.1	8.5	3.9	12.4
27.6	34.9	62.5	26.0	7.1	4.5	11.6
26.0	45.8	71.8	18.3	6.8	3.1	9.9
40.8	31.5	72.3	18.2	6.3	3.2	9.5
19.5	44.7	64.2	24.2	8.2	3.4	11.7
36.3	32.0	68.3	20.4	7.3	4.0	11.3
27.7	33.4	61.2	26.7	8.0	4.2	12.2
21.8	49.3	71.1	19.8	6.5	2.6	9.1
43.1	23.7	66.8	22.0	6.9	4.3	11.2
43.0	29.9	72.9	19.6	5.3	2.2	7.5
45.1	29.2	74.2	17.7	5.5	2.5	8.0
25.9	40.7	66.7	21.4	7.8	4.2	12.0
39.5	33.6	73.2	18.3	5.7	2.9	8.5

29.3	34.7	64.1	22.5	9.5	3.9	13.4
31.1	41.2	72.3	19.4	5.6	2.7	8.3
30.4	39.8	70.2	18.9	8.1	2.8	10.9
24.1	43.3	67.3	22.1	7.1	3.5	10.6
29.2	41.0	70.2	20.7	5.8	3.3	9.1
26.0	45.8	71.8	19.0	6.3	3.0	9.3
23.6	44.7	68.3	21.5	7.0	3.2	10.2
12.3	11.3	3.4	2.1	1.1	0.65	1.6
0.51	0.24	0.05	0.10	0.15	0.20	0.16

Table A.II. Characteristic Scales and Scores for the Original, Un-normalized Distribution at the Sub-field Level According to the Fractional Strategy
I. BIOSCIENCES

1. BIOLOGY
2. BIOLOGY, MISCELLANEOUS
3. EVOLUTIONARY BIOLOGY
4. BIOCHEMICAL RESEARCH METHODS
5. BIOCHEMISTRY \& MOLECULAR BIOLOGY
6. BIOPHYSICS
7. CELL BIOLOGY
8. GENETICS \& HEREDITY
9. DEVELOPMENTAL BIOLOGY
II. BIOMEDICAL RESEARCH
10. PATHOLOGY
11. ANATOMY \& MORPHOLOGY
12. ENGINEERING, BIOMEDICAL
13. BIOTECH. \& APPLIED MICROBIOLOGY
14. MEDICAL LABORATORY TECHNOLOGY
15. MICROSCOPY
16. PHARMACOLOGY \& PHARMACY
17. TOXICOLOGY
18. PHYSIOLOGY
III. CLINICAL MEDICINE I (INTERNAL)
19. CARDIAC \& CARDIOVASCULAR SYSTEMS
20. RESPIRATORY SYSTEM
21. ENDOCRINOLOGY \& METABOLISM
22. ANESTHESIOLOGY
23. CRITICAL CARE MEDICINE
24. EMERGENCY MEDICINE
25. GASTROENTEROLOGY \& HEPATOLOGY
26. MEDICINE, GENERAL \& INTERNAL
27. TROPICAL MEDICINE
28. HEMATOLOGY
29. ONCOLOGY
30. ALLERGY
31. IMMUNOLOGY
32. INFECTIOUS DISEASES
IV. CLIN. MED. II (NON-INTERNAL)
33. GERIATRICS \& GERONTOLOGY
34. OBSTETRICS \& GYNECOLOGY
35. ANDROLOGY
36. REPRODUCTIVE BIOLOGY
37. GERONTOLOGY
38. DENTISTRY, ORAL SURGERY
39. DERMATOLOGY
40. UROLOGY \& NEPHROLOGY
41. OTORHINOLARYNGOLOGY

Percentage of Citations By Category:

2	3	4	5	$4+5$

21.3	33.5	22.7	22.4	45.1
24.1	31.5	21.2	23.2	44.4
27.6	34.2	19.8	18.4	38.2
29.4	33.7	19.2	17.7	36.9
27.1	33.5	20.1	19.4	39.5
25.6	33.2	20.4	20.8	41.2
24.4	32.2	21.5	22.0	43.4
25.1	31.3	20.5	23.1	43.6
27.1	32.8	20.7	19.4	40.1

22.8	32.9	21.7	22.6	44.3
25.1	35.3	20.5	19.2	39.7
24.0	32.1	22.3	21.6	43.9
23.7	33.7	20.9	21.7	42.6
23.6	33.8	20.8	21.8	42.6
27.3	34.0	20.2	18.5	38.7
26.1	33.0	19.9	21.0	41.0
28.0	33.7	19.8	18.5	38.3
25.7	33.6	20.9	19.9	40.8

21.2	33.2	22.1	23.6	45.6
23.1	32.9	22.7	21.3	44.0
26.9	33.2	20.6	19.3	39.9
22.7	34.2	22.0	21.1	43.1
25.7	33.5	20.3	20.6	40.9
22.6	33.8	21.1	22.6	43.6
23.2	33.0	21.5	22.3	43.8
15.7	28.7	24.3	31.2	55.5
25.2	32.0	21.7	21.1	42.8
24.2	32.5	21.4	21.8	43.2
25.3	32.6	21.1	21.0	42.1
19.5	34.4	23.4	22.8	46.1
25.8	33.1	20.3	20.8	41.1
25.3	33.8	20.8	20.1	40.9

23.1	34.7	21.5	20.7	42.2
23.3	34.3	21.5	21.0	42.4
26.7	33.4	19.4	20.5	39.9
29.0	33.5	19.3	18.2	37.5
21.5	32.9	21.8	23.9	45.6
27.3	31.5	22.1	19.1	41.2
25.3	32.8	21.6	20.3	41.9
23.9	34.2	21.3	20.7	41.9
19.2	36.1	23.0	21.7	44.6

42. OPHTHALMOLOGY	21.5	34.2	22.5	21.8	44.2
43 INTEGRATIVE \& COMPLEMENTARY MEDICINE	17.7	35.4	26.1	20.8	46.9
44. CLINICAL NEUROLOGY	23.4	32.6	21.3	22.8	44.0
45. PSYCHIATRY	21.6	32.6	22.2	23.6	45.8
46. RADIOLOGY, NUCLEAR MED. \& IMAGING	22.8	33.1	21.7	22.4	44.0
47. ORTHOPEDICS	23.3	32.3	21.2	23.2	44.4
48. RHEUMATOLOGY	24.0	33.3	22.3	20.4	42.7
49. SPORT SCIENCES	20.5	32.9	24.0	22.6	46.6
50. SURGERY	23.8	32.5	22.0	21.7	43.7
51. TRANSPLANTATION	21.8	34.0	22.0	22.3	44.3
52. PERIPHERAL VASCULAR DISEASE	24.5	33.3	21.2	21.0	42.2
53. PEDIATRICS	19.9	34.0	22.9	23.2	46.1
V. CL MED. III (HEALTH \& OTHER SCS.)					
54. HEALTH CARE SCIENCIES \& SERVICES	22.8	35.6	21.5	20.0	41.5
55. HEALTH POLICY \& SERVICES	22.5	34.0	21.4	22.2	43.6
56. MEDICINE, LEGAL	24.7	32.2	22.4	20.7	43.1
57. NURSING	16.4	40.9	21.8	20.9	42.7
58. PUBLIC, ENVIRON. \& OCCUP. HEALTH	24.7	33.6	20.8	21.0	41.8
59. REHABILITATION	18.8	34.0	22.3	24.9	47.2
60. SUBSTANCE ABUSE	26.7	33.0	20.9	19.4	40.3
61. EDUCATION, SCIENTIFIC DISCIPLINES	16.8	31.6	24.6	27.1	51.7
62. MEDICAL INFORMATICS	17.6	36.4	23.8	22.2	46.0
VI. NEUROSCIENCE \& BEHAVIOR					
63. NEUROIMAGING	22.3	32.9	21.4	23.4	44.8
64. NEUROSCIENCES	28.0	31.8	19.6	20.6	40.2
65. BEHAVIORAL SCIENCES	27.8	33.0	20.4	18.8	39.1
66. PSYCHOLOGY, BIOLOGICAL	30.8	34.1	18.4	16.7	35.1
67. PSYCHOLOGY	23.7	33.2	21.9	21.2	43.1
68. PSYCHOLOGY, APPLIED	21.8	33.7	21.2	23.4	44.5
69. PSYCHOLOGY, CLINICAL	22.5	33.1	21.9	22.5	44.4
70. PSYCHOLOGY, DEVELOPMENTAL	26.9	33.1	20.3	19.7	40.0
71. PSYCHOLOGY, EDUCATIONAL	19.8	32.8	24.9	22.5	47.4
72. PSYCHOLOGY, EXPERIMENTAL	22.0	32.8	22.6	22.6	45.2
73. PSYCHOLOGY, MATHEMATICAL	24.5	34.5	18.8	22.2	41.0
74. PSYCHOLOGY, MULTIDISCIPLINARY	21.3	32.3	21.7	24.7	46.4
75. PSYCHOLOGY, PSYCHOANALYSIS	18.7	35.1	24.2	22.0	46.2
76. PSYCHOLOGY, SOCIAL	24.8	32.0	21.7	21.5	43.2
77. SOCIAL SCIENCES, BIOMEDICAL	26.1	32.5	20.3	21.2	41.4
VII. CHEMISTRY					
78. CHEMISTRY, MULTIDISCIPLINARY	18.1	33.1	24.0	24.8	48.8
79. CHEMISTRY, INORGANIC \& NUCLEAR	21.8	33.8	22.8	21.6	44.4
80. CHEMISTRY, ANALYTICAL	23.8	33.2	21.7	21.3	43.0
81. CHEMISTRY, APPLIED	17.8	36.7	22.6	23.0	45.6
82. ENGINEERING, CHEMICAL	23.1	32.8	22.8	21.3	44.1
83. CHEMISTRY, MEDICINAL	25.2	32.8	21.8	20.1	41.9
84. CHEMISTRY, ORGANIC	23.4	35.2	22.0	19.3	41.3
85. CHEMISTRY, PHYSICAL	23.2	34.3	21.5	21.1	42.5
86. ELECTROCHEMISTRY	21.3	33.0	23.3	22.4	45.7
87. POLYMER SCIENCE	24.2	34.0	20.6	21.2	41.8

VIII. PHYSICS

88. PHYSICS, MULTIDISCIPLINARY	18.2	31.9	24.0	26.0	50.0
89. SPECTROSCOPY	23.2	33.0	21.3	22.5	43.8
90. ACOUSTICS	18.4	33.9	22.5	25.3	47.7
91. OPTICS	22.9	32.6	21.9	22.6	44.5
92. PHYSICS, APPLIED	22.8	33.7	21.6	21.9	43.5
93. PHYSICS, ATOMIC, MOLECULAR \& CHEMICAL	28.0	34.5	18.8	18.8	37.5
94. THERMODYNAMICS (CLASSICAL PHYSICS)	25.3	33.6	21.5	19.7	41.2
95. PHYSICS, MATHEMATICAL	22.1	34.3	21.8	21.7	43.5
96. PHYSICS, NUCLEAR	19.2	35.0	22.8	23.0	45.8
97. PHYSICS, PARTICLES \& FIELDS	20.8	32.9	21.8	24.4	46.3
98. PHYSICS, CONDENSED MATTER	23.0	33.7	21.8	21.5	43.3
99. PHYSICS OF SOLIDS, FLUIDS \& PLASMAS	23.3	32.7	22.0	22.0	44.0
IX. SPACE SCIENCES					
100. ASTRONOMY \& ASTROPHYSICS	22.6	34.0	21.4	22.0	43.5
X. MATHEMATICS					
101. MATHEMATICS, APPLIED	17.0	33.2	25.8	24.0	49.8
102. STATISTICS \& PROBABILITY	20.6	34.4	21.8	23.2	45.0
103. MATHEMATICS, INTERDISC. APPL.	25.8	33.5	19.3	21.4	40.7
104. SOCIAL SCIENCES, MATH. METHODS	18.1	34.6	22.1	25.2	47.3
105. PURE MATHEMATICS	10.8	35.6	27.1	26.5	53.6
XI. COMPUTER SCIENCE					
106. COMP. SC, ARTIFIFICIAL INTELLIGENCE.	18.2	34.1	22.9	24.8	47.7
107. COMPUTER SCIENCE, CYBERNETICS	16.0	35.7	23.7	24.6	48.3
108. COMP SC, HARDWARE \& ARCHITECTURE	15.5	32.5	23.9	28.1	52.0
109. COMP. SC., INFORMATION SYSTEMS	14.4	33.1	24.5	28.0	52.5
110. COMP. SC., INTERDIS. APPLICATIONS	18.0	33.5	23.1	25.4	48.5
111. COMP. SC., SOFTWARE ENGINEERING	16.4	35.4	22.3	26.0	48.2
112. COMP. SC, THEOTY \& METHODS	18.9	36.6	21.7	22.8	44.5
113. MATHEMATICAL \& COMPUT. BIOLOGY	27.6	33.7	17.8	21.0	38.8
XII. ENGINEERING					
114. ENG., ELECTRICAL \& ELECTRONIC	19.5	33.9	22.5	24.1	46.7
115. TELECOMMUNICATIONS	14.0	36.5	23.7	25.8	49.5
116. CONSTRUCTION \& BUILDING TECH.	20.4	32.2	25.0	22.4	47.4
117. ENGINEERING, CIVIL	19.8	37.5	22.0	20.7	42.7
118. ENGINEERING, ENVIRONMENTAL	21.0	33.7	22.8	22.5	45.3
119. ENGINEERING, MARINE	19.6	31.5	21.2	27.8	49.0
120. TRANSPORTATION SC. \& TECHNOLOGY	12.6	32.6	28.6	26.2	54.8
121. ENGINEERING, INDUSTRIAL	22.1	32.4	24.7	20.9	45.5
122. ENGINEERING, MANUFACTURING	21.2	32.1	26.1	20.7	46.8
123. ENGINEERING, MECHANICAL	18.7	35.8	23.3	22.2	45.5
124. MECHANICS	19.1	33.3	22.7	24.9	47.6
125. ROBOTICS	22.4	35.7	21.8	20.0	41.8
126. INSTRUMENTS \& INSTRUMENTATION	18.7	32.9	23.8	24.6	48.4
127. IMAGING SC. \& PHOTOGRAPHIC TECH.	21.4	31.4	23.4	23.9	47.2
128. ENERGY \& FUELS	19.3	36.7	22.9	21.2	44.0
129. NUCLEAR SCIENCE \& TECHNOLOGY	16.5	33.6	26.0	23.9	49.9
130. ENGINEERING, PETROLEUM	0.0	37.2	25.3	37.5	62.8
131. UTOMATION \& CONTROL SYSTEMS	15.2	33.6	25.5	25.7	51.2
132. ENGINEERING, MULTIDISCIPLINARY	17.1	36.4	22.6	23.9	46.5
133. ERGONOMICS	26.8	33.9	20.4	18.9	39.3

XIII. MATERIALS SCIENCE
135. MATERIALS SCIENCE, BIOMATERIALS
136. MATERIALS SCIENCE, CERAMICS
137. MAT. SC., CHARAC. \& TESTING
138. MAT. SC., COATINGS \& FILMS
139. MATERIALS SCIENCE, COMPOSITES
140. MATERIALS SCIENCE, PAPER \& WOOD
141. MATERIALS SCIENCE, TEXTILES
142. METALLURGY \& METALL. ENGIN.
143. NANOSCIENCE \& NANOTECHNOLOGY
XIV. GEOSCIENCES
144. GEOCHEMISTRY \& GEOPHYSICS
145. GEOGRAPHY, PHYSICAL
146. GEOLOGY
147. ENGINEERING, GEOLOGICAL
148. PALEONTOLOGY
149. REMOTE SENSING
150. OCEANOGRAPHY
151. ENGINEERING, OCEAN
152. METEOROLOGY \& ATMOSPH. SCS.

153 ENGINEERING, AEROSPACE
154. MINERALOGY
155. MINING \& MINERAL PROCESSING
XV. AGRICULT. \& ENVIRONMENT 156. AGRICULTURAL ENGINEERING
157. AGRICULTURE, MULTIDISCIPLINARY
158. AGRONOMY
159. LIMNOLOGY
160. SOIL SCIENCE
161. BIODIVERSITY CONSERVATION
162. ENVIRONMENTAL SCIENCES
163. ENVIRONMENTAL STUDIES
164. FOOD SCIENCE \& TECHNOLOGY
165. NUTRITION \& DIETETICS
166. AGRIC., DAIRY \& ANIMAL SCIENCE
167. HORTICULTURE
XVI. BIOLOGY
(ORGANISMIC AND SUPRAORG. LEVEL) 168. ORNITHOLOGY
169. ZOOLOGY
170. ENTOMOLOGY
171. WATER RESOURCES
172. FISHERIES
173. MARINE \& FRESHWATER BIOLOGY
174. MICROBIOLOGY
175. PARASITOLOGY
176. VIROLOGY
177. FORESTRY
178. MYCOLOGY

26.0	32.9	21.4	19.7	41.1
16.9	36.5	24.0	22.5	46.6
12.6	35.9	24.4	27.0	51.5
23.2	33.8	22.2	20.8	43.0
16.5	37.0	24.4	22.1	46.5
11.0	36.5	25.7	26.9	52.5
12.9	38.2	22.7	26.2	48.9
13.9	34.3	24.8	27.1	51.9
23.4	34.2	21.2	21.3	42.4

24.0	33.4	21.9	20.7	42.6
23.6	33.8	21.4	21.3	42.6
24.5	34.7	21.5	19.3	40.8
18.6	33.8	25.5	22.1	47.6
18.5	33.8	24.4	23.3	47.7
24.2	32.9	22.8	20.1	42.9
22.7	33.4	23.5	20.3	43.9
14.5	35.0	24.9	25.6	50.5
23.2	33.3	22.1	21.4	43.5
11.8	36.7	27.4	24.1	51.5
26.2	34.8	20.3	18.7	38.9
14.9	37.4	22.6	25.1	47.7

16.9	32.3	25.1	25.7	50.9
17.6	34.3	23.7	24.4	48.1
19.6	33.9	22.2	24.3	46.5
26.3	32.4	22.0	19.3	41.3
24.4	34.0	21.7	19.9	41.6
21.8	33.8	22.3	22.1	44.5
24.8	32.6	21.9	20.7	42.6
24.6	32.2	21.3	21.9	43.2
21.3	35.1	22.0	21.5	43.6
22.6	33.9	20.9	22.6	43.5
19.2	32.5	22.9	25.4	48.3
24.4	35.7	20.2	19.7	39.9

27.0	32.9	20.9	19.1	40.0
21.2	34.0	23.3	21.5	44.8
21.1	37.1	20.2	21.6	41.8
24.5	32.3	21.4	21.8	43.2
23.2	33.6	22.9	20.3	43.3
24.5	34.8	21.9	18.8	40.7
25.2	33.5	20.9	20.4	41.3
28.0	31.9	20.6	19.4	40.0
29.6	32.8	18.9	18.7	37.6
26.8	32.9	20.9	19.5	40.3
21.8	32.1	24.7	21.4	46.1

179. PLANT SCIENCES	24.9	32.9	20.9	21.3	42.2
180. PURE AND APPLIED ECOLOGY	25.3	34.9	20.2	19.6	39.8
181. VETERINARY SCIENCES	21.2	33.3	21.6	23.9	45.5
XVII. MULTIDISCIPLINARY					
182. MULTIDISCIPLINARY SCIENCES	12.9	32.9	24.2	30.0	54.2
XVIII. RESIDUAL SUB-FIELDS					
183. MATERIALS SCIENCE, MULT.	21.5	32.7	22.6	23.3	45.9
184. CRYSTALLOGRAPHY	18.4	34.3	24.5	22.8	47.3
185. GEOSCIENCES, MULT.	22.7	33.2	21.7	22.4	44.1
186. MED., RES. \& EXPERIMENTAL	19.8	29.6	23.1	27.4	50.5
XIX. SOCIAL SCIENCES, GENERAL					
187. CRIMINOLOGY \& PENOLOGY	18.5	32.0	24.8	24.8	49.6
188. LAW	19.9	33.6	22.9	23.6	46.4
189. POLITICAL SCIENCE	16.7	35.9	23.8	23.6	47.4
190. PUBLIC ADMINISTRATION	18.9	35.2	24.3	21.6	46.0
191. ETHNIC STUDIES	13.9	34.4	25.6	26.1	51.8
192. FAMILY STUDIES	19.3	33.1	24.0	23.6	47.6
193. SOCIAL ISSUES	16.9	36.6	22.2	24.3	46.5
194. SOCIAL WORK	21.2	34.3	22.3	22.3	44.5
195. SOCIOLOGY	21.4	35.3	21.1	22.2	43.3
196. WOMEN'S STUDIES	18.8	34.7	23.3	23.2	46.5
197. EDUCATION \& EDUCATIONAL RES.	21.7	37.0	21.3	20.0	41.3
198. EDUCATION, SPECIAL	24.3	36.4	19.8	19.5	39.3
199. AREA STUDIES	20.0	33.3	26.5	20.2	46.7
200. GEOGRAPHY	24.9	34.8	20.6	19.7	40.3
201. PLANNING \& DEVELOPMENT	16.8	32.9	24.8	25.4	50.3
202. TRANSPORTATION	16.8	38.2	20.9	24.1	45.0
2003 URBAN STUDIES	26.7	30.8	21.4	21.1	42.5
204. ETHICS	21.9	33.4	22.4	22.3	44.7
205. MEDICAL ETHICS	21.2	34.8	23.6	20.4	44.0
206. ANTHROPOLOGY	17.1	31.8	23.8	27.3	51.1
207. COMMUNICATION	16.0	36.8	22.8	24.3	47.2
208. DEMOGRAPHY	25.8	32.5	22.0	19.6	41.6
209. HISTORY OF SOCIAL SCIENCES	17.3	37.6	21.7	23.4	45.1
210. INFORMATION SC. \& LIBRARY SC.	17.5	36.1	22.8	23.6	46.4
211. INTERNATIONAL RELATIONS	16.4	31.9	24.0	27.7	51.7
212. LINGUISTICS	19.9	31.6	23.1	25.5	48.5
213. SOCIAL SCIENCES, INTERD.	21.2	33.6	21.9	23.3	45.2
XX. ECONOMICS \& BUSINESS					
214. AGRICULTURAL ECONOMICS \& POLICY	19.2	33.2	26.5	21.1	47.6
215. ECONOMICS	21.1	32.8	21.2	24.9	46.1
216. INDUSTRIAL RELATIONS \& LABOR	23.4	32.2	25.2	19.2	44.4
217. BUSINESS	19.1	33.4	23.7	23.8	47.4
218. BUSINESS, FINANCE	17.8	33.4	21.6	27.3	48.8
219. MANAGEMENT	22.2	31.8	22.7	23.4	46.0
Mean Value By Category	21.5	33.8	22.3	22.4	44.7
Standard Deviation	4.20	1.60	1.76	2.62	3.87
Coefficient of Variation	0.20	0.05	0.08	0.12	0.09

Table B. Low- and High-impact Values for the Original, Un-normalized Distribution at the Sub-field Level According to the Multiplicative and the Fractional Strategies

		impa			igh-im	
	Mult. (1)	Frac. (2)	$\begin{gathered} (3)= \\ (1)-(2) \\ \text { In } \% \end{gathered}$	Mult. (4)	Frac. (5)	$\begin{gathered} (6)= \\ (4)-(5) \\ \text { In } \% \end{gathered}$
I. BIOSCIENCES						
1. BIOLOGY	0.48	0.48	-1.31	0.56	0.61	-9.19
2. BIOLOGY, MISCELLANEOUS	0.44	0.47	-6.60	0.50	0.44	14.95
3. EVOLUTIONARY BIOLOGY	0.37	0.37	0.92	0.39	0.54	-26.80
4. BIOCHEMICAL RESEARCH METHODS	0.39	0.38	1.53	5.16	3.67	40.77
5. BIOCHEMISTRY \& MOLECULAR BIOLO	(0.40	0.39	2.41	1.13	0.91	24.31
6. BIOPHYSICS	0.39	0.39	-0.65	1.27	0.88	44.46
7. CELL BIOLOGY	0.44	0.44	-1.32	0.92	0.90	2.66
8. GENETICS \& HEREDITY	0.41	0.43	-4.27	1.07	1.27	-15.69
9. DEVELOPMENTAL BIOLOGY	0.42	0.39	7.66	0.63	0.40	59.46
II. BIOMEDICAL RESEARCH						
10. PATHOLOGY	0.44	0.44	-0.04	0.76	0.67	14.00
11. ANATOMY \& MORPHOLOGY	0.42	0.41	2.24	0.40	0.52	-22.44
12. ENGINEERING, BIOMEDICAL	0.43	0.41	5.57	0.37	0.45	-18.00
13. BIOTECH. \& APPLIED MICROBIOLOG		0.42	1.41	2.09	2.15	-2.72
14. MEDICAL LABORATORY TECHNOLOC	0.44	0.45	-2.16	0.78	0.71	9.00
15. MICROSCOPY	0.42	0.41	4.27	0.32	0.43	-26.62
16. PHARMACOLOGY \& PHARMACY	0.41	0.42	-2.59	0.56	0.50	12.15
17. TOXICOLOGY	0.40	0.41	-2.06	0.43	0.45	-5.18
18. PHYSIOLOGY	0.37	0.38	-1.35	0.23	0.21	12.01
III. CLINICAL MEDICINE I (INTERN						
19. CARDIAC \& CARDIOVASCULAR SYSTE	0.47	0.46	0.59	1.28	1.20	7.28
20. RESPIRATORY SYSTEM	0.41	0.41	-0.58	0.48	0.47	2.64
21. ENDOCRINOLOGY \& METABOLISM	0.38	0.38	0.76	0.61	0.63	-2.73
22. ANESTHESIOLOGY	0.45	0.42	7.57	0.40	0.48	-15.19
23. CRITICAL CARE MEDICINE	0.44	0.41	5.77	0.52	0.59	-12.35
24. EMERGENCY MEDICINE	0.44	0.44	-0.78	0.63	0.51	23.69
25. GASTROENTEROLOGY \& HEPATOLO	0.43	0.44	-2.14	0.91	0.88	4.31
26. MEDICINE, GENERAL \& INTERNAL	0.55	0.56	-1.23	20.68	22.28	-7.18
27. TROPICAL MEDICINE	0.44	0.43	1.84	0.36	0.38	-5.68
28. HEMATOLOGY	0.43	0.43	-0.45	0.78	0.72	8.70
29. ONCOLOGY	0.40	0.40	0.06	1.05	1.15	-9.39
30. ALLERGY	0.46	0.48	-3.81	0.48	0.54	-10.56
31. IMMUNOLOGY	0.42	0.41	2.36	0.96	0.82	17.10
32. INFECTIOUS DISEASES	0.40	0.40	0.11	0.45	0.46	-3.26
IV. CLIN. MED. II (NON-INTERNAL)						
33. GERIATRICS \& GERONTOLOGY	0.41	0.44	-5.41	0.41	0.38	7.78
34. OBSTETRICS \& GYNECOLOGY	0.42	0.44	-3.00	0.49	0.47	4.58
35. ANDROLOGY	0.41	0.40	0.94	0.32	0.33	-3.52
36. REPRODUCTIVE BIOLOGY	0.38	0.37	1.08	0.27	0.25	7.10
37. GERONTOLOGY	0.44	0.46	-4.58	0.45	0.40	11.75
38. DENTISTRY, ORAL SURGERY	0.40	0.41	-0.85	0.37	0.37	-1.34
39. DERMATOLOGY	0.44	0.43	0.96	0.53	0.60	-10.69

40. UROLOGY \& NEPHROLOGY	0.45	0.45	-0.08	0.69	0.74	-6.18
41. OTORHINOLARYNGOLOGY	0.43	0.43	1.67	0.31	0.39	-19.72
42. OPHTHALMOLOGY	0.45	0.45	-0.33	0.60	0.63	-5.78
43 INTEGRATIVE \& COMPLEMENTARY M	0.41	0.43	-4.60	0.30	0.54	-44.79
44. CLINICAL NEUROLOGY	0.44	0.44	0.06	0.69	0.81	-15.01
45. PSYCHIATRY	0.45	0.46	-0.65	0.58	0.73	-19.99
46. RADIOLOGY, NUCLEAR MED. \& IMAG	0.43	0.45	-3.71	0.82	0.64	29.45
47. ORTHOPEDICS	0.44	0.43	2.47	0.48	0.60	-21.06
48. RHEUMATOLOGY	0.42	0.42	0.01	0.71	0.73	-2.24
49. SPORT SCIENCES	0.43	0.45	-3.96	0.40	0.41	-2.41
50. SURGERY	0.46	0.46	-0.74	0.61	0.61	-0.51
51. TRANSPLANTATION	0.45	0.45	0.00	0.78	0.75	4.94
52. PERIPHERAL VASCULAR DISEASE	0.44	0.43	0.68	0.86	0.94	-9.15
53. PEDIATRICS	0.46	0.46	0.84	0.71	0.78	-9.01
V. CL MED. III (HEALTH \& OTHER !						
54. HEALTH CARE SCIENCIES \& SERVICES		0.45	-2.68	0.55	0.51	8.40
55. HEALTH POLICY \& SERVICES	0.41	0.43	-4.98	0.74	0.66	12.77
56. MEDICINE, LEGAL	0.44	0.43	1.99	0.41	0.39	6.54
57. NURSING	0.45	0.45	-0.24	0.30	0.28	10.12
58. PUBLIC, ENVIRON. \& OCCUP. HEALTH	0.43	0.42	2.60	0.51	0.55	-8.65
59. REHABILITATION	0.46	0.44	2.52	0.33	0.48	-31.31
60. SUBSTANCE ABUSE	0.39	0.39	-0.30	0.25	0.26	-3.54
61. EDUCATION, SCIENTIFIC DISCIPLINE؛		0.48	-0.29	0.93	0.93	0.87
62. MEDICAL INFORMATICS	0.47	0.48	-2.04	1.25	0.96	30.41
VI. NEUROSCIENCE \& BEHAVIOR						
63. NEUROIMAGING	0.47	0.47	0.00	0.75	0.75	0.00
64. NEUROSCIENCES	0.40	0.39	2.00	0.59	0.63	-6.75
65. BEHAVIORAL SCIENCES	0.33	0.33	1.10	0.25	0.26	-1.94
66. PSYCHOLOGY, BIOLOGICAL	0.36	0.37	-3.13	0.37	0.35	7.63
67. PSYCHOLOGY	0.40	0.42	-4.41	0.35	0.36	-1.89
68. PSYCHOLOGY, APPLIED	0.42	0.44	-5.12	0.39	0.31	26.62
69. PSYCHOLOGY, CLINICAL	0.42	0.42	0.00	0.56	0.64	-12.88
70. PSYCHOLOGY, DEVELOPMENTAL	0.42	0.41	2.67	0.39	0.43	-7.85
71. PSYCHOLOGY, EDUCATIONAL	0.47	0.47	0.43	0.52	0.63	-17.84
72. PSYCHOLOGY, EXPERIMENTAL	0.42	0.45	-7.51	0.52	0.45	14.54
73. PSYCHOLOGY, MATHEMATICAL	0.45	0.44	2.87	0.48	0.52	-7.67
74. PSYCHOLOGY, MULTIDISCIPLINARY	0.50	0.52	-4.25	1.39	2.01	-31.12
75. PSYCHOLOGY, PSYCHOANALYSIS	0.54	0.55	-1.85	0.87	1.21	-28.24
76. PSYCHOLOGY, SOCIAL	0.43	0.44	-3.86	0.55	0.46	18.64
77. SOCIAL SCIENCES, BIOMEDICAL	0.43	0.43	-0.69	0.57	0.60	-4.27

VII. CHEMISTRY

78. CHEMISTRY, MULTIDISCIPLINARY 0.51
79. CHEMISTRY, INORGANIC \& NUCLEAR 0.42
80. CHEMISTRY, ANALYTICAL 0.42
81. CHEMISTRY, APPLIED 0.45
82. ENGINEERING, CHEMICAL
0.49
83. CHEMISTRY, MEDICINAL
0.39
84. CHEMISTRY, ORGANIC
0.38
85. CHEMISTRY, PHYSICAL
0.42
86. ELECTROCHEMISTRY
87. POLYMER SCIENCE
0.43

88. PHYSICS, MULTIDISCIPLINARY	0.53	0.53	0.60	3.07	3.33	-7.69
89. SPECTROSCOPY	0.45	0.43	4.08	0.60	0.68	-10.70
90. ACOUSTICS	0.44	0.44	-0.53	0.50	0.47	6.65
91. OPTICS	0.47	0.47	-0.61	0.87	0.89	-1.45
92. PHYSICS, APPLIED	0.45	0.45	0.11	1.23	1.23	0.43
93. PHYSICS, ATOMIC, MOLECULAR \& CHF 0.39	0.38	3.61	0.43	0.41	4.80	
94. THERMODYNAMICS (CLASSICAL PHYS 0.42	0.42	-0.56	0.54	0.51	5.93	
95. PHYSICS, MATHEMATICAL	0.46	0.45	1.24	0.71	0.73	-2.85
96. PHYSICS, NUCLEAR	0.47	0.50	-4.70	1.18	0.82	43.29
97. PHYSICS, PARTICLES \& FIELDS	0.49	0.50	-2.07	3.72	3.99	-6.60
98. PHYSICS, CONDENSED MATTER	0.46	0.46	0.67	1.09	1.04	4.73
99. PHYSICS OF SOLIDS, FLUIDS \& PLASM $\not 0.41$	0.40	2.54	0.38	0.49	-22.14	

IX. SPACE SCIENCES
100. ASTRONOMY \& ASTROPHYSICS 0.45
X. MATHEMATICS
101. MATHEMATICS, APPLIED 0.50
102. STATISTICS \& PROBABILITY 0.50
103. MATHEMATICS, INTERDISC. APPL. 0.45
104. SOCIAL SCIENCES, MATH. METHODS 0.47 105. PURE MATHEMATICS 0.51

XI. COMPUTER SCIENCE

106. COMP. SC, ARTIFIFICIAL INTELLIGEN 0.50 107. COMPUTER SCIENCE, CYBERNETICS 0.54 108. COMP SC, HARDWARE \& ARCHITECT1 0.52 109. COMP. SC., INFORMATION SYSTEMS 0.52 110. COMP. SC., INTERDIS. APPLICATIONS 0.50 111. COMP. SC., SOFTWARE ENGINEERIN(0.53 112. COMP. SC, THEOTY \& METHODS 0.54 113. MATHEMATICAL \& COMPUT. BIOLOC 0.41

XII. ENGINEERING

114. ENG., ELECTRICAL \& ELECTRONIC	0.50
115. TELECOMMUNICATIONS	0.56
116. CONSTRUCTION \& BUILDING TECH.	0.48
117. ENGINEERING, CIVIL	0.53
118. ENGINEERING, ENVIRONMENTAL	0.46
119. ENGINEERING, MARINE	0.65
120. TRANSPORTATION SC. \& TECHNOLO 0.60	
121. ENGINEERING, INDUSTRIAL	0.52
122. ENGINEERING, MANUFACTURING	0.48
123. ENGINEERING, MECHANICAL	0.46
124. MECHANICS	0.47
125. ROBOTICS	0.49
126. INSTRUMENTS \& INSTRUMENTATIOI 0.49	
127. IMAGING SC. \& PHOTOGRAPHIC TEC 0.50	
128. ENERGY \& FUELS	0.49
129. NUCLEAR SCIENCE \& TECHNOLOGY 0.48	
130. ENGINEERING, PETROLEUM	0.69
131. UTOMATION \& CONTROL SYSTEMS	0.50

0.54	-6.70	2.09	1.81	15.80
0.58	-6.93	1.00	1.02	-2.12
0.55	-5.06	2.85	2.27	25.60
0.54	-3.70	3.32	2.77	20.05
0.48	4.00	12.86	9.93	29.51
0.54	-1.93	1.09	0.95	14.87
0.58	-6.83	2.76	1.94	42.19
0.40	2.77	15.53	11.77	31.96

0.51	-3.15	1.39	1.28	8.06
0.58	-3.86	1.98	1.75	13.00
0.49	-0.44	0.33	0.34	-3.71
0.51	3.23	0.56	1.01	-44.66
0.47	-2.31	0.77	0.73	6.26
0.64	2.01	0.53	0.56	-4.47
0.64	-5.07	1.65	1.29	28.55
0.49	6.59	0.32	0.68	-53.24
0.49	-2.08	0.33	0.33	-1.18
0.49	-6.50	0.82	0.67	22.39
0.47	0.43	0.48	0.47	1.55
0.48	1.18	0.50	0.88	-43.26
0.49	0.69	0.61	0.85	-28.82
0.50	-0.84	1.00	1.35	-26.38
0.50	-2.05	1.04	1.02	1.75
0.50	-4.53	0.75	1.07	-29.67
0.68	0.51	1.10	4.73	-76.71
0.51	-2.43	1.20	1.09	10.07

132. ENGINEERING, MULTIDISCIPLINARY 0.53
133. ERGONOMICS 0.42
134. OPERATIONS RES. \& MANAG. SCIENC 0.46

0.55	-3.84	1.15	0.96	19.86
0.45	-5.28	0.35	0.32	10.78
0.46	0.26	0.71	0.67	5.72

XIII. MATERIALS SCIENCE

135. MATERIALS SCIENCE, BIOMATERIAL: 0.39	
136. MATERIALS SCIENCE, CERAMICS	0.54
137. MAT. SC., CHARAC. \& TESTING	0.60
138. MAT. SC., COATINGS \& FILMS	0.44
139. MATERIALS SCIENCE, COMPOSITES	0.51
140. MATERIALS SCIENCE, PAPER \& WOOI 0.51	
141. MATERIALS SCIENCE, TEXTILES	0.52
142. METALLURGY \& METALL. ENGIN.	0.52

143. NANOSCIENCE \& NANOTECHNOLO(0.44
XIV. GEOSCIENCES

144. GEOCHEMISTRY \& GEOPHYSICS	0.42
145. GEOGRAPHY, PHYSICAL	0.40
146. GEOLOGY	0.43
147. ENGINEERING, GEOLOGICAL	0.44
148. PALEONTOLOGY	0.46
149. REMOTE SENSING	0.43
150. OCEANOGRAPHY	0.42
151. ENGINEERING, OCEAN	0.52
152. METEOROLOGY \& ATMOSPH. SCS.	0.44
153 ENGINEERING, AEROSPACE	0.55
154. MINERALOGY	0.43
155. MINING \& MINERAL PROCESSING	0.52

XV. AGRICULT. \& ENVIRONMENT

156. AGRICULTURAL ENGINEERING	0.42	0.45	-7.23	0.39	0.28	38.01
157. AGRICULTURE, MULTIDISCIPLINARY	0.50	0.53	-5.65	0.54	1.04	-47.82
158. AGRONOMY	0.47	0.48	-1.29	0.44	0.48	-7.77
159. LIMNOLOGY	0.41	0.43	-5.15	0.29	0.26	14.33
160. SOIL SCIENCE	0.43	0.43	0.20	0.26	0.22	22.23
161. BIODIVERSITY CONSERVATION	0.46	0.46	-0.43	0.49	0.69	-29.55
162. ENVIRONMENTAL SCIENCES	0.43	0.43	-0.67	0.57	0.57	0.80
163. ENVIRONMENTAL STUDIES	0.41	0.43	-3.58	0.53	0.49	8.73
164. FOOD SCIENCE \& TECHNOLOGY	0.43	0.44	-1.78	0.40	0.46	-12.61
165. NUTRITION \& DIETETICS	0.44	0.44	0.37	0.57	0.52	8.71
166. AGRIC., DAIRY \& ANIMAL SCIENCE	0.49	0.51	-3.37	0.49	0.44	12.53
167. HORTICULTURE	0.46	0.45	0.73	0.51	0.61	-16.13

XVI. BIOLOGY

(ORGANISMIC AND SUPRAORG. LEV

168. ORNITHOLOGY	0.41
169. ZOOLOGY	0.44
170. ENTOMOLOGY	0.44
171. WATER RESOURCES	0.44
172. FISHERIES	0.39
173. MARINE \& FRESHWATER BIOLOGY	0.37
174. MICROBIOLOGY	0.38
175. PARASITOLOGY	0.39
176. VIROLOGY	0.36

0.41	0.21	1.52	1.54	-1.03
0.42	4.32	0.39	0.60	-35.05
0.47	-6.07	0.41	0.33	24.92
0.45	-1.86	0.33	0.32	5.74
0.40	-2.28	0.24	0.30	-19.32
0.39	-6.71	0.25	0.22	12.61
0.39	-2.74	0.44	0.35	28.74
0.39	0.95	0.41	0.43	-5.35
0.35	1.30	0.33	0.29	13.73

177. FORESTRY	0.41	0.40	0.12	0.42	0.38	10.94
178. MYCOLOGY	0.46	0.48	-2.56	0.89	0.75	19.11
179. PLANT SCIENCES	0.42	0.45	-6.36	0.91	0.70	29.74
180. PURE AND APPLIED ECOLOGY	0.40	0.40	-0.55	0.35	0.35	-0.52
181. VETERINARY SCIENCES	0.50	0.51	-1.02	0.56	0.67	-16.02
XVII. MULTIDISCIPLINARY						
182. MULTIDISCIPLINARY SCIENCES	0.55	0.55	-0.81	2.15	2.16	-0.69
XVIII. RESIDUAL SUB-FIELDS						
183. MATERIALS SCIENCE, MULT.	0.48	0.48	0.49	1.29	1.50	-13.88
184. CRYSTALLOGRAPHY	0.48	0.47	2.87	17.67	17.20	2.73
185. GEOSCIENCES, MULT.	0.44	0.46	-3.61	0.56	0.44	26.89
186. MED., RES. \& EXPERIMENTAL	0.48	0.51	-5.31	2.97	3.51	-15.19

XIX. SOCIAL SCIENCES, GENERAL

187. CRIMINOLOGY \& PENOLOGY	0.51	0.52	-1.14	0.41	0.44	-5.40
188. LAW	0.49	0.48	3.13	0.79	0.88	-9.87
189. POLITICAL SCIENCE	0.56	0.56	0.37	0.95	1.05	-8.99
190. PUBLIC ADMINISTRATION	0.50	0.49	0.37	0.50	0.52	-3.94
191. ETHNIC STUDIES	0.57	0.53	6.47	1.13	2.32	-51.22
192. FAMILY STUDIES	0.45	0.44	2.22	0.45	0.63	-28.40
193. SOCIAL ISSUES	0.52	0.54	-2.75	0.85	1.06	-19.25
194. SOCIAL WORK	0.44	0.47	-7.58	0.49	0.34	44.84
195. SOCIOLOGY	0.53	0.54	-2.90	0.87	1.00	-13.54
196. WOMEN'S STUDIES	0.47	0.54	-12.20	0.86	0.64	32.95
197. EDUCATION \& EDUCATIONAL RES.	0.52	0.49	5.59	0.74	1.22	-39.01
198. EDUCATION, SPECIAL	0.45	0.44	2.62	0.35	0.50	-29.22
199. AREA STUDIES	0.52	0.54	-2.83	0.70	0.60	16.21
200. GEOGRAPHY	0.43	0.45	-4.71	0.75	0.78	-3.94
201. PLANNING \& DEVELOPMENT	0.48	0.48	-1.51	0.58	0.50	16.32
202. TRANSPORTATION	0.41	0.48	-14.72	0.37	0.25	46.05
2003 URBAN STUDIES	0.46	0.47	-1.40	0.51	0.48	7.24
204. ETHICS	0.49	0.51	-2.88	0.42	0.75	-43.51
205. MEDICAL ETHICS	0.43	0.43	0.37	0.39	0.40	-2.18
206. ANTHROPOLOGY	0.51	0.51	-0.21	0.48	0.73	-33.99
207. COMMUNICATION	0.47	0.47	-0.13	0.39	0.36	6.95
208. DEMOGRAPHY	0.43	0.44	-2.58	1.08	0.95	13.94
209. HISTORY OF SOCIAL SCIENCES	0.48	0.49	-2.34	0.50	0.48	4.50
210. INFORMATION SC. \& LIBRARY SC.	0.54	0.57	-4.57	1.60	1.01	58.44
211. INTERNATIONAL RELATIONS	0.55	0.55	0.88	1.93	2.30	-16.12
212. LINGUISTICS	0.47	0.48	-1.18	0.42	0.48	-11.47
213. SOCIAL SCIENCES, INTERD.	0.52	0.50	4.35	0.60	1.09	-45.34

XX. ECONOMICS \& BUSINESS

214. AGRICULTURAL ECONOMICS \& POLI 0.45	0.45	0.28	0.36	0.36	-1.94	
215. ECONOMICS	0.48	0.50	-3.38	1.17	1.24	-5.40
216. INDUSTRIAL RELATIONS \& LABOR	0.47	0.48	-2.18	0.50	0.47	6.79
217. BUSINESS	0.46	0.49	-4.92	0.82	0.55	49.08
218. BUSINESS, FINANCE	0.50	0.51	-1.52	0.96	1.05	-8.89
219. MANAGEMENT	0.48	0.47	3.10	0.75	1.02	-26.34
Mean Value By Category	0.46	0.46		1.12	1.10	
Standard Deviation	0.05	0.06		2.44	2.20	
Coefficient of Variation	0.11	0.12		2.17	2.00	

Table C.I. High impact Indicators for the Original and Normalized Distributions at the Discipline Level According to the Multiplicative and the Fractional Strategies

	(3) $=$			(6) $=$	
Mult.	Frac.	(1) $-(2)$	Mult.	Frac.	(4) $-(5)$
(1)	(2)	In $\%$	(4)	(5)	In $\%$

DISCIPLINES

D1. Multidisciplinary Biology	0.53	0.58	-9.06	0.56	0.58	-2.83
D2. Bioch., Biophysics \& Molecular Biology	1.19	1.01	18.04	1.37	1.14	20.28
D3. Cell Biology	0.92	0.90	2.66	0.92	0.90	2.66
D4. Genetics \& Development Biology	0.95	0.98	-3.05	0.89	1.09	-18.69
D5. Anatomy \& Pathology	0.81	0.68	19.75	0.72	0.64	12.69
D6. Biomaterials \& Bioengineering	1.98	1.70	16.52	1.72	1.48	16.48
D7. Experimental \& Laboratory Medicine	0.68	0.79	-14.47	0.67	0.69	-1.92
D8. Pharmacology \& Toxicology	0.52	0.57	-8.66	0.55	0.49	12.07
D9. Physiology	0.23	0.21	12.01	0.23	0.21	12.01
D10. Cardiovascular \& Respiratory Medicine	0.94	0.84	11.74	0.98	0.85	14.99
D11. Endocrinology \& Metabolism	0.61	0.63	-2.73	0.61	0.63	-2.73
D12. General \& Internal Medicine	8.38	8.29	1.04	4.61	5.06	-8.90
D13. Hematology \& Oncology	0.93	0.96	-3.58	0.88	0.94	-6.39
D14. Immunology	0.92	0.83	9.70	0.83	0.66	24.51
D15. Age \& Gender Related Medicine	0.42	0.36	18.20	0.38	0.42	-9.87
D16. Dentistry, Oral Surgery	0.37	0.37	-1.34	0.37	0.37	-1.34
D17. Dermatology \& Urogenital System	0.72	0.79	-8.07	0.63	0.67	-5.96
D18. Ophthalmology \& Otorhinolaryngology	0.66	0.71	-6.99	0.49	0.57	-14.06
D19. Integrative \& Complementary Medicine	0.30	0.54	-44.79	0.30	0.54	-44.79
D20. Psychiatry \& Neurology	0.74	0.70	5.82	0.70	0.74	-4.84
D21. Radiology \& Nuclear Medicine	0.82	0.64	29.45	0.82	0.64	29.45
D22. Rheumatology \& Orthopedics	0.73	0.68	6.84	0.50	0.50	0.19
D23. Surgery	1.32	1.05	24.79	0.70	0.77	-8.79
D24. Pediatrics	0.71	0.78	-9.01	0.71	0.78	-9.01
D25. Health Sciences	0.59	0.62	-4.86	0.47	0.48	-2.11
D26. Other Clinical Medicine	1.14	0.85	33.97	1.04	0.81	27.15
D27. Neurosciences \& Psychopharmacology	0.57	0.63	-8.44	0.59	0.64	-7.22
D28. Psychology \& Behavioral Sciences	0.51	0.67	-24.14	0.64	0.78	-18.18
D29. Multidisciplinary Chemistry	1.01	1.07	-5.55	1.01	1.07	-5.55
D30. Analytical, Inorganic \& Nuclear Chem.	0.55	0.58	-5.12	0.58	0.51	13.80
D31. Applied Chemistry \& Chemical Eng.	0.60	0.52	15.89	0.48	0.66	-27.40

D32. Organic \& Medicinal Chemistry	0.40	0.35	13.01	0.42	0.42	-0.35
D33. Physical Chemistry	0.51	0.49	5.50	0.52	0.50	3.01
D34. Polymer Science	0.71	0.58	23.07	0.71	0.58	23.07
D35. Multidisciplinary Physics	2.92	2.80	4.25	2.22	2.40	-7.25
D36. Applied Physics	1.09	0.99	10.96	1.01	0.94	7.55
D37. Atomic, Molecular \& Chemical Physics	0.43	0.41	4.80	0.43	0.41	4.80
D38. Thermodynamics	0.54	0.51	5.93	0.54	0.51	5.93
D39. Mathematical \& Theoretical Physics	0.71	0.73	-2.85	0.71	0.73	-2.85
D40. Particle \& Nuclear Physics	3.24	3.53	-8.11	2.19	2.75	-20.24
D41. Physics of Solids, Fluids \& Plasmas	0.79	0.75	5.46	0.98	0.92	6.33
D42. Astronomy \& Astrophysics	0.97	1.03	-5.54	0.97	1.03	-5.54
D43. Applied Mathematics	5.94	2.52	136.31	3.46	2.54	36.32
D44. Pure mathematics	0.75	0.74	0.39	0.75	0.74	0.39
D45. Computer Science	5.38	5.51	-2.42	3.62	2.79	29.51
D46. Electrical \& Electronic Engineering	1.36	1.25	8.98	1.46	1.37	7.15
D47. Civil Engineering	1.29	1.71	-24.27	0.62	0.72	-13.79
D48. Mechanical Engineering	0.54	0.49	11.08	0.54	0.53	0.59
D49. Instruments \& Instrumentation	0.77	0.64	21.03	0.63	0.92	-31.02
D50. Fuel \& Energy	0.15	2.16	-0.69	2.15	2.16	-0.69
D51. Other Engineering	1.50	-13.88	1.29	1.50	-13.88	
D52. Materials Science	0.85	1.22	-30.19	0.81	1.12	-28.12
D67. Multidisciplinary	1.04	0.88	18.64	0.97	0.94	3.29
D68. Materials Science, Multidisciplinary	0.45	1.08	0.80	33.98	0.83	0.92

D70. Geosciences, Multidisciplinary	0.56	0.44	26.89	0.56	0.44	26.89
D71. Medicine, Research \& Experimental	2.97	3.51	-15.19	2.97	3.51	-15.19
D72. Law \& Criminology	0.79	0.84	-6.57	0.76	0.81	-6.10
D73. Political Science \& Public Administration	0.86	0.93	-7.76	0.92	0.92	-0.95
D74. Sociology \& Other Social Studies	0.70	1.27	-44.96	0.85	0.79	7.45
D75. Education	0.80	0.63	27.08	0.67	1.15	-41.34
D76. Geography, Planning \& Urban	0.59	0.60	-2.26	0.56	0.57	-1.93
D77. Ethics	0.48	0.44	9.66	0.44	0.72	-38.95
D78. Other Social Sciences	1.18	0.95	24.09	1.07	0.93	14.68
D79. Economics	1.14	1.16	-2.23	1.16	1.18	-1.87
D80. Business \& Management	0.70	0.81	-12.90	0.85	0.90	-5.67

Mean Value	1.27	1.24	2.02	1.11	1.13	-1.46
Standard Deviation	2.24	2.14	22.26	2.02	1.97	15.83
Coefficient of Variation	1.76	1.73	11.02	1.82	1.75	-10.82

Table C.II. High impact Indicators for the Original and Normalized Distributions at the Field Level According to the Multiplicative and the Fractional Strategies

Original Distribution: Normalized Distribution:

		(3) $=$			(6) $=$
Mult.	Frac.	(1) $-(2)$	Mult.	Frac.	(4) $-(5)$
(1)	(2)	In \%	(4)	(5)	In \%

FIELDS

1. BIOSCIENCES	1.18	1.10	7.68	1.17	1.04	11.92
2. BIOMEDICAL RESEARCH	0.80	0.72	11.62	0.83	0.72	15.05
3. CLINICAL MEDICINE I	2.04	2.10	-3.01	1.79	1.92	-6.80
4. CLINICAL MEDICINE II	0.84	0.91	-7.57	0.63	0.63	-0.14
5. CLINICAL MEDICINE III	0.54	0.58	-6.07	0.52	0.51	1.85
6. NEUROS. AND BEHAVIORAL	0.78	0.74	5.30	0.60	0.68	-11.00
7. CHEMISTRY	0.68	0.72	-5.61	0.61	0.59	3.31
8. PHYSICS	1.55	1.80	-14.29	1.18	1.34	-12.01
9. SPACE SCIENCE	0.97	1.03	-5.54	0.97	1.03	-5.54
10. MATHEMATICS	6.28	2.24	180.83	2.38	1.55	53.32
11. COMPUTER SCIENCE	5.38	5.51	-2.42	3.62	2.79	29.51
12 ENGINEERING	1.12	0.94	20.08	0.86	1.00	-14.35
13. MATERIALS SCIENCES	1.08	0.80	33.98	0.83	0.92	-10.08
14. GEOSCIENCE	0.58	0.66	-12.05	0.56	0.57	-2.43
15. AGRIC. AND ENVIRONMENT	0.70	0.66	5.97	0.53	0.53	-1.13
16. PLANT AND ANIMAL SC.	0.57	0.68	-15.37	0.49	0.48	2.19
17. MULTIDICIPLINARY	2.15	2.16	-0.69	2.15	2.16	-0.69
18. RESIDUAL SUB-FIELDS	4.08	4.80	-15.11	3.05	3.69	-17.35
19. SOCIAL SCIENCES, GENERAL	0.63	1.03	-38.36	0.74	0.78	-5.33
20. ECONOMIC AND BUSSINESS	0.85	0.92	-8.01	1.03	1.05	-1.62

Mean Value	1.64	1.51	6.57	1.23	1.20	1.43
Standard Deviation	1.66	1.36	43.63	0.90	0.85	16.30
Coefficient of Variation	1.01	0.91	6.64	0.74	0.71	11.37

Table D.I. Number of Articles According to the Multiplicative and the Fractional Strategies. Sub-field Level

	SUB-FIELDS			DISCIPLINES			FIELDS	
	(1) Mult.	(2) Frac.	$\begin{aligned} & (3)= \\ & (1)-(2) \\ & \text { In } \% \end{aligned}$	(4) Mult.	(5) Frac.	$\begin{aligned} & (6)= \\ & (4)-(5) \\ & \text { In } \% \end{aligned}$	(7) Mult.	$(9)=$ (8) $(7)-(8)$ Frac. In $\%$
I. BIOSCIENCES							367,568	282,23! 30.2
D1. Multidisciplinary Biology				35,621.0	20,885.8	70.6		
1. BIOLOGY	24,255.0	16,066.8	51.0					
2. BIOL., MISCELLANEOUS	418.0	168.5	148.1					
3. EVOL. BIOLOGY	10,948.0	4,650.6	135.4					
D2. Bioch., Bioph., Mol. Biolog				247,504.0	170,259.9	45.4		
4. BIOCH. RES. METHODS	33,519.0	14,117.0	137.4					
5. BIOCH. \& MOL. BIOLOGY	213,036.0	132,808.1	60.4					
6. BIOPHYSICS	48,733.0	23,334.8	108.8					
D3 = 7. Cell Biology	83,279.0	44,686.2	86.4	83,279.0	44,686.2	86.4		
D4. Genetics \& Develop. Biol.				76,172.0	46,403.5	64.2		
8. GENETICS \& HEREDITY	61,490.0	35,869.1	71.4					
9. DEVELOP. BIOLOGY	16,689.0	10,534.4	58.4					
II. BIOMED. RESEARCH							283,297	177,86159.3
D5. Anatomy \& Pathology				34,480.0	22,585.0	52.7		
10. PATHOLOGY	28,710.0	18,568.8	54.6					
11. ANAT. \& MORPHOLOGY	5,996.0	4,016.2	49.3					
D6. Biomat. \& Bioengineering				81,184.0	40,676.4	99.6		
12. ENG., BIOMEDICAL	19,273.0	9,729.4	98.1					
13. BIOT. \& APP. MICROB.	62,096.0	30,947.0	100.7					
D7. Experimental \& Lab. Med.				14,050.0	10,012.3	40.3		
14. MEDICAL LAB. TECH.	10,076.0	7,221.7	39.5					
15. MICROSCOPY	3,974.0	2,790.7	42.4					
D8 Pharmac. \& Toxicology				122,806.0	79,929.1	53.6		
16. PHARMAC. \& PHARMACY	100,046.0	63,891.0	56.6					
17. TOXICOLOGY	30,590.0	16,038.1	90.7					
D9 = 18. Physiology	43,122.0	24,658.8	74.9	43,122.0	24,658.8	74.9		
III. CLIN. MED. I (INT.)							453,611	362,74; 25.0
D10. Cardio. \& Resp. Med.				72,152.0	52,970.6	36.2		
19. CARD. \& CARDIOV. SYS.	54,761.0	36,662.3	49.4					
20. RESPIRATORY SYSTEM	28,225.0	16,308.3	73.1					
D11 $=21$. Endoc. \& Metabol.	48,325.0	38,273.4	26.3	48,325.0	38,273.4	26.3		
D12. General \& Internal Med.				137,105.0	115,766.3	18.4		
22.ANESTHESIOLOGY	16,677.0	13,774.5	21.1					
23. CRITICAL CARE MED.	13,106.0	7,728.6	69.6					
24. EMERGENCY MEDICINE	6,627.0	4,774.7	38.8					
25. GASTROENT. \& HEPAT.	34,796.0	28,860.8	20.6					
26. MED., GENERAL \& INT.	61,992.0	57,467.4	7.9					
27. TROPICAL MEDICINE	6,793.0	3,160.3	115.0					
D13. Hematology \& Oncology				115,186.0	87,870.2	31.1		
28. HEMATOLOGY	41,664.0	27,187.2	53.2					
29. ONCOLOGY	80,504.0	60,683.0	32.7					
D14. Immunology				99,892.0	67,866.7	47.2		
30. ALLERGY	8,979.0	4,913.1	82.8					
31. IMMUNOLOGY	81,367.0	44,920.0	81.1					
32. INFECTIOUS DISEASES	31,984.0	18,033.6	77.4					
IV. CLI. MD. II (NON-INT.,							503,076	403,788 24.6
D15. Age \& Gender Rel. Med.				54,299.0	42,444.8	27.9		
33. GER. \& GERONTOLOGY	9,333.0	5,372.4	73.7					

34. OBST. \& GYNECOLOGY	32,152.0	22,939.1	40.2					
35. ANDROLOGY	1,419.0	1,360.5	4.3					
36. REPROD. BIOLOGY	16,586.0	9,134.9	81.6					
37. GERONTOLOGY	6,795.0	3,637.9	86.8					
D16 = 38. Dentistry	20,745.0	18,442.5	12.5	20,745.0	18,442.5	12.5		
D17. Dermat. \& Uro. System				54,441.0	47,727.8	14.1		
39. DERMATOLOGY	21,105.0	17,805.6	18.5					
40. UROLOGY \& NEPHR.	33,336.0	29,922.2	11.4					
D18. Ophthalm. \& Otorhin.				43,313.0	36,271.7	19.4		
41. OTORHINOLARYNG.	17,293.0	13,411.2	28.9					
42. OPHTHALMOLOGY	26,020.0	22,860.5	13.8					
D19 = 43 Int. \& Compl. Med.	2,425.0	1,346.8	80.1	2,425.0	1,346.8	80.1		
D20. Psychiatry \& Neurology				100,249.0	63,031.6	59.0		
44. CLINICAL NEUROLOGY	66,351.0	38,364.8	72.9					
45. PSYCHIATRY	43,084.0	24,666.8	74.7					
D21 $=46$. Rad, Nuc. Md. \& Im.	53,889.0	38,208.1	41.0	53,889.0	38,208.1	41.0		
D22. Rheumat. \& Orthopedics				50,915.0	37,313.8	36.5		
47. ORTHOPEDICS	23,943.0	14,531.3	64.8					
48. RHEUMATOLOGY	10,558.0	10,260.5	2.9					
49. SPORT SCIENCES	20,520.0	12,522.0	63.9					
D23. Surgery				144,345.0	90,786.9	59.0		
50. SURGERY	103,479.0	61,453.1	68.4					
51. TRANSPLANTATION	21,054.0	7,892.8	166.8					
52. PER. VASCULAR DISEASE	36,397.0	21,441.1	69.8					
D24 $=53$. Pediatrics	42,315.0	28,214.7	50.0	42,315.0	28,214.7	50.0		
V. CL MD III							103,951	71,245. 45.9
D25. Health Sciences				95,164.0	65,254.9	45.8		
54. HEALTH C. SC. \& SERV.	13,947.0	6,449.6	116.2					
55. HEALTH POLICY \& SERV.	8,748.0	3,954.8	121.2					
56. MEDICINE, LEGAL	4,152.0	3,289.6	26.2					
57. NURSING	8,769.0	7,654.3	14.6					
58. PUB, ENV. \& OC. HEALTH	49,445.0	30,304.9	63.2					
59. REHABILITATION	13,725.0	8,129.0	68.8					
60. SUBSTANCE ABUSE	7,765.0	5,472.7	41.9					
D26. Other Clinical Medicine				14,423.0	5,991.0	140.7		
61. EDUC., SC. DISCIPLINES	8,084.0	3,936.2	105.4					
62. MEDICAL INFORMATICS	6,339.0	2,054.8	208.5					
VI. NEUROSC. \& BEHAV.							206,738	151,778 36.2
D27. Neurosc. \& Psychop.				113,316.0	75,484.1	50.1		
63. NEUROIMAGING	6,195.0	2,065.0	200.0					
64. NEUROSCIENCES	109,828.0	73,419.1	49.6					
D28. Psychology \& Behav. Sc.				103,560.0	76,294.3	35.7		
65. BEHAVIORAL SCIENCES	14,495.0	5,784.0	150.6					
66. PSYCH., BIOLOGICAL	3,987.0	1,451.7	174.6					
67. PSYCHOLOGY	16,107.0	6,036.8	166.8					
68. PSYCHOLOGY, APPLIED	8,092.0	5,224.5	54.9					
69. PSYCHOLOGY, CLINICAL	17,770.0	11,673.0	52.2					
70. PSYCH., DEVELOPMENT.	10,034.0	6,452.8	55.5					
71. PSYCH., EDUCATIONAL	5,301.0	3,928.7	34.9					
72. PSYCH., EXPERIMENTAL	15,641.0	9,321.7	67.8					
73. PSYCH., MATHEMATICAL	1,751.0	726.9	140.9					
74. PSYCH., MULTIDISC.	18,505.0	13,495.8	37.1					
75. PSYCH., PSYCHOAN.	2,427.0	1,785.3	35.9					
76. PSYCHOLOGY, SOCIAL	9,704.0	7,912.3	22.6					
77. SOCIAL SC., BIOMEDICAL	6,099.0	2,500.8	143.9					
VII. CHEMISTRY							523,436	419,75 24.7
D29 $=78$. Chemistry, Multid	98,455.0	81,069.0	21.4	98,455.0	81,069.0	21.4		

D30. An, Inorg. \& Nuc. Chem.				113,422.0	77,709.1	46.0		
79. CHEM., INORG. \& NUCL.	48,897.0	34,672.5	41.0					
80. CHEM., ANALYTICAL	67,276.0	43,036.6	56.3					
D31. Ap. Chem. \& Chem. Eng.				87,213.0	50,494.1	72.7		
81. CHEMISTRY, APPLIED	33,898.0	14,255.4	137.8					
82. ENG., CHEMICAL	58,925.0	36,238.7	62.6					
D32. Org. \& Med. Chemistry				96,565.0	73,679.2	31.1		
83. CHEMISTRY, MEDICINAL	24,497.0	11,227.5	118.2					
84. CHEMISTRY, ORGANIC	77,824.0	62,451.7	24.6					
D33. Physical Chemistry				145,221.0	90,339.8	60.7		
85. CHEMISTRY, PHYSICAL	125,278.0	77,805.7	61.0					
86. ELECTROCHEMISTRY	19,943.0	12,534.1	59.1					
D34 $=87$. Polymer Science	55,805.0	46,468.1	20.1	55,805.0	46,468.1	20.1		
VIII. PHYSICS							509,283	402,914 26.4
D35. Multidisciplinary Physics				112,995.0	92,217.5	22.5		
88. PHYSICS, MULTIDISCIPLIN	83,218.0	76,200.3	9.2					
89. SPECTROSCOPY	29,777.0	16,017.2	85.9					
D36. Applied Physics				182,439.0	126,153.9	44.6		
90. ACOUSTICS	14,507.0	8,815.3	64.6					
91. OPTICS	52,712.0	36,515.2	44.4					
92. PHYSICS, APPLIED	125,579.0	80,823.4	55.4					
$\mathbf{D 3 7}=93 . \mathbf{P h}, \mathbf{A t}$, Mol \& Chem.	60,873.0	35,666.4	70.7	60,873.0	35,666.4	70.7		
D38 $=$ 94. Thermod. (Cl. Ph.)	17,406.0	6,511.9	167.3	17,406.0	6,511.9	167.3		
D39 = 95. Ph., Mathematical	33,755.0	18,236.6	85.1	33,755.0	18,236.6	85.1		
D40. Part. \& Nuclear Physics				56,595.0	38,245.3	48.0		
96. PHYSICS, NUCLEAR	25,305.0	15,013.2	68.6					
97. PHYSICS, PART. \& FIELDS	39,261.0	23,232.2	69.0					
D41. Ph. of Sol., Fluids \& Plas.				130,754.0	85,883.2	52.2		
98. PH., COND. MATTER	106,659.0	71,182.0	49.8					
99. PH. OF SOL., FLU. \& PLAS.	24,095.0	14,701.3	63.9					
IX. SPACE SCIENCES							59,717	50,038. 19.3
D42 $=100$. Astron. \& Astroph.,	59,717.0	50,038.3	19.3	59,717.0	50,038.3	19.3		
X. MATHEMATICS							138,611	113,72́ 21.9
D43. Applied Mathematics				90,234.0	57,634.1	56.6		
101. MATHEMAT., APPLIED	52,352.0	33,302.1	57.2					
102. STAT. \& PROBABILITY	23,095.0	15,631.4	47.7					
103. MATH., INTERD. APPL.	17,363.0	6,624.7	162.1					
104. SOC. SC., MATH. METH.	5,198.0	2,076.0	150.4					
D44 $=105$. Pure Mathematics	64,657.0	56,088.7	15.3	64,657.0	56,088.7	15.3		
XI. COMPUTER SCIENCE							116,602	82,180. 41.9
D45. Comp. Sc. \& Inf. Tech.				116,602.0	82,180.6	41.9		
106. COMP. SC, ARTIF. INTEL.	23,546.0	15,743.0	49.6					
107. COMP. SC., CYBERNET.	4,393.0	2,419.5	81.6					
108. COMP SC, HARD \& ARCH	12,494.0	5,113.7	144.3					
109. COMP. SC., INF. SYSTEMS	20,554.0	10,269.6	100.1					
110. COMP. SC., INTERD. APP.	27,243.0	11,260.1	141.9					
111. COMP. SC., SOFT. ENG.	17,375.0	10,267.9	69.2					
112. COMP. SC, THEO. \& MET.	32,877.0	24,658.1	33.3					
113. MATH \& COMPUT. BIOL.	7,388.0	2,448.8	201.7					
XII. ENGINEERING							351,185	234,586 49.7
D46. Electric. \& Electron. Eng.				121,171.0	78,048.5	55.3		
114. ENG, ELECT. \& ELECTR.	117,411.0	68,315.1	71.9					
115. TELECOMM.	19,724.0	9,733.4	102.6					
D47. Civil Engineering				44,684.0	24,616.3	81.5		
116. CONSTR \& BUILD TECH	8,198.0	3,778.8	116.9					

117. ENGINEERING, CIVIL	$21,077.0$	$10,069.2$	109.3
118. ENG., ENVIRONMENT.	$19,986.0$	$7,846.2$	154.7
119. ENG., MARINE	403.0	192.5	109.4
120. TRANSP. SC. \& TECH.	$5,882.0$	$2,729.7$	115.5
D48. Mechanical Engineering			
121. ENG., INDUSTRIAL	$12,809.0$	$5,064.3$	152.9
122. ENG., MANUFACT.	$13,416.0$	$5,446.2$	146.3
123. ENG., MECHANICAL	$37,597.0$	$21,400.4$	75.7
124. MECHANICS	$42,797.0$	$22,867.0$	87.2
125. ROBOTICS	$2,906.0$	$1,733.3$	67.7
D49. Instr. \& Instrumentation			
126. INSTR. \& INSTRUMENT.	$37,550.0$	$14,482.9$	159.3
127. IMA. SC. \& PHOT. TECH.	$4,758.0$	$2,187.2$	117.5
D50. Fuel \& Energy			
128. ENERGY \& FUELS	$23,855.0$	$10,616.4$	124.7
129. NUCL. SC. \& TECH.	$35,795.0$	$17,240.2$	107.6
130. ENG., PETROLEUM	$6,289.0$	$2,952.5$	113.0
D51. Other Engineering			
131. UT. \& CONT. SYSTEMS	$15,992.0$	$7,600.3$	110.4
132. ENG., MULTID.	$20,244.0$	$9,204.3$	119.9
133. ERGONOMICS	$3,029.0$	$1,116.1$	171.4
134. OP. RES. \& MAN. SC.	$18,431.0$	$10,010.8$	84.1

XIII. MATERIALS SCIENC

D52. Materials Science			
135. MAT. SC., BIOMAT.	$6,559.0$	$3,054.0$	114.8
136. MAT. SC., CERAMICS	$19,356.0$	$15,573.5$	24.3
137. MAT. SC., CHAR. \& TEST.	$6,194.0$	$4,311.8$	43.7
138. MAT. SC., COAT. \& FILMS	$21,987.0$	$8,682.5$	153.2
139. MATERIALS SC., COMP.	$9,535.0$	$6,313.0$	51.0
140. MAT. SC., PA. \& WOOD	$6,033.0$	$5,083.0$	18.7
141. MATERIALS SC., TEXT.	$4,634.0$	$2,972.2$	55.9
142. MET. \& METALL. ENG.	$38,465.0$	$23,850.3$	61.3
143. NAN. \& NANOTECH.	$19,165.0$	$7,031.4$	172.6

XIV. GEOSCIENCES							114,694	87,718. 30.8
D53. Geosc. \& Technology				52,829.0	40,935.8	29.1		
144. GEOCH. \& GEOPHYSICS	26,065.0	22,703.4	14.8					
145. GEOGRAPHY, PHYSICAL	8,772.0	3,530.8	148.4					
146. GEOLOGY	7,796.0	6,023.2	29.4					
147. ENG., GEOLOGICAL	4,624.0	2,148.6	115.2					
148. PALEONTOLOGY	6,596.0	4,670.9	41.2					
149. REMOTE SENSING	4,981.0	1,858.9	168.0					
D54. Hydro. \& Oceanography				21,177.0	12,862.8	64.6		
150. OCEANOGRAPHY	18,972.0	11,274.9	68.3					
151. ENGINEERING, OCEAN	3,332.0	1,587.8	109.8					
D55 Met, Atm, Aer, Sc. \& Tec.				36,255.0	26,574.7	36.4		
152. MET. \& ATMOSPH. SCS.	27,338.0	18,206.8	50.2					
153 ENG., AEROSPACE	11,574.0	8,367.9	38.3					
D56. Mineralogy \& Petrology				12,380.0	7,345.0	68.5		
154. MINERALOGY	7,308.0	4,421.2	65.3					
155. MIN. \& MINERAL PROC.	6,536.0	2,923.9	123.5					
XV. AGRICULT. \& ENVIR							211,659	146,508 44.5
D57. Agricult. Sc. \& Tech.				41,971.0	26,176.8	60.3		
156. AGRICULT. ENG.	4,379.0	2,993.8	46.3					
157. AGRICULT., MULT.	14,593.0	9,441.0	54.6					
158. AGRONOMY	23,263.0	13,741.9	69.3					
D58. Plant \& Soil Sc. \& Tech,				19,068.0	11,888.1	60.4		
159. LIMNOLOGY	5,479.0	2,164.7	153.1					

160. SOIL SCIENCE	13,589.0	9,723.4	39.8					
D59. Environ. Sc. \& Tech.				80,971.0	43,255.5	87.2		
161. BIODIVERSITY CONS.	6,269.0	2,723.8	130.2					
162. ENVIRONMENTAL SC.	69,648.0	35,988.1	93.5					
163. ENVIRONMENTAL ST.	9,742.0	4,543.6	114.4					
D60. Food \& An. Sc. \& Tech.				89,926.0	65,188.0	37.9		
164. FOOD SC. \& TECH.	43,023.0	25,759.3	67.0					
165. NUT. \& DIETETICS	21,575.0	15,688.7	37.5					
166. AGRIC., DAIRY \& AN. SC.	21,564.0	17,354.7	24.3					
167. HORTICULTURE	10,014.0	6,385.3	56.8					
XVI. BIOLOGY (ORG. ANL							352,483	265,08 33.0
SUPRAORG. LEVEL)								
D61. Animal Sciences				56,863.0	44,142.4	28.8		
168. ORNITHOLOGY	4,334.0	4,289.0	1.0					
169. ZOOLOGY	33,428.0	23,322.0	43.3					
170. ENTOMOLOGY	19,138.0	16,531.3	15.8					
D62. Aquatic Sciences,				64,479.0	39,687.7	62.5		
171. WATER RESOURCES	25,164.0	10,815.2	132.7					
172. FISHERIES	15,452.0	10,069.8	53.4					
173. MAR. \& FRESHW. BIOL.	32,162.0	18,802.8	71.0					
D63. Microbiology				86,206.0	60,748.1	41.9		
174. MICROBIOLOGY	55,648.0	36,780.8	51.3					
175. PARASITOLOGY	10,789.0	8,049.7	34.0					
176. VIROLOGY	20,499.0	15,917.7	28.8					
D64. Plant Sciences				79,138.0	57,426.5	37.8		
177. FORESTRY	10,844.0	8,471.4	28.0					
178. MYCOLOGY	5,916.0	4,675.6	26.5					
179. PLANT SCIENCES	63,766.0	44,279.5	44.0					
D65 = 180. Pure \& App. Eco.	39,963.0	22,831.8	75.0	39,963.0	22,831.8	75.0		
D66 $=$ 181. VETERINARY SC.	49,295.0	40,249.4	22.5	49,295.0	40,249.4	22.5		
XVII. MULTIDISCIP.							25,369	23,327. 8.8
D67 $=182$. MULTID. SC.	25,369.0	23,327.0	8.8	25,369.0	23,327.0	8.8		
XVIII. RESID. SUB-FIELD:							250,829	153,764 63.1
D68 $=$ 183. MAT. SC., MULT.	134,872.0	73,800.0	82.8	134,872.0	73,800.0	82.8		
D69 $=$ 184. CRYSTALLOG.	28,300.0	24,369.6	16.1	28,300.0	24,369.6	16.1		
D70 = 185. GEOSC., MULT.	45,048.0	29,276.5	53.9	45,048.0	29,276.5	53.9		
D71 = 186. MED, RES \& EXP.	42,928.0	26,318.7	63.1	42,928.0	26,318.7	63.1		
XIX. SOCIAL SC., GENER							122,271	97,064. 26.0
D72. Law \& Criminology				12,127.0	9,308.8	30.3		
187. CRIM. \& PENOLOGY	3,117.0	2,243.8	38.9					
188. LAW	9,488.0	7,064.9	34.3					
D73. Pol. Sc. \& Pub. Admin.				15,048.0	11,389.8	32.1		
189. POLITICAL SCIENCE	12,008.0	8,902.1	34.9					
190. PUB. ADMINISTRATION	3,430.0	2,487.7	37.9					
D74. Sociol. \& Other Soc. Stud.				27,463.0	19,608.8	40.1		
191. ETHNIC STUDIES	786.0	476.8	64.8					
192. FAMILY STUDIES	5,018.0	2,610.3	92.2					
193. SOCIAL ISSUES	4,126.0	2,289.1	80.2					
194. SOCIAL WORK	4,795.0	3,261.5	47.0					
195. SOCIOLOGY	12,125.0	8,781.7	38.1					
196. WOMEN'S STUDIES	3,650.0	2,189.4	66.7					
D75. Education				18,131.0	13,809.3	31.3		
197. EDUC. \& EDUCAT. RES.	15,185.0	12,108.7	25.4					
198. EDUCATION, SPECIAL	2,946.0	1,700.6	73.2					
D76. Geog., Planning \& Urban				19,053.0	12,777.3	49.1		
199. AREA STUDIES	3,273.0	2,664.9	22.8					

200. GEOGRAPHY	5,498.0	3,703.4	48.5					
201. PLANNING \& DEVELOP.	5,835.0	3,291.3	77.3					
202. TRANSPORTATION	1,889.0	829.1	127.8					
2003 URBAN STUDIES	4,581.0	2,288.6	100.2					
D77. Ethics				3,820.0	2,074.1	84.2		
204. ETHICS	3,557.0	1,836.5	93.7					
205. MEDICAL ETHICS	931.0	237.6	291.9					
D78. Other Social Sciences				41,671.0	28,096.1	48.3		
206. ANTHROPOLOGY	6,217.0	4,490.2	38.5					
207. COMMUNICATION	4,766.0	3,249.2	46.7					
208. DEMOGRAPHY	2,061.0	1,452.2	41.9					
209. HISTORY OF SOCIAL SC.	1,297.0	694.5	86.8					
210. INFO. SC. \& LIBRARY SC.	8,734.0	5,731.7	52.4					
211. INT. RELATIONS	6,124.0	3,949.2	55.1					
212. LINGUISTICS	5,499.0	3,207.5	71.4					
213. SOCIAL SC., INTERD.	8,563.0	5,321.8	60.9					
							57,884	45,324. 27.7
XX. ECON. \& BUSINESS								
D79. Economics				37,001.0	27,372.3	35.2		
214. AGRIC. ECON. \& POLICY	1,725.0	820.0	110.4					
215. ECONOMICS	35,452.0	24,989.8	41.9					
216. IND. RELAT. \& LABOR	2,051.0	1,562.5	31.3					
D80. Business \& Management				25,303.0	17,952.3	40.9		
217. BUSINESS	9,329.0	5,815.2	60.4					
218. BUSINESS, FINANCE	6,162.0	4,336.9	42.1					
219. MANAGEMENT	13,314.0	7,800.2	70.7				367,568	282,23 30.2
ALL CATEGORIES	5,735,512	3,648,524	57.1	5,371,569	3,648,524	47.2	4,876,818	3,648,524 33.7
Mean Size	26,180.4	16,659.9		67,144.6	45,606.5		243,840	182,426.2
Standard Deviation	29,390.1	19,562.5		44,642.5	31,089.0		164,031.9	130,829.4
Coefficient of Variation	1.12	1.17		0.66	0.68		0.567	0.72

Table D.II. Distribution of Articles By Category According to the Multiplicative and the Fractional Strategy: Sub-fielc Discipline, and Field Levels

	SUB-FIELDS			DISCIPLINES			FIELDS		
	(10) Mult.	(11) Frac.	$\begin{aligned} & (12) \\ & (10)-(11) \end{aligned}$	(13) Mult.	(14) Frac.	$\begin{aligned} & (15)= \\ & (13)-(14) \end{aligned}$	(16) Mult.	(17) Frac.	$\begin{gathered} (18)= \\ (16)-(17) \end{gathered}$
I. BIOSCIENCES							7.54	7.74	-2.57
D1. Multidisciplinary Biology				0.66	0.57	15.84			
1. BIOLOGY	0.4	0.4	-3.9						
2. BIOL., MISCELLANEOUS	0.0	0.0	57.9						
3. EVOL. BIOLOGY	0.2	0.1	49.8						
D2. Bioch., Biop., Mol. Biology				4.61	4.67	-1.26			
4. BIOCH. RES. METHODS	0.6	0.4	51.1						
5. BIOCH. \& MOL. BIOLOGY	3.7	3.6	2.1						
6. BIOPHYSICS	0.8	0.6	32.9						
D3 = 7. Cell Biology	1.5	1.2	18.6	1.55	1.22	26.58			
D4. Genetics \& Develop. Biol.				1.42	1.27	11.50			
8. GENETICS \& HEREDITY	1.1	1.0	9.1						
9. DEVELOP. BIOLOGY	0.3	0.3	0.8						
II. BIOMED. RESEARCH							5.81	4.87	19.16
D5. Anatomy \& Pathology				0.64	0.62	3.70			
10. PATHOLOGY	0.5	0.5	-1.6						
11. ANAT. \& MORPHOLOGY	0.1	0.1	-5.0						
D6. Biomat. \& Bioengineering				1.51	1.11	35.56			
12. ENG., BIOMEDICAL	0.3	0.3	26.1						
13. BIOT. \& APP. MICROB.	1.1	0.8	27.7						
D7. Experimental \& Lab. Med.				0.26	0.27	-4.69			
14. MEDICAL LAB. TECH.	0.2	0.2	-11.2						
15. MICROSCOPY	0.1	0.1	-9.4						
D8 Pharmac. \& Toxicology				2.29	2.19	4.36			
16. PHARMAC. \& PHARMACY	1.7	1.8	-0.4						
17. TOXICOLOGY	0.5	0.4	21.4						
D9 = 18. Physiology	0.8	0.7	11.3	0.80	0.68	18.78			
III. CLIN. MED. I (INT.)							9.30	9.94	-6.45
D10. Cardiov. \& Resp. Med.				1.34	1.45	-7.48			
19. CARD. \& CARDIOV. SYS.	1.0	1.0	-5.0						
20. RESPIRATORY SYSTEM	0.5	0.4	10.1						
D11 $=21$. Endoc. \& Metabol.	0.8	1.0	-19.7	0.90	1.05	-14.24			
D12. General \& Internal Med.				2.55	3.17	-19.56			
22. ANESTHESIOLOGY	0.3	0.4	-23.0						
23. CRITICAL CARE MED.	0.2	0.2	7.9						
24. EMERGENCY MEDICINE	0.1	0.1	-11.7						
25. GASTROENT. \& HEPAT.	0.6	0.8	-23.3						
26. MED., GENERAL \& INT.	1.1	1.6	-31.4						
27. TROPICAL MEDICINE	0.1	0.1	36.8						
D13. Hematology \& Oncology				2.14	2.41	-10.96			
28. HEMATOLOGY	0.7	0.7	-2.5						
29. ONCOLOGY	1.4	1.7	-15.6						
D14. Immunology				1.86	1.86	-0.03			

30. ALLERGY	0.2	0.1	16.3						
31. IMMUNOLOGY	1.4	1.2	15.3						
32. INFECTIOUS DISEASES	0.6	0.5	12.9						
IV. CLI. MD. II (NON-INT.)							10.32	11.07	-6.79
D15. Age \& Gender Rel. Med.				1.01	1.16	-13.11			
33. GER. \& GERONTOLOGY	0.2	0.1	10.5						
34. OBST. \& GYNECOLOGY	0.6	0.6	-10.8						
35. ANDROLOGY	0.0	0.0	-33.6						
36. REPROD. BIOLOGY	0.3	0.3	15.5						
37. GERONTOLOGY	0.1	0.1	18.9						
D16 = 38. Dent., Oral Surgery	0.4	0.5	-28.4	0.39	0.51	-23.60			
D17. Dermat. \& Uro. System				1.01	1.31	-22.52			
39. DERMATOLOGY	0.4	0.5	-24.6						
40. UROLOGY \& NEPHR.	0.6	0.8	-29.1						
D18. Ophthalm. \& Otorhin.				0.81	0.99	-18.89			
41. OTORHINOLARYNG.	0.3	0.4	-17.9						
42. OPHTHALMOLOGY	0.5	0.6	-27.6						
D19 = 43 Int. \& Compl. Med.	0.0	0.0	14.6	0.05	0.04	22.30			
D20. Psychiatry \& Neurology				1.87	1.73	8.03			
44. CLINICAL NEUROLOGY	1.2	1.1	10.1						
45. PSYCHIATRY	0.8	0.7	11.1						
D21 = 46. Rad, Nuc. Md. \& Im.	0.9	1.0	-10.2	1.00	1.05	-4.20			
D22. Rheumat. \& Orthopedics				0.95	1.02	-7.32			
47. ORTHOPEDICS	0.4	0.4	4.9						
48. RHEUMATOLOGY	0.2	0.3	-34.5						
49. SPORT SCIENCES	0.4	0.3	4.3						
D23. Surgery				2.69	2.49	7.99			
50. SURGERY	1.8	1.7	7.2						
51. TRANSPLANTATION	0.4	0.2	69.7						
52. PER. VASCULAR DISEASE	0.6	0.6	8.0						
D24 $=53$. Pediatrics	0.7	0.8	-4.6	0.79	0.77	1.87			
V. CL MD III (HE \& OT SCS.,							2.13	1.95	9.16
D25. Health Sciences				1.77	1.79	-0.95			
54. HEALTH C. SC. \& SERV.	0.2	0.2	37.6						
55. HEALTH POLICY \& SERV.	0.2	0.1	40.8						
56. MEDICINE, LEGAL	0.1	0.1	-19.7						
57. NURSING	0.2	0.2	-27.1						
58. PUB, ENV. \& OC. HEALTH	0.9	0.8	3.8						
59. REHABILITATION	0.2	0.2	7.4						
60. SUBSTANCE ABUSE	0.1	0.1	-9.7						
D26. Other Clinical Medicine				0.27	0.16	63.52			
61. EDUC., SC. DISCIPLINES	0.1	0.1	30.7						
62. MEDICAL INFORMATICS	0.1	0.1	96.3						
VI. NEUROSC. \& BEHAV.							4.24	4.16	1.90
D27. Neurosc. \& Psychop.				2.11	2.07	1.97			
63. NEUROIMAGING	0.1	0.1	90.9						
64. NEUROSCIENCES	1.9	2.0	-4.8						
D28. Psychology \& Behav. Sc.				1.93	2.09	-7.80			
65. BEHAVIORAL SCIENCES	0.3	0.2	59.5						
66. PSYCH., BIOLOGICAL	0.1	0.0	74.8						
67. PSYCHOLOGY	0.3	0.2	69.8						

68. PSYCHOLOGY, APPLIED	0.1	0.1	-1.4					
69. PSYCHOLOGY, CLINICAL	0.3	0.3	-3.1					
70. PSYCH., DEVELOPMENT.	0.2	0.2	-1.0					
71. PSYCH., EDUCATIONAL	0.1	0.1	-14.1					
72. PSYCH., EXPERIMENTAL	0.3	0.3	6.8					
73. PSYCH., MATHEMATICAL	0.0	0.0	53.3					
74. PSYCH., MULTIDISC.	0.3	0.4	-12.7					
75. PSYCH., PSYCHOAN.	0.0	0.0	-13.5					
76. PSYCHOLOGY, SOCIAL	0.2	0.2	-22.0					
77. SOCIAL SC., BIOMEDICAL	0.1	0.1	55.2					

D44 $=$ 105. Pure Mathematics	1.1	1.5	-26.6	1.20	1.54	-21.70			
XI. COMPUTER SCIENCE							2.39	2.25	6.15
D45. Comp. Sc. \& Inf. Tech.				2.17	2.25	-3.63			
106. COMP. SC, ARTIF. INTEL.	0.4	0.4	-4.8						
107. COMP. SC., CYBERNET.	0.1	0.1	15.5						
108. COMP SC, HARD \& ARCH	0.2	0.1	55.5						
109. COMP. SC., INF. SYSTEMS	0.4	0.3	27.4						
110. COMP. SC., INTERD. APP.	0.5	0.3	54.0						
111. COMP. SC., SOFT. ENG.	0.3	0.3	7.7						
112. COMP. SC, THEO. \& MET.	0.6	0.7	-15.2						
113. MATH \& COMPUT. BIOL.	0.1	0.1	92.0						
XII. ENGINEERING							7.20	6.43	12.00
D46. Electric. \& Electron. Eng.				2.26	2.14	5.45			
114. ENG, ELECT. \& ELECTR.	2.0	1.9	9.4						
115. TELECOMM.	0.3	0.3	29.0						
D47. Civil Engineering				0.83	0.67	23.29			
116. CONSTR \& BUILD TECH	0.1	0.1	38.1						
117. ENGINEERING, CIVIL	0.4	0.3	33.2						
118. ENG., ENVIRONMENT.	0.3	0.2	62.1						
119. ENG., MARINE	0.0	0.0	33.2						
120. TRANSP. SC. \& TECH.	0.1	0.1	37.1						
D48. Mechanical Engineering				1.68	1.55	8.64			
121. ENG., INDUSTRIAL	0.2	0.1	61.0						
122. ENG., MANUFACT.	0.2	0.1	56.8						
123. ENG., MECHANICAL	0.7	0.6	11.8						
124. MECHANICS	0.7	0.6	19.1						
125. ROBOTICS	0.1	0.0	6.7						
D49. Instr. \& Instrumentation				0.78	0.46	71.63			
126. INSTR. \& INSTRUMENT.	0.7	0.4	65.0						
127. IMA. SC. \& PHOT. TECH.	0.1	0.1	38.4						
D50. Fuel \& Energy				1.13	0.84	33.81			
128. ENERGY \& FUELS	0.4	0.3	43.0						
129. NUCL. SC. \& TECH.	0.6	0.5	32.1						
130. ENG., PETROLEUM	0.1	0.1	35.5						
D51. Other Engineering				1.01	0.77	32.10			
131. UT. \& CONT. SYSTEMS	0.3	0.2	33.9						
132. ENG., MULTID.	0.4	0.3	40.0						
133. ERGONOMICS	0.1	0.0	72.7						
134. OP. RES. \& MAN. SC.	0.3	0.3	17.2						
XIII. MATERIALS SCIENCE							2.55	2.11	21.22
D52. Materials Science				2.32	2.11	10.05			
135. MAT. SC., BIOMAT.	0.1	0.1	36.7						
136. MAT. SC., CERAMICS	0.3	0.4	-20.9						
137. MAT. SC., CHAR. \& TEST.	0.1	0.1	-8.6						
138. MAT. SC., COAT. \& FILMS	0.4	0.2	61.1						
139. MATERIALS SC., COMP.	0.2	0.2	-3.9						
140. MAT. SC., PA. \& WOOD	0.1	0.1	-24.5						
141. MATERIALS SC., TEXT.	0.1	0.1	-0.8						
142. MET. \& METALL. ENG.	0.7	0.7	2.6						
143. NAN. \& NANOTECH.	0.3	0.2	73.4						

XIV. GEOSCIENCES							2.35	2.40	-2.18
D53. Geosc. \& Technology				0.98	1.12	-12.34			
144. GEOCH. \& GEOPHYSICS	0.5	0.6	-26.9						
145. GEOGRAPHY, PHYSICAL	0.2	0.1	58.1						
146. GEOLOGY	0.1	0.2	-17.6						
147. ENG., GEOLOGICAL	0.1	0.1	36.9						
148. PALEONTOLOGY	0.1	0.1	-10.1						
149. REMOTE SENSING	0.1	0.1	70.5						
D54. Hydro. \& Oceanography				0.39	0.35	11.83			
150. OCEANOGRAPHY	0.3	0.3	7.1						
151. ENGINEERING, OCEAN	0.1	0.0	33.5						
D55 Met, Atm, Aer, Sc. \& Tec.				0.67	0.73	-7.34			
152. MET. \& ATMOSPH. SCS.	0.5	0.5	-4.5						
153 ENG., AEROSPACE	0.2	0.2	-12.0						
D56. Mineralogy \& Petrology				0.23	0.20	14.48			
154. MINERALOGY	0.1	0.1	5.2						
155. MIN. \& MINERAL PROC.	0.1	0.1	42.3						
XV. AGRICULT. \& ENVIR.							4.34	4.02	8.08
D57. Agricult. Sc. \& Tech.				0.78	0.72	8.91			
156. AGRICULT. ENG.	0.1	0.1	-6.9						
157. AGRICULT., MULT.	0.3	0.3	-1.6						
158. AGRONOMY	0.4	0.4	7.7						
D58. Plant \& Soil Sc. \& Tech,				0.35	0.33	8.95			
159. LIMNOLOGY	0.1	0.1	61.1						
160. SOIL SCIENCE	0.2	0.3	-11.1						
D59. Environ. Sc. \& Tech.				1.51	1.19	27.15			
161. BIODIVERSITY CONS.	0.1	0.1	46.5						
162. ENVIRONMENTAL SC.	1.2	1.0	23.2						
163. ENVIRONMENTAL ST.	0.2	0.1	36.4						
D60. Food \& An. Sc. \& Tech.				1.67	1.79	-6.30			
164. FOOD SC. \& TECH.	0.8	0.7	6.3						
165. NUT. \& DIETETICS	0.4	0.4	-12.5						
166. AGRIC., DAIRY \& AN. SC.	0.4	0.5	-20.9						
167. HORTICULTURE	0.2	0.2	-0.2						
XVI. BIOLOGY (ORG. AND							7.23	7.27	-0.52
SUPRAORG. LEVEL)									
D61. Animal Sciences				1.06	1.21	-12.50			
168. ORNITHOLOGY	0.1	0.1	-35.7						
169. ZOOLOGY	0.6	0.6	-8.8						
170. ENTOMOLOGY	0.3	0.5	-26.3						
D62. Aquatic Sciences,				1.20	1.09	10.35			
171. WATER RESOURCES	0.4	0.3	48.1						
172. FISHERIES	0.3	0.3	-2.4						
173. MAR. \& FRESHW. BIOL.	0.6	0.5	8.8						
D63. Microbiology				1.60	1.67	-3.61			
174. MICROBIOLOGY	1.0	1.0	-3.7						
175. PARASITOLOGY	0.2	0.2	-14.7						
176. VIROLOGY	0.4	0.4	-18.0						
D64. Plant Sciences				1.47	1.57	-6.40			
177. FORESTRY	0.2	0.2	-18.5						
178. MYCOLOGY	0.1	0.1	-19.5						
179. PLANT SCIENCES	1.1	1.2	-8.4						

D65 $=$ 180. Pure \& App. Eco.	0.7	0.6	11.4	0.74	0.63	18.89			
D66 $=181$. VETERINARY SC.	0.9	1.1	-22.1	0.92	1.10	-16.81			
XVII. MULTIDISCIP. D67 $=182$. MULTID. SC.	0.4	0.6	-30.8	0.47	0.64	-26.13	0.52	0.64	-18.64
XVIII. RESID. SUB-FIELDS							5.14	4.21	22.04
D68 = 183. MAT. SC., MULT.	2.4	2.0	16.3	2.51	2.02	24.13			
D69 $=184$. CRYSTALLOG.	0.5	0.7	-26.1	0.53	0.67	-21.12			
D70 $=$ 185. GEOSC., MULT.	0.8	0.8	-2.1	0.84	0.80	4.51			
D71 = 186. MED, RES \& EXP.	0.7	0.7	3.8	0.80	0.72	10.79			
XIX. SOCIAL SC., GENERAI							2.51	2.66	-5.76
D72. Law \& Criminology				0.23	0.26	-11.51			
187. CRIM. \& PENOLOGY	0.1	0.1	-11.6						
188. LAW	0.2	0.2	-14.5						
D73. Pol. Sc. \& Pub. Admin.				0.28	0.31	-10.26			
189. POLITICAL SCIENCE	0.2	0.2	-14.2						
190. PUB. ADMINISTRATION	0.1	0.1	-12.3						
D74. Sociol. \& Other Soc. Stud.				0.51	0.54	-4.87			
191. ETHNIC STUDIES	0.0	0.0	4.9						
192. FAMILY STUDIES	0.1	0.1	22.3						
193. SOCIAL ISSUES	0.1	0.1	14.7						
194. SOCIAL WORK	0.1	0.1	-6.4						
195. SOCIOLOGY	0.2	0.2	-12.1						
196. WOMEN'S STUDIES	0.1	0.1	6.1						
D75. Education				0.34	0.38	-10.82			
197. EDUC. \& EDUCAT. RES.	0.3	0.3	-20.2						
198. EDUCATION, SPECIAL	0.1	0.0	10.2						
D76. Geog., Planning \& Urban				0.35	0.35	1.28			
199. AREA STUDIES	0.1	0.1	-21.8						
200. GEOGRAPHY	0.1	0.1	-5.5						
201. PLANNING \& DEVELOP.	0.1	0.1	12.8						
202. TRANSPORTATION	0.0	0.0	45.0						
2003 URBAN STUDIES	0.1	0.1	27.4						
D77. Ethics				0.07	0.06	25.10			
204. ETHICS	0.1	0.1	23.3						
205. MEDICAL ETHICS	0.0	0.0	149.4						
D78. Other Social Sciences				0.78	0.77	0.74			
206. ANTHROPOLOGY	0.1	0.1	-11.9						
207. COMMUNICATION	0.1	0.1	-6.7						
208. DEMOGRAPHY	0.0	0.0	-9.7						
209. HISTORY OF SOCIAL SC.	0.0	0.0	18.8						
210. INFO. SC. \& LIBRARY SC.	0.2	0.2	-3.0						
211. INT. RELATIONS	0.1	0.1	-1.3						
212. LINGUISTICS	0.1	0.1	9.1						
213. SOCIAL SC., INTERD.	0.1	0.1	2.4						
XX. ECON. \& BUSINESS							1.19	1.24	-4.46
D79. Economics				0.69	0.75	-8.18			
214. AGRIC. ECON. \& POLICY	0.0	0.0	33.9						
215. ECONOMICS	0.6	0.7	-9.7						
216. IND. RELAT. \& LABOR	0.0	0.0	-16.5						
D80. Business \& Management				0.47	0.49	-4.27			

217. BUSINESS	0.2	0.2	2.1				
218. BUSINESS, FINANCE	0.1	0.1	-9.6				
219. MANAGEMENT	0.2	0.2	8.6				
ALL CATEGORIES	100.0	100.0	-	$\mathbf{1 0 0 . 0}$	$\mathbf{1 0 0 . 0}$	-	$\mathbf{1 0 0 . 0}$
$\mathbf{1 0 0 . 0}$							

Table E. Mean Citation Rates for the Original, Un-normalized Distributions at the Sub-field Level According to the Multiplicative and the Fractional Strategies

	Multiplicative (1)	Fractional (2)	$\begin{gathered} (3)= \\ (1)-(2) \end{gathered}$ In \%
I. BIOSCIENCES			
1. BIOLOGY	7.50	7.09	5.68
2. BIOLOGY, MISCELLANEOUS	3.41	3.12	9.13
3. EVOLUTIONARY BIOLOGY	12.47	12.40	0.57
4. BIOCHEMICAL RESEARCH METHODS	9.18	9.04	1.58
5. BIOCHEMISTRY \& MOLEC. BIOLOGY	16.34	17.33	-5.71
6. BIOPHYSICS	10.88	10.82	0.57
7. CELL BIOLOGY	21.43	21.47	-0.20
8. GENETICS \& HEREDITY	15.80	15.79	0.03
9. DEVELOPMENTAL BIOLOGY	19.41	20.42	-4.92
II. BIOMEDICAL RESEARCH			
10. PATHOLOGY	8.88	9.93	-10.56
11. ANATOMY \& MORPHOLOGY	5.69	5.34	6.64
12. ENGINEERING, BIOMEDICAL	6.76	6.68	1.25
13. BIOTECH. \& APPLIED MICROB.	9.07	8.91	1.77
14. MEDICAL LABORATORY TECHNOLOG	6.08	6.48	-6.23
15. MICROSCOPY	6.18	6.06	1.99
16. PHARMACOLOGY \& PHARMACY	8.04	8.37	-3.95
17. TOXICOLOGY	7.14	7.06	1.18
18. PHYSIOLOGY	10.42	10.76	-3.18
III. CLINICAL MEDICINE I (INTERN」			
19. CARDIAC \& CARDIOVASCULAR SYSTE:	11.42	9.93	14.98
20. RESPIRATORY SYSTEM	10.09	10.00	0.88
21. ENDOCRINOLOGY \& METABOLISM	12.83	13.57	-5.51
22. ANESTHESIOLOGY	6.79	6.74	0.63
23. CRITICAL CARE MEDICINE	10.74	11.26	-4.56
24. EMERGENCY MEDICINE	4.11	4.53	-9.33
25. GASTROENTGY. \& HEPATOLOGY	10.51	10.98	-4.34
26. MEDICINE, GENERAL \& INTERNAL	12.68	13.20	-3.92
27. TROPICAL MEDICINE	4.96	5.09	-2.59
28. HEMATOLOGY	16.50	15.59	5.85
29. ONCOLOGY	13.93	14.83	-6.07
30. ALLERGY	8.57	7.95	7.87
31. IMMUNOLOGY	14.02	16.67	-15.86
32. INFECTIOUS DISEASES	11.68	11.37	2.74
IV. CLIN. MED. II (NON-INTERNAL)			
33. GERIATRICS \& GERONTOLOGY	7.94	7.52	5.52
34. OBSTETRICS \& GYNECOLOGY	6.67	6.47	3.17
35. ANDROLOGY	5.54	5.62	-1.39
36. REPRODUCTIVE BIOLOGY	9.54	10.12	-5.70
37. GERONTOLOGY	7.14	6.69	6.77
38. DENTISTRY, ORAL SURGERY	5.21	5.18	0.54
39. DERMATOLOGY	5.90	6.11	-3.41
40. UROLOGY \& NEPHROLOGY	9.14	9.22	-0.94
41. OTORHINOLARYNGOLOGY	4.31	3.91	10.19

42. OPHTHALMOLOGY	6.93	6.98	-0.63
43 INTEGRATIVE \& COMPLRY. MED.	4.33	3.95	9.68
44. CLINICAL NEUROLOGY	9.29	9.59	-3.17
45. PSYCHIATRY	9.58	9.97	-3.97
46. RADIOLOGY, NUCLEAR MED. \& IMAG	7.65	7.68	-0.42
47. ORTHOPEDICS	5.73	5.48	4.63
48. RHEUMATOLOGY	10.74	10.78	-0.37
49. SPORT SCIENCES	5.85	5.69	2.89
50. SURGERY	6.35	6.29	0.99
51. TRANSPLANTATION	6.76	6.69	1.14
52. PERIPHERAL VASCULAR DISEASE	15.50	13.45	15.19
53. PEDIATRICS	5.70	5.99	-4.90
V. CL MED. III (HEALTH \& OTHER :			
54. HEALTH CARE SCS. \& SERVICES	5.75	5.55	3.58
55. HEALTH POLICY \& SERVICES	6.26	5.85	7.03
56. MEDICINE, LEGAL	4.33	4.39	-1.40
57. NURSING	2.99	2.93	1.97
58. PUBLIC, ENV. \& OCCUP. HEALTH	7.07	7.42	-4.72
59. REHABILITATION	4.17	3.91	6.64
60. SUBSTANCE ABUSE	7.44	7.46	-0.32
61. EDUCATION, SCIENTIFIC DISC.	2.84	2.83	0.43
62. MEDICAL INFORMATICS	4.14	3.90	6.38
VI. NEUROSCIENCE \& BEHAVIOR			
63. NEUROIMAGING	10.38	10.38	0.00
64. NEUROSCIENCES	13.05	14.10	-7.46
65. BEHAVIORAL SCIENCES	8.73	8.82	-1.07
66. PSYCHOLOGY, BIOLOGICAL	7.33	7.05	3.87
67. PSYCHOLOGY	7.73	7.57	2.20
68. PSYCHOLOGY, APPLIED	4.59	4.80	-4.35
69. PSYCHOLOGY, CLINICAL	7.34	6.86	7.06
70. PSYCHOLOGY, DEVELOPMENTAL	7.58	7.17	5.70
71. PSYCHOLOGY, EDUCATIONAL	5.08	4.65	9.19
72. PSYCHOLOGY, EXPERIMENTAL	7.38	6.77	8.98
73. PSYCHOLOGY, MATHEMATICAL	5.10	5.31	-4.10
74. PSYCHOLOGY, MULTIDISCIPLINARY	4.75	4.16	14.14
75. PSYCHOLOGY, PSYCHOANALYSIS	2.54	2.06	23.28
76. PSYCHOLOGY, SOCIAL	6.05	6.33	-4.45
77. SOCIAL SCIENCES, BIOMEDICAL	5.20	5.22	-0.23
VII. CHEMISTRY			
78. CHEMISTRY, MULTIDISCIPLINARY	8.59	8.91	-3.56
79. CHEM., INORGANIC \& NUCLEAR	6.58	6.74	-2.27
80. CHEMISTRY, ANALYTICAL	7.36	7.63	-3.51
81. CHEMISTRY, APPLIED	5.43	4.55	19.31
82. ENGINEERING, CHEMICAL	4.23	4.00	5.74
83. CHEMISTRY, MEDICINAL	7.33	8.73	-16.05
84. CHEMISTRY, ORGANIC	7.91	7.95	-0.46
85. CHEMISTRY, PHYSICAL	7.73	7.71	0.34
86. ELECTROCHEMISTRY	7.45	6.85	8.68
87. POLYMER SCIENCE	6.11	6.35	-3.72

VIII. PHYSICS

88. PHYSICS, MULTIDISCIPLINARY	8.21	8.55	-3.96
89. SPECTROSCOPY	5.66	5.42	4.46
90. ACOUSTICS	3.96	3.95	0.12
91. OPTICS	5.30	5.24	1.22
92. PHYSICS, APPLIED	5.68	6.44	-11.79
93. PHYSICS, ATOMIC, MOLECULAR \& CHI	8.51	9.30	-8.49
94. THERMODYNAMICS (CLASS. PHY.)	3.36	3.27	2.90
95. PHYSICS, MATHEMATICAL	5.66	5.71	-0.84
96. PHYSICS, NUCLEAR	5.01	5.76	-13.03
97. PHYSICS, PARTICLES \& FIELDS	9.01	10.28	-12.43
98. PHYSICS, CONDENSED MATTER	5.55	6.24	-11.00
99. PH. OF SOLIDS, FLUIDS \& PLASMAS	7.02	6.84	2.58
IX. SPACE SCIENCES			
100. ASTRONOMY \& ASTROPHYSICS	11.32	11.78	-3.95
X. MATHEMATICS			
101. MATHEMATICS, APPLIED	2.64	2.69	-1.95
102. STATISTICS \& PROBABILITY	4.48	3.47	29.08
103. MATHEMATICS, INTERDISC. APPL.	4.10	4.00	2.53
104. SOCIAL SCS., MATH. METHODS	4.07	3.93	3.55
105. PURE MATHEMATICS	1.95	1.94	0.34
XI. COMPUTER SCIENCE			
106. COMP. SC, ARTIFIFICIAL INTELL.	3.84	3.42	12.04
107. COMP. SCIENCE, CYBERNETICS	2.58	2.35	9.56
108. COMP SC., HARDWARE \& ARCH.	3.06	2.71	13.08
109. COMP. SC., INFORMATION SYSTEMS	3.33	2.96	12.42
110. COMP. SC., INTERDIS. APPS.	4.50	3.89	15.81
111. COMP. SC., SOFTWARE ENG.	2.64	2.55	3.27
112. COMP. SC, THEOTY \& METHODS	2.36	2.02	16.74
113. MATH. \& COMPUT. BIOLOGY	8.45	7.28	16.07
XII. ENGINEERING			
114. ENG., ELECTRICAL \& ELECTRONIC	3.52	3.36	4.78
115. TELECOMMUNICATIONS	2.76	2.56	7.78
116. CONSTR. \& BUILDING TECH.	2.36	2.37	-0.45
117. ENGINEERING, CIVIL	2.33	2.12	9.92
118. ENGINEERING, ENVIRONMENTAL	6.40	6.79	-5.77
119. ENGINEERING, MARINE	0.98	1.02	-3.98
120. TRANSPORTATION SC. \& TEC.	1.49	1.29	15.69
121. ENGINEERING, INDUSTRIAL	2.17	2.09	4.06
122. ENGINEERING, MANUFACTURING	2.36	2.32	1.63
123. ENGINEERING, MECHANICAL	2.80	2.53	10.53
124. MECHANICS	3.69	3.73	-1.23
125. ROBOTICS	2.50	2.19	14.09
126. INSTRUMENTS \& INSTRUMENTATIOI	3.67	3.42	7.42
127. IMAGING SC. \& PHOTOGRAPHIC TEC	5.24	4.12	27.22
128. ENERGY \& FUELS	3.46	3.35	3.36
129. NUCLEAR SCIENCE \& TEC.	3.17	2.65	19.66
130. ENGINEERING, PETROLEUM	1.12	0.98	13.90
131. UTOMATION \& CONTROL SYSTEMS	2.83	2.68	5.61
132. ENGINEERING, MULTIDISCIPLINARY	2.66	2.44	9.14
133. ERGONOMICS	3.25	3.04	6.87

XIII. MATERIALS SCIENCE

135. MATERIALS SCIENCE, BIOMATERIAL:	9.40	9.67	-2.79
136. MATERIALS SCIENCE, CERAMICS	3.41	3.58	-4.65
137. MAT. SC., CHARAC. \& TESTING	1.42	1.33	6.57
138. MAT. SC., COATINGS \& FILMS	5.44	5.52	-1.40
139. MATERIALS SCIENCE, COMPOSITES	2.45	2.72	-10.03
140. MATS. SCIENCE, PAPER \& WOOD	1.97	1.78	10.77
141. MATERIALS SCIENCE, TEXTILES	1.94	1.78	9.39
142. METALLURGY \& METALL. ENGIN.	3.31	2.75	20.41
143. NANOSCIENCE \& NANOTECH.	5.78	5.49	5.26

XIV. GEOSCIENCES
144. GEOCHEMISTRY \& GEOPHYSICS
145. GEOGRAPHY, PHYSICAL
146. GEOLOGY
147. ENGINEERING, GEOLOGICAL
148. PALEONTOLOGY
149. REMOTE SENSING
150. OCEANOGRAPHY
151. ENGINEERING, OCEAN
152. METEOROLOGY \& ATMOSPH. SCS.

153 ENGINEERING, AEROSPACE
154. MINERALOGY
155. MINING \& MINERAL PROCESSING
XV. AGRICULT. \& ENVIRONMENT 156. AGRICULTURAL ENGINEERING
157. AGRICULTURE, MULTIDRY.
158. AGRONOMY
159. LIMNOLOGY
160. SOIL SCIENCE
161. BIODIVERSITY CONSERVATION
162. ENVIRONMENTAL SCIENCES
163. ENVIRONMENTAL STUDIES
164. FOOD SCIENCE \& TECHNOLOGY
165. NUTRITION \& DIETETICS
3.29
4.71
4.18
6.94
4.87
6.21
6.42
3.48
5.05
8.29
166. AGRIC., DAIRY \& ANIMAL SCIENCE
3.71
167. HORTICULTURE
4.44
XVI. BIOLOGY
(ORGANISMIC AND SUPRAORG. LEV 168. ORNITHOLOGY
4.12
169. ZOOLOGY
170. ENTOMOLOGY
171. WATER RESOURCES
172. FISHERIES
173. MARINE \& FRESHWATER BIOLOGY
174. MICROBIOLOGY
175. PARASITOLOGY
176. VIROLOGY
177. FORESTRY
178. MYCOLOGY

4.12	4.14	-0.38
5.41	4.78	13.13
3.85	3.50	10.07
4.30	4.21	2.24
5.11	4.59	11.30
5.99	5.60	6.92
10.82	10.83	-0.12
5.97	6.05	-1.23
14.62	15.19	-3.79
5.20	5.18	0.40
5.01	4.34	15.30

179. PLANT SCIENCES	7.19	7.19	-0.02
180. PURE AND APPLIED ECOLOGY	8.33	8.39	-0.75
181. VETERINARY SCIENCES	3.62	3.13	15.76
XVII. MULTIDISCIPLINARY			
182. MULTIDISCIPLINARY SCIENCES	2.99	2.99	0.06
XVIII. RESIDUAL SUB-FIELDS			
183. MATERIALS SCIENCE, MULT.	4.77	4.32	10.58
184. CRYSTALLOGRAPHY	4.17	3.78	10.44
185. GEOSCIENCES, MULT.	5.24	5.42	-3.35
186. MED., RES. \& EXPERIMENTAL	13.35	12.21	9.39
XIX. SOCIAL SCIENCES, GENERAL			
187. CRIMINOLOGY \& PENOLOGY	3.46	3.48	-0.72
188. LAW	3.33	3.55	-6.09
189. POLITICAL SCIENCE	2.39	2.45	-2.20
190. PUBLIC ADMINISTRATION	2.47	2.50	-1.39
191. ETHNIC STUDIES	1.82	1.62	12.61
192. FAMILY STUDIES	4.22	3.95	6.80
193. SOCIAL ISSUES	2.53	2.53	0.01
194. SOCIAL WORK	2.73	2.38	15.07
195. SOCIOLOGY	3.02	3.00	0.48
196. WOMEN'S STUDIES	2.80	2.32	20.56
197. EDUCATION \& EDUCATIONAL RES.	2.33	2.17	7.21
198. EDUCATION, SPECIAL	3.63	3.30	10.22
199. AREA STUDIES	1.33	1.25	6.61
200. GEOGRAPHY	4.18	4.08	2.28
201. PLANNING \& DEVELOPMENT	3.10	2.98	3.77
202. TRANSPORTATION	3.45	2.81	22.76
2003 URBAN STUDIES	3.10	3.04	2.04
204. ETHICS	2.37	2.01	17.83
205. MEDICAL ETHICS	3.76	3.78	-0.45
206. ANTHROPOLOGY	2.99	2.63	13.81
207. COMMUNICATION	2.94	2.94	0.11
208. DEMOGRAPHY	4.23	4.07	3.84
209. HISTORY OF SOCIAL SCIENCES	1.41	1.37	2.86
210. INFORMATION SC. \& LIBRARY SC.	2.82	2.35	20.26
211. INTERNATIONAL RELATIONS	2.24	2.38	-6.10
212. LINGUISTICS	4.23	3.68	14.73
213. SOCIAL SCIENCES, INTERD.	2.40	2.18	10.12
XX. ECONOMICS \& BUSINESS			
214. AGRICULTURAL ECONOMICS \& POLI	2.56	2.58	-0.62
215. ECONOMICS	3.47	3.38	2.68
216. INDUSTRIAL RELATIONS \& LABOR	3.17	3.03	4.86
217. BUSINESS	4.90	4.94	-0.83
218. BUSINESS, FINANCE	4.74	4.84	-1.97
219. MANAGEMENT	4.57	4.31	6.01
Mean Value	5.84	5.77	
Standard Deviation	3.46	3.62	
Coefficient of Variation	0.59	0.63	

Appendix III. A Family of High- and Low-impact Indicators

Consider a discrete citation distribution of papers published in a given year, that is, consider an ordered, nonnegative vector $c=\left(c_{1}, \ldots, c_{i}, \ldots, c_{n}\right)$ where $c_{1} \leq c_{2} \leq \ldots \leq c_{n}$, and $c_{i} \geq 0$ is the number of citations received by the i-th article. Given a distribution c and a positive CCL, classify as low- or high-impact articles all papers with citation $c_{i} \leq$ CCL, or $c_{i}>$ CCL. In this paper, the CCL is always fixed at the $80^{\text {th }}$ percentile of the world citation distribution. To simplify the notation, we will omit in the sequel a reference for such fixed CCL. Thus, denote by $n(c)$ the total number of articles in the distribution, and by $l(c)$ and $b(c)=n(c)-l(c)$ the number of low- and high-impact articles. A low-impact index is a real valued function L whose typical value $L(c)$ indicates the low-impact level associated with distribution c, while a bigh-impact index is a real valued function H whose typical value $H(c)$ indicates the high-impact level associated with that distribution.

Given a citation distribution c and a CCL, the Foster, Greer, and Thorbeke (FGT hereafter) family of lowimpact indicators, originally introduced in Foster et al. (1984) for the measurement of economic poverty, is defined by:

$$
L_{\beta}(c)=[1 / n(c)] \Sigma_{i=1}{ }_{1}^{\prime(c)}\left(\Gamma_{i}\right)^{\beta}, 0 \leq \beta,
$$

where β is a parameter identifying the members of the family, and $\Gamma_{i}=\max \left\{\left(\mathrm{CCL}-c_{i}\right) / \mathrm{CCL}, 0\right\}$ is the normalized lowimpact gap for any article with c_{i} citations. Note that $\Gamma_{i} \geq 0$ for low-impact articles, while $\Gamma_{i}=0$ for high-impact articles. The class of FGT high-impact indicators is defined by

$$
H_{\beta}(c)=[1 / n(c)] \Sigma_{i=\mu(c)+1^{\eta(c)}}\left(\Gamma_{i}^{*}\right)^{\beta}, 0 \leq \beta,
$$

where β is again a parameter identifying the members of the family, and $\Gamma^{*}=\max \left\{\left(c_{i}-\mathrm{CCL}\right) / \mathrm{CCL}, 0\right\}$ is the normalized bigh-impact gap. Now $\Gamma^{*}{ }_{i}>0$ for high-impact articles, while $\Gamma_{i}^{*}=0$ for low-impact articles. As explained in Albarrán et al. (2011b), both families are size- and scale-invariant.

It will be sufficient to understand the differences involved in these indicators for parameter values $\beta=0,1$, and 2. Firstly, note that the high- and low-impact indices obtained when $\beta=0$ coincide with the proportion of high- and low-impact papers: $H_{0}(c)=b(c) / n(c)$, and $L_{0}(c)=l(c) / n(c)$. It should be noted that the mere percentage of articles satisfying some interesting condition only captures what can be referred to as the incidence aspect of the phenomenon in question. In this sense, it can be said that H_{0} and L_{0} only capture the incidence aspect of the high- and low-impact phenomenon. Secondly, consider the high-impact index corresponding to $\beta=1$, or the per-article high-impact gap ratio:

$$
H_{1}(c)=[1 / n(c)] \Sigma_{i=}=\psi_{(c)+1}{ }^{n(c)} \Gamma_{i}^{*} .
$$

Similarly, the member of the FGT family of low-impact indicators for $\beta=1$, or the per-article low-impact gap ratio, is equal to:

$$
L_{l}(c)=[1 / n(c)]\left[\Sigma_{i=1} 1^{(c)} \Gamma_{i}\right] .
$$

The normalized high- and low-impact gaps of two articles, $\Gamma^{*}{ }_{i}$ and Γ_{i}, respectively, reflect how far are both articles from the CCL. Consequently, it can be said that H_{1} and L_{1} capture both the incidence and the intensity of the corresponding phenomena. Thirdly, the high- and low-impact members of the FGT families obtained when $\beta=2$ can be expressed as:

$$
\begin{align*}
& H_{2}(c)=H_{0}(c)\left\{\left[\left(H_{1}(c)\right]^{2}+\left[1-H_{l}(c)\right]^{2}\left(\mathrm{C}_{\mathrm{H}}\right)^{2}\right]\right\}, \tag{7}\\
& L_{2}(c)=L_{0}(c)\left\{\left[\left(L_{0}(c)\right]^{2}+\left[1-L_{1}(c)\right]^{2}\left(\mathrm{C}_{\mathrm{L}}\right)^{2}\right]\right\}, \tag{8}
\end{align*}
$$

where C_{H} and C_{L} are the coefficients of variation (that is, the ratio of the standard deviation over the mean) among the high- and low-impact articles, respectively. In so far as the coefficient of variation is a measure of citation inequality, the FGT indicators H_{2} and L_{2} defined in equations (7) and (8) simultaneously capture the incidence, the intensity, and the citation inequality aspects of the high- and low-impact phenomenon they measure (see Albarrán et al., 2011b, for a full discussion of the properties possessed by the above indicators).

Since in this paper only indicators for parameter value $\beta=2$ will be computed, we will omit any further subscript in what follows. Thus, in the text the high- and low-impact indicators for $\beta=2$ are simply denoted as H and L, respectively.

[^0]: ${ }^{1}$ We would like to take this opportunity to correct the idea that "...fractionally assigned articles have a much smaller chance of occupying the upper tail of citation distributions than articles assigned to a single WoS category" (Albarrán et al., 20011a, p. 389). Fractionally assigned articles would play a smaller role than articles assigned to a single sub-field, but they would have the same chance of occupying the upper tail of citation distributions.

[^1]: ${ }^{2}$ We should make clear that it is not claimed that this aggregation scheme provides an accurate representation of the structure of science. It is rather a convenient simplification or a realistic tool for the discussion of the aggregation issue.

[^2]: ${ }^{3}$ The corresponding figures for the multiplicative strategy are 24.7% and 43.9% of all articles, with standard deviations equal to 13.9 and 12.5 (see the Working Paper version of Albarrán et al., 2011a, p. 17).
 ${ }^{4}$ The corresponding figures for the multiplicative strategy are 6.8% and 3.2% of all articles, with standard deviations equal to 1.1 and 0.7 , and coefficients of variation equal to 0.16 and 0.22 (see the Working Paper version of Albarrán et al., 2011a, p. 17).

[^3]: ${ }^{5}$ For later reference, we record here the six sub-fields for which the number of articles in the multiplicative case is at least 170% greater than in the fractional case: (i) Medical Ethics; (ii) Medical Informatics; (iii) Mathematical \& Computational Biology; (iv) Neuroimaging; (v) Nanoscience \& Nanotechnology; (vi) Ergonomics, as well as the six subfields for which this difference is smaller than 10% : (i) Physics, Multidisciplinary; (ii) Multidisciplinary Sciences; (iii) Medicine, General, \& Internal; (iv) Andrology; (v) Rheumatology; (vi) Ornithology.
 ${ }^{6}$ The exceptional three disciplines are Classical Physics; Instruments and Instrumentation, and Other Clinical Medicine, while the two fields are Materials Science, and the so-called Residual Sub-fields -a field consisting of four sub-fields that created difficulties for the appearance of a power law in their natural categories (for more details, see Albarrán et al., 2011a).

[^4]: ${ }^{7}$ The ten sub-fields for which the MCR according to the multiplicative strategy is at least 20% greater than according the fractional strategy are: (i) Agriculture, Multidisciplinary; (ii) Horticulture; (iii) Statistics \& Probability; (iv) Imaging Science \& Photographic Technology; (v) Mining \& Mineral Processing; (vi) Psychology, Psychoanalysis; (vii) Transportation;(viii) Women's Studies; (ix) Metallurgy \& Metallurgical Engineering; (x) Information Science \& Library Science. The nine sub-fields for which the opposite is the case by at least 10% are: (i) Materials Science, Composites; (ii) Pathology; (iii) Physics, Condensed Matter; (iv) Physics, Applied; (v) Physics, Particles \& Fields; (vi) Physics, Nuclear; (vii) Meteorology \& Atmospheric Sciences; (viii) Immunology; (ix) Chemistry, Medicinal.

