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ABSTRACT 

The Environment and Directed Technical Change* 

This paper introduces endogenous and directed technical change in a growth 
model with environmental constraints. A unique final good is produced by 
combining inputs from two sectors. One of these sectors uses "dirty" 
machines and thus creates environmental degradation. Research can be 
directed to improving the technology of machines in either sector. We 
characterize dynamic tax policies that achieve sustainable growth or maximize 
intertemporal welfare. We show that: (i) in the case where the inputs are 
sufficiently substitutable, sustainable long-run growth can be achieved with 
temporary taxation of dirty innovation and production; (ii) optimal policy 
involves both .carbon taxes. and research subsidies, so that excessive use of 
carbon taxes is avoided; (iii) delay in intervention is costly: the sooner and the 
stronger is the policy response, the shorter is the slow growth transition 
phase; (iv) the use of an exhaustible resource in dirty input production helps 
the switch to clean innovation under laissez-faire when the two inputs are 
substitutes. Under reasonable parameter values and with sufficient 
substitutability between inputs, it is optimal to redirect technical change 
towards clean technologies immediately and optimal environmental regulation 
need not reduce long-run growth. 
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1 Introduction

How to control and limit climate change caused by our growing consumption of fossil fuels

and to develop alternative energy sources to these fossil fuels are among the most pressing

policy challenges facing the world today.1 While a large part of the discussion among cli-

mate scientists focuses on the effect of various policies on the development of alternative– and

more “environmentally friendly”– energy sources, the response of technological change to en-

vironmental policy has until very recently been all but ignored by leading economic analyses of

environment policy, which have mostly focused on computable general equilibrium models with

exogenous technology.2 This omission is despite the fact that existing empirical evidence indi-

cates that changes in the relative price of energy inputs have an important effect on the types

of technologies that are developed and adopted. For example, Newell, Jaffe and Stavins (1999)

show that when energy prices were stable, innovations in air-conditioning reduced the prices

faced by consumers, but following the oil price hikes, air-conditioners became more energy

effi cient. Popp (2002) provides more systematic evidence on the same point by using patent

data from 1970 to 1994; he documents the impact of energy prices on patents for energy-saving

innovations.

A satisfactory framework for the study of the costs and benefits of different environmental

policies must therefore include at its centerpiece the endogenous response of different types of

technologies to proposed policies. Our purpose is to take a first step towards the development

of such a framework. We propose a simple two-sector model of directed technical change.

The unique final good is produced by combining the inputs produced by these two sectors.

One of them uses “dirty”machines and creates environmental degradation. Profit-maximizing

researchers build on previous innovations (“build on the shoulders of giants”) and direct their

research to improving the quality of machines in one or the other sector.

Our framework highlights the central roles played by the market size and the price effects

on the direction of technical change (Acemoglu, 1998, 2002). The market size effect encourages

innovation towards the larger input sector, while the price effect directs innovation towards the

sector with higher price. The relative magnitudes of these effects are, in turn, determined by

three factors: (1) the elasticity of substitution between the two sectors; (2) the relative levels

of development of the technologies of the two sectors; (3) whether dirty inputs are produced

using an exhaustible resource. Because of the environmental externality, the decentralized

equilibrium is not optimal. Moreover, the laissez-faire equilibrium typically leads to an “envi-

ronmental disaster,”where the quality of the environment falls below a critical threshold.

Our main results focus on the types of policies that can prevent such disasters, the struc-

1See, for instance, Stott et al. (2004) on the contribution of human activity to the European heatwave of
2003, Emanuel (2005) and Landsea (2005) on the increased impact and destructiveness of tropical cyclones and
Atlantic hurricanes over the last decades, and Nicholls and Lowe (2006) on sea-level rise.

2See, e.g., Nordhaus (1994), MacCracken et al. (1999), Nordhaus and Boyer (2000).
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ture of optimal environmental regulation and its long-run growth implications, and the costs of

delay in implementing environmental regulation. Approaches based on exogenous technology

lead to three different types of answers to (some of) these questions depending on their assump-

tions. Simplifying existing approaches and assigning colorful labels, we can summarize these

as follows. The Nordhaus answer is that only limited and gradual interventions are necessary.

Optimal regulations should only reduce long-run growth by a modest amount. The Stern/Al

Gore answer is less optimistic. It calls for more extensive and immediate interventions, and

argues that these interventions need to be in place permanently and will likely reduce long-run

growth as the price for avoiding an environmental disaster. The more pessimistic Greenpeace

answer is that essentially all growth needs to come to an end in order to save the planet.

Against this background, our analysis suggests a very different answer. In the empirically

plausible case where the two sectors (clean and dirty inputs) are highly substitutable, imme-

diate and decisive intervention is indeed necessary. Without intervention, the economy would

rapidly head towards an environmental disaster, particularly because the market size effect

and the initial productivity advantage of dirty inputs would direct innovation and production

to that sector, contributing to environmental degradation. However, optimal environmental

regulation, or even simple suboptimal policies just using carbon taxes or profit taxes/research

subsidies, would be suffi cient to redirect technical change and avoid an environmental disaster.

Moreover, these policies only need to be in place for a temporary period, because once clean

technologies are suffi ciently advanced, research would be directed towards these technologies

without further government intervention. Consequently, environmental goals can be achieved

without permanent intervention and without sacrificing (much or any) long-run growth. While

this conclusion is even more optimistic than Nordhaus’s answer, as in the Stern/Al Gore or

Greenpeace perspectives delay costs are significant, not simply because of the direct environ-

mental damage, but because delay increases the technological gap between clean and dirty

sectors, necessitating a more extended period of economic slowdown in the future.

Notably, our model also nests the Stern/Al Gore and Greenpeace answers. When the two

sectors are substitutable but not suffi ciently so, preventing an environmental disaster requires

a permanent policy intervention. Finally, when the two sectors are complementary, the only

way to stave off a disaster is to stop long-run growth.

A simple but important implication of our analysis is that optimal environmental regulation

should always use both an input tax (“carbon tax”) to control current emissions and research

subsidies or profit taxes to influence the direction of research. Even though a carbon tax

would by itself discourage research in the dirty sector, using this tax both to reduce current

emissions and to influence the path of research would lead to excessive distortions. Instead,

optimal policy relies less on a carbon tax, and even more so on direct encouragement to the

development of clean technologies.

Our framework also illustrates the effects of exhaustibility of resources on the laissez-faire
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equilibrium and on the structure of optimal policy. An environmental disaster is less likely when

the dirty sector uses an exhaustible resource (provided that the two sectors have a high degree

of substitution) because the increase in the price of the resource as it is depleted reduces its use,

and this encourages research towards clean technologies. Thus, an environmental disaster could

be avoided without government intervention. Nevertheless, we also show that the structure

of optimal environmental regulation looks broadly similar to the case without an exhaustible

resource and again relies both on carbon taxes and research subsidies.

As a first step towards a quantitative analysis of environmental policy in the presence of

endogenous and directed technical change, we also perform a simple calibration exercise. We

find that for high (but reasonable) elasticities of substitution between clean and dirty inputs

(nonfossil and fossil fuels), the optimal policy in the presence of directed technical change

involves an immediate switch of all R&D effort to clean technologies. When clean and dirty

inputs are suffi ciently substitutable, the structure of optimal environmental policy appears

broadly robust to different values of the discount rate (which is the main source of the different

conclusions in the Stern report or in Nordhaus’s research).

Our paper relates to the literature on growth, resources, and the environment. Nord-

haus’s (1994) pioneering study proposed a dynamic integrated model of climate change and

the economy (the DICE model), which extends the neoclassical Ramsey model with equations

representing emissions and climate change. In our calibration exercise we build on Nordhaus’s

study and results. Another branch of the literature focuses on the measurement of the costs

of climate change, particularly stressing issues related to risk, uncertainty and discounting.3

Based on the assessment of discounting and related issues, this literature has prescribed either

decisive and immediate governmental action (e.g., Stern, 2006) or a more gradualist approach

(e.g., Nordhaus, 2004), with modest control in the short-run followed by sharper emissions

reduction in the medium and the long run. Recent work by Golosov et al. (2009) character-

izes the structure of optimal policies in a model with exogenous technology and exhaustible

resources, where oil suppliers set prices to maximize discounted profits. They show that the

optimal resource tax should be decreasing over time. Finally, some authors, for example, Hep-

burn (2006) and Pizer (2002), have built on Weitzman’s (1974) analysis on the use of price or

quantity instruments to study climate change policy and the choice between taxes and quotas.

The response of technology to environmental degradation and environmental policy, our

main focus in this paper, has received much less attention in the economics literature, however.

Early work by Stokey (1998) highlighted the tension between growth and the environment,

and showed that degradation of the environment can create an endogenous limit to growth.

Aghion and Howitt (1998, Chapter 5) emphasized that environmental constraints may not

prevent sustainable long-run growth when “environment-friendly” innovations are allowed.

3For example, Stern (2006), Weitzman (2007, 2009), Dasgupta (2007, 2008), Nordhaus (2007), von Below
and Persson (2008), Mendelsohn (2007), and Tol and Yohe (2006).
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Recent research by Jones (2009) provides a systematic analysis of conditions under which

environmental and other costs of growth will outweigh its benefits. Neither of these early

contributions allowed technical change to be directed to clean or dirty technologies.

Subsequent work by Popp (2004) allowed for directed innovation in the energy sector.

Popp presents a calibration exercise and establishes that models that ignore the directed tech-

nical change effects can significantly overstate the cost of environmental regulation. While

Popp’s work is highly complementary to ours, neither his work nor others develop a system-

atic framework for the analysis of the impact of environmental regulations on the direction

of technological change. We develop a general and tractable framework to perform systematic

comparative analyses for the effects of different types of policies on innovation, growth and

environmental resources, to characterize the structure of optimal regulation, and to study the

implications of dirty inputs using exhaustible resources.4

The remainder of the paper is organized as follows. Section 2 introduces our general

framework. Section 3 focuses on the case without an exhaustible resource. It shows that

laissez-faire equilibrium leads to an environmental disaster. It then shows how simple policy

interventions can prevent environmental disasters and clarifies the role of directed technical

change in these results. Section 4 characterizes the structure of optimal environmental policy

in this setup. Section 5 studies the economy with exhaustible resources. Section 6 provides a

preliminary quantitative assessment of how directed technical change affects the structure of

optimal policy under reasonable parameter values. Section 7 concludes. Appendix A contains

the proofs of some of the key results stated in the text, while Appendix B, which is available

online, contains the remaining proofs and additional quantitative exercises.

2 General Framework

We consider an infinite-horizon discrete-time economy inhabited by a continuum of house-

holds comprising workers, entrepreneurs and scientists. We assume that all households have

preferences (or that the economy admits a representative household with preferences):

∞∑
t=0

1

(1 + ρ)t
u (Ct, St) , (1)

where Ct is consumption of the unique final good at time t, St denotes the quality of the

environment at time t, and ρ > 0 is the discount rate.5 We assume that St ∈ [0, S], where S is
4First attempts at introducing endogenous directed technical change in models of growth and the environment

build, as we do, on Acemoglu (1998, 2002) and include Grubler and Messner (1998), Manne and Richels (2002),
Messner (1997), Buonanno et al. (2003), Nordhaus (2002), Sue Wing (2003), and Di Maria and Valente (2006).
Grimaud and Rouge (2008), Gans (2009) and Aghion and Howitt (2009, Chapter 16) are more closely related
to the approach followed in this paper. The early contribution by Goulder and Schneider (1999) studied the
sectoral implications of CO2 abatement policies in a model with endogenous R&D.

5For now, S can be thought of as a measure of general environmental quality. In our quantitative exercise
in Section 6, we explicitly relate S to the increase in temperature since pre-industrial times and to carbon
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the quality of the environment absent any human pollution, and to simplify the notation, we

also assume that this is the initial level of environmental quality, that is, S0 = S.

The instantaneous utility function u (C, S) is increasing both in C and S, twice differentiable

and jointly concave in (C, S). Moreover, we impose the following Inada-type conditions:

lim
C↓0

∂u (C, S)

∂C
=∞, lim

S↓0

∂u (C, S)

∂S
=∞, and lim

S↓0
u(C, S) = −∞. (2)

The last two conditions imply that the quality of the environment reaching its lower bound

has severe utility consequences. Finally we assume that

∂u
(
C, S

)
∂S

≡ 0, (3)

which implies that when S reaches S, the value of the marginal increase in environmental

quality is small. This assumption is adopted to simplify the characterization of optimal envi-

ronmental policy in Section 4.

There is a unique final good, produced competitively using “clean”and “dirty”inputs, Yc
and Yd, according to the aggregate production function

Yt =

(
Y

ε−1
ε

ct + Y
ε−1
ε

dt

) ε
ε−1

, (4)

where ε ∈ (0,+∞) is the elasticity of substitution between the two sectors and we suppress

the distribution parameter for notational simplicity. Throughout, we say that the two sectors

are (gross) substitutes when ε > 1 and (gross) complements when ε < 1 (throughout we ignore

the “Cobb-Douglas” case of ε = 1).6 The case of substitutes ε > 1 (in fact, an elasticity of

substitution significantly greater than 1) appears as the more empirically relevant benchmark,

since we would expect successful clean technologies to substitute for the functions of dirty

technologies. For this reason, throughout the paper we assume that ε > 1 unless specified

otherwise (the corresponding results for the case of ε < 1 are discussed in subsection 3.4).

The two inputs, Yc and Yd, are produced using labor and a continuum of sector-specific

machines (intermediates), and the production of Yd may also use a natural exhaustible resource:

Yct = L1−α
ct

∫ 1

0
A1−α
cit x

α
citdi and Ydt = Rα2

t L
1−α
dt

∫ 1

0
A1−α1
dit xα1

ditdi (5)

concentration in the atmosphere.
6The degree of substitution, which plays a central role in the model, has a clear empirical counterpart. For

example, renewable energy, provided it can be stored and transported effi ciently, would be highly substitutable
with energy derived from fossil fuels. This reasoning would suggest a (very) high degree of substitution between
dirty and clean inputs, since the same production services can be obtained from alternative energy with less
pollution. In contrast, if the “clean alternative” were to reduce our consumption of energy permanently, for
example by using less effective transport technologies, this would correspond to a low degree of substitution,
since greater consumption of non-energy commodities would increase the demand for energy. More generally, this
parameter, though not systematically investigated by existing research, should be estimated in future empirical
work and become a crucial input into the design of environmental policy.
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where α, α1, α2 ∈ (0, 1), α1 + α2 = α, Ajit is the quality of machine of type i used in sector

j ∈ {c, d} at time t, xjit is the quantity of this machine and Rt is the flow consumption from
an exhaustible resource at time t. The evolution of the exhaustible resource is given by the

difference equation:

Qt+1 = Qt −Rt, (6)

where Qt is the resource stock at date t. The per unit extraction cost for the exhaustible

resource is c (Qt), where Qt denotes the resource stock at date t, and c is a non-increasing

function of Q. In Section 5, we study two alternative market structures for the exhaustible

resource, one in which it is a “common resource” so that the user cost at time t is given by

c (Qt), and one in which property rights to the exhaustible resource are vested with infinitely-

lived firms (or consumers), in which case the user cost will be determined by the Hotelling

rule. Note that the special case where α2 = 0 (and thus α1 = α) corresponds to an economy

without the exhaustible resource, and we will first analyze this special case.

Market clearing for labor requires labor demand to be less than total labor supply, which

is normalized to 1, i.e.,

Lct + Ldt ≤ 1. (7)

In line with the literature on endogenous technical change, machines (for both sectors) are

supplied by monopolistically competitive firms. Regardless of the quality of machines and of

the sector for which they are designed, producing one unit of any machine costs ψ units of the

final good. Without loss of generality, we normalize ψ ≡ α2.

Market clearing for the final good implies that

Ct = Yt − ψ
(∫ 1

0
xcitdi+

∫ 1

0
xditdi

)
− c(Qt)Rt. (8)

The innovation possibilities frontier is as follows. At the beginning of every period, each

scientist decides whether to direct her research to clean or dirty technology. She is then

randomly allocated to at most one machine (without any congestion; so that each machine

is also allocated to at most one scientist) and is successful in innovation with probability

ηj ∈ (0, 1) in sector j ∈ {c, d}, where innovation increases the quality of a machine by a factor
1 + γ (with γ > 0), that is, from Ajit to (1 + γ)Ajit. A successful scientist (who has invented a

better version of machine i in sector j ∈ {c, d}) obtains a one-period patent and becomes the
entrepreneur for the current period in the production of machine i. In sectors where innovation

is not successful, monopoly rights are allocated randomly to an entrepreneur drawn from the

pool of potential entrepreneurs who then use the old technology.7 This innovation possibilities

7The assumptions here are adopted to simplify the exposition and mimic the structure of equilibrium in
continuous time models as in Acemoglu (2002) (see also Aghion and Howitt, 2009, for this approach). We
adopt a discrete time setup throughout to simplify the analysis of dynamics. Appendix B shows that the
qualitative results are identical in an alternative formulation with patents and free entry (instead of monopoly
rights being allocated to entrepreneurs).
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frontier where scientists can only target a sector (rather than a specific machine) ensures

that scientists are allocated across the different machines in a sector.8 We also normalize the

measure of scientists s to 1 and denote the mass of scientists working on machines in sector

j ∈ {c, d} at time t by sjt. Market clearing for scientists then takes the form

sct + sdt ≤ 1. (9)

Let us next define

Ajt ≡
∫ 1

0
Ajitdi (10)

as the average productivity in sector j ∈ {c, d}, which implies that Adt corresponds to “dirty
technologies,”while Act represents “clean technologies”. The specification for the innovation

possibilities frontier introduced above then implies that Ajt evolves over time according to the

difference equation

Ajt =
(
1 + γηjsjt

)
Ajt−1. (11)

Finally, the quality of the environment, St, evolves according to the difference equation

St+1 = −ξYdt + (1 + δ)St, (12)

whenever the right hand side of (12) is in the interval (0, S). Whenever the right hand side

is negative, St+1 = 0, and whenever the right hand side is greater than S, St+1 = S (or

equivalently, St+1 = max
{

min 〈−ξYdt + (1 + δ)St; 〉 0;S
}
). The parameter ξ measures the

rate of environmental degradation resulting from the production of dirty inputs, and δ is the

rate of “environmental regeneration”. Recall also that S is the initial and the maximum

level of environmental quality corresponding to zero pollution. This equation introduces the

environmental externality, which is caused by the production of the dirty input.

Equation (12) encapsulates several important features of environmental change in practice.

First, the exponential regeneration rate δ captures the idea that greater environmental degra-

dation is typically presumed to lower the regeneration capacity of the globe. For example,

part of the carbon in the atmosphere is absorbed by the ice cap; as the ice cap melts because

of global warming, more carbon is released into the atmosphere and the albedo of the planet

8As highlighted further by equation (11) below, this structure implies that innovation builds on the existing
level of quality of a machine, and thus incorporates the “building on the shoulders of giants”feature. In terms of
the framework in Acemoglu (2002), this implies that there is “state dependence”in the innovation possibilities
frontier, in the sense that advances in one sector make future advances in that sector more profitable or more
effective. This is a natural feature in the current context, since improvements in fossil fuel technology should
not (and in practice do not) directly translate into innovations in alternative and renewable energy sources.
Nevertheless, one could allow some spillovers between the two sectors, that is, “limited state dependence”as in
Acemoglu (2002). In particular, in the current context, we could adopt a more general formulation which would
replace the key equation (11) below by Ajt =

(
1 + γηjsjt

)
φj (Ajt−1, A∼jt−1), for j ∈ {c, d}, where ∼ j denotes

the other sector and φj is a linearly homogeneous function. Our qualitative results continue to hold provided
that φc (Ac, Ad) has an elasticity of substitution greater than one as Ac/Ad →∞ (since in this case φc becomes
effectively linear in Ac in the limit where innovation is directed at clean technologies).
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is reduced, further contributing to global warming. Similarly, the depletion of forests reduces

carbon absorption, also contributing to global warming. Second, the upper bound S captures

the idea that environmental degradation results from pollution, and that pollution cannot be

negative. We discuss below how our results change under alternative laws of motion for the

quality of the environment.

Equation (12) also incorporates, in a simple way, the major concern of the majority of

climate scientists, that the environment may deteriorate so much as to reach a “point of no

return”. In particular, if St = 0, then Sτ will remain at 0 for all τ > t. Our assumption

that limS↓0 u(C, S) = −∞ implies that St = 0 for any finite t cannot be part of a welfare-

maximizing allocation (for any ρ <∞). Motivated by this feature, we define the notion of an
environmental disaster, which will be useful for developing the main intuitions of our model.

Definition 1 An environmental disaster occurs if St = 0 for some t <∞.

3 Environmental Disaster without Exhaustible Resources

In this and the next section, we focus on the case with α2 = 0 (and thus α1 = α), where the

production of the dirty input does not use the exhaustible resource. This case is of interest

for several reasons. First, because the production technologies of clean and dirty inputs are

symmetric in this case, the effects of directed technical change can be seen more transparently.

Second, we believe that this case is of considerable empirical relevance, since the issue of

exhaustability appears secondary in several activities contributing to climate change, including

deforestation and power generation using coal (where the exhaustiblity constraint is unlikely

to be binding for a long time). We return to the more general case where α2 6= 0 in Section 5.

3.1 The laissez-faire equilibrium

In this subsection we characterize the laissez-faire equilibrium outcome, that is, the decen-

tralized equilibrium without any policy intervention. We first characterize the equilibrium

production and labor decisions for given productivity parameters. We then analyze the direc-

tion of technical change.

An equilibrium is given by sequences of wages (wt), prices for inputs (pjt), prices for ma-

chines (pjit), demands for machines (xjit), demands for inputs (Yjt), labor demands (Ljt) by

input producers j ∈ {c, d}, research allocations (sdt, sct), and quality of environment (St) such

that, in each period t: (i) (pjit, xjit) maximizes profits by the producer of machine i in sector j;

(ii) Ljt maximizes profits by producers of input j; (iii) Yjt maximizes the profits of final good

producers; (iv) (sdt, sct) maximizes the expected profit of a researcher at date t; (v) the wage

wt and the prices pjt clear the labor and input markets respectively; and (vi) the evolution of

St is given by (12).

8



To simplify the notation, we define ϕ ≡ (1− α) (1− ε) and impose the following assump-
tion, which is adopted throughout the text (often without explicitly specifying it).

Assumption 1

Ac0
Ad0

< min

(
(1 + γηc)

−ϕ+1
ϕ

(
ηc
ηd

) 1
ϕ

, (1 + γηd)
ϕ+1
ϕ

(
ηc
ηd

) 1
ϕ

)
.

This assumption imposes the reasonable condition that initially the clean sector is suffi -

ciently backward relative to the dirty (fossil fuel) sector that under laissez-faire the economy

starts innovating in the dirty sector. This assumption enables us to focus on the more relevant

part of the parameter space (Appendix A provides the general characterization).

We first consider the equilibrium at time t for given technology levels Acit and Adit. As the

final good is produced competitively, the relative price of the two inputs satisfies

pct
pdt

=

(
Yct
Yd

)− 1
ε

. (13)

This equation implies that the relative price of clean inputs (compared to dirty inputs) is de-

creasing in their relative supply, and moreover, that the elasticity of the relative price response

is the inverse of the elasticity of substitution between the two inputs. We normalize the price

of the final good at each date to one, i.e.,(
p1−ε
ct + p1−ε

dt

)1/(1−ε)
= 1. (14)

To determine the evolution of average productivities in the two sectors, we need to char-

acterize the profitability of research in these sectors, which will determine the direction of

technical change. The equilibrium profits of machine producers endowed with technology Ajit
can be written as (see Appendix A):

πjit = (1− α)αp
1

1−α
jt LjtAjit. (15)

Taking into account the probability of success and using the definition of average produc-

tivity in (10), the expected profit Πjt for a scientist engaging in research in sector j at time t

is therefore:

Πjt = ηj (1 + γ) (1− α)αp
1

1−α
jt LjtAjt−1, (16)

where the second line simply uses (10). Consequently, the relative benefit from undertaking

research in sector c relative to sector d is governed by the ratio:

Πct

Πdt
=
ηc
ηd

×
(
pct
pdt

) 1
1−α

︸ ︷︷ ︸
price effect

× Lct
Ldt︸︷︷︸

market size effect

× Act−1

Adt−1︸ ︷︷ ︸
direct productivity effect

. (17)
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The higher this ratio, the more profitable is R&D directed towards the clean technologies. This

equation shows that incentives to innovate in the clean versus the dirty sector machines are

shaped by three forces: (i) the direct productivity effect (captured by the term Act−1/Adt−1),

which pushes towards innovating in the sector with higher productivity; this force results from

the presence of the “building on the shoulders of giants” effect highlighted in (11); (ii) the

price effect (captured by the term (pct/pdt)
1

1−α ), encouraging innovation towards the sector

with higher prices, which is naturally the relatively backward sector; (iii) the market size effect

(captured by the term Lct/Ldt), encouraging innovation in the sector with greater employment,

and thus with the larger market for machines– when the two inputs are substitutes (ε > 1),

this is also the sector with the higher aggregate productivity. Appendix A develops these

effects more formally and also shows that in equilibrium, equation (17) can be written as:

Πct

Πdt
=
ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)−ϕ−1(Act−1

Adt−1

)−ϕ
. (18)

The next lemma then directly follows from (18).

Lemma 1 Under laissez-faire it is an equilibrium for innovation at time t to occur in the clean
sector only when ηcA

−ϕ
ct−1 > ηd (1 + γηc)

ϕ+1A−ϕdt−1, in the dirty sector only when ηc (1 + γηd)
ϕ+1A−ϕct−1 <

ηdA
−ϕ
dt−1, and in both sectors when ηc (1 + γηdsdt)

ϕ+1A−ϕct−1 = ηd (1 + γηcsct)
ϕ+1A−ϕdt−1 (with

sct + sdt = 1).

Proof. See Appendix A.
The noteworthy conclusion of this lemma is that innovation will favor the more advanced

sector when ε > 1 (which, in (18), corresponds to ϕ ≡ (1− α) (1− ε) < 0).

Finally, output of the two inputs and the final good in the laissez-faire equilibrium can be

written as:

Yct =
(
Aϕct +Aϕdt

)−α+ϕ
ϕ ActA

α+ϕ
dt , Ydt =

(
Aϕct +Aϕdt

)−α+ϕ
ϕ Aα+ϕ

ct Adt, (19)

and Yt =
(
Aϕct +Aϕdt

)− 1
ϕ ActAdt.

Using these expressions and Lemma 1, we establish:

Proposition 1 Suppose that ε > 1 and Assumption 1 holds. Then there exists a unique

laissez-faire equilibrium where innovation always occurs in the dirty sector only, and the long-

run growth rate of dirty input production is γηd.

Proof. See Appendix A.
Since the two inputs are substitutes (ε > 1), innovation starts in the dirty sector, which

is more advanced initially (Assumption 1). This increases the gap between the dirty and the

clean sectors and the initial pattern of equilibrium is reinforced: only Ad grows (at the rate

γηd > 0) and Ac remains constant. Moreover, since ϕ is negative in this case, (19) implies that

in the long run Yd also grows at the rate γηd.
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3.2 Directed technical change and environmental disaster

In this subsection, we show that the laissez-faire equilibrium leads to an environmental disaster

and illustrate how a simple policy of “redirecting technical change”can avoid this outcome.

The result that the economy under laissez-faire will lead to an environmental disaster fol-

lows immediately from the facts that dirty input production Yd always grows without bound

(Proposition 1) and that a level of production of dirty input greater than (1 + δ) ξ−1S neces-

sarily leads to a disaster next period. We thus have (proof omitted):

Proposition 2 Suppose that ε > 1 and Assumption 1 holds. Then the laissez-faire equilibrium

always leads to an environmental disaster.

Remark 1 Our exposition may give the impression that dirty and clean technologies are
entirely separated. In practice, clean innovation may also reduce the environmental degradation

resulting from (partially) dirty technologies. In fact, our model implicitly allows for this

possibility. In particular, our model is equivalent to a formulation where there are no clean

and dirty inputs, and instead, the unique final good is produced according to the technology

Yt =

((
L1−α
ct

∫ 1

0
A1−α
cit x

α
citdi

) ε−1
ε

+

(
Rα2
t L

1−α
dt

∫ 1

0
A1−α1
dit xα1

ditdi

) ε−1
ε

) ε
ε−1

, (20)

where Act and Adt correspond to the fraction of “tasks” performed using clean versus dirty

technologies, and the law of motion of the environmental stock takes the form

St+1 = −ξ × (Ydt/Yt)× Yt + (1 + δ)St,

where Ydt/Yt measures the extent to which overall production uses dirty tasks. Clean innova-

tion, increasing Act, then amounts to reducing the pollution intensity of the overall production

process. This emphasizes that our model equivalently captures technical change that reduces

the pollution from existing production processes. In addition, our main results can be easily ex-

tended to several more general formulations; for example, St+1 = −f (Ydt/Yt)×Yt+(1 + δ)St,

or St+1 = −f
((∫ 1

0 xditdi
)
/Yt

)
× Yt + (1 + δ)St, where

(∫ 1
0 xditdi

)
/Yt denotes the quantity

of dirty machines used per unit of final good production, and f is a continuously increasing

function with f(0) = 0.

We can also consider innovations reducing the global pollution rate ξ or increasing the

regeneration rate δ by various geoengineering methods. Since innovations in ξ or δ are pure

public goods, there would be no research directed towards them in the laissez-faire equilibrium.

This motivates our focus on technologies that might be developed by the private sector.

Finally, several different variations of the laws of motion of the environmental stock also

yield similar results. For example, we could dispense with the upper bound on environmental

quality, so that S = ∞. In this case, the results are similar, except that a disaster can be

11



avoided even if dirty input production grows at a positive rate, provided that this rate is

lower than the regeneration rate of the environment, δ. An alternative is to suppose that

St+1 = −ξYdt + St + ∆, so that the regeneration of the environment is additive rather than

proportional to current quality. With this alternative law of motion, it is straightforward to

show that the results are essentially identical to the baseline formulation because a disaster

can only be avoided if Ydt does not grow at a positive exponential rate in the long run.

Proposition 2 implies that some type of intervention is necessary to avoid a disaster. For a

preliminary investigation of the implications of such intervention, suppose that the government

can subsidize scientists to work in the clean sector, for example, using a proportional profit

subsidy (financed through a lump-sum tax on the representative household).9 Denoting this

subsidy rate by qt, the expected profit from undertaking research in the clean sector becomes

Πct = (1 + qt) ηc (1 + γ) (1− α)αp
1

1−α
ct LctAct−1,

while Πdt is still given by (16). This immediately implies that a suffi ciently high subsidy to

clean research can redirect innovation towards the clean sector.10 Moreover, while this subsidy

is implemented, the ratio Act/Adt grows at the rate γηc. When the two inputs are substitutes

(ε > 1), a temporary subsidy (maintained for D periods) is suffi cient to redirect all research to

the clean sector. More specifically, while the subsidy is being implemented, the ratio Act/Adt
will increase, and when it has become suffi ciently high, it will be profitable for scientists to

direct their research to the clean sector even without the subsidy.11 Equation (19) then implies

that Ydt will grow asymptotically at the same rate as A
α+ϕ
ct .

We say that the two inputs are strong substitutes if ε ≥ 1/ (1− α), or equivalently if

α+ϕ ≤ 0. It follows from (19) that with strong substitutes, Ydt will not grow in the long-run.

Therefore, provided that the initial environmental quality is suffi ciently high, a temporary

subsidy is suffi cient to avoid an environmental disaster. This case thus delivers the most

optimistic implications of our analysis, where a temporary intervention is suffi cient to redirect

technical change and avoid an environmental disaster without preventing long-run growth or

9The results are identical with direct subsidies to the cost of clean research or with taxes on profits in the
dirty sector.
10 In particular, following the analysis in Appendix A, to implement a unique equilibrium where all scientists

direct their research to the clean sector, the subsidy rate qt must satisfy

qt > (1 + γηd)
−ϕ−1 ηd

ηc

(
Act−1

Adt−1

)ϕ
− 1 if ε ≥ 2− α

1− α and qt ≥ (1 + γηc)
(ϕ+1) ηd

ηc

(
Act−1

Adt−1

)ϕ
− 1 if ε <

2− α
1− α.

11The temporary tax needs to be imposed for D periods where D is the smallest integer such that:

Act+D−1

Adt+D−1
> (1 + γηd)

ϕ+1
ϕ

(
ηc
ηd

) 1
ϕ

if ε ≥ 2− α
1− α and

Act+D−1

Adt+D−1
≥ (1 + γηc)

−ϕ+1
ϕ

(
ηc
ηd

) 1
ϕ

if 1 < ε <
2− α
1− α
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even creating long-run distortions. This contrasts with the Nordhaus, the Stern/Al Gore, and

the Greenpeace answers discussed in the Introduction.

If, instead, the two inputs are weak substitutes, that is ε ∈ (1, 1/ (1− α)) (or α + ϕ > 0),

then temporary intervention will not be suffi cient to prevent an environmental disaster. Such

an intervention can redirect all research to the clean sector, but equation (19) implies that

even after this happens, Ydt will grow at rate (1 + γηc)
α+ϕ − 1 > 0. Intuitively, since ε > 1,

as the average quality of clean machines increases, workers get reallocated towards the clean

sector (because of the market size effect). At the same time the increase of the relative price

of the dirty input over time encourages production of the dirty input (the price effect). As

shown in the previous paragraph, in the strong substitutes case the first effect dominates. In

contrast, in the weak substitutes case, where ε < 1/(1−α), the second effect dominates,12 and

Ydt increases even though Adt is constant. In this case, we obtain the less optimistic conclusion

that a temporary subsidy redirecting research to the clean sector will not be suffi cient to

avoid an environmental disaster; instead, similar to the Stern/Al Gore position, permanent

government regulation is necessary to avoid environmental disaster. This discussion establishes

the following proposition (proof in the text):

Proposition 3 When the two inputs are strong substitutes (ε ≥ 1/ (1− α)) and S is suffi -

ciently high, a temporary subsidy to clean research will prevent an environmental disaster. In

contrast, when the two inputs are weak substitute (1 < ε < 1/ (1− α)), a temporary subsidy to

clean research cannot prevent an environmental disaster.

This proposition shows the importance of directed technical change: temporary incentives

are suffi cient to redirect technical change towards clean technologies, and once clean technolo-

gies are suffi ciently advanced, profit-maximizing innovation and production will automatically

shift towards those technologies so that environmental disaster can be avoided without further

intervention.

It is also useful to note that all of the main results in this section are a consequence

of endogenous and directed technical change. Our framework would correspond to a model

without directed technical change if we instead assumed that scientists are randomly allocated

between the two sectors. Suppose, for simplicity, that this allocation is such that the qualities of

clean and dirty machines grow at the same rate (i.e., at the rate γη̃ where η̃ ≡ ηcηd/ (ηc + ηd)).

In this case, dirty input production will grow at the rate γη̃ instead of the higher rate γηd
with directed technical change. This implies that when the two inputs are strong substitutes

(ε ≥ 1/ (1− α)), under laissez-faire a disaster will occur sooner with directed technical change

12A different intuition for the ε ∈ (1, 1/ (1− α)) case is that improvements in the technology of the clean
sector also correspond to improvements in the technology of the final good, which uses them as inputs; the final
good, in turn, is an input for the dirty sector because machines employed in this sector are produced using the
final good; hence, technical change in the clean sector creates a force towards the expansion of the dirty sector.
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than without. But while, as we have just seen, with directed technical change a temporary

subsidy can redirect innovation towards the clean sector, without directed technical change such

redirecting is not possible and thus temporary interventions cannot prevent an environmental

disaster.

3.3 Costs of delay

Policy intervention is costly in our framework, partly because during the period of adjustment,

as productivity in the clean sector catches up with that in the dirty sector, final output increases

more slowly than the case where innovation continues to be directed towards the dirty sector.

Before studying the welfare costs of intervention in detail in Section 4, it is instructive to look

at a simple measure of the (short-run) cost of intervention, defined as the number of periods

T necessary for the economy under the policy intervention to reach the same level of output

as it would have done within one period in the absence of the intervention: in other words,

this is the length of the transition period or the number of periods of “slow growth”in output

growth. This measure Tt (starting at time t) can be expressed as:

Tt =


ln
((

(1 + γηd)
−ϕ − 1

) (Act−1

Adt−1

)ϕ
+ 1
)

−ϕ ln (1 + γηc)

 (21)

It can be verified that starting at any t ≥ 1, we have Tt ≥ 2 (in the equilibrium in

Proposition 3 and with ε ≥ 1/ (1− α)). Thus, once innovation is directed towards the clean

sector, it will take more than one period for the economy to achieve the same output growth

as it would have achieved in just one period in the laissez-faire equilibrium of Proposition 1

(with innovation still directed at the dirty sector). Then, recalling that ϕ ≡ (1− α) (1− ε),
the next corollary follows from equation (21) (proof omitted):

Corollary 1 For Adt−1/Act−1 ≥ 1, the short-run cost of intervention, Tt, is nondecreasing

in the technology gap Adt−1/Act−1 and the elasticity of substitution ε. Moreover, Tt increases

more with Adt−1/Act−1 when ε is greater.

The (short-run) cost of intervention, Tt, is increasing in Adt−1/Act−1 because a larger gap

between the initial quality of dirty and clean machines leads to a longer transition phase, and

thus to a longer period of slow growth. In addition, Tt is also increasing in the elasticity of

substitution ε. Intuitively, if the two inputs are close substitutes, final output production relies

mostly on the more productive input, and therefore, productivity improvements in the clean

sector (taking place during the transition phase) will have less impact on overall productivity

until the clean technologies surpass the dirty ones.

The corollary shows that delaying intervention is costly, not only because of the continued

environmental degradation that will result, but also because during the period of delay Adt/Act
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will increase further, and thus when the intervention is eventually implemented, the temporary

subsidy to clean research will need to be imposed for longer and therefore there will be a

longer period of slow growth (higher T ). This result is clearly related to the “building on

the shoulders of giants” feature of the innovation process. Furthermore, the result that the

effects of ε and Adt−1/Act−1 on T are complementary implies that delaying the starting date

of the intervention is more costly when the two inputs are more substitutable. These results

imply that even though for the strong substitutes case the implications of our model are more

optimistic than those of Nordhaus, it is also the case that, in contrast to the implications of

his analysis, gradual and delayed intervention would have significant costs.

Overall, the analysis in this subsection has established that a simple policy intervention

that “redirects”technical change towards environment-friendly technologies can help prevent

an environmental disaster. Our analysis also highlights that delaying intervention may be quite

costly, not only because it further damages the environment (an effect already recognized in

the climate science literature), but also because it widens the gap between dirty and clean

technologies, thereby inducing a longer period of catch-up with slower growth.

3.4 Complementary inputs: ε < 1

Although the case with ε > 1, in fact with ε ≥ 1/ (1− α), is empirically more relevant, it is

useful to briefly contrast these with the case where the two inputs are complements, i.e., ε < 1.

Lemma 1 already established that when ε < 1, innovation will favor the less advanced sector

because ϕ > 0: in this case, the direct productivity effect is weaker than the combination

of the price and market size effects (which now reinforce each other). Thus, under laissez-

faire, starting from a situation where dirty technologies are initially more advanced than clean

technologies, innovations will first occur in the clean sector until that sector catches up with

the dirty sector; from then on innovation occurs in both sectors. Therefore, in the long-run,

the share of scientists devoted to the clean sector is equal to sc = ηd/ (ηc + ηd), so that both

Act and Adt grow at the rate γη̃, and Proposition 2 continues to apply (see Appendix A).

It is also straightforward to see that a temporary research subsidy to clean innovation

cannot avert an environmental disaster because it now has no impact on the long-run allocation

of scientists between the two sectors, and thus Act and Adt still grow at the rate γη̃. In fact,

ε < 1 implies that long-run growth is only possible if Ydt also grows without bound, which will

in turn necessarily lead to an environmental disaster. Consequently, when the two inputs are

complements (ε < 1), our model delivers the pessimistic conclusion, similar to the Greenpeace

view, that environmental disaster can only be avoided if long-run growth is halted.
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3.5 Direct impact of environmental on productivity

Previous studies have often used a formulation in which environmental degradation affects

productivity rather than utility. But whether it affects productivity, utility or both has little

impact on our main results. Specifically, let us suppose that utility is independent of St, and

instead clean and dirty inputs (j ∈ {c, d}) are produced according to:

Yjt = Ω (St)L
1−α
jt

∫ 1

0
A1−α
jit x

α
jitdi, (22)

where Ω is an increasing function of the environmental stock St, with Ω(0) = 0. This formu-

lation highlights that a reduction in environmental quality negatively affects the productivity

of labor in both sectors. It is then straightforward to establish that in the laissez-faire equi-

librium, either the productivity reduction induced by the environmental degradation resulting

from the increase in Adt occurs at a suffi ciently high rate that aggregate output and consump-

tion converge to zero, or this productivity reduction is not suffi ciently rapid to offset the growth

in Adt and an environmental disaster occurs in finite time. This result is stated in the next

proposition (and proved in Appendix B).

Proposition 4 In the laissez-faire equilibrium, the economy either reaches a disaster in finite
time or consumption converges to zero over time.

With a similar logic to our baseline model, the implementation of a temporary subsidy

to clean research in this case will avoid an environmental disaster and prevent consumption

from converging to zero. It can also be shown that the short-run cost of intervention is now

smaller than in our baseline model, since the increase in environmental quality resulting from

the intervention also allows greater consumption.

4 Optimal Environmental Policy without Exhaustible Resources

We have so far studied the behavior of the laissez-faire equilibrium and discussed how envi-

ronmental disaster may be avoided. In this section, we characterize the optimal allocation of

resources in this economy and discuss how it can be decentralized using “carbon” taxes and

research subsidies (we continue to focus on the case where dirty input production does not

use the exhaustible resource, i.e., α2 = 0). The socially optimal allocation will “correct” for

two externalities: (1) the environmental externality exerted by dirty input producers, and (2)

the knowledge externalities from R&D (the fact that in the laissez-faire equilibrium scientists

do not internalize the effects of their research on productivity in the future). In addition, it

will also correct for the standard static monopoly distortion in the price of machines, encour-

aging more intensive use of existing machines (see, for example, Aghion and Howitt, 1998, or

Acemoglu, 2009). Throughout this section, we characterize a socially optimal allocation that

16



can be achieved with lump-sum taxes and transfers (used for raising or redistributing revenues

as required). A key conclusion of the analysis in this section is that optimal policy must use

both a “carbon” tax (i.e., a tax on dirty input production) and a subsidy to clean research,

the former to control carbon emissions and the latter to influence the path of future research.

Relying only on carbon taxes would be excessively distortionary.

4.1 The socially optimal allocation

The socially optimal allocation is a dynamic path of final good production Yt, consumption

Ct, input productions Yjt, machine productions xjit, labor allocations Ljt, scientist allocations

sjt, environmental quality St, and qualities of machines Ajit that maximizes the intertemporal

utility of the representative consumer, (1), subject to (4), (5), (7), (8), (9), (11), and (12), with

Rt ≡ 0 and α2 = 0. The following proposition is one of our main results.

Proposition 5 The socially optimal allocation can be implemented using a tax on dirty input
(a “carbon” tax), a subsidy to clean innovation, and a subsidy for the use of all machines (all

proceeds from taxes/subsidies being redistributed/financed lump-sum).

Proof. See Appendix A.
This result is intuitive in view of the fact that the socially optimal allocation must correct for

three market failures in the economy. First, the underutilization of machines due to monopoly

pricing in the laissez-faire equilibrium is corrected by a subsidy for machines. Second, the

environmental externality is corrected by introducing a wedge between the marginal product

of dirty input in the production of the final good and its shadow value– which corresponds to

a tax τ t on the use of dirty input. In Appendix A (proof of Proposition 5), we show that:

τ t =
ξ

p̂dt

1
1+ρ

∑∞
v=t+1

(
1+δ
1+ρ

)v−(t+1)
ISt+1,...,Sν<S

∂u (Cv, Sv) /∂S

∂u (Ct, St) /∂C
. (23)

where p̂jt denotes the shadow (producer) price of input j at time t in terms of the final good (or

more formally, as shown in Appendix A, it is the ratio of the Lagrange multipliers for constraints

(5) and (4)), and ISt+1,...,Sν<S
takes value 1 if St+1, ..., Sν < S and 0 otherwise. This tax reflects

that at the optimum, the marginal cost of reducing the production of dirty input by one unit

must be equal to the resulting marginal benefit in terms of higher environmental quality in

all subsequent periods. Finally, the socially optimal allocation also internalizes the knowledge

externality in the innovation possibilities frontier and allocates scientists to the sector with

the higher social gain from innovation. We show in Appendix A that in the social optimum,

scientists are allocated to the clean sector whenever the ratio

ηc (1 + γηcsct)
−1 ∑

τ≥t

∂u(Cτ ,Sτ )/∂C
(1+ρ)τ

p̂
1

1−α
cτ LcτAcτ

ηd (1 + γηdsdt)
−1 ∑

τ≥t

∂u(Cτ ,Sτ )/∂C
(1+ρ)τ

p̂
1

1−α
dτ LdτAdτ

(24)
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is greater than 1. This contrasts with the decentralized outcome where scientists are allocated

according to the private value of innovation, that is, according to the ratio of the first term in

the numerator over the first term in the denominator.13

That we need both a “carbon”tax and a subsidy to clean research to implement the social

optimum (in addition to the subsidy to remove the monopoly distortions) is intuitive: the sub-

sidy deals with future environmental externalities by directing innovation towards the clean

sector, whereas the carbon tax deals more directly with the current environmental externality

by reducing production of the dirty input. By reducing production in the dirty sector, the car-

bon tax also discourages innovation in that sector. However, using only the carbon tax to deal

with both current environmental externalities and future (knowledge-based) externalities will

typically necessitate a higher carbon tax, distorting current production and reducing current

consumption excessively. An important implication of this result is that, without additional

restrictions on policy, it is not optimal to rely only on a carbon tax to deal with global warm-

ing; one should also use additional instruments (R&D subsidies or a profit tax on the dirty

sector) that direct innovation towards clean technologies, so that in the future production can

be increased using more productive clean technologies.

Remark 2 To elaborate on this issue, let us refer to optimal policy using both a carbon tax
and a clean research subsidy as “first-best”policy, and to optimal policy constrained to use only

the carbon tax as “second-best”policy (in both cases subsidies to the machines are present).

Such a second-best policy might result, for example, because R&D subsidies are ineffective or

their use cannot be properly monitored. Suppose first that both first-best and second-best

policies result in all scientists being always allocated to the clean sector and that the first-best

policy involves a positive clean research subsidy. In this case, we can show that the carbon tax

in the second-best policy must be higher than in the first-best policy. This simply follows from

the fact that under the second-best policy there is no direct subsidy to clean research, and thus

the carbon tax needs to be raised to indirectly “subsidize”clean research. Nevertheless, when

the clean research subsidy is no longer necessary in the first-best or in cases where under either

the first-best or the second-best policies there is delay in the switch to clean research, carbon

taxes may end up being lower for some periods under the second-best policy than under the

first-best policy (for example, because the switch to clean research may start later or finish

earlier under the second-best).

13The knowledge externality is stark in our model because of the assumption that patents last for only one
period. Nevertheless, our qualitative results do not depend on this assumption, since, even with perfectly-
enforced infinite-duration patents, clean innovations create a knowledge externality for future clean innovations
because of the “building on the shoulders of giants” feature of the innovation possibilities frontier.
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4.2 The structure of optimal environmental regulation

In subsection 3.2, we showed that a switch to innovation in clean technologies induced by a

temporary profit tax could prevent a disaster when the two inputs are substitutes. Here we

show that, when the two inputs are suffi ciently substitutable and the discount rate is suffi ciently

low, the optimal policy in Proposition 5 also involves a switch to clean innovation and only

temporary interventions (except for the subsidy correcting for monopoly distortions).

Proposition 6 Suppose that ε > 1 and the discount rate ρ is suffi ciently small. Then all

innovation switches to the clean sector in finite time, the economy grows asymptotically at the

rate γηc and the optimal subsidy on profits in the clean sector, qt, is temporary. Moreover, if

ε > 1/ (1− α) (but not if 1 < ε < 1/ (1− α)), then the optimal carbon tax, τ t, is temporary.

Proof. See Appendix B.
To obtain an intuition for this proposition, first note that an optimal policy requires avoid-

ing a disaster, since a disaster leads to limS↓0 u(C, S) = −∞. This in turn implies that the
production of dirty input must always remain below a fixed upper bound. When the discount

rate is suffi ciently low, it is optimal to have positive long-run growth, which can be achieved

by technical change in the production of the clean input, without growth over the production

of the dirty input (because ε > 1). Failing to allocate all research to clean innovation in finite

time would then slow down the increase in clean input production and reduce intertemporal

welfare. An appropriately-chosen subsidy to clean research then ensures that innovation occurs

only in the clean sector, and when Act exceeds Adt by a suffi cient amount, innovation in the

clean sector will have become suffi ciently profitable that it will continue even after the subsidy

is removed (and hence there is no longer a need for the subsidy). The economy will then gener-

ate a long-run growth rate equal to the growth rate of Act, namely γηc. When ε > 1/ (1− α),

the production of dirty input also decreases to 0 over time, and as a result, the environmental

stock St reaches S in finite time due to positive regeneration. This in turn ensures that the

optimal carbon tax given by (23) will reach zero in finite time.14

It is also straightforward to compare the structure of optimal policy in this model to the

variant without directed technical change discussed above. Since without directed technical

change the allocation of scientists is insensitive to policy, redirecting innovation towards the

clean sector is not possible. Consequently, optimal environmental regulation must prevent

an environmental disaster by imposing an ever-increasing sequence of carbon taxes. This

comparison highlights that the optimistic conclusion that optimal environmental regulation

can be achieved using temporary taxes/subsidies, and with little cost in terms of long-run

distortions and growth, is entirely due to the presence of directed technical change.

14This result depends on the assumption that ∂u
(
C, S

)
/∂S = 0. With ∂u

(
C, S

)
/∂S > 0, the optimal carbon

tax may remain positive in the long run. Moreover, in practice the decline in carbon levels in the atmosphere
are slower than implied by our simple equation (12), necessitating a longer-lived carbon tax.
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5 Equilibrium and Optimal Policy with Exhaustible Resources

In this section we characterize the equilibrium and the optimal environmental policy when

dirty input production uses the exhaustible resource (i.e., when α2 > 0). In particular, we

will show that the presence of an exhaustible resource may help prevent an environmental

disaster because it increases the cost of using the dirty input even without policy intervention.

Nevertheless, the major qualitative features of optimal environmental policy are similar to the

case without exhaustible resource.

In the first two subsections, we simplify the exposition by assuming that there are no

privately held property rights to the exhaustible resource. In this case, the user cost of the

exhaustible resource is determined by the cost of extraction and does not reflect its scarcity

value. We then show that the main results generalize to the case in which the property rights

to the exhaustible resource are vested in infinite-lived firms or consumers, so that the price is

determined by the Hotelling rule.

5.1 The laissez-faire equilibrium

When α2 > 0, the structure of equilibrium remains mostly unchanged. In particular, the

relative profitability of innovation in clean and dirty sectors reflects the same three effects

as before: the direct productivity effect, the price effect and the market size effect identified

above. The only change relative to the baseline model is that the resource stock now affects

the magnitude of the price and market size effects. In particular, as the resource stock declines,

the effective productivity of the dirty input also declines and its price increases, and the share

of labor allocated to the dirty sector decreases with the extraction cost. The ratio of expected

profits from research in the two sectors, which again determines the direction of equilibrium

research, now becomes (see Appendix B):

Πct

Πdt
= κ

ηcc(Qt)
α2(ε−1)

ηd

(1 + γηcsct)
−ϕ−1

(1 + γηdsdt)
−ϕ1−1

A−ϕct−1

A
−ϕ1
dt−1

, (25)

where κ ≡ (1−α)α

(1−α1)α
(1+α2−α1)/(1−α1)
1

(
α2α

ψα2α
2α1
1 α

α2
2

)(ε−1)

and ϕ1 ≡ (1− α1) (1− ε).

The main difference from the corresponding expression (18) in the case with α2 = 0 is

the term c(Qt)
α2(ε−1) in (25). This new term, together with the assumption that c(Qt) is

decreasing in Qt, immediately implies that when the two inputs are substitutes (ε > 1), as the

resource stock gets depleted, the incentives to direct innovations towards the clean sector will

increase. Intuitively, the depletion of the resource stock increases the relative cost (price) of the

dirty input, and thus reduces the market for the dirty input and encourages innovation in the

clean sector (because ε > 1). In fact, it is straightforward to see that asymptotically there will

be innovation in the clean sector only (either because the extraction cost increases suffi ciently
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rapidly, inducing all innovation to be directed at clean machines, or because the resource stock

gets fully depleted in finite time). Then, again because ε > 1, the dirty input is not essential to

final production and therefore, provided that initial environmental quality is suffi ciently high,

an environmental disaster can be avoided while the economy achieves positive long-run growth

at the rate γηc. This discussion establishes the following proposition. (Appendix B provides a

formal proof and also analyzes the case in which ε < 1).

Proposition 7 Suppose the two inputs are substitutes (ε > 1). Then innovation in the long-

run will be directed towards the clean sector only and the economy will grow at rate γηc.

Provided that S is suffi ciently high, an environmental disaster is avoided under laissez-faire.

The most important result in this proposition is that when an exhaustible resource is nec-

essary for production of the dirty input, the market generates incentives for research to be

directed towards the clean sector, and these market-generated incentives may be suffi cient for

the prevention of an environmental disaster. This contrasts with the result that an environ-

mental disaster is unavoidable under laissez-faire without the exhaustible resource. Therefore,

to the extent that in practice the increasing price of oil and the higher costs of oil extraction

will create a natural move away from dirty inputs, the implications of growth are not as dam-

aging to the environment as in the baseline case with α2 = 0. Nevertheless, because of the

environmental and the knowledge externalities (and also because of the failure to correctly

price the resource), the laissez-faire equilibrium is still Pareto suboptimal.

5.2 Optimal environmental regulation with exhaustible resources

We now briefly discuss the structure of optimal policy in the presence of an exhaustible resource.

The socially optimal allocation maximizes (1) now subject to the constraints (4), (5), (6), (7),

(8), (9), (11), (12), and the resource constraint Qt ≥ 0 for all t.

As in Section 4, the socially optimal allocation will correct for the monopoly distortion by

subsidizing the use of machines and will again introduce a wedge between the shadow price

of the dirty input and its marginal product in the production of the final good, equivalent to

a tax on dirty input production. In addition, because the private cost of extraction is c (Qt)

(i.e., does not incorporate the scarcity value of the exhaustible resource), the socially optimal

allocation will also use a “resource tax”to create a wedge between the cost of extraction and

the social value of the exhaustible resource. The next proposition summarizes the structure of

optimal policy in this case.

Proposition 8 The socially optimal allocation can be implemented using a “carbon”tax (i.e.,
a tax on the use of the dirty input), a subsidy to clean research, a subsidy on the use of all

machines and a resource tax (all proceeds from taxes/subsidies being redistributed/financed

lump-sum). The resource tax must be maintained forever.
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Proof. See Appendix B.
In the next section, we will also see that several quantitative features of the optimal policy

are similar in the economies with and without exhaustible resources.

5.3 Equilibrium and optimal policy under the Hotelling rule

We next investigate the implications of having well-defined property rights to the exhaustible

resource vested in price-taking infinitely-lived profit-maximizing firms (see Golosov et al., 2009,

for a recent treatment of this case). This implies that the price of the exhaustible resource will

be determined by the Hotelling rule.15 In particular, let us suppose for simplicity that the cost

of extraction c (Qt) is constant and equal to c > 0. Then the price of the exhaustible resource,

Pt, has to be such that the marginal value of one additional unit of extraction today must be

equal to the discounted value of an additional unit extracted tomorrow. More formally, the

Hotelling rule in this case takes the form

∂u (Ct, St)

∂C
(Pt − c) =

1

1 + ρ

∂u (Ct+1, St+1)

∂C
(Pt+1 − c) . (26)

We further simplify the analysis by assuming a constant coeffi cient of relative risk aversion

σ in consumption, and separable preferences between consumption and environmental quality:

u (Ct, St) =
C1−σ
t

1− σ + ν (St) ,

where ν ′ > 0 and ν ′′ < 0. Then the Hotelling rule, (26), implies that the price Pt of the

resource must asymptotically grow at the interest rate r, given from the consumption Euler

as:

r = (1 + ρ) (1 + g)σ − 1, (27)

where g is the asymptotic growth rate of consumption.

The next proposition shows that relative to the case analyzed in the previous two sub-

sections, avoiding an environmental disaster becomes more diffi cult when the price of the

exhaustible resource is given by the Hotelling rule.

Proposition 9 If the discount rate ρ and the elasticity of substitution ε are both suffi ciently
high (in particular, if ln (1 + ρ) > [(1− α1) /α2] ln (1 + γmax (ηd, ηc)) and ε > 1/ (2− α1 − α)),

then innovation asymptotically occurs in the clean sector only and a disaster is avoided un-

der laissez-faire provided that the initial environmental quality, S, is suffi ciently high. How-

ever, if the discount rate and the elasticity of substitution are suffi ciently low (in particular, if

ln (1 + ρ) < (1/ε− (1− α)− α2σ) ln (1 + γηc) /α2 and ln (1 + ρ) 6= (1− α1) ln (1 + γηd) /α2),

then a disaster cannot be avoided under laissez-faire.
15Yet another alternative would be to have the exhaustible resource owned by a single entity (or consortium),

which would not only choose its price according to its scarcity but would also attempt to deviate from the
Hotelling rule to internalize the environmental externalities. We find this case empirically less relevant and do
not focus on it.
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Proof. See Appendix B.
Intuitively, if the price of the resource Pt increases more slowly over time than productivity

in the dirty sector, Adt, then under laissez-faire, innovation continues to take place in the dirty

sector forever and the growth in the production of the dirty input leads to an environmental

disaster. This case arises when the discount rate ρ is suffi ciently small. An environmental

disaster can only be avoided if the price Pt increases suffi ciently fast so that in finite time

innovation shifts entirely to the clean sector. This in turn requires that the discount rate ρ

be suffi ciently high. However, for the same reasons as those highlighted in Section 3, such a

switch is not suffi cient to avoid an environmental disaster unless clean and dirty sectors are

“strong substitutes,”which now corresponds to the case where ε > 1/ (2− α1 − α).

It can also be shown that a temporary research subsidy is now suffi cient to avoid a dis-

aster when ε > 1/[1 − α + α2 (ln (1 + ρ) / ln (1 + γηc) + σ)]. This threshold is lower than

the corresponding threshold 1/ (1− α) in the case without the exhaustible resource because

dirty inputs are now using the exhaustible resource, which has a price growing at the rate

(1 + ρ) (1 + γηc)
σ − 1. This is also the reason why this threshold is decreasing in the share

of the exhaustible resource in the production of dirty input. Finally, one can show that the

optimal policy is identical to that characterized in subsection 5.2, except that the resource tax

is no longer necessary.

6 Quantitative Evaluation

In this section, we report the results of a first quantitative evaluation of the economic forces

introduced in this paper. We start with the economy without exhaustible resources (i.e., α2 =

0). We then briefly discuss the economy with an exhaustible resource. Our objective is not to

provide a comprehensive quantitative evaluation, but to highlight the effects of different values

of the discount rate and the elasticity of substitution on the form of optimal environmental

regulation and the resulting timing of a switch (of R&D and production) to clean technology.

To highlight the new implications of directed technical change, we choose the parameters to

make our exercise as similar to existing quantitative analyses as possible.

We take a period in our model to correspond to 5 years. We set ηc = ηd = 0.02 (per

annum) and γ = 1 so that the long-run annual growth rate is equal to 2% (which matches

Nordhaus’assumptions in his 2007 DICE calibration). We take α = 1/3 (so that the share of

national income spent on machines is approximately equal to the share of capital). We suppose

that before the implementation of the optimal policy the carbon tax is set at 0. But to focus

on the implications of the environmental externality, we assume that the subsidy to machines

is present throughout. We compute Act−1 and Adt−1 to match the implied values of Yct−1 and

Ydt−1 to the production of nonfossil and fossil fuel in the world primary energy supply from

2002 to 2006 (according to the Energy Information Administration data). Note that in all our
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exercises, when ε varies, Act−1 and Adt−1 also need to be adjusted (in particular, a higher ε

leads to a higher ratio of Act−1/Adt−1).

Estimating the economy-wide elasticity of substitution is beyond the scope of the current

paper. We simply note that since fossil and nonfossil fuels should be close substitutes (at the

very least, once nonfossil fuels can be transported effi ciently), reasonable values of ε should be

quite high. Throughout the following calibration exercise, we consider two different values for

ε: a low value of ε = 3 and a high value of ε = 10. Contrasting what happens under these two

values will allow us to highlight the crucial role of the elasticity of substitution in determining

the form of the optimal policy.

6.1 Parameter choices

To relate the environmental quality variable S to the atmospheric concentration of carbon,

we use a common approximation to the relationship between the increase in temperature

since preindustrial times (in degrees Celsius), ∆, and the atmospheric concentration of carbon

dioxide (in ppm), CCO2: ∆ ' 3 log2 (CCO2/280). This equation implies that a doubling of

atmospheric concentration in CO2 (since preindustrial times, when the concentration was equal

to 280 ppm) leads to a 3◦C increase in current temperature (see, e.g., Pachauri et al., 2007).

We then express S as a decreasing function of ∆ and thus of CCO2, so that S = 0 corresponds

to a level of temperature change ∆ approximating “disaster temperature,”∆disaster (described

below). More specifically, we set

S = 280× 2∆disaster/3 −max {CCO2 , 280} .

Furthermore, we now relax the assumption that S0 = S and set the initial environmental

quality S0 to correspond to the current atmospheric concentration of 379 ppm (S, in turn,

corresponds to CCO2 = 280 ppm, the preindustrial value).

We then estimate parameter ξ from the observed value of Yd and the annual emission of

CO2 (ξYd in our model) between 2002 and 2006 according to the Energy Information Admin-

istration. Finally, we choose δ such that only half of the amount of emitted carbon contributes

to increasing CO2 concentration in the atmosphere (the rest being offset by “environmental

regeneration,”see again Pachauri et al., 2007).

Nordhaus– and much of the literature following his work– assumes that environmental

quality affects aggregate productivity. We find it more reasonable that high temperature levels

and high concentrations of carbon dioxide affect utility as well as production, and we formulated

our model under the assumption that environmental quality directly affects utility. To highlight

the similarities and the differences between our model and existing quantitative models with

exogenous technology, we choose the parameters such that the welfare consequences of changes

in temperature (for the range of changes observed so far) are the same in our model as in
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previous work. We parameterize the utility function as

u(Ct, St) =
(φ (St)Ct)

1−σ

1− σ , (28)

with σ = 2, which matches Nordhaus’s choice of intertemporal elasticity of substitution. In

addition, this utility function contains the term φ (S) for the costs from the degradation of

environmental quality. We choose this function as

φ (S) = ϕ (∆ (S)) ≡
(∆disaster −∆ (S))λ − λ∆λ−1

disaster (∆disaster −∆ (S))

(1− λ) ∆λ
disaster

, (29)

with ∆disaster = 6.9◦C, and matching this function with Nordhaus’s damage function over the

range of temperature increases up to 3◦C leads to a value of λ = 0.3492.16

6.2 Results

The debate between Stern and Nordhaus highlighted the importance of the discount rate when

determining the optimal environmental policy. Here we consider two different values for the

discount rate: the Stern discount rate of 0.001 per annum (which we write as ρ = 0.001), and

the Nordhaus discount rate of 0.015 per annum (ρ = 0.015, which, as in Nordhaus, corresponds

to an annual long-run interest rate of about r = ρ+ σg = 5.5%).

Figure 1 shows the subsidy to the clean sector, the allocation of scientists to clean tech-

nologies, the “carbon”tax, the share of clean inputs in total production, and the increase in

temperature in the optimal allocation for different values of ε and ρ.

This figure shows very similar patterns for ρ = 0.015 and ρ = 0.01 when ε = 10. In fact,

the blue and green curves referring to these two cases are not distinguishable in the figure.

Figure 1B shows that when ε = 10 or when ε = 3 and ρ = 0.001, the optimal policy involves

an immediate switch of all research activities toward clean technologies. When ε = 3 and

ρ = 0.015, the switch towards clean research occurs around year 50. As shown in Figure 1A,

the optimal subsidy to clean research is temporary, and it is lower and of shorter duration when

ε = 10, because in this case the initial gap between clean and dirty technologies consistent

16ϕ is a strictly decreasing and concave function, with ϕ (0) = 1, ϕ (∆disaster) = 0, ϕ′ (0) = 0 and
lim

∆→∆disaster

ϕ′(∆) = −∞. This functional form ensures that our assumptions on the utility function, (2) and

(3), are satisfied. Note that (29) defines a flexible family of continuous functions parameterized by λ. As
λ→ 1, this function converges to ϕ1(∆) = (1−∆/∆disaster) (1− ln (1−∆/∆disaster)) for all ∆ ∈ [0,∆disaster)
(from L’Hopital’s rule) and ϕ1(∆disaster) = 0, and as λ → 1, it converges (pointwise) to the “step function”
ϕ0(∆) = 1 for all ∆ ∈ [0,∆disaster) and ϕ0(∆) = 0 for ∆ = ∆disaster. The value ∆disaster = 6.9◦C corresponds
to 1.5 times the highest estimate of the temperature increase that would eventually lead to the melting of the
Greenland Ice Sheet (Pachauri et al., 2007). In Nordhaus’s DICE model, output is affected by temperature
through a multiplicative term Ω (∆) =

(
1 + 0.0028388∆2

)−1
in the aggregate production function. We compute

the parameter λ so as to match our function ϕ with Ω over the range of temperature increases up to 3◦C (more
precisely, we minimize the L2-norm of the difference Ω−ϕ on the interval [0, 3]). With this choice of ϕ function,
our model generates effects that are very close to those obtained in Nordhaus’s calibration exercises for increases
in temperature less than 3◦C.
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Figure 1: Optimal environmental policy for different values of ε and ρ

with the observed share of dirty inputs is smaller. When ε = 3, the optimal subsidy is larger

and lasts longer, particularly when ρ = 0.015, because in this case the switch to clean research

occurs later.

Figure 1C shows that when ε = 10, there is only a very low of carbon tax for a limited

period because the rapid switch to clean inputs makes this tax unnecessary.17 Again, in

contrast, when ε = 3 and ρ = 0.015, because the switch of both innovation and production to

the clean sector is delayed, there is a much higher and initially (for over 250 years) increasing

carbon tax. Figure 1D shows that when ε = 10, the clean sector takes over most of input

production quite rapidly (it takes 30 years only for 90% of input production to switch to the

clean sector). In contrast, when ε = 3 and ρ = 0.001, even though the switch to clean research

is immediate, it takes much longer (for over 150 years) for 90% of inputs to be supplied by

17This result should be interpreted with caution. For example, if we introduce restrictions on research subsidies
or allow them to be less than fully effective, then there would be a greater role for the carbon tax.
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the clean sector. Figure 1E shows that when ε = 10, there is a small increase, followed by

a decrease, in temperature (going back to its preindustrial level after about 90 years). The

pattern is similar, though the increase and the subsequent decline are more protracted when

ε = 3 and ρ = 0.001. Finally, when ε = 3 and ρ = 0.015, temperature keeps increasing for

about 250 years before reaching a maximum fairly close to the disaster level.

Overall, the above exercise suggests that if the elasticity of substitution between clean and

dirty inputs is suffi ciently high, then whether one uses the Nordhaus or the Stern discount rate

has little bearing on the nature of the optimal environmental policy.

Corollary 1 in subsection 3.3 related the costs of delayed intervention to the number of

additional periods of slow growth that such a delay would induce. Table 1 here shows the

welfare costs of delaying the implementation of the optimal policy (i.e., of maintaining the

clean innovation subsidy and the carbon tax at zero for a while before implementing the

optimal policy).18 Welfare costs are measured as the equivalent percentage reduction in per

period consumption relative to the allocation with immediate intervention (we assume that

when intervention starts, it takes the optimal form). The numbers in the table correspond to

different values of the elasticity of substitution ε (with the initial value Act−1 and Adt−1 being

adjusted accordingly), the discount rate ρ and the amount of delay. The table shows that

delay costs can be substantial. For example, with ε = 10 and ρ = 0.001, a 10 year delay is

equivalent to a 14.02% decline in consumption (when ρ = 0.015, the corresponding number is

1.92%). Moreover, the cost of delay increases with the duration of the delay and the elasticity

of substitution between the two inputs. Intuitively, when the two inputs are close substitutes,

further advances in the dirty technology that occur before the optimal policy is implemented

do not contribute much to aggregate ouput once the switch to clean research and production

takes place. The cost of delay also decreases with the discount rate because the benefit from

delaying intervention, due to higher consumption early on, increases with the discount rate.

It is also noteworthy that the variations in the delay cost resulting from changes in ε and ρ

are of the same order of magnitude. This suggests that the elasticity of substitution between

clean and dirty input is as important a consideration as the discount rate when assessing the

costs of delaying intervention.

Table 1: Welfare costs of delayed intervention as a function of the elasticity of
substitution and the discount rate

(Percentage reductions in consumption relative to immediate intervention)

Elasticity of substitution ε 10 3
Discount rate ρ 0.001 0.015 0.001 0.015
delay = 10 years 8.75 1.87 2.71 0.05

delay = 20 years 14.02 1.92 4.79 0.12

delay = 30 years 17.65 1.99 6.88 0.23

18The optimal subsidy on machines is maintained during the period of delay.
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Finally, we briefly discuss the welfare costs of relying solely on a carbon (input) tax instead

of combining it with the subsidy to clean research (i.e., the “second-best”instead of “first-best”

derived in Proposition 6). Without the subsidy to clean research, the carbon tax needs to be

significantly higher. For example, when ε = 10 and ρ = 0.015, the initial value of the carbon

tax in the second-best needs to be 20 times higher than in the first-best. The higher tax level

creates a greater reduction in production and consumption in the short run. Table 2 shows

that the welfare loss in the second-best relative to the first-best can be significant (though it

is typically smaller than the costs of delay shown in Table 1). It is smaller when the elasticity

of substitution is high, since in this case a relatively small carbon tax is suffi cient to redirect

R&D towards clean technologies; and it is greater when the discount rate is high, because a

higher discount rate puts a higher weight on earlier periods where a significantly higher carbon

tax needs to be imposed in the second-best.

Table 2: Welfare costs of relying solely on carbon tax as a function of the
elasticity of substitution and the discount rate

(Percentage reductions in consumption relative to the optimal policy)

Elasticity of substitution ε 10 3
Discount rate ρ 0.001 0.015 0.001 0.015
Welfare cost 0.95 1.58 1.74 2.70

6.3 Optimal policies with exhaustible resources

In Appendix B, we report the quantitative results for the version of the model with an ex-

haustible resource. Figure 2 in Appendix B shows that the implied path of optimal policy

is remarkably similar to the case without an exhaustible resource. We again find that when

ε = 10 or when ε = 3 and ρ = 0.001, the switch to clean innovation is immediate. When

ε = 3 and ρ = 0.015, the switch to clean innovation is again delayed and takes slightly more

than 50 years. The behavior of temperature and taxes in all cases is very similar to Figure 1

(but we can see that when the switch to clean innovation is immediate, production switches

faster towards the clean sector because of the cost of the exhaustible resource). Intuitively,

the similarity is due to the fact that optimal policy does not run up against the exhaustibility

constraint.

7 Conclusion

In this paper we introduced endogenous and directed technical change in a growth model with

environmental constraints and limited resources. We characterized the structure of equilibria

and the dynamic tax/subsidy policies that achieve sustainable growth or maximize intertem-

poral welfare. The long-run properties of both the laissez-faire equilibrium and the social
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optimum (or the necessary policies to avoid environmental disaster) are related to the degree

of substitutability between clean and dirty inputs, to whether dirty input production uses

exhaustible resources, and to initial environmental and resource stocks.

The main implications of factoring in the importance of directed technical change are as

follows: (i) when the inputs are suffi ciently substitutable, sustainable long-run growth can be

achieved using temporary policy intervention (e.g., a temporary research subsidy to the clean

sector), and need not involve long-run distortions; (ii) optimal policy involves both “carbon

taxes”and research subsidies, so that excessive use of carbon taxes can be avoided; (iii) delay in

intervention is costly: the sooner and the stronger the policy response, the shorter will the slow

growth transition phase be; (iv) the use of an exhaustible resource in dirty input production

helps the switch to clean innovation under laissez-faire. Thus the response of technology to

policy leads to a more optimistic scenario than what emerges from models with exogenous

technology. However, directed technical change also calls for immediate and decisive action in

contrast to the implications of several exogenous technology models used in previous economic

analyses.

A simple quantitative evaluation suggests that, provided that the elasticity of substitution

between clean and dirty inputs is suffi ciently high, optimal environmental regulation should

involve an immediate switch of R&D resources to clean technology, followed by a gradual

switch of all production to clean inputs. This conclusion appears robust to the range of

discount rates used in the Stern report and in Nordhaus’s work (which lead to very different

policy conclusions in models with exogenous technology). Interestingly, in most cases, optimal

environmental regulation involves small carbon taxes because research subsidies are able to

redirect innovation to clean technologies before there is more extensive environmental damage.

Our paper is a first step towards a comprehensive framework that can be used for theoretical

and quantitative analysis of environmental regulation with endogenous technology. Several

directions of future research appear fruitful. First, it would be useful to develop a multi-

country model with endogenous technology and environmental constraints, which can be used

to discuss issues of global policy coordination and the degree to which international trade

should be linked to environmental policies. Second, an interesting direction is to incorporate

“environmental risk” into this framework, for example, because of the ex ante uncertainty

on the regeneration rate, δ, or on future costs of environmental damage. Another line of

important future research would be to exploit macroeconomic and microeconomic (firm- and

industry-level) data to estimate the relevant elasticity of substitution between clean and dirty

inputs.
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Appendix A

Solving for the laissez-faire equilibrium

In this Appendix we solve for the profit-maximization of machine producers, and express the

price and labor allocation ratio as a function of the relative aggregate productivities of clean

and dirty technologies in the laissez-faire equilibrium.

The profit-maximization problem of the producer of machine i at time t in sector j ∈ {c, d}
can be written as

max
xjit,Ljt

{
pjtL

1−α
jt

∫ 1

0
A1−α
jit x

α
jitdi− wtLjt −

∫ 1

0
pjitxjitdi

}
,

and leads to the following iso-elastic inverse demand curve:

xjit =

(
αpjt
pjit

) 1
1−α

AjitLjt. (A.30)

The monopolist producer of machine i in sector j chooses pjit and xjit to maximize profits

πjit = (pjit − ψ)xjit, subject to the inverse demand curve (A.30). Given this iso-elastic de-

mand, the profit-maximizing price is a constant markup over marginal cost, thus pjit = ψ/α.

Recalling the normalization ψ ≡ α2, this implies that pjit = α and thus the equilibrium demand

for machines i in sector j is obtained as

xjit = p
1

1−α
jt LjtAjit. (A.31)

Equilibrium profits for the monopolist are then given by (15) in the text.

Next combining equation (A.31) with the first-order condition with respect to labor,

(1− α) pjtL
−α
jt

∫ 1

0
A1−α
jit x

α
jitdi = wt and using (10) gives the relative prices of clean and dirty

inputs as
pct
pdt

=

(
Act
Adt

)−(1−α)

. (A.32)

This equation formalizes the natural idea that the input produced with more productive ma-

chines will be relatively cheaper.

Equation (A.31) together with (5) gives the equilibrium production level of input j as

Yjt = (pjt)
α

1−α AjtLjt. (A.33)

Combining (A.33) with (13), then using (A.32) and the definition of ϕ ≡ (1− α) (1− ε),
we obtain the relationship between relative productivities and relative employment as:

Lct
Ldt

=

(
pct
pdt

)−ϕ−1
1−α Adt

Act
=

(
Act
Adt

)−ϕ
. (A.34)

Finally, combining (A.32) and (A.34) with (17) gives (18) in the text.
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Equilibrium allocations of scientists

We now characterize the equilibrium allocation(s) of innovation effort across the two sectors

for any value of the elasticity parameter ε, and provide a proof of Lemma 1. Defining

f(s) ≡ ηc
ηd

(
1 + γηcs

1 + γηd(1− s)

)−ϕ−1(Act−1

Adt−1

)−ϕ
,

for s ∈ [0, 1], we can rewrite (18) as Πct/Πdt = f (sct). Clearly, if f(1) > 1, then s = 1 is

an equilibrium; if f(0) < 1, then s = 0 is an equilibrium; and finally if f(s∗) = 1 for some

s∗ ∈ (0, 1), then s∗ is an equilibrium. Given these observations, we have:

1. If 1 + ϕ > 0 (or equivalently ε < (2 − α)/ (1− α)), then f(s) is strictly decreasing in

s. Then it immediately follows that: (i) if f(1) > 1, then s = 1 is the unique equilibrium (we

only have a corner solution in that case); (ii) if f(0) < 1, then s = 0 is the unique equilibrium

(again a corner solution); (iii) if f(0) > 1 > f(1), then by continuity there exists a unique

s∗ ∈ (0, 1) such that f(s∗) = 1, which is the unique (interior) equilibrium.

2. If 1+ϕ < 0 (or equivalently ε > (2−α)/ (1− α)), then f(s) is strictly increasing in s. In

that case: (i) if 1 < f(0) < f(1), then s = 1 is the unique equilibrium; (ii) if f(0) < f(1) < 1,

then s = 0 is the unique equilibrium; (iii) if f(0) < 1 < f(1), then there are three equilibria,

an interior one s = s∗ ∈ (0, 1) where s∗ is such that f(s∗) = 1, s = 0 and s = 1.

3. If 1 +ϕ = 0, then f(s) ≡ f is a constant. If f is greater than 1, then s = 1 is the unique

equilibrium; if it is less than one, then s = 0 is the unique equilibrium.

This characterizes the allocation of scientists and implies the results in Lemma 1. �

Proof of Proposition 1

Assumption 1 together with the characterization of equilibrium allocation of scientists above

implies that initially innovation will occurs in the dirty sector only (sdt = 1 and sct = 0). From

(11), this widens the gap between clean and dirty technologies and ensures that sdt+1 = 1

and sct+1 = 0, and so on in subsequent periods. This shows that under Assumption 1, the

equilibrium is uniquely defined under laissez-faire and involves sdt = 1 and sct = 0 for all t. �

Proof of Proposition 5

Let λt denote the Lagrange multiplier for (4), which is naturally also the shadow value of one

unit of final good production. The first-order condition with respect to Yt imply that this

shadow value is also equal to the Lagrange multiplier for (8), so that it is also equal to the

shadow value of one unit of consumption. Then the first-order condition with respect to Ct
yields

λt =
1

(1 + ρ)t
∂u (Ct, St)

∂C
, (A.35)

so that the shadow value of the final good is equal to the marginal utility of consumption.
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Next, letting ωt denote the Lagrange multiplier for the environmental equation (12), the

first-order condition with respect to St gives

ωt =
1

(1 + ρ)t
∂u (Ct, St)

∂S
+ (1 + δ) ISt<Sωt+1, (A.36)

where ISt<S is equal to 1 if St < S and to 0 otherwise. This implies that the shadow value of

environmental quality at time t is equal to the marginal utility that it generates in this period

plus the shadow value of (1 + δ) units of environmental quality at time t + 1 (as one unit of

environmental quality at time t generates 1 + δ units at time t+ 1). Solving (A.36) recursively,

we obtain that the shadow value of environmental quality at time t is:

ωt =
∞∑
v=t

(1 + δ)v−t
1

(1 + ρ)v
∂u (Cv, Sv)

∂S
ISt,...,Sν<S , (A.37)

where ISt,...,Sν<S takes value 1 if St, ..., Sν < S and 0 otherwise. Given the assumption that

∂u
(
C, S

)
/∂S = 0, this equation also implies that if for all τ > T , Sτ = S, then ωt = 0 for all

t > T .

Defining λjt as the Lagrange multiplier for (5), the ratio λjt/λt can be interpreted as the

shadow price of input j at time t (relative to the price of the final good). To emphasize this

interpretation, we will denote this ratio by p̂jt. The first-order conditions with respect to Yct
and Ydt then give

Y
−1
ε

ct

(
Y

ε−1
ε

ct + Y
ε−1
ε

dt

) 1
ε−1

= p̂ct

Y
−1
ε

dt

(
Y

ε−1
ε

ct + Y
ε−1
ε

dt

) 1
ε−1

− ωt+1ξ
λt

= p̂dt.

(A.38)

These equations imply that compared to the laissez-faire equilibrium, the social planner intro-

duces a wedge of ωt+1ξ/λt between the marginal product of the dirty input in the production

and its price. This wedge ωt+1ξ/λt is equal to the environmental cost of an additional unit of

the dirty input (evaluated in terms of units of the final good at time t; recall that one unit of

dirty production at time t destroys ξ units of environmental quality at time t+ 1). Naturally,

this wedge is also equivalent to a tax of

τ t =
ωt+1ξ

λtp̂dt
(A.39)

on the use of dirty input by the final good producer. This tax rate will be higher when the

shadow value of environmental quality is greater, when the marginal utility of consumption

today is lower, and when the price of dirty input is lower. Plugging (A.37) and (A.35) in (A.39)

we get (23).

Next, the subsidy to the use of all machines can be derived from the first-order condition

with respect to xji:

xjit =

(
α

ψ
p̂jt

) 1
1−α

AjitLjt. (A.40)
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Comparing this expression to the equilibrium inverse demand, (A.30) highlights that existing

machines will be used more intensively in the socially-planned allocation. This is a natural

consequence of the monopoly distortions and can also be interpreted as the socially-planned

allocation involving a subsidy of 1 − α in the use of machines, so that their price should be
identical to the marginal cost, i.e., (1− (1− α))ψ/α = ψ ≡ α2.

We can combine (A.40) with (5) to obtain:

Yjt =

(
α

ψ
p̂jt

) α
1−α

AjtLjt (A.41)

so that for given price, average technology and labor allocation, the production of each input

is scaled up by a factor α
−α
1−α compared to the laissez-faire equilibrium (this results from the

more intensive use of machines in the socially-planned allocation).

Finally, the socially optimal allocation must correct for the knowledge externality. Let µjt
denote the Lagrange multiplier for equation (11) for j = c, d (corresponding to the shadow

value of average productivity in sector j at time t). The relevant first-order condition gives:

µjt = λt

(
α

ψ

) α
1−α

(1− α) p̂
1

1−α
jt Ljt +

(
1 + γηjsjt+1

)
µj,t+1. (A.42)

Intuitively, the shadow value of a unit increase in average productivity in sector j ∈ {c, d} is
equal to its marginal contribution to time-t utility plus its shadow value at time t + 1 times(
1 + γηjsjt+1

)
(the number of units of productivity created out of it at time t+ 1). This last

term captures the intertemporal knowledge externality.

At the optimum, scientists will be allocated towards the sector with the higher social gain

from innovation, as measured by γηjµjtAjt−1. Using (A.42), we then have that the social

planner will allocate scientists to the clean sector whenever the ratio

ηc (1 + γηcsct)
−1 ∑

τ≥t
λτ p̂

1
1−α
cτ LcτAcτ

ηd (1 + γηdsdt)
−1 ∑

τ≥t
λτ p̂

1
1−α
dτ LdτAdτ

(A.43)

is greater than 1 (combining (A.35) and (A.43) we obtain (24)) The social planner can imple-

ment the optimal allocation through a subsidy qt to clean research. To determine this subsidy,

first note that in the optimal allocation the shadow values of the clean and dirty inputs satisfy

p̂
1

1−α
ct Act = p̂

1
1−α
dt Adt. (A.44)

Then, using (A.38), (A.41) and (A.44), we obtain:

Lct
Ldt

= (1 + τ t)
ε

(
Act
Adt

)−ϕ
. (A.45)
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Next using (A.40), pre-tax profits are πjit = (1− α)
(
α
ψ

) α
1−α

p̂
1

1−α
jt AjitLjt.Therefore, for

given subsidy qt, the ratio of expected profits from innovation in sectors c and d, the equivalent

of (18) in the text, can be written as

Πct

Πdt
= (1 + qt)

ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)−ϕ−1

(1 + τ t)
ε

(
Act−1

Adt−1

)−ϕ
. (A.46)

Clearly, when the optimal allocation involves sct = 1, we can can choose qt to make this

expression greater than one. Or more explicitly, we can set

qt ≥ q̂t ≡
ηd
ηc

(1 + γηd)
−ϕ−1 (1 + τ t)

−ε
(
Adt−1

Act−1

)−ϕ
− 1.

When the optimal allocation involves sct ∈ (0, 1), then setting qt to ensure that Πct/Πdt = 1

achieves the desired objective. �
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Appendix B: Omitted Proofs and Further Details (Not for Pub-
lication)

Allocation of scientists in laissez-faire equilibrium when the inputs are com-
plementary (ε < 1)

Proposition 10 Under Assumption 1 and if ε < 1, there is a unique equilibrium in laissez-

faire where innovation first occurs in the clean sector, then occurs in both sectors, and asymp-

totically the share of scientists devoted to the clean sector is given by sc = ηd/ (ηc + ηd) ; the

long-run growth rate of dirty input production in this case is γη̃, where η̃ ≡ ηcηd/ (ηc + ηd).

This proposition is proved using the following lemma:

Lemma 2 When ε < 1, long-run equilibrium innovation will be in both sectors, so that the

equilibrium share of scientists in the clean sector converges to sc = ηd/(ηc + ηd).

Proof. Suppose that at time t innovation occurred in both sectors so that Πct/Πdt = 1.

Then from (18), we have

Πct+1

Πdt+1
=

(
1 + γηcsct+1

1 + γηdsdt+1

)−ϕ−1( 1 + γηcsct
1 + γηdsdt

)
.

Innovation will therefore occur in both sectors at time t+1 whenever the equilibrium allocation

of scientists (sct+1, sdt+1) at time t+ 1 is such that

1 + γηcsct+1

1 + γηdsdt+1
=

(
1 + γηcsct
1 + γηdsdt

) 1
ϕ+1

. (B.1)

This equation defines sct+1(= 1 − sdt+1) as a function of sct(= 1 − sdt). We next claim that

this equation has an interior solution sct+1 ∈ (0, 1) when sct∈ (0, 1) (i.e., when sct is itself

interior). First, note that when ϕ > 0 (that is, ε < 1), the function z(x) = x1/(ϕ+1) − x is
strictly decreasing for x < 1 and strictly increasing for x > 1. Therefore, x = 1 is the unique

positive solution to z(x) = 0. Second, note also that the function

X(sct) =
1 + γηcsct
1 + γηdsdt

=
1 + γηcsct

1 + γηd(1− sct)
,

is a one-to-one mapping from (0, 1) onto ((1 + γηd)
−1 , 1 + γηc). Finally, it can be verified

that whenever X ∈ ((1 + γηd)
−1 , 1 + γηc), we also have X

1/(ϕ+1)∈ ((1 + γηd)
−1 , 1 + γηc).

This, together with (B.1), implies that if sct ∈ (0, 1), then sct+1 = X−1(X(sct)
1/(ϕ+1)) ∈ (0, 1),

proving the claim at the beginning of this paragraph.

From Appendix A, when ϕ > 0, the equilibrium allocation of scientists is unique at each

t. Thus as t → ∞, this allocation must converge to the unique fixed point of the function
Z(s) = X−1 ◦ (X(s))

1
ϕ+1 , which is

sc =
ηd

ηc + ηd
.
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This completes the proof of the lemma.

Now given the characterization of the equilibrium allocations of scientists in Appendix

A, under Assumption 1 the equilibrium involves sdt = 0 and sct = 1, i.e., innovation occurs

initially in the clean sector only. From (11), Act/Adt will grow at a rate γηc, and in finite time,

it will exceed the threshold (1 + γηc)
−(ϕ+1)/ϕ (ηc/ηd)

1/ϕ. Lemma 2 implies that when this

ratio is in the interval
(

(1 + γηc)
−(ϕ+1)/ϕ (ηc/ηd)

1/ϕ , (ηc/ηd)
1/ϕ (1 + γηd)

(ϕ+1)/ϕ (ηc/ηd)
1/ϕ
)
,

equilibrium innovation occurs in both sectors, i.e., sdt > 0 and sct > 0, and from this point

onwards, innovation will occur in both sectors and the share of scientists devoted to the clean

sector converges to ηd/(ηd + ηc). This completes the proof of Proposition 10.

Speed of disaster in laissez-faire

From the expressions in (19), dirty input production is given by:

Ydt =
(
Aϕct +Aϕdt

)−α+ϕ
ϕ Aα+ϕ

ct Adt =
Adt(

1 +
(
Adt
Act

)ϕ)α+ϕ
ϕ

.

When the two inputs are gross substitutes (ε < 1), we have ϕ = ϕsu < 0, whereas when they

are complements (ε > 1), we have ϕ = ϕco > 0 . Since all innovations occur in the dirty sector

in the substitutability case, but not in the complementarity case, if we start with the same

levels of technologies in both cases, at any time t > 0 we have Asudt > Acodt and A
su
ct < Acoct ,

where Asukt and A
co
kt denote the average productivities in sector k at time t respectively in the

substitutability and in the complementarity case, starting from the same initial productivities

Asuk0 = Acok0.

Assumption 1 implies that (
Asudt
Asuct

)ϕsu
<
ηd
ηc
≤
(
Acodt
Acoct

)ϕco
so that

Y su
dt =

Asudt(
1 +

(
ASudt
Asuct

)ϕsu) α
ϕsu

+1
>

Asuct(
1 +

(
Acoct
Acodt

)ϕco)
(

1 +

(
ASudt
Asuct

)ϕsu)− α
ϕsu

>
Asuct(

1 +
(
Acoct
Acodt

)ϕco) >
Asuct(

1 +
(
Acoct
Acodt

)ϕc0) α
ϕc0

+1
> Y co

dt.

Repeating the same argument for t+ 1, t + 2,..., we have that Y su
dt > Y co

dt for all t. This

establishes that, under Assumption 1, there will be a greater amount of dirty input production

for each t when ε > 1 than when ε < 1, implying that an environmental disaster will occur

sooner when the two sectors are gross substitutes.
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Proof of Proposition 4

Using the fact that the term Ω (St) premultiplies all A’s, equation (19) must now be replaced

by:

Ydt = Ω (St)
1

1−α
(
Aϕct +Aϕdt

)−α+ϕ
ϕ Aα+ϕ

ct Adt, and Yt = Ω (St)
1

1−α
(
Aϕct +Aϕdt

)− 1
ϕ ActAdt.

In particular, as in Section 3, under laissez-faire all technological progress keeps being di-

rected towards dirty innovation, therefore Adt grows to infinity. Then, a necessary condition for

avoiding a disaster under laissez-faire is that Ydt remains bounded above over time, which can

only be the case if Ω (St)
1/(1−α)Adt also remains bounded. Since Adt is growing exponentially,

this is only possible if St converges to 0. Now, suppose that Ω (St)
1/(1−α)Adt converges to a

finite and positive value as time t goes to infinity. Then there exists a constant η such that for

any T there is a τ > T such that Ω (Sτ )1/(1−α)Adτ > η/ξ. But for τ > T suffi ciently high, we

also have
∣∣∣Ydτ − Ω (Sτ )1/(1−α)Adτ

∣∣∣ < η/ (3ξ) since Ydt ' Ω (St)
1/(1−α)Adt asymptotically, and

(1 + δ)Sτ < η/3 since St converges to 0. But then (12) gives Sτ+1 = 0, which corresponds to

an environmental disaster. Consequently, to avoid a disaster under laissez-faire, it must be the

case that Ω (St)
1/(1−α)Adt converges to 0. But this implies that Yt converges to 0 as well, and

so does Ct. �

B.1 Proof of Proposition 6

First we need to derive the optimal production of inputs given technologies and the tax imple-

mented. Using (A.38) and (A.39), the shadow values of clean and dirty inputs satisfy

p̂1−ε
ct + (p̂dt (1 + τ t))

1−ε = 1. (B.2)

This, together with (A.44), yields

p̂dt =
A1−α
ct(

Aϕct (1 + τ t)
1−ε +Aϕdt

) 1
1−ε

and p̂ct =
A1−α
dt(

Aϕct (1 + τ t)
1−ε +Aϕdt

) 1
1−ε

. (B.3)

Using (7), (A.41), (A.45) and (B.3), we obtain

Yct =

(
α

ψ

) α
1−α (1 + τ t)

εActA
α+ϕ
dt(

Aϕdt + (1 + τ t)
1−εAϕct

)α
ϕ (
Aϕct + (1 + τ t)

εAϕdt
) , and (B.4)

Ydt =

(
α

ψ

) α
1−α Aα+ϕ

ct Adt(
Aϕdt + (1 + τ t)

1−εAϕct

)α
ϕ (
Aϕct + (1 + τ t)

εAϕdt
) . (B.5)

Equation (B.5) implies that the production of dirty input is decreasing in τ t. Moreover,

clearly as τ t →∞, we have Ydt → 0.
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We next characterize the behavior of this tax rate and the research subsidy, qt. Recall that

to avoid an environmental disaster, the optimal policy must always ensure that Ydt remained

bounded, in particular, Ydt ≤ (1 + δ)S/ξ.

Assume ε > 1. The proof consists of six parts: (1) We show that, for a discount rate ρ

suffi ciently low, the optimal allocation cannot feature a bounded Yct, thus Yct must become

unbounded as t goes to infinity. (2) We show that this implies that Act must tend towards

infinity. (3) We show that if the optimal allocation involves Yct unbounded (i.e lim supYct =

∞), then it must be the case that at the optimum Yct →∞ as t goes to infinity. (4) We prove

that the economy switches towards clean research, that is, sct → 1. (5) We prove that the

switch in research to clean technologies occurs in finite time, that is, there exists T̃ such that

sct = 1 for all t ≥ T̃ . (6) We then derive the implied behavior of τ t and qt.
Part 1: To obtain a contradiction, suppose that the optimal allocation features Yct remain-

ing bounded as t goes to infinity. If Ydt was unbounded, then there would be an environ-

mental disaster, but then the allocation could not be optimal in view of the assumption that

limS↓0 u(C, S) = −∞ (equation (2)). Thus Ydt must also remain bounded as t goes to infinity.

But if both Yct and Ydt remain bounded, so will Yt and Ct. We use the superscript ns (ns for

“no switch”) to denote the variables under this allocation.

Consider an alternative (feasible) allocation, featuring all research being directed to clean

technologies after some date t̂, i.e., sct = 1 for all t > t̂ and no production of dirty input (by

taking an infinite carbon tax τ t). This in turn implies that St reaches S in finite time because

of regeneration at the rate δ in (12). Moreover, (B.4) implies that Yt/Act → constant and

thus Ct/Act → constant. Let us use superscript a to denote all variables under this alternative

allocation. Then there exists a consumption level C < ∞, and a date T < ∞ such that for

t ≥ T , Cnst < C, Cat >C + θ (where θ > 0) and Sat = S. Now using the fact that u is strictly

increasing in C and S, for all t ≥ T we have

u (Cat , S
a
t )− u (Cnst , Snst ) ≥ u

(
Cat , S

)
− u

(
C,S

)
> 0

which is positive and strictly increasing over time. Then the welfare difference between the

alternative and the no-switch allocations can be written as

W a −Wns =
T−1∑
t=0

1

(1 + ρ)t
(u (Cat , S

a
t )− u (Cnst , Snst )) +

∞∑
t=T

1

(1 + ρ)t
(u (Cat , S

a
t )− u (Cnst , Snst ))

≥
T−1∑
t=0

1

(1 + ρ)t
(u (Cat , S

a
t )− u (Cnst , Snst )) +

1

(1 + ρ)T

∞∑
t=T

1

(1 + ρ)t−T
(
u
(
Cat , S

)
− u

(
C,S

))
.

Since the utility function is continuous in C, and Cnst is finite for all t < T (for all ρ), then as ρ

decreases the first term remains bounded above by a constant, while the second term tends to

infinity. This establishes that W a −Wns > 0 for ρ suffi ciently small, yielding a contradiction

and establishing that we must have Yct unbounded when t goes to infinity.
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Part 2: Now (B.4) directly implies that

Act ≥ g (Yct) =

(
α

ψ

) −α
1−α

Yct

(
1 +

(
Yct
M

) 1−ε
ε

)α
ϕ

where M is an upper-bound on Ydt. g is an increasing function and lim supYct = ∞, so
lim supAct =∞ and as Act is weakly increasing, limAct =∞.

Part 3: Now suppose by contradiction that lim inf Yct 6= ∞, then by definition if must be
the case that ∃M ′ such that ∀T , ∃t > T with Yct < M ′. Let us consider such an M ′ and note

that we can always choose it to be higher than the upper bound on Ydt. Then we can define

a subsequence tn with tn ≥ n and Yctn < M ′ for all n. Since Ydt < M ′ as well, we have that

for all n: Ctn < Ytn < 2ε/(ε−1)M ′. Moreover, since limt→∞Act = ∞, there exists an integer θ
such that for any t > θ, Act > (α/ψ)−α/(1−α) 2ε/(ε−1)M ′/ (1− α). Consequently, for n ≥ θ we

have: Ctn < Ytn < 2ε/(ε−1)M ′ and Actn > (α/ψ)−α/(1−α) 2ε/(ε−1)M ′/ (1− α).

Consider now the alternative policy that mimics the initial policy, except that in all periods

tn for n ≥ θ the social planner chooses the carbon tax τatn to be suffi ciently large (the super-

script a designates “alternative”) that Y a
dtn

= 0. Then we have: Y a
tn = Y a

ctn = (α/ψ)α/(1−α)Actn ,

which yields Sat ≥ St for all t ≥ tn since the alternative policy either reduces or maintains dirty
input production relative to the original policy. Moreover, we have: Catn = (1 − α)Y a

tn ≥
(1− α) (α/ψ)α/(1−α)Actn > 2ε/(ε−1)M ′ > Ctn , whereas consumption in periods t 6= tn remains

unchanged. Thus the alternative policy leads to (weakly) higher consumption and environ-

mental quality in all periods, and to strictly higher consumption in periods t = tn, thus overall

to strictly higher welfare, than the original policy. Hence the original policy is not optimal,

using a contradiction. This in turn establishes that on the optimal path lim inf Yct = ∞ and

therefore limYct =∞.
Part 4: From Part 3 we know that on the optimal path Yct/Ydt →∞, that is (1 + τ t)

1−ε (Act/Adt)
ϕ →

0. Now from (B.4) and (B.5), one can reexpress consumption as a function of the carbon tax

and technologies:

Ct =

(
α

ψ

) α
1−α ActAdt(

(1 + τ t)
1−εAϕct +Aϕdt

) 1
ϕ

(
1− α+

τ tA
ϕ
ct

Aϕct + (1 + τ t)
εAϕdt

)
; (B.6)

Since (1 + τ t) (Act/Adt)
1−α →∞, we get

lim
Ct
Act

=

(
α

ψ

) α
1−α

(1− α)

Now by contradiction let us suppose that lim inf sct = s < 1.Then for any T̃ there exists θ >

T̃ , such that scθ < (1 + s)/2. Now, as lim(Ct/Act) = (α/ψ)α/(1−α) (1− α), there exists some T

such that for any t > T , we have Ct < (α/ψ)α/(1−α) (1− α)Act (1 + γηc) / (1 + γηc (1 + s) /2) .
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Then take θ sufiiciently large that θ > T and scθ < (1 + s) /2, and consider the following

alternative policy: the alternative policy is identical to the original policy up to time θ−1, then

at θ, the alternative policy allocates all research to the clean sector, and for t > θ, the allocation

of research is identical to the original policy, and for t ≥ θ, the carbon tax is infinite. Then

under the alternative policy, there is no pollution for t ≥ θ so the quality of the environment is
weakly better than under the original policy. Moreover: Aact = (1 + γηc)Act/ (1 + γηcscθ), for

all t ≥ θ (where the superscript a indicates the alternative policy schedule). Thus for t ≥ θ:

Cat =

(
α

ψ

) α
1−α

(1− α)Aact >

(
α

ψ

) α
1−α

(1− α)
1 + γηc

1 + γηcscθ
Act

>

(
α

ψ

) α
1−α

(1− α)
1 + γηc

1 + γηc
(

1+s
2

)Act > Ct,

so that the alternative policy brings higher welfare. This in turn contradicts the optimality of

the original policy. Hence lim inf sct = 1, so lim sct = 1, and consequently, lim(Aϕct/A
ϕ
dt) = 0.

Part 5: First note that (B.5) and (B.6) can be rewritten as:

ln (Ct)−ln

((
α

ψ

) α
1−α
)

= ln (Act)+ln (Adt)−
1

ϕ
ln
((

(1 + τ t)
1−εAϕct +Aϕdt

))
+ln

(
1− α+

τ tA
ϕ
ct

Aϕct + (1 + τ t)
εAϕdt

)
,

(B.7)

ln (Ydt)−ln

((
α

ψ

) α
1−α
)

= (α+ ϕ) ln (Act)+ln (Adt)−
α

ϕ
ln
((
Aϕdt + (1 + τ t)

1−εAϕct

))
−ln

((
Aϕct + (1 + τ t)

εAϕdt
))
.

(B.8)

Now, suppose that sct does not reach 1 in finite time. Then for any T , there exists θ > T ,

such that scθ < 1. For T arbitrarily large scθ becomes arbitrarily close to 1, so that 1 − scθ
becomes infinitesimal and is accordingly denoted ds. We then consider the following thought

experiment: let us increase the allocation of researchers to clean innovation at θ from scθ < 1

to 1, but leave this allocation unchanged in all subsequent periods. Meanwhile, let us adjust

the tax τ t in all periods after θ in order to leave Ydt unchanged. Then using superscript a to

denote the value of technologies under the alternative policy, we have for t ≥ θ:

Aact =
1 + γηc

1 + γηcscθ
Act.

A first-order Taylor expansion of the logarithm of the productivity around scθ = 1 yields:

d (ln (Act)) =
γηcds

1 + γηc
+ o (ds) , (B.9)

and similarly,

d (ln (Adt)) = −γηdds+ o (ds) .
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Using the fact that that d (ln (Act)) and d (ln (Adt)) are of the same order as ds, first-order

Taylor expansions of (B.7) and (B.8) give:

d (ln (Ct)) (B.10)

= d (ln (Act)) + d (ln (Adt))−
(1 + τ)1−εAϕct (ϕd (ln (Act)) + (1− ε) d (ln (1 + τ t))) + ϕAϕdtd (ln (Adt))

ϕ
(

(1 + τ t)
1−εAϕct +Aϕdt

)
+

1

1− α+
τ tA

ϕ
ct

Aϕct+(1+τ t)
εAϕdt

(1 + τ t)A
ϕ
ctd (ln (1 + τ t)) + ϕτ tA

ϕ
ctd (ln (Act))

Aϕct + (1 + τ t)
εAϕdt

− τ tA
ϕ
ct

1− α+
τ tA

ϕ
ct

Aϕct+(1+τ t)
εAϕdt

ϕAϕctd (ln (Act)) + (1 + τ t)
εAϕdt (ϕd (ln (Adt)) + εd (ln (1 + τ t)))(

Aϕct + (1 + τ t)
εAϕdt

)2
+o (ds) + o (d (ln (1 + τ t))) ,

and

d (ln (Ydt)) = (α+ ϕ) d (ln (Act)) + d (ln (Adt))

−
(1 + τ t)

1−εAϕct (ϕd (ln (Act)) + (1− ε) d (ln (1 + τ t))) + ϕAϕdtd (ln (Adt))

ϕα−1
(

(1 + τ t)
1−εAϕct +Aϕdt

)
−
ϕAϕctd (ln (Act)) + (1 + τ t)

εAϕdt (ϕd (ln (Adt)) + εd (ln (1 + τ t)))

Aϕct + (1 + τ t)
εAϕdt

+ o (ds) + o (d (ln (1 + τ t))) .

Then, using the fact that in the variation in question, taxes are adjusted to keep production

of the dirty input constant, the previous equation gives:(
ε (1 + τ t)

εAϕd
Aϕct + (1 + τ t)

εAϕdt
+
α

ϕ

(1− ε) (1 + τ t)
1−εAϕct

(1 + τ t)
1−εAϕct +Aϕdt

)
d (ln (1 + τ t))

= (α+ ϕ) d (ln (Act)) + d (ln (Adt))−
α

ϕ

ϕ (1 + τ)1−ε
t Aϕctd (ln (Act)) + ϕAϕdtd (ln (Adt))

(1 + τ t)
1−εAϕct +Aϕdt

−
ϕAϕctd (ln (Act)) + ϕ (1 + τ)εAϕdtd (ln (Adt))

Aϕct + (1 + τ t)
εAϕdt

+ o (ds) + o (d (ln (1 + τ t))) .

Now recall the following: (i) limt→∞A
ϕ
ct/A

ϕ
dt = 0; (ii) the term ε(1+τ t)

εAϕd
Aϕct+(1+τ t)

εAϕdt
+α
ϕ

(1−ε)(1+τ t)
1−εAϕct

(1+τ t)
1−εAϕct+A

ϕ
dt

is bounded and bounded away from 0; (iii) the terms in front of d (ln (Adt)) and d (ln (Act))

are bounded. Therefore, we can rewrite (B.10) as:

d (ln (Ct)) = d (ln (Act)) +
(1 + τ t)

1−εAϕctA
−ϕ
dt

(1 + τ t)
1−εAϕctA

−ϕ
dt + 1

(
d (ln (Adt))− d (ln (Act))− (1− α)−1 d (ln (1 + τ t))

)
+

1

1− α+
τ t(1+τ t)

−εAϕctA
−ϕ
dt

AϕctA
−ϕ
dt (1+τ t)

−ε+1

(1 + τ t)
1−εAϕctA

−ϕ
dt

(1 + τ t)
−εAϕctA

−ϕ
dt + 1

(
d (ln (1 + τ t)) + ϕ

τ t
1 + τ t

d (ln (Act))

)

−
τ t (1 + τ t)

−εAϕctA
−ϕ
dt

1− α+
τ t(1+τ t)

−εAϕctA
−ϕ
dt

AϕctA
−ϕ
dt (1+τ t)

−ε+1

ϕAϕctA
−ϕ
dt (1 + τ t)

−ε d (ln (Act)) + ϕd (ln (Adt)) + εd (ln (1 + τ t))(
(1 + τ t)

−εAϕctA
−ϕ
dt + 1

)2 + o (ds)
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Using again the fact that limt→∞A
ϕ
ct/A

ϕ
dt = 0 and (B.9), the previous expression becomes

d (ln (Ct)) =

(
γηc

1 + γηc
+O

(
Aϕct
Aϕdt

))
ds+ o (ds) ,

which implies that for T suffi ciently large, O
(
Aϕct/A

ϕ
dt

)
will be smaller than γηc/ (1 + γηc),

and thus consumption increases. This implies that the alternative policy raises consumption

for all periods after θ, and does so without affecting the quality of the environment, hence the

original policy cannot be optimal. This contradiction establishes that sct reaches 1 in finite

time.

Part 6: Thus the optimal allocation must involve sct = 1 for all t ≥ T̃ (for some T̃ < ∞)
and Act/Adt → ∞. Then, note that (A.46) implies that even if τ t = qt = 0, the equilibrium

allocation of scientists involves sct = 1 for all t ≥ T for some T suffi ciently large. This is

suffi cient to establish that qt = 0 for all t ≥ T is consistent with an optimal allocation. Finally,
equation (B.5) implies that when ε > 1/ (1− α), Ydt → 0, which together with (12), implies

that St reaches S in finite time. But then the assumption that ∂u
(
C, S

)
/∂S = 0 combined

with (23) implies that the optimal input tax reaches 0 in finite time. On the contrary, when

ε ≤ 1/ (1− α), even when all research ends up being directed towards clean technologies, (B.5)

shows that without imposing a positive input tax we have Ydt → ∞ and thus St = 0 in finite

time, which cannot be optimal. So in this case, taxation must be permanent at the optimum.

Equilibrium profit ratio with exhaustible resources

We first analyze how the static equilibrium changes when we introduce the limited resource

constraint. The description of clean sectors remains exactly as before. Profit maximization by

producers of machines in the dirty sector now leads to the equilibrium price pdit = ψ/α1 (as

α1 is the share of machines in the production of dirty input). The equilibrium output level for

machines is then given by:

xdit =
(

(α1)2 ψ−1pdtR
α2
t L

1−α
dt

) 1
1−α1 Adit. (B.11)

Profit maximization by the dirty input producer leads to the following demand equation for the

resource: pdtα2R
α2−1
t L1−α

dt

∫ 1

0
A1−α1
dit xα1

ditdi = c (Qt) , plugging in the equilibrium output level of

machines (B.11) yields:

Rt =

(
(α1)2

ψ

) α1
1−α (α2Adt

c(Qt)

) 1−α1
1−α

p
1

1−α
dt Ldt (B.12)

which in turn, together with (5), leads to the following expression for the equilibrium produc-

tion of dirty input:

Ydt =

(
(α1)2

ψ

) α1
1−α (α2Adt

c(Qt)

) α2
1−α

p
α

1−α
dt LdtAdt, (B.13)
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while equilibrium profits from producing machine i in the dirty sector becomes:

πdit = (1− α1)α
1+α1
1−α1
1

(
1

ψα1

) 1
1−α1

p
1

1−α1
dt R

α2
1−α1
t L

1−α
1−α1
dt Adit. (B.14)

The production of the clean input and the profits of the producer of machine i in the clean

sector are still given by (A.33) and (15). Now, labor market clearing requires that the marginal

product of labor be equalized across sectors; this, together with (B.13) and (A.33) for j = c,

leads to the equilibrium price ratio:

pct
pdt

=
ψα2 (α1)2α1 (α2)α2 A1−α1

dt

c(Qt)α2α2αA1−α
ct

, (B.15)

thus a higher extraction cost will bid up the price of the dirty input. Profit maximization by

final good producers still yields (13) which, together with (B.15), (B.13) and (A.33) for j = c,

yield the relative employment in the two sectors:

Lct
Ldt

=

(
c(Qt)

α2α2α

ψα2α2α1
1 (α2)α2

)(ε−1)
A−ϕct
A
−ϕ1
dt

, (B.16)

with ϕ1 ≡ (1− α1) (1− ε). Hence, the higher the extraction cost, the higher the amount of
labor allocated to the clean industry when ε > 1.

Using (15) for j = c, (B.14), (B.12), (B.15), (B.16), the ratio of expected profits from

undertaking innovation at time t in the clean versus the dirty sector, is then equal to:

Πct

Πdt
=

ηc
ηd

(1− α1)α
1+α1
1−α1
1

(
1
ψα1

) 1
1−α1

(1− α)α
1+α
1−α

(
1
ψ

) α
1−α

p
1

1−α
ct Lct

p
1

1−α1
dt R

α2
1−α1
t L

1−α
1−α1
dt

Act−1

Adt−1

= κ
ηc
ηd

c(Qt)
α2(ε−1) (1 + γηcsct)

−ϕ−1A−ϕct−1

(1 + γηdsdt)
−ϕ1−1A

−ϕ1
dt−1

where we let κ ≡ (1−α)α

(1−α1)α
(1+α2−α1)/(1−α1)
1

(
α2α

ψα2α
2α1
1 α

α2
2

)(ε−1)

. This establishes (25). �

Proof of Proposition 7

First, we derive the equilibrium production of Rt and Ydt.

Using the expression for the equilibrium price ratio (B.15), together with the choice of the

final good as the numeraire (9), we get:

pct =
ψα2 (α1)2α1 (α2)α2 A1−α1

dt(
(α2αc (Qt)

α2)1−εAϕct +
(
ψα2 (α1)2α1 (α2)α2

)1−ε
A
ϕ1
dt

) 1
1−ε
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pdt =
α2α (c(Qt))

α2 A1−α
ct(

(α2αc (Qt)
α2)1−εAϕct +

(
ψα2 (α1)2α1 (α2)α2

)1−ε
A
ϕ1
dt

) 1
1−ε

Similarly, using the expression for the equilibrium labor ratio (B.16), and labor market

clearing (7), we obtain:

Ldt =

(
c(Qt)

α2α2α
)(1−ε)

Aϕct

(c(Q)α2α2α)(1−ε)Aϕct +
(
ψα2α2α1

1 (α2)α2

)(1−ε)
A
ϕ1
dt

Lct =

(
ψα2α2α1

1 (α2)α2

)(1−ε)
A
ϕ1
d

(c(Qt)α2α2α)(1−ε)Aϕct +
(
ψα2α2α1

1 (α2)α2

)(1−ε)
A
ϕ1
dt

Next, using the above expressions for equilibrium prices and labor allocation, and plugging

them in (B.12) and (B.13), we obtain:

Ydt =

(
α2

1
ψ

) α1
1−α

α
α2

1−α
2 α2α( 1

1−α−ε)c(Qt)−εα2Aα+ϕ
ct A

1−α1
1−α
dt(

(c(Qt)α2α2α)(1−ε)Aϕct +
(
ψα2α2α1

1 (α2)α2

)(1−ε)
A
ϕ1
dt

)α+ϕ
ϕ

(B.17)

and

Rt =
α2α( 1

1−α+1−ε)α
2
α1

1−α
1 α

1−α1
1−α

2 ψ−
α1

1−α (c(Qt))
α2−1−α2εA1+ϕ

ct A
1−α1
1−α
dt(

(c(Qt)α2α2α)(1−ε)Aϕct +
(
ψα2α2α1

1 (α2)α2

)(1−ε)
A
ϕ1
dt

) 1+ϕ
ϕ

,

so that the ratio of resource consumed per unit of dirty input is:

Rt
Ydt

=
α2α

2α (c(Qt))
α2−1(

(α2αc (Qt)
α2)1−ε +

(
ψα2 (α1)2α1 (α2)α2

)1−ε Aϕ1
dt

Aϕct

) 1
1−ε

.

When ε > 1, production of the dirty input is not essential to final good production. Thus,

even if the stock of exhaustible resource gets fully depleted, it is still possible to achieve positive

long-run growth. For a disaster to occur for any initial value of the environmental quality, it

is necessary that Ydt grow at a positive rate, while Rt must converge to 0. This implies that

Rt/Ydt must converge to 0. This in turn means that the expression(
α2αc (Qt)

α2
)1−ε

+
(
ψα2 (α1)2α1 (α2)α2

)1−ε A
ϕ1
dt

Aϕct

must converge to zero, which is impossible since c (Qt) is bounded above. Therefore, for

suffi ciently high initial quality of the environment, a disaster will be avoided.
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Next, one can show that innovation will always end up occurring in the clean sector only.

This is obvious if the resource gets depleted in finite time, so let us consider the case where it

never gets depleted. The ratio of expected profits in clean versus dirty innovation is given by

Πct

Πdt
= κ

ηc
ηd

c(Qt)
α2(ε−1) (1 + γηcsct)

−ϕ−1A−ϕct−1

(1 + γηdsdt)
−ϕ1−1A

−ϕ1
dt−1

,

so that to prevent innovation from occurring asymptotically in the clean sector only, it must

be the case that A−ϕct does not grow faster then A−ϕ1
dt . In this case R = O

(
A

1−α1
1−α
dt

)
. But

A
1−α1
1−α
dt grows at a positive rate over time, so that the resource gets depleted in finite time after

all. This completes the proof of Proposition 7.

The case where ε < 1: It is also straightforward to derive the corresponding results for
the case where ε < 1. In particular, when ε < 1, Ydt is now essential for production and

thus so is the resource flow Rt. Consequently, it is necessary that Qt does not get depleted

in finite time in order to get positive long-run growth. Recall that innovation takes place in

both sectors if and only if κ ηcηd
c(Qt)α2(ε−1)(1+γηcsct)

−ϕ−1A−ϕct−1

(1+γηdsdt)
−ϕ1−1A

−ϕ1
dt−1

= 1, and positive long-run growth

requires positive growth of both dirty input and clean input productions. This requires that

innovation occurs in both sectors, so A1−α1
dt and A1−α

ct should be of same order.

But then:

R = O

(
A

1−α1
1−α
dt

)
,

so that Rt grows over time. But this in turn leads to the resource stock being fully exhausted

in finite time, thereby also shutting down the production of dirty input, which here prevents

positive long-run growth. �

Proof of Proposition 8

We denote the Lagrange multiplier for equation (6) by m̃t. We can use (6) to rewrite the

condition Qt ≥ 0 for all t, as:
∞∑
v=0

Rν ≤ Q (0) .

Denoting the Lagrange multiplier for this constraint by ν ≥ 0, the first-order condition with

respect to Rt gives:

α2p̂dtR
α2−1
t L1−α

dt

∫ 1

0
A1−α1
dit xα1

ditdi =
m̃t + ν

λt
+ c (Qt) ,

where recall that p̂jt = λjt/λt. The wedge (m̃t + ν) /λt is the value, in time t units of final

good, of one unit of resource at time t.
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The law of motion for the shadow value of one unit of natural resource at time t is then

determined by the first-order condition with respect to Qt, namely

m̃t = m̃t−1 + λtc
′ (Qt)Rt,

where m̃t ≥ 0. Letting mt = m̃t + ν we obtain:

mt = m∞ +

∞∑
v=t+1

λv
(
−c′ (Qv)

)
Rv,

where m∞ > 0 is the limit of mt as t→∞.
Thus achieving the social optimum requires a resource tax equal to

θt =
mt

λtc (Qt)
=

(1 + ρ)tm∞ −
∞∑

v=t+1

1
(1+ρ)v−t

c′ (Qv)Rv∂u (Cv, Sv) /∂C

c (Qt) ∂u (Ct, St) /∂C
. (B.18)

In particular, the optimal resource tax is always positive. �

Proof of Proposition 9

The proof proceeds in three parts: in Part 1, we prove that when ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd),

then in the long run innovation must occur in the clean sector only. In Part 2, we show that if

ln (1 + ρ) < [(1− α1) /α2] ln (1 + γηd) and innovation occurs in the dirty sector only or in both

sectors in the long run, then a disaster necessarily occurs. Finally, in Part 3, we derive the

asymptotic growth rate of dirty input production when innovation occurs in the clean sector

only.

First, note that the expressions for Yjt, derived above for the case where there are no well-

defined property rights to the resource, still hold provided one replaces the unit extraction cost

c (Qt) by the resource price Pt. So that (B.17) now becomes:

Ydt =

(
α2

1
ψ

) α1
1−α

α
α2

1−α
2 α2α( 1

1−α−ε)P−εα2
t Aα+ϕ

ct A
1−α1
1−α
dt(

(Pα2
t α2α)(1−ε)Aϕct +

(
ψα2α2α1

1 (α2)α2

)(1−ε)
A
ϕ1
dt

)α+ϕ
ϕ

, (B.19)

similarly we get:

Yct =

(
ψα2 (α1)2α1 (α2)α2

)α+ϕ
1−α

ActA
1−α1
1−α (α+ϕ)

dt(
(α2αPα2

t )1−εAϕc +
(
ψα2 (α1)2α1 (α2)α2

)1−ε
A
ϕ1
dt

)α+ϕ
ϕ

, (B.20)

and we can rewrite (25) as:

Πct

Πdt
= κ

ηc
ηd

P
α2(ε−1)
t (1 + γηcsct)

−ϕ−1A−ϕct−1

(1 + γηdsdt)
−ϕ1−1A

−ϕ1
dt−1

. (B.21)
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Part 1: Let us assume that ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd). We want to show that

innovation then ends up occurring in the clean sector only in the long run. Here, we shall reason

by contradiction, and assume, first that innovation ends up occurring in the dirty sector only

in the long run, and second that innovation keeps occurring in both sectors forever, and each

time we shall generate a contradiction.

Part 1.a: Assume that innovation ends up occurring in the dirty sector only. Then, from

(B.21), the ratio of expected profits from innovating clean to expected profits from innovating

dirty, is asymptotically proportional to
(
Pα2
t /A1−α1

dt

)ε−1
, i.e.,

Πct/Πdt = O
(
Pα2
t /A1−α1

dt

)ε−1
. (B.22)

Thus, for innovation to take place only in the dirty sector in the long run, it is necessary for

A1−α1
dt to grow faster than Pα2

t . Assume that this is the case, then using (B.19) we obtain

Ydt = O
(
A1−α1
dt /Pα2

t

) 1
1−α

(B.23)

so that the asymptotic growth rate of the economy g satisfies:

ln (1 + g) =
(1− α1) ln (1 + γηd)− α2 ln (1 + r)

(1− α)
.

Combining this with (27) gives:

ln (1 + g) =
(1− α1) ln (1 + γηd)− α2 ln (1 + ρ)

1− α+ α2σ
. (B.24)

Since ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd), this equation implies g < 0, and therefore the

ratio of expected profits Πct/Πdt goes to infinity over time. Thus innovation only in the dirty

sector in the long run cannot be an equilibrium, yielding a contradiction.

Part 1.b: Assume now that innovation occurs in both sectors forever. Using (B.21) we

obtain:

Πct/Πdt = O
(
Pα2
t A1−α

ct /A1−α1
dt

)ε−1
,

so that Pα2
t A1−α

ct and A1−α1
dt must grow asymptotically at the same rate. Then from (B.19)

and (B.20), we have

Ydt = O(Act) and Yct = O (Act) , (B.25)

so that g = γηcsc, where sc is the asymptotic fraction of scientists working on clean research.

For Pα2
t A1−α

ct and A1−α1
dt to grow at the same rate, it is then necessary (using (27)) that:

α2

1− α1
(ln (1 + ρ) + σ ln (1 + γηcsc)) +

1− α
1− α1

ln (1 + γηcsc) = ln (1 + γηd (1− sc))
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which in turn is impossible if ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd) (the above equation would

then imply that sc < 0, which cannot be).

This concludes Part 1, namely we have shown that if ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd)

then innovation occurs in the clean sector only in the long run.

Part 2: We now show that if innovation does not switch to the clean sector in finite time

then a disaster is bound to occur when ln (1 + ρ) < [(1− α1) /α2] ln (1 + γηd). Indeed, suppose

that innovation does not switch to the clean sector in finite time. Then, either innovation ends

up occurring in the dirty sector only, or innovation keeps occurring in both sectors forever. In

the former case, dirty input production must grow at rate g given by (B.24), which is strictly

positive if ln (1 + ρ) < [(1− α1) /α2] ln (1 + γηd). In the latter case, (B.25) implies that Ydt
will grow over time, again leading to a disaster.

Part 3: We now assume that innovation occurs in the clean sector only. Using (B.20) we

get g = γηc and using (B.19) we get:

Ydt = O(P−εα2
t Aα+ϕ

ct ).

Thus overall Ydt grows at rate gYd satisfying:

ln (1 + gYd) = (1− ε (1− α)) ln (1 + γηc)− εα2 (ln (1 + ρ) + σ ln (1 + γηc)) .

Now, if gYd > 0, then a disaster cannot be avoided. However, when gYd < 0, and provided that

the initial environmental quality is suffi ciently large, a disaster is avoided.

Conclusion: Part 1 shows that when ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd), innovation

must eventually occur in the clean sector only. Part 3 then shows that in that case and

provided that (1− ε (1− α)) ln (1 + γηc) − εα2 (ln (1 + ρ) + σ ln (1 + γηc)) < 0, a disaster is

indeed avoided for suffi ciently large initial environmental quality. This last condition in

turn is met whenever ε > 1
2−α−α1

if ln (1 + ρ) > [(1− α1) /α2] ln (1 + γmax (ηd, ηc)). This

proves the first claim of Proposition (9). Then Part 2 establishes that when innovation

does not occur in the clean sector only in the long run, then a disaster is bound to oc-

cur if ln (1 + ρ) 6= [(1− α1) /α2] ln (1 + γηd) (when ln (1 + ρ) > [(1− α1) /α2] ln (1 + γηd),

we know that innovation has to occur in the clean sector asymptotically). Finally, Part 3

shows that even when innovation ends up occurring in the clean sector only, yet a disas-

ter occurs if (1− ε (1− α)) ln (1 + γηc) − εα2 (ln (1 + ρ) + σ ln (1 + γηc)) > 0 or equivalently

if ln (1 + ρ) < (1/ε− (1− α)− α2σ) ln (1 + γηc) /α2. Thus no matter where innovation oc-

curs asymptotically, if ln (1 + ρ) < (1/ε− (1− α)− α2σ) ln (1 + γηc) /α2 and ln (1 + ρ) 6=
[(1− α1) /α2] ln (1 + γηd), a disaster is bound to occur. This proves the second claim of Propo-

sition (9).

Perfect competition in the absence of innovation

Here we show how our results are slightly modified if, instead of having monopoly rights
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randomly attributed to “entrepreneurs”when innovation does not occur, machines are pro-

duced competitively. There are two types of machines. Those where innovation occurred at

the beginning of the period are produced monopolistically with demand function xjit = xmjit =(
α2pjt
ψ

) 1
1−α

LjtAjit. Those for which innovation failed are produced competitively. In this case,

machines are priced at marginal cost ψ, which leads to a demand for competitively produced

machines equal to xjit = xcjit =
(
αpjt
ψ

) 1
1−α

LjtAjit. The number of machines produced under

monopoly is simply given by ηjsjt (the number of successful innovation).

Hence the equilibrium production of input j is given by

Yjt = L1−α
jt

∫ 1

0
A1−α
jit

(
ηjsjt

(
xmjit
)α

+ (1− ηsjt)
(
xcjit
)α)

di

=

(
αpjt
ψ

) α
1−α (

ηjsjt

(
α

α
1−α − 1

)
+ 1
)
AjtLjt

=

(
αpjt
ψ

) α
1−α

ÃjtLjt

where sj is the number of scientists employed in clean industries and Ãjt =
(
ηjsjt

(
α

α
1−α − 1

)
+ 1
)
Ajt

is the average corrected productivity level in sector j (taking into account that some machines

are produced by monopolists and others are not).

The equilibrium price ratio is now equal to:

pct
pdt

=

(
Ãct

Ãdt

)−(1−α)

,

and the equilibrium labor ratio becomes:

Lct
Ldt

=

(
Ãct

Ãdt

)−ϕ
.

The ratio of expected profits from innovation in clean versus dirty sector now becomes

Πct

Πdt
=

ηc
ηd

(
pct
pdt

) 1
1−α Lct

Ldt

Act−1

Adt−1

=
ηc
ηd


(
ηcsct

(
α

α
1−α − 1

)
+ 1
)

(1 + γηcsct)(
ηdsdt

(
α

α
1−α − 1

)
+ 1
)

(1 + γηdsdt)

−ϕ−1(
Act−1

Adt−1

)−ϕ

This yields the modified lemma:

Lemma 3 In the decentralized equilibrium, innovation at time t can occur in the clean sector

only when ηcA
−ϕ
ct−1 > ηd

(
(1 + γηc)

((
ηc

(
α

α
1−α − 1

)
+ 1
)))ϕ+1

A−ϕdt−1, in the dirty sector only
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when ηc
(

(1 + γηd)
((
ηd

(
α

α
1−α − 1

)
+ 1
)))ϕ+1

A−ϕct−1 < ηdA
−ϕ
dt−1 and can occur in both when

ηc

((
ηdsdt

(
α

α
1−α − 1

)
+ 1
)

(1 + γηdsdt)
)ϕ+1

A−ϕct−1 = ηd

((
ηcsct

(
α

α
1−α − 1

)
+ 1
)

(1 + γηcsct)
)ϕ+1

A−ϕdt−1.

This modified lemma can then be used to prove the analogs of Propositions 1, 2 and 3 in

the text. The results with exhaustible resource can similarly be generalized to this case.

Calibration for the exhaustible resource case

We perform a similar calibration exercise as in the Section 6. As in the text, a time period

corresponds to 5 years, γ = 1 and α = 1/3, and Yc0 and Yd0 are still identified with the world

production of energy from non-fossil and from fossil fuel origins respectively between 2002 and

2006. The definitions of S, ξ, and δ, and the utility function u (C, S) are also the same as in

the baseline calibration. To map our model, which has one exhaustible resource, to data, we

focus on oil use and we compute the share of world energy produced from crude oil in the total

amount of energy produced from fossil fuels from 2002 to 2006 (still according to the EIA).

We then convert units of crude oil production and stock into units of total fossil production

and stock by dividing the former by the share of world energy produced with oil relative to

the world energy produced by any fossil fuel. We approximate the price for the exhaustible

resource in our model by the refiner acquisition cost of imported crude oil in the United States

(measured in 2000 chained dollars and again taken from the EIA). We extract the trend from

the price series between 1970 and 2007 using the HP filter with the smoothing parameter of

100. We then restrict attention to the period 1997-2007 (during which the filtered real price

of oil increases) and parameterize this price trend as a quadratic function of the estimated

reserves of fossil resource. The estimated price of the fossil resource in 2002, combined with

the consumption of fossil resource between 2002 and 2006 together with the value of world

GDP from 2002 to 2006 from the World Bank, and the initial values of Yc0 and Yd0, then allow

us to compute α2, Ac0 and Ad0 and the cost function c (Q) as the price of the exhaustible

resource in units of the final good. This procedure gives α2 = 0.0448. Finally ηc is still taken

to be 2% per year, but ηd needs to be rescaled. Indeed, if innovation occurs in the dirty sector

only, output in the long-run– abstracting from the exhaustion of the natural resource– will be

proportional to A
1−α1
1−α
d instead of Ad, so we compute ηd such that innovation in the dirty sector

still corresponds to the same long-run annual growth rate of 2% after making this correction.

We now show how the optimal policy with exhaustible resource compares with that in the

baseline case for the four configurations of (ε, ρ) (ε taking the high value of 10 and the low

value of 3, ρ taking the high value of 0.015 and the low value of 0.001).
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Optimal policy for ε = 10 or 3 and ρ = 0.015 or 0.001, in exhaustible and non exhaustible cases

As illustrated by Figure 2B, the switch towards clean innovation again occurs immediately

for (ε = 10, ρ = 0.001), (ε = 10, ρ = 0.015) and (ε = 10, ρ = 0.001). The switch to clean inno-

vation occurs slightly later in the exhaustible resource case when (ε = 3, ρ = 0.015). The reason

for this slight delay is that even though the growth prospects in the dirty sector are hampered

by the depletion of the resource (this pushes towards an earlier switch to clean innovation),

we also have that less dirty input is being produced in the exhaustible resource case, which in

turn can accommodate a later switch to clean innovation. Which effect dominates in practice

depends on the parameters.

Moreover, with the exhaustible resource, the clean research subsidy does not need to be as

high as in the baseline case to induce the switch because of the costs of the resource (see Figure
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2A). For the same reason, the carbon tax does not need to be as high either (Figure 2C) and the

switch to clean production occurs earlier than in the baseline, except when (ε = 3, ρ = 0.015),

whereby the later switch in innovation mitigates the effect of the increase in the extraction cost

so that the switch to clean production occurs around the same time (Figure 2D). The figure

also shows that when ε is smaller, the resource tax needs to be higher, as more of the resource

ends up being extracted at any point in time, and that temperature increases less over time

with the exhaustible resource.

B-18


	DP8660prelims
	THE ENVIRONMENT AND DIRECTED TECHNICAL CHANGE

	D12b Environment and Directed Technical Change

