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the interface of macroeconomics and international economics focuses on the 
consequences of exchange rate regimes for economic outcome such as trade. 
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random, the treatment effect of adopting a currency union is independent of 
the underlying regime transition, and it is homogeneous and hence fully 
captured by the average. This paper allows for self-selection into exchange 
rate regimes conditional on observable characteristics and a given regime 
state prior to a transition and provides evidence of strong impact 
heterogeneity on bilateral trade among otherwise observationally equivalent 
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What is the effect
of a common
currency on
international

trade? Answer:
Large.

...the point
estimates are

positive, but the
prediction that a

common currency
increases trade is

qualified by
substantial

uncertainty.

“On the average”
has never been a

satisfactory
statement with

which to conclude
a study on

heterogeneous
population.

Andrew K.
Rose

(2000, p. 9)

Torsten
Persson

(2001, p. 446)

Moshe
Buchinsky

(1994, p. 453)

1 Introduction

Empirical research suggests that tying exchange rates – especially through cur-
rency unions – increases bilateral trade flows among country-pairs by mitigating
uncertainty,1 though there is only little consensus about the magnitude of the
effect. Most of the evidence on the matter assumes that assignment to ex-
change rate regimes occurs at random.2 Also, it is commonly assumed that the
response of outcome such as international trade is constant (i.e., homogeneous)
within the population of country-pairs3 limiting attention to average outcomes.
To the best of our knowledge, previous work on exchange rate regimes at large
did not pay attention to heterogeneous effects of when allowing for self-selection
into different types of currency regimes.

1See Rose (2000, 2001), Rose and van Wincoop (2001), Frankel and Rose (2002), Glick and
Rose (2002), Levy Yeyati (2002), Rose and Engel (2002), Barro and Tenreyro (2006), Klein
and Shambaugh (2006), Egger (2008). Rose and Stanley (2005) provide a meta-analysis
of earlier work. Evidence of a positive impact of fixed exchange rates on bilateral trade
is consistent with evidence on the detrimental effect of exchange rate risk and volatility
on trade flows (see Cushman, 1983, 1988; Brada and Mendez, 1988). Work which cast
doubt on significantly positive trade effects of common currency encompasses Klein (1990,
2005) and Persson (2001). The latter work is consistent with two observations: namely that
international trade is to a large extent controlled (if not induced) by multinational firms (see
Zeile, 2003) and that evidence on exchange rate regimes on foreign direct investment is mixed
(see Russ, 2007).

2Persson (2001) and Barro and Tenreyro (2006) are two of the few studies considering
self-selection into currency unions. While Persson (2001) pursues an approach of matching
based on the propensity score in a cross section of country-pairs, Barro and Tenreyro (2006)
follow an instrumental variables approach with a panel of country-pairs.

3Rose and van Wincoop (2001) is one of the few studies considering implicitly heteroge-
neous responses of country-pairs’ trade in general equilibrium.
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By way of contrast, this paper will document significant variability of ex-
change rate regime treatment effects on bilateral international trade even after
controlling for non-random assignment. We relax the assumption of random
assignment within the framework of selection on observables. Within that
framework, we focus on the question of impact variability on bilateral trade
flows after conditioning out both, heterogeneity of country-pairs in terms of
observable characteristics determining selection and the regime state prior to
a transition.

Data on de-facto exchange rate regimes for 136 countries over the period
1965-2001 provide startling evidence for exchange rate regime impact hetero-
geneity on bilateral trade. We utilize three regime states (freely floating, cur-
rency band, and currency peg or union) based on data collected and provided
by Reinhart and Rogoff (2003a,b, 2004) and employ quite strict criteria regard-
ing the similarity between treated and control country-pairs prior to exchange
rate regime transitions. Nevertheless, the variability of responses of bilateral
exports is huge. Minimum and lowest 0.05th quantile responses in average well-
defined sub-populations of the data are negative, irrespective of the treatment
and control sequence of transitions. Average maximum and above 0.95th quan-
tile responses are positive, irrespective of the treatment and control sequence
of transitions. Moreover, there is no clear-cut pattern regarding average 0.5th

quantile (median) responses regarding transitions from tighter to less tight
regimes or vice versa. All the mentioned location parameters of the impact
distribution are statistically significantly different from zero at high precision.
These results are novel and astonishing against the background of earlier ev-
idence on average impacts of currency unions on trade. In fact, they suggest
that the qualitatively quite robust conclusions about average treatment effects
of, e.g., currency union membership accrues to at least one of two features:
high positive extreme values of treatment effects on the treated or high nega-
tive extreme values of treatment effects on the untreated in the distribution; or
the (by data refuted) assumption of the irrelevance of the exchange rate regime
status prior to participating in a currency union.

Suppose one wished to consult risk-averse or risk-neutral policy makers who
were interested in stimulating trade by choosing among exchange rate regimes.
For this purpose, define risk-averse policy makers as ones who prefer transit-
ing between exchange rate regimes for which the associated effects on bilateral
trade were very unlikely (i.e., with low probability mass) negative and risk-
neutral ones who considered positive effects on bilateral trade of average (or
median) transitions. Based on the evidence in this paper, we would say that
there is no clear-cut recommendation to make for risk-neutral policy makers.
Risk-averse policy makers face a danger of reducing trade quite significantly
no matter what they do. For this interpretation, it is important to recall that
the source of variability of the exchange rate regime impacts lies beyond the
pattern of observable characteristics. Hence, country-pairs with identical char-
acteristics and exchange rate regime states ex ante may fare very differently
from adopting one and the same transition in comparison to an identical coun-
terfactual. Also, recall, that the location parameters of the impact distribution
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are estimated at very high statistical precision so that the impact variability
should not be ascribed to a lack of data. It appears to be a fundamental fea-
ture of the data that international goods markets respond at high variability
to exchange rate regime transitions in situations that look largely comparable
to the econometrician.

The remainder of the paper is organized as follows. The next section de-
scribes data on exchange rate regime transitions and bilateral exports in the
employed sample of 11,727 country-pairs and 36 years (1965-2001) which makes
160,464 observations. Section 3 discusses the econometric approach utilized for
inference about averages and distributional features of treatment impacts in a
multiple endogenous treatment effects framework. Section 4 summarizes the
results and some robustness checks, and the last section concludes.

2 Design, data, and stylized facts

2.1 Some remarks on the study design

We focus on the impact of exchange rate regime transitions on the annual
change of log bilateral exports between a year t = 0 prior to the transition and
the subsequent year t = 1. Since the data come as (unbalanced) panel data, this
entails that country-pairs may surface repeatedly. We will generally specify the
probability of an exchange rate regime transition as a function of time-invariant
and time-varying variables measured at time t = 0.4 Since transitions among
exchange rate regimes as well as the change in log bilateral exports refer to year
t = 1 relative to t = 0, and since all specified determinants of such transitions
are measured at time t = 0, we may generally suppress a specific year index
without loss of generality and only use a time index to indicate the reference
period of observables.5

2.2 Variable construction and data sources

2.2.1 Dependent variables

We employ two sets of dependent variables, namely the difference of log bi-
lateral exports of country i to j from year t = 0 to t = 1 as the outcome of
interest, Δyij , and a set of multinomial selection indicators reflecting transi-
tions among de-facto exchange rate regimes prevailing between countries i and
j in year t = 1 relative to t = 0.

To construct a measure of the outcome Δyij , we use unbalanced panel data
from the United Nation’s Comtrade Database on bilateral exports over the
period 1965-2001. The multinomial selection indicators are obtained using the
information on de-facto exchange rate regimes provided by Reinhart and Rogoff

4However, for inference about the significance of the conditioning variables determining
regime transitions, we will take care of repeated country-pair observations by clustering
standard errors.

5The latter notation will turn out useful for stating some of the assumptions below.
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(2003a,b, 2004). We distinguishing between three types of de-facto exchange
rate regimes: freely floating, currency bands (of any width), and currency pegs
or unions.6

2.2.2 Observable variables determining selection into treatment

We use four types of variables to specify the conditioning set determining se-
lection into specific de-facto exchange rate regimes in period t = 1. Taking the
perspective of a reduced-form specification of the selection model, the inclusion
of the variables mentioned in the following is clearly motivated by previous re-
search. Before going into details, and bearing in mind the intrinsic element of
subjectiveness with respect to the matter of model specification, we will rely on
parsimony.7 Let us denote the variables employed in the econometric selection
equations by upper case letters.

Geography

With bilateral distance between countries i and j, DISTij , we employ a mea-
sure of geography which has been found to be robustly positively correlated
with the magnitude of bilateral trade costs and negatively with bilateral trade
volume (as well as other outcomes). Since a wider distance between (economic
centers of) two countries reduces trade, it should also reduce the marginal
benefit from an implementation of trade-facilitating measures (see Baier and
Bergstrand, 2004). Hence, to the extent that tighter exchange rate arrange-
ments are implemented for the sake of stimulating trade, we would expect
to see currency tying more frequently between proximate rather than distant
countries.8

Country size

Country size is a very robust determinant of various forms of bilateral outcomes

6In principal, the econometric approach adopted here would permit using an even finer
classification. Reinhart and Rogoff (2003a,b, 2004) distinguish between two different classi-
fication schemes, a fine one with 15 regime classes and a coarse one with 4 classes. However,
using a finer classification scheme than the one employed in this paper requires estimation
of some of the treatment effects from too few observations so that econometric inference
becomes doubtful. Hence, we chose a coarser grid in the interest of efficiency.

7The critical reader may view the finally employed specification of the latent process
underlying the multinomial exchange rate regime adoption as too restrictive. For instance,
one might consider a different functional form for the index or one might include covariates
beyond the suggested ones. As will be discussed in section 4.1, we have estimated a set of
alternative multinomial choice models. It turns out that the ranking and support regions of
the propensity scores are very similar between those models so that estimation results are
largely unaffected by the choice among the compared specifications.

8While most empirical work employs bilateral distance between two countries in logs, we
use it in levels in the main specification. However, we will provide evidence that using one or
the other does not impact our results. For instance, research by Eaton and Kortum (2002) and
others does not rely on a log-linear distance specification of bilateral trade flows and results
for the impact of distance on trade turn out robust to such non-log-linear specifications.
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such as trade flows, capital flows, foreign direct investment, and migration
flows. Recently, it has been found to affect economic integration agreements
at large: goods trade agreements (see Baier and Bergstrand, 2004), investment
and tax agreements (Bergstrand and Egger, 2011; Egger and Wamser, 2011),
and currency unions (see Barro and Tenreyro, 2007). Following a literature
motivating reduced-form specifications of outcome such as bilateral trade and
foreign direct investment as well as trade and investment agreements, we em-
ploy the log of total real GDP (in U.S. dollars of 2000) of country i and country
j together in year t = 0 as a measure of bilateral market size. We denote this
variable by SIZEij . Moreover, we employ a similarity index in two countries’
GDPs in year t = 0, SIMIij . The latter has been motivated by theoretical work
on new trade theory (see Helpman and Krugman, 1985) and was employed suc-
cessfully in subsequent empirical work to explain bilateral trade (see Helpman,
1987).9 SIZEij and SIMIij together are key fundamental variables explaining
the volume of goods trade, the share of goods trade within industries, and the
propensity for trade-facilitating instruments to be applied.

Relative factor endowments

Helpman and Krugman (1985) and Helpman (1987) illustrate in a world of
both relative-factor-endowment and new-trade-preference-based fundamentals
how volumes of trade increase with bigger relative factor endowment differences
between two countries when holding SIZEij and SIMIij constant. Hence, big-
ger relative factor endowment differences as a driver of trade volumes should
also increase the incentive for two countries to adopt trade-facilitating policy
measures. We broadly follow Helpman (1987) to employ a measure of rela-
tive factor endowment differences. Our measure approximates differences in
capital-labor ratios between countries by the absolute value of the difference
in log real per-capita income differences. The measure employed is defined as
RLFACij ≡ ∣ ln(RGDPPCi) − ln(RGDPPCj))∣ for countries i and j in year
t = 0, where RGDPPCi reflects real GDP per-capita of country i in year t = 0.

Economic volatility

Finally, economic volatility – measured in terms of prices and/or real per-
capita income – prior to the implementation of tighter or less tight exchange
rate regimes should have an impact on the propensity of such schemes to be
realized (see Barro and Tenreyro, 2007). We employ two measures of volatility
in order to capture either aspect. VGDPPCij measures the volatility of real
per-capita GDP and VINFLij measures the volatility of inflation in year t = 0.
Either measure is based on the residuals of a log-linear dynamic econometric
model, which regresses log real GDP per capita or the inflation rate on its

9SIMIij is defined as log{1 − [RGDPi/(RGDPi + RGDPj)]
2 − [RGDPj/(RGDPi +

RGDPj)]
2} ∈ [log(0.5), 0], where RGDPi is country i’s real GDP in year t = 0.
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once- and twice-lagged level, a fixed country effect, and common time effects.10

Then, in each period t = 0 the residuals are used to calculate a country’s coeffi-
cient of variation over the previous three years. The two measures VGDPPCij
and VINFLij then reflect the corresponding three-year coefficients of variation,
respectively.

2.3 Sample composition and descriptive statistics

Table A.1 in the Appendix provides a list of all 136 countries and the cor-
responding years covered. Focusing on the countries covered in the study by
Reinhart and Rogoff (2003a,b, 2004) and on nonmissing data for fundamental
variables determining exchange rate regime transitions (as introduced above)
and the change in bilateral exports, we are left with 11, 721 country-pairs and
160, 464 (country-pair-year) observations.11

Table 1 contains descriptive statistics for the dependent variable, one-period
growth in log bilateral exports Δyij , and the set of covariates determining
exchange rate regimes.

– Table 1 about here –

With respect to the conditioning variables in the selection model, comparing
their first and second moments with the analogous robust location measures
already reveals that there is non-normality in the data.12

2.4 Stylized facts

The effects of exchange rate regime transitions between t = 0 and t = 1 on the
change in log bilateral exports between these periods are at the heart of this
paper’s interest. Table 2 exhaustively summarizes the empirical transitions in
the data.

– Table 2 about here –

Table 2 indicates that there is great persistence. The number of country-
pair-year units which have the same exchange rate regime in t = 1 as in t = 0
across all periods selected is 150, 491 + 2, 441 + 5, 967 = 158, 899. Altogether,
we observe 139 + 461 + 291 + 96 + 512 + 66 = 1, 565 changes of exchange rate
regimes. Hence, the probability of an arbitrary exchange rate regime change
for a randomly chosen country-pair and year in the data is about 0.98%. The
most frequent state observed is one with a freely floating exchange rate regime

10Note that such a dynamic fixed effects model which does not account for the endogeneity
of lagged dependent yields virtually unbiased estimates of both the parameters and the
residuals with as many as 36 years of data (see Nickell, 1981).

11About 10.5% of the country-pair units are observed for the full spell of 37 years. The
average number of years per country-pair is about 13.7. About 76.9% of the country-pairs
in the data appear at least 13.7 times.

12This is also confirmed by a series of formal normality tests. For the sake of brevity, we
do not report them explicitly.
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between countries i and j. There are more than twice as many pairs of countries
that have a currency peg or union rather than a currency band.

– Table 3 about here –

Table 3 summarizes the average change in log bilateral exports from t = 0
to t = 1 for all country-pairs in the respective cell of the transition matrix
of Table 2. If exchange rate regime transitions were assigned at random, the
numbers in Table 3 would reflect consistent estimates of the respective average
treatment effects. For instance, the figures in the table suggest that when
switching from a freely floating exchange rate at t = 0 to a currency peg or
union at t = 1, the average country-pair would experience a marginal increase
in the growth of bilateral exports by somewhat less than one percentage point.
In many cases, tighter arrangements suggest faster growth of bilateral trade on
average, but switching from a currency peg or union to a currency band is a
notable exception from that pattern. However, with a non-random adoption of
exchange rate regime transitions, simple comparisons of cells in Table 3 may be
inconsistent estimates of average treatment effects. Moreover, simple averages
might capture only one out of a set of features of the respective treatment
impact that are relevant to a policy maker’s decision.

– Table 4 about here –

Table 4 summarizes distributional features of the change in log bilateral
exports with respect to each of the observed empirical transitions. However,
the reported figures present features of the observed marginal outcome distri-
butions. Motivating this by the fundamental problem of causal inference as a
problem of missing data or missing information in general. Even under ran-
dom assignment of exchange rate regime transitions, we can not trivially infer
about the respective distributions of treatment impacts. This means that with-
out any further knowledge of where country-pairs observed within one marginal
outcome distribution would appear in another one, we cannot even determine
whether comparisons of average outcomes across regime transitions actually
reveal a feature of the distribution of treatment impacts.

3 Econometric approach to avoid a self-selection
bias

3.1 Outline and notation

Let us refer to a generic unit of observation by the index ij ∈ {1, . . . , N}
and to the time period at stake by t ∈ {0, 1}. Let us denote the exchange
rate regime states of freely floating, currency band, currency peg or union by
acronyms F , B, and U , and indicate the exchange rate regime unit ij adopts
at time t by sijt, where sijt ∈ Ω and Ω = {F,B,U}. Thus, sijt may be
considered as one unit-specific realization of the trinomial random variable St.
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Hence, at time t = 1 there is a sequence of two trinomial random variables,
S = (S0, S1), and a sequence of specific realizations of sij = (sij0, sij1) with
sij ∈ Ω × Ω. Consequently, Ω × Ω contains the set of all possible transitions

among exchange rate regimes between periods t = 0 and t = 1.13 Associated
with each sequence of exchange rate regimes sij , there is a potential outcome
for the dependent variable Δyij . Conditioning on a specific realization sij0
of the random variable S0 at time t = 0, we can distinguish among three
potential outcomes in the subsequent period, each of them associated with one
specific realization of the random variable S1 conditional on S0 = sij0. For a
given realization sij of sequence S, let us denote the corresponding potential

outcome by Δy
s
ij = Δys0s1ij .14

As units are only observed in one treatment state at a time, and conditional
on the same origin state sij0, we have to estimate unobserved counterfactual
outcomes within regime s̃ij1 at t = 1. Let us refer to the counterfactual real-
ization of the random sequence S by s̃ij = (sij0, s̃ij1). And, let us denote the

corresponding counterfactual outcome by Δy
s̃
ij = Δys0s̃1ij .

We refer to a generic unit ij in treatment state sij1 by the index ij =
{1, . . . , Ns}. To distinguish a generic unit in the respective counterfactual
state, we refer to this unit by lm with lm = {1, . . . , N s̃}.

Assume the existence of a K × 1 random vector of covariates X with re-
alization xij1 in period t = 1 for unit ij, with ij = 1, . . . , N , that is observed
along with the realization of the sequence S. We refer to the support of values
xij1 the random vector X can take on by �. If we refer to specific locations
on the support �, let us do so by denoting the rth location by �r with �r ⊆ �
and r ∈ {1, . . . , R}.

3.2 Treatment effects on the treated of interest

For pairwise comparisons of potential outcomes associated with two different
realizations of S1 conditional on S0 = sij0, we point attention at treatment
effects on the treated (TTs). Rather than focusing on the first moment (the
average) only, we may estimate broader features of the distribution of treatment
impacts. As is well known, if units select into treatment based on potential out-
comes, pure pairwise comparisons of outcomes Δy

s
ij and Δy

s̃
ij will not permit

the features of TT to have a causal interpretation. Refereing to the literature
on selection on observables, once we assemble country-pairs with sufficiently
similar observable characteristics X = xij1 ∈ �r, this may or may not cap-
ture impact heterogeneity. This means that once we have solved the selection
problem, we may identify impact heterogeneity by the data under a number
of additional assumptions which we will outline subsequently. Table 5 gives a
summary of the respective sources of variation in TTs.

– Table 5 about here –

13This refers to the transitions as reported in Table 2.
14For instance, for sij0 = F , the set of potential outcomes in t = 1 is ΔyFFij ,ΔyFBij ,ΔyFUij ,

and for sij0 = B, the set of potential outcomes in t = 1 is ΔyBFij ,ΔyBBij ,ΔyBUij , etc.
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3.2.1 Homogeneous TTs

If the expected outcome under a specific sequence of exchange rate regimes were
constant over the support � of conditioning values Xij = xij1, each marginal

outcome distribution were degenerate at its mean, and the TT= �
s,s̃
ij (X =

xij1 ∈ �) = �s,s̃ for all xij1 ∈ � and all ij ∈ {1, . . . , Ns}. Consequently,
the TT for the pairwise comparison s, s̃ would be homogeneous across units,
independent of the realization of xij1 ∈ �, since the distribution of differences
in two compared potential outcomes would be degenerate at the difference of
the means from the two marginals.

3.2.2 Heterogeneous TTs by way of heterogeneity in X

In a somewhat less restrictive setting than above, one could relax the assump-
tion of homogeneity of TTs by allowing them to vary with xij1. Then, for
two arbitrary values xij1 and x∗ij1 that X may take on, the corresponding
marginal distributions of two compared potential outcomes could be viewed as
degenerate at their conditional means obtained over the subset of values �r in
� as long as both xij1 and x∗ij1 lied within �r. In other words, a randomly
selected country-pair with observable characteristics xij1 ∈ �r or x∗ij1 ∈ �r
would still have a homogeneous TT conditional on observed characteristics.
While this type of heterogeneity of TTs may be of interest depending on the
question at stake, we are interested in more fundamental forms of heterogeneity
as explained subsequently.

3.2.3 Generally heterogeneous TTs

Empirically, even homogeneity of TTs of exchange rate regime transitions con-
ditional on observed characteristics may be inappropriate. Then, for instance,
policy makers could not hope to form precise expectations about the associated
effects on outcomes such as changes in trade flows or GDP. In that case, even
within �r where units have sufficiently similar conditioning values of X, the
marginal outcome distributions would not become degenerate at the outcome
associated with �r. Assuming a homogeneous TT would then not be justified
at all, and the distribution of TTs for a randomly selected unit with xij1 ∈ �r
or x∗ij1 ∈ �r would vary freely. Conceptually, this notion of generally hetero-
geneous TTs conditional on observed characteristics expresses an uncertainty
about treatment impacts which calls for an assessment of further features of
the distribution of TTs. Then, a randomly selected treated unit within �r
is assigned a whole probability distribution of outcomes under either of two
considered potential sequences of exchange rate regimes, s, s̃, requiring a non-
trivial mapping of the distribution of Δy

s
ij conditional on xij1 ∈ �r into the

marginal distribution of Δy
s̃
ij conditional on x∗ij1 ∈ �r.
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3.3 Assumptions

This subsection outlines the assumptions imposed in order to obtain pairwise
identification of marginal outcome distributions for treated units conditional on
a vector of observable covariates. Moreover, we impose assumptions in order to
identify the related distribution of treatment impacts conditional on observable
characteristics. Therefore, the first set of assumptions is such that – for a spe-
cific sub-group of units defined by their exchange rate regime in period t = 0 –
the assignment mechanism of exchange rate regimes in t = 1 may be considered
as random, once we condition on a scalar function of covariates. The objective
is to validly employ propensity score matching in a framework explicitly taking
account of the multinomial nature of potential exchange rate regime states at
t = 1. The subsequent discussion primarily draws on Lechner (2001). After
restoring an independent assignment mechanism conditional on observables, we
impose a second set of assumptions that allows to recover the conditional distri-
bution of differences in outcomes, or – adopting the terminology of Heckman,
Smith, and Clements (1997) – the distribution of impacts for treated units.
For this, we adopt the framework developed in Heckman, Smith, and Clements
(1997) and Heckman and Smith (1998) to associate outcomes across marginal
distributions.15 Since we are considering a conditional-on-observables version
of their framework, our statements also involve assumptions about comparable
conditioning values. The empirical analysis in this paper relies on the following
set of assumptions.

3.3.1 Pairwise identification of marginal outcome distributions

Even if Δy
s̃
ij depends on S1∣S0 = sij0, we assume that we may restore inde-

pendence by conditioning on a vector of observables.

Assumption 1a. Conditional independence

Δy
s̃
ij ∐ S1∣S1 ∈ {sij1, s̃ij1}, S0 = sij0,X = xij1, ∀Δys̃ij, s̃ij ∈ Ω× Ω, s̃ij1 ∕= sij1.

The previous statement postulates that, conditional on a K-vector of covari-
ates, on the initial exchange rate regime state S0 = sij0, and on the state in
t = 1 being either sij1 or s̃ij1, the outcome under the counterfactual sequence
s̃ij = (sij0, s̃ij1) versus the observed sequence sij = (sij0, sij1) is independent

of S1.16 This implies that conditioning on observables and the initial state is
sufficient to solve the selection problem in period t = 1.

To complete this statement, we further impose the following exogeneity
condition on the initial exchange rate regime state in t = 0:

15Without any further assumptions, it is in general not possible to infer about the distribu-
tion of the TTs. Only if the treatment impact is constant (i.e., homogeneous) over all treated
units, the respective distribution is degenerate, implying a perfectly positive correlation of
outcomes for both marginal distributions. This would simplify the problem of evaluating
exchange rate regime effects substantially.

16See Proposition 2c in Lechner (2001) or also Lee (2005, pp. 174 f.)
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Assumption 1b. Exogeneity of the initial state

Δy
s̃
ij ∐ S0, S0 = sij0, ∀sij0 ∈ Ω.

Together with Assumption 1a, this assumption states that pairwise compar-
isons of potential outcomes are identified, but only for groups of units defined
by their initial exchange rate regime in period t = 0. This implies that the
exchange rate regime at t = 0 is random at time t = 1.17 Taken together, the
two previous statements explicitly take into account the multi-valued nature
of the random variable S1. They impose that the counterfactual outcome is
locally independent of the assignment mechanism given the set of covariates
determining selection within a specific sub-group of units as defined by a com-
mon initial state. Also note that Assumptions 1a and 1b are stated in terms
of conditional independence, that is considered as rather excessive if the re-
searcher is only interested in identifying average treatment effects.18 Since we
are interested in the full marginal distribution of the outcome a treated unit
would have had, had it been observed in the counterfactual state, conditional
independence is required for identification.19

By the next assumption, the dimensionality of the conditioning set required
to restore independent treatment assignment – as implied by the K-variatness
of X – may be substantially reduced. Lechner (2001) shows that the probabil-
ity to switch to the counterfactual state conditional on either switching to the
control state or to the observed state is a valid balancing score of dimension
one.20

17Note that Assumption 1b is a modification of Lechner’s (2004) weak dynamic conditional
independence assumption (Statement b) and the implications thereof are discussed in his
Theorem 1.

18In this case the weaker conditional mean independence assumption is sufficient for iden-
tification, which is implied by conditional independence.

19As outlined in Heckman and Vytlacil (2007), matching identifies the marginal outcome
distribution that a treated unit would have had under the respective counterfactual exchange
rate regime in the absence of selection bias.

20For the case of a binary treatment, the dimensionality-reduction property of the propen-
sity score was first noted by Rosenbaum and Rubin (1983). Generalizing this concept to a
multi-valued treatment, Imbens (2000) and Lechner (2001) point out that it must be ensured
that the conditioning sets are in fact the same across treated and control observations. Hence,
in this case a meaningful dimensionality reduction requires the conditioning set to contain
both, the marginal transition probability to switch to the observed regime state as well as
the marginal transition probability to switch to the counterfactual state. As pointed out in
Imbens (2000), comparing two different potential states in a framework of multi-valued treat-
ments, does not generally lead to a scalar-valued representation of the respective elements in
the conditioning set. The intuition behind Lechner’s result follows directly from the original

proof in Rosenbaum and Rubin (1983). Assume that b∗(X = xij1) = [p
s̃
ij , p

s
ij ] is a valid

balancing score (where the p’s represent the respective marginal transition probabilities) and

b(X = xij1) = p
s̃
ij/(p

s̃
ij + p

s
ij), such that b(⋅) is coarser than b∗(⋅). In the terminology of

Rosenbaum and Rubin (1983), the information set represented by b(⋅) is the smaller one
of the two and the law of iterated expectations implies that E[b∗(⋅)∣b(⋅)] = b(⋅), which is a
function of dimension one as in the binary treatment case. For a more extensive discussion
see Lechner (2001) and also Lee (2005).
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Assumption 2a. Balancing score

If Assumptions 1a and 1b hold, then

Δy
s̃
ij ∐ S1∣b(X = xij1), S0 = sij0, ∀Δys̃ij, s̃ij ∈ Ω× Ω, s̃ij1 ∕= sij1.

Hence, if it suffices to condition on X = xij1 to solve the selection problem,
it also suffices to adjust for the scalar-valued function b(X = xij1). Taken
together, it follows from Assumptions 1a-2a that conditional on the initial
exchange rate regime state and the balancing score all marginal counterfactual
distributions are pairwise identified. Hence, conditional on S0 = sij0 we may
validly employ matching on b(X = xij1).

In order to operationalize estimation of the balancing score function, we
impose two further assumptions.

Assumption 2b. Stationary one-period transition probabilities

Pr(S�+1∣S� = sij� ,X = xij,�+1) = Pr(S� ∣S�−1 = sij,�−1,X = xij,� ),

∀� ∈ {1, . . . , T − 1}, sij� ∈ Ω× Ω.

Hence, the marginal probability of a unit to be observed in exchange rate regime
S1 = sij1 is a first-order stationary Markov process once we condition on state
S0 = sij0 and the K-vector of covariates X = xij1.21

The second statement involves the standard common support requirement
i.e.,

Assumption 2c. Common support

0 < Pr(S1 = sij1∣S0 = sij0,X = xij1) < 1, ∀sij ∈ Ω× Ω.

This emphasizes that propensity score matching can only solve the selection
problem if suitable (comparable) control observations are available.22

Altogether, Assumptions 1a - 2b identify all pairwise marginal counterfac-
tual distributions for a treated unit conditional on the initial exchange rate
regime state and the balancing score, where the latter may be constructed
from the marginal transition probabilities as obtained from a pooled multino-
mial choice model.

21For estimation this implies that we may pool the data for two periods (t = 0 and t = 1)
in order to estimate the balancing score b(X = xij1). This reduces the complexity of the
data structure and justifies using the cross-section notation introduced above as is custom
with difference-in-difference estimation.

22Put differently, a transition from a specific initial state S0 = sij0 to the subsequent
state S1 = sij1 conditional on covariates X = xij1, may neither be impossible nor may it
be guaranteed (i.e., perfect prediction of exchange rate regime states may not be used for
identification).
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3.3.2 Identification of impact distributions for pairwise TTs

Given the above assumptions, the marginal distribution of the outcome a
treated unit would have had under the counterfactual sequence of exchange
rate regimes is identified, i.e., Fs̃(Δy

s̃
ij ∣S = s̃ij , b(X = xij1)) = Fs̃(Δy

s̃
ij ∣S =

sij , b(X = xij1)). Moreover, Fs(Δy
s
ij ∣S = sij , b(X = xij1)) is observed from

the data. But, we are interested in the conditional distribution of impacts,
F�(Δy

s
ij − Δy

s̃
ij ∣S = sij , b(X = xij1)), whose identification requires further

assumptions.23

For instance, we need an assumption that allows us to group treated and
untreated units within sub-populations assembling observations with highly
similar observable characteristics X. In general, for a conditioning set contain-
ing continuous random variables, it is difficult to obtain a set of treated and
untreated observations that are subject to exactly the same conditioning value.

It is generally desirable to discard observations from the control sample that
are very different from the treated observations under consideration in terms of
the balancing scores as a metric of comparison. Rosenbaum and Rubin (1984)
suggest subclassifying treated and untreated observations by stratification on
the balancing score function. In this spirit, Dehejia and Wahba (2002) formalize
a procedure for a combined estimation of the terms included in the first-stage
estimation of the balancing score and the number of strata on the interval of es-
timated scores. For the case of a binary treatment, they follow Rosenbaum and
Rubin (1984) and subdivide the interval of the estimated propensity score into
quintiles. Focusing on t-values as the statistical criterion of interest, Dehejia
and Wahba suggest employing a more flexible specification of the linear index
in propensity score estimation, whenever mean equivalence does not hold for a
specific regressor for all or a substantive amount of propensity score intervals.
In this notion, a lack of balancing indicates the need to formulate a more ac-
curate approximation that also captures higher-order effects within the index
specification. We propose an alternative approach which enforces balancing
to hold ex ante for the set of regressors at hand. An immediate advantage
of this procedure is that we may rely on a parsimonious specification of the
linear index in the propensity score model, since the number of strata as well
as the location of strata bounds – as associated with sub-populations of similar
observations – is not preassigned as in Dehejia and Wahba but estimated by
exploiting the information contained in the data.

With the procedure proposed here, we have to find some valid approxima-
tion that defines a neighborhood �r on the support of observable characteristics
determining selection. In the following, we will refer to the associated map-
ping of �r into the respective support of the balancing score function by ℬ(�r).

23A treated unit can not be assigned a specific location where it would appear in the
counterfactual conditional marginal outcome distribution. Conditional on b(X = xij1),
a treated unit may be assigned a set of outcomes under the counterfactual exchange rate
regime.
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Assumption 3. Approximating the conditioning set

F�(�
s,s̃
ij ∣S = sij , b(X = xij1))

≈F�(�s,s̃ij ∣S = sij , b(X = xij1) ∈ ℬ(�r) ∧ b(X = x∗ij1) ∈ ℬ(�r))

with ℬ(�r) being a set of conditioning values such that xij1 ∈ �r and x∗ij1 ∈
�r.

In addition, we define each conditioning set with respect to highly similar con-
ditioning values as

�r := {xij1,x∗ij1∣Pr(xij1 = x∗ij1∣H0) > �}.

Assumption 3 states that, when conditioning on a neighborhood �r instead
of conditioning on any xij1 ∈ �r directly, will produce a reasonable approxi-
mation of the impact distribution of interest. In addition, we give a definition of
the respective conditioning set in terms of the similarity of conditioning values
assembled within a specific neighborhood. We will make use of the definition
of �r in Assumption 3 to estimate partitions of the K-dimensional support of
conditioning values in order to define sub-populations of highly similar units.

In order to test the assumption of homogeneous TTs conditional on observ-
able characteristics, we adopt the following assumption from Heckman, Smith,
and Clements (1997), and Heckman and Smith (1998).24 We postulate that
units are perfectly positively ranked in both outcome distributions in the fol-
lowing sense:

Assumption 4a. Fréchet upper bound conditional on the set ℬ

Fs,s̃(Δy
s
ij ,Δy

s̃
ij ∣S = sij , b(X = xij1) ∈ ℬ(�r) ∧ b(X = x∗ij1) ∈ ℬ(�r)) ≤

min[Fs(Δy
s
ij ∣S = sij , b(X = xij1) ∈ ℬ(�r)), Fs̃(Δy

s̃
ij ∣S = sij , b(X = x∗ij1) ∈ ℬ(�r))],

where the marginal distributions are assumed to be continuous and strictly in-
creasing.

By Assumption 4a – and given that b(X = xij1) and b(X = x∗ij1) are suf-
ficiently similar such that they may be attributed to units assembled within
the same sub-population on the support of observable characteristics – we may
use the Fréchet upper bound assuming perfect positive dependence in outcomes
among the compared marginal distributions to construct a set of lower bounds
for the sub-population-specific variances of the TT. This enables us to employ
a version of the test suggested by Heckman, Smith, and Clements (1997) to

24For a conditional on covariates version of the statement in Heckman, Clements and Smith
(1997) see also Abbring and Heckman (2007) or Fan and Park (2010).
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check whether these lower bounds are statistically different from zero, or not,
possibly providing evidence against the homogeneous TT model.

Note that the dependence structure implied by Assumption 4a is just one
possibility to associate units’ rankings across marginal outcome distributions.
As pointed out in Heckman, Smith, and Clements (1997), there exist many dif-
ferent F�(⋅) that are consistent with the two marginal outcome distributions.
They can be distinguished by specific assumptions on the dependence of the
rankings among units as they appear in the marginals. Specifically, if we are
interested in estimating the distribution of TTs we will consider the following
set of prior beliefs about units’ rankings:

Assumption 4b. Priors about units’ rankings of marginal outcomes

Let Kendall’s � reflect the dependence structure among outcomes in the marginal
distributions. We will refer to the case where each treated unit can occur in
each rank of the counterfactual marginal outcome distribution with an equal
probability as a näıve prior, i.e., � ∼ U [−1; 1]. We will refer to the case where
rankings across marginals are positively related by � ∼ U(0; 1] (positive prior),
and to the case of a negative association among rankings by � ∼ U [−1; 0) (neg-
ative prior).

Hence, once we have identified sub-populations of highly similar units (As-
sumption 3), Assumption 4b enables us to infer about sub-population-specific
distributional characteristics of TTs (besides the average) that are consistent
with the respective prior beliefs of how units are located across the marginal
outcome distributions under consideration.

3.4 Implementation

This section outlines an estimation procedure based on the above assumptions
in the context of our application. In a first step, we estimate a multinomial
choice model to obtain the respective balancing score functions for pairwise
comparisons of potential outcomes with respect to a conditioning set of scalar
dimension. Next, we apply a grid-search procedure to partition the interval of
balancing scores into subintervals that are distinct sets assembling sufficiently
similar conditioning values that observable characteristics can take on. Then,
we employ propensity score matching in order to restore the marginal out-
come distributions under the absence of selection bias with respect to each
estimated sub-population. We adopt the framework of Heckman, Smith, and
Clements (1997) and Heckman and Smith (1998) to test the assumption of sub-
population-specific homogeneous TTs. Finally, in order to obtain estimates of
interesting features of the impact distributions, we employ sub-sampling from
the set of potential outcome permutations that are consistent with the re-
spective marginals and the imposed prior belief about units’ rankings in the
marginals. We will elaborate on the employed econometric procedures in detail
in what follows.
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3.4.1 Estimating sub-populations of sufficiently similar observable
characteristics

As motivated above, we assemble treated and untreated observations with
observable characteristics X = xij1 and X = xlm1 such that xij1 ∈ �r
and xlm1 ∈ �r ensure sufficient similarity of observable characteristics de-
termining selection into treatment. Specifically, we estimate a set of points
in K-coordinates, (xr)r=1,...,R̂, such that two units’ observable characteris-

tics being sufficiently close to the point xr (in each of the K-coordinates)
implies that both units belong to the rth sub-population. This involves es-
timating partitions of the K-dimensional support of observable characteris-
tics, �1, . . . ,�R̂, that contain treated and untreated observations within a

neighborhood of the respective points x1, . . . ,xR̂.25 We desire the number
of sub-populations R̂ to be data-driven. For this, we exploit that each �r
is associated with an interval ℬ(�r) on the segment of the real line defined
by the lowest and the highest estimated balancing score function on the com-
mon support of treated and untreated observations.26 Specifically, we estimate
intervals ℬ(�r) that assemble treated and untreated observations such that
ℬ(�r) = {ij, lm∣Pr(xk,ij1 = xk,lm1∣H0) > �,∀k ∈ K)}, i.e., for each coordi-
nate of xr this defines a neighborhood with respect to the type I error �. In
order to estimate all (ℬ(�r))r=1,...,R̂ this requires determining R̂−1 grid points

such that within each of the R̂ intervals statistical similarity among compared
units in terms of their covariates can not be rejected for a pre-specified cutoff
probability. A grid search procedure iteratively rescales the interval of the re-
spective common support of the balancing score for treated an untreated obser-
vations – sorted from the lowest to the highest – until convergence to the largest
subinterval is achieved, where Pr(q50(xk,ij1) = q50(xk,lm1)∣H0) > �, ∀k ∈ K.
Then the grid search is continued over the remaining interval, and so on.27

25Note that by definition each observation is uniquely assigned to a single sub-population.
26Though not necessarily required to estimate TT, we found the grid search algorithm to

behave better if we restrict it to the common support of treated and untreated observations.
27Specifically, we determine the region of common support of the estimated balancing score

for treated and untreated observations and sort in ascending order from the lowest to the
highest value it takes on and choose the value �. We then set min[b̂(X)] = �−1 and as an

initial guess we set max[b̂(X)] = �̃+1 . We then degressively rescale the length of the testing

interval subject to the update equation �̃+1 =
max[b̂(X)]

m
, with m being the next largest integer

such that for the second guess about �̂+1 , we have m = 2, and for the third guess m = 3,
and so on. For each regressor k ∈ {1, . . . ,K}, we keep on testing H0 : q50(xijk) = q50(xlmk)
until statistical similarity of each regressor can not be rejected with a probability greater
than � for a given testing interval. Once we have found the largest sub-interval on the
common support of the estimated balancing score for treated and untreated observations, we
have estimated ℬ(�̂1). Hence, we may equate the operating guess about the upper interval

bound and the estimated bound, i.e., �̃+1 = �̂+1 . Next, by definition �̂−2 = �̂+1 and we set

�̃+2 = max[b̂(X)]. Again, we rescale the upper bound of the testing interval according to
the above update equation and keep on testing the null H0 : q50(xk,ij1) = q50(xk,lm1) until
we have found the largest sub-interval where we can not reject statistical similarity with a
probability of a type I error greater than �. We repeat the same procedure until all R̂ − 1
grid points and all respective ℬ(�̂1), . . . ,ℬ(�̂R̂) are found. Note that we refer to an interval
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Notice that the suggested procedure requires approximating the set of out-
comes for observationally otherwise highly similar units.28 Therefore, defining
sub-populations on the common support of treated and untreated observations
has to meet two main requirements. On the one hand, we have to ensure
that there remains a sufficiently large number of treated and untreated ob-
servations within each sub-population. On the other hand, the units in each
sub-population have to be sufficiently similar. For the data-set at hand, we
find that defining sub-populations around a set of points in K-dimensional
space as sub-populations of median equivalence performs well.29 Moreover,
this provides a direct association of sub-population-specific impact distribu-
tions and the respective strata-specific estimates of average TTs as obtained
by propensity score matching. It also provides a natural adoption of the test
for homogeneous TTs as proposed by Heckman, Smith, and Clements (1997)
conditional on sub-populations of highly similar units.

3.4.2 Propensity score matching algorithms

This section outlines and discusses how we impute the potential sample of out-
come observations as they would have been observed in the respective counter-
factual state under absence of selection bias. The following discussion presup-
poses that all assumptions in Section 3.3.1 are satisfied, so that we may apply
propensity score matching.

For each treated unit, matching constructs an artificial control observation
based on a similarity metric with respect to observable characteristics. By
Assumptions 1a-2a, this metric may be constructed from the marginal transi-
tion probabilities, where conditioning on a specific initial state is kept implicit.
Specifically, we employ kernel matching. This method imputes the counter-
factual outcome that unit ij would have had otherwise as a kernel weighted
average of control observations. The kernel weight assigned to the lmth unit
from the control sample is formed with respect to the distance between the
estimated balancing scores of the treated and the respective control observa-
tion, where this distance is normalized by a bandwidth parameter. Hence, to

as one where convergence can not be achieved, if there remain less than one treated and/or
two untreated observations within this interval. (This refers to the identification requirement
of the constant and the variance for local constant regression.) Note that all intervals’ but
the last one’s upper bounds are exclusive.

28As noted in Abbring and Heckman (2007), it would principally be possible to integrate
out the conditioning variables from the marginal outcome distributions. Yet, this would
require further assumptions on the joint distribution of outcomes and the conditioning vari-
ables, and would not allow us to recover the conditional distribution of impacts with respect
to specific observable characteristics.

29Of course, one could think of alternative ways to group the data on conditional outcomes,
e.g., grouping the conditioning values on the common support with respect to the nine
nearest neighbors would be an obvious alternative. (The number nine is the smallest integer
identifying more than 100,000 distinct permutation matrices to associate outcomes across
marginal outcome distributions.) We have tried so for blocks of the transition matrix with
only a few treated observations and did not find a notable difference in the estimation results
between the proposed procedure and this alternative for the data at hand. However, for cells
of the transition matrix with many treated observations, this way of grouping induces a curse
of dimensionality, rendering estimation computationally infeasible.
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estimate unit ij’s outcome under the counterfactual sequence of exchange rate
regimes s̃ij we use

Δŷ
s̃
ij =

N s̃,r∑
lm=1

!̂ij,lmΔy
s̃
lm, (1)

where summation over lm = 1, . . . , N s̃,r refers to the rth sub-population as
estimated from the data. The explicit formulation of the weights !̂ij,lm is the
distinguishing feature between different matching estimators. In the following,
we use kernel weights as obtained from local constant matching as well as the
weights implied by local linear matching. Moreover, based on the local linear
weights we also employ regression-adjusted matching as suggested in Heckman,
Ichimura, and Todd (1998).30 Analytically, all estimators employed represent
the solution for the constant in a locally formulated weighted least squares
problem, where the local linear representation of the minimization problem
also contains a slope parameter on the distance between the estimated balanc-
ing scores of the respective treated observation and all respective untreated
observations.31,32

To estimate the bandwidth as the relative weight that is given to neighbor-

30Specifically, we implement this by using a linear projection of the control group outcome
on the elements contained in X. We then predict the respective residuals for treated and

untreated units and use them to replace Δŷ
s̃
ij and Δy

s̃
lm in equation (1). The method of

regression-adjusted matching suggested by Heckman, Ichimura and Todd (1998) provides a
valuable robustness check on whether treated and control observations differ in a way that
is not adequately captured by the other matching algorithms employed.

31The local constant estimator is obtained as

arg min
a

{N s̃,r∑
lm=1

(
Δy

s̃
lm − a

)2
K

(
b̂(X = xij1)− b̂(X = xlm1)

ℎ̂r

)}
,

and the local linear estimator as

arg min
a,c

{N s̃,r∑
lm=1

(
Δy

s̃
lm−a−c[b̂(X = xij1)−b̂(X = xlm1)]

)2
K

(
b̂(X = xij1)− b̂(X = xlm1)

ℎ̂r

)}
,

respectively. Solving each of the two previous expressions for an estimator â leads to the
respective explicit representations of the kernel weights as denoted by !̂ij,lm in expression
(1).

32For notational convenience, decompose the weights !̂ij,lm in expression (1) as the weight

given to the lmth control observation relative to all other observations in the respective control
sample

!̂ij,lm =
ŵij,lm∑N s̃,r

lm=1 ŵij,lm
.

Then, for the local constant weights

ŵij,lm = K

(
b̂(X = xij1)− b̂(X = xlm1)

ℎ̂r

)
,

and for the local linear weights

ŵij,lm = K

(
b̂(X = xij1)− b̂(X = xlm1)

ℎ̂r

)[
L2 −

(
b̂(X = xij1)− b̂(X = xlm1)

)
L1

]
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ing observations, we follow Silverman’s suggestion. In general this approxima-
tion also behaves well, if the data do not follow the same distribution as the
design density. We employ this estimator with respect to each sub-population
as estimated from the data.33 As we impute the counterfactual outcome with
respect to distinct sub-populations, this issue is emphasized by employing a
global bandwidth independent of the location of treated observations. Since
the number of control observations that are feasible to form a match varies
with the comparison sample that is assigned to the rth sub-population of ob-
servations, it is more desirable to ensure a flatter kernel if there are only few
observations in the comparison sample, and a steeper one in the opposite case.
We propose obtaining comparison-sample-specific bandwidth estimates to con-
trol for the location of treated observations.

3.4.3 Testing for homogeneous TTs

This section outlines and discusses how we test the null hypothesis of homoge-
neous TTs for sub-populations of highly similar units. The following discussion
presupposes that all assumptions from Section 3.3.1 are satisfied. Moreover,
we make use of Assumptions 3 and 4a from Section 3.3.2 to approximate the
lower bound for the impact standard deviation with respect to a specific sub-
population.

We would like to test whether all units observed for a specific sequence
of exchange rate regimes, have the same effect of switching from exchange
rate regime S0 = sij0 to regime S1 = sij1 versus switching to exchange
rate regime S1 = s̃ij1, once we condition on b(X = xij1) ∈ ℬ(�r) and
b(X = x∗ij1) ∈ ℬ(�r). I.e., we want to infer whether two distinct treated
units within the same sub-population have the same TT or not. In order
to construct a set of lower bounds for the impact standard deviations as as-
sociated with each sub-population r = 1, . . . , R̂, we employ the procedure
suggested by Heckman, Clements, and Smith (1997). They make use of the
Fréchet-Hoeffding upper bound providing a lower bound for the impact vari-
ance. Hence, for the rth sub-population of units we assume perfect positive
dependence among their marginal outcomes in order to map one marginal out-
come distribution into the other (see Assumption 4a). From the differences in
outcomes as obtained from the Fréchet-Hoeffding upper bound we may con-
struct sub-population-specific estimates of the lower bound for the conditional
impact variance. In the following, we denote this lower bound for the rth sub-

population by Varℓ(�
s,s̃
ij ∣S = sij , b(X = xij1) ∈ ℬ(�r)∧ b(X = x∗ij1) ∈ ℬ(�r)).

In contrast to Heckman, Smith, and Clements (1997), we maintain condition-

where

Ll =

N s̃,r∑
lm=1

K

(
b̂(X = xij1)− b̂(X = xlm1)

ℎ̂r

)[
b̂(X = xij1)− b̂(X = xlm1)

]l
, l = 1, 2.

An explicit formulation of the weights can also be found in Heckman, Ichimura, and Todd
(1997).

33See Frölich (2005) and Galdo, Smith, and Black (2008) for a discussion of bandwidth
selection in nonparametric treatment effects models.
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ing on a unit being located within a specific sub-population.34 For the lower

bounds for all sub-populations, we know that Varℓ(�
s,s̃
ij ∣S = sij , b(X = xij1) ∈

ℬ(�r) ∧ b(X = x∗ij1) ∈ ℬ(�r)) ≥ 0, ∀r ∈ {1, . . . , R}. Hence, we base our test-
statistic on the sum of impact standard deviations over all sub-populations
and therefore formalize the null hypothesis of homogeneous TTs conditional
on observable characteristics as

H0 :

R∑
r=1

√
Varℓ(�

s,s̃
ij ∣S = sij , b(X = xij1) ∈ ℬ(�r) ∧ b(X = x∗ij1) ∈ ℬ(�r)) = 0 (2)

This null hypothesis states that for each sub-population the lower bound con-
ditional impact standard deviation is consistent with the homogeneous TTs
model conditional on observable characteristics determining selection. Hence,
non-rejection of the null implies that the distribution of TTs from experiencing
exchange rate regime sequence sij versus s̃ij for a unit that actually experi-
enced sequence sij is not rejected to be degenerate at the respective average
impact.

As suggested in Heckman, Smith, and Clements (1997), we infer the dis-
tribution of this test-statistic under the null from Monte-Carlo simulations.
Specifically, under the assumption of homogeneous TTs conditional on observ-
ables, we apply stratified sampling from the estimated counterfactual distribu-
tion. The strata are given by the intervals on the common support of treated
and untreated observations that were estimated to be clusters of observations
with identical medians for all covariates in the conditioning set. For each
Monte-Carlo replication we calculate the treated outcome under the null by
adding a constant to the set of sampled untreated observations and then com-
pute the test-statistic for equation (2). The distribution of those sums over
all Monte-Carlo replications approximates the distribution of the test statistic
under the null hypothesis of a homogeneous treatment impact on treated units,
once we know their observable characteristics.35 To finally obtain the statisti-
cal statement of interest, as in Heckman, Smith, and Clements (1997), we then
compute quantiles of the simulated distribution under the null associated with
specific values of the probability of a type I error.

3.4.4 Impact distribution estimation

We assume that all assumptions from Section 3.3.1 as well as Assumptions 3
and 4b from Section 3.3.2 are satisfied.

Once we have evidence, that there is substantive variation in the impact
on bilateral trade for treated units experiencing exchange rate sequence sij

34Heckman, Smith, and Clements (1997) have unconditional marginal outcome distribu-
tions since they consider a randomized experiment. Beyond that, we might ask whether we
have impact heterogeneity by way of heterogeneity in X (see section 3.2.2), or treatment
response is generally heterogeneous even conditional on observable differences (see section
3.2.3).

35Since this sum is bounded at zero from below we have a one-sided test. For instance, the
95% quantile of the simulated distribution is associated with a probability of a type I error
equal to 5%.
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versus s̃ij , we estimate certain features of F�(�
s,s̃
ij ∣S = sij , b(X = xij1) ∈

ℬ(�r) ∧ b(X = x∗ij1) ∈ ℬ(�r)) for all sub-populations identified from the

data.36 Within each sub-population, r = 1, . . . , R̂, we follow Heckman, Smith,
and Clements (1997) by employing sub-sampling from the collection of pos-
sible impact distributions consistent with the two marginal outcome distribu-
tions under consideration.37 As formulated in Assumption 4b, we perform
sub-sampling with respect to the set of all permutations that reflect a certain
prior belief about units’ rankings in the two marginals. Hence, the empirical
analysis is conducted as follows.

For a generic sub-population of similar units, we sort all units in the treat-
ment state, S1 = sij1, and in the respective counterfactual state, S1 = s̃ij1,
from the highest to the lowest outcome. In this way, we construct Y s,r =

(Δy
s,r
(1), . . . ,Δy

s,r
(Ns,r))

′ for the treatment state, and Y s̃,r = (Δy
s̃,r
(1), . . . ,Δy

s̃,r
(Ns,r))

′

for the control state, where the subscript refers to an observation’s ranking
within the respective marginal outcome distribution. Denote the pth draw
from the set of possible Ns,r × Ns,r permutation matrices consistent with a
specific prior about Kendall’s � by Πp

r(�). Then, we construct the associated
sub-population-specific set of treatment impacts as

�pr = Y s,r −Πp
r(�)Y s̃,r (3)

for each sub-population r = 1, . . . , R̂ and for each sampled permutation p =
1, . . . , P . After having sampled a set of possible permutation matrices over P
replications, Π1

1(�), . . . ,Π1
R̂

(�) for the first replication until ΠP
1 (�), . . . ,ΠP

R̂
(�)

for the P th replication, and having constructed the associated sub-population-
specific impacts, �11, . . . ,�

P
1 for the first sub-population until �1

R̂
, . . . ,�P

R̂
for

the R̂th sub-population, we then aggregate each �1r , . . . ,�
P
r over all replica-

tions p = 1, . . . , P in order to obtain the distribution of TTs for each of the
r = 1, . . . , R̂ sub-populations. As we assume a uniform prior about Kendall’s
� among units’ rankings in the two marginals, we may consider each sampled
permutation as equally likely. I.e., for aggregating among the sampled im-
pact distributions we may assign each draw p = 1, . . . , P an equal probability
weight. Finally, from the sub-population-specific impact estimates we may re-
cover a richer set of parameters, besides the mean, describing the impact of
transitions among different types of exchange rate regimes on bilateral trade
for a randomly drawn treated unit located within a specific sub-population of
observable characteristics determining selection into treatment. This involves
interesting quantiles that are identified with respect to each sub-population as
estimated from the data.38

36As indicated above, in order to identify at least 100, 000 distinct impact distributions
from the data we have to exclude sub-populations with less than nine units from the analysis.

37Note that considering all mappings among outcomes for the two marginals is in general
not feasible, since the total number of mappings observationally equivalent for two given
marginals is equal to the factorial of the number of treated (and therefore imputed counter-
factual) observations within the respective sub-population.

38Note that it is possible to estimate the full probability density function or cumulative
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In order to obtain standard errors for the respective parameter estimates,
Heckman, Smith, and Clements (1997) suggest employing the bootstrap. We
do so by block sub-sampling from the estimated sub-populations and perform
the procedure as described above with respect to each bootstrap replication.
Therefore, the empirical standard deviation over the set of bootstrap estimates
for the respective location parameter serves as the bootstrap estimate of the
associated standard error.

4 Estimation Results

4.1 Dimensionality reduction

Table 6 reports the multinomial choice model estimated in order to construct
the required balancing score functions. The results suggest that bilateral
distance (DISTij), bilateral country size (SIZEij), similarity of country size
(SIMIij), relative factor endowments (RLFACij), and volatility of inflation
rate differences (VINFLij), each displays a significant impact for at least one
of the marginal transitions listed. Volatility of per-capita income differences
(VGDPPCij) does not enter significantly, since the corresponding variation is
highly collinear with VINFLij .

– Table 6 about here –

As noted previously, the conditioning set of independent variables deter-
mining marginal transitions among different types of exchange rate regimes
underlying Table 6 is quite parsimonious. In view of the literature, the set
of independent variables could be modified or augmented in several straight-
forward ways. For instance, one might call into question whether using the
level of distance rather than the log thereof in Table 6 is justified. Moreover,
previous work on exchange rate regime effects on trade employed additional
covariates inspired by the literature on gravity models in trade. Third, one
might think that certain exchange rate regimes – akin to economic crises –
happen at higher or lower frequency in different time intervals. Fourth, ex-
change rate regimes might respond more sluggishly to shocks in time-varying
regressors than assumed in Table 6. Finally, the regressors in Table 6 might be
the relevant ones but affect the choices in a less restrictive way than assumed.
We addressed all of these issues in alternative models, each of them relying
on a different set of conditioning variables entering the selection equation. We
compare the respective alternative models by way of how predicted marginal
transition probabilities are altered and how the likelihood of the data given the
model is affected relative to the base specification reported in Table 6.

distribution function of a TT nonparametrically with respect to each sub-population, or to
obtain a nonparametric estimate of the respective probability density function or cumulative

distribution function conditional on the set of median characteristics, x1, . . . ,xR̂, defining
the sub-populations as explained in Section 3.4.1. However, we do not present these results
here for the sake of brevity.
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– Table 7 about here –

In Table 7, we consider Pearson’s, Spearman’s, and Kendall’s coefficient of
correlation to measure the degree of accordance among the marginal transition
probabilities as predicted by the respective alternative specification versus the
parsimonious benchmark. A highly positive correlation coefficient indicates
that subsequent estimation results are hardly affected by relying on one or the
other conditioning set. Next, we report the change in the log-pseudolikelihood
as compared to the base specification and the number of regressors employed
in the alternative model at the outer right of Table 7. The gain in the log-
pseudolikelihood (ΔLL) serves as a measure of how more or less likely the
observed data are, given the respective alternative specification relative to the
benchmark in Table 6. Allowing a different set of regressors to enter the selec-
tion equation without a substantive gain in the log-pseudolikelihood is inter-
preted as evidence for the redundancy of the information about exchange rate
regime switching contained in the alternative conditioning set relative to the
one in Table 6.

The figures in Table 7 suggest the following conclusions. First, the change
in the log-psuedolikelihood suggests that using the level of bilateral distance
is preferable over using the log for the choices at stake. Moreover, using nine
different gravity variables to approximate bilateral trade costs does not change
the predicted marginal transition probabilities substantially.39 Third, also the
correlations between alternative models employing five-year period specific ef-
fects, once-lagged time-varying regressors in addition to the contemporaneous
ones (at time t = 0), and a polynomial specification of the linear index function
underlying the transition probabilities does not lead to substantive changes.

Notice that the grid search algorithm employed to estimate sub-populations
of highly similar treated and untreated observations is designed to enforce
median equivalence with respect to each of the K covariates included in the
first-stage propensity score model. Hence, there is a trade-off between including
many covariates in the model and maintaining computational tractability. In
the interest of this trade-off, we prefer ceteris paribus a more parsimonious
model.40 Hence, we proceed by utilizing the results based on the model in

39We employed the log land area size of country i and j and the log sum of the land areas
of i and j as three additional regressors. Furthermore, we included a dummy variable which
is unity if countries i and j were members of the same regional trade agreement at time
t = 0. Also, we included two indicator variables stating whether country i and country j
are landlocked or not. Finally, we included indicator variables for a common land border, a
common official language, and a colonial relationship in the past between countries i and j.

40Among all alternative specifications considered, the highest increase of the log-
pseudolikelihood (about 11.14%) was found for the probability to switch to a freely floating
regime or a currency band relative to remaining in the initial state regime of a currency peg
or union, for the model under letter (b) in Table 7. That model relies on nine additional
regressors relative to the one in Table 6. For the log-pseudolikelihood when a freely floating
regime is the initial state, the respective increase was about 5.48%, and only 3.36% if cur-
rency band was the initial state. The model under letter (c) in Table 6 led to increases in
the log-pseudolikelihood of 7.03%, 3.18%, and 8.68%, referring to the initial state regimes
freely floating, currency band, and currency peg or union, respectively. For the specification
under letter (d) in Table 7, we find relative increases of the log-pseudolikelihood of 0.59%,
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Table 6.

4.2 Estimated sub-populations to establish comparability
of units

Table 8 summarizes descriptive features of estimated sub-populations of highly
similar units (see Section 3.4.1). Table 8 is organized in four columns with
column 1 indicating the observed and counterfactual sequences, sij and s̃ij , for
each pairwise comparison of potential exchange rate regime states considered at
time t = 1. Column 2 in Table 8 reports the number of estimated intervals on
the common support of treated and untreated observations, R̂. By design, each
of these intervals is associated with a sub-population with at least one treated
and two untreated observations to meet the minimal identification requirement
for the estimates of the constant and the variance by local constant regression.
However, identification of a slope parameter beyond the constant requires an
additional untreated observation. This explains why local linear regressions
may or may not be based on the same number of observations as local constant
regressions. Columns 3 and 4 of Table 8 report the sub-population average
number of treated and untreated observations (N̄s,r and N̄ s̃,r, respectively).
In general, to identify a sufficiently large set of distinct random mappings of one
marginal outcome distributions into the other, we have to rely on sufficiently
big sub-populations in terms of treated units.41

– Table 8 about here –

Table 8 suggests that the estimated number of sub-populations, R̂, varies
substantially over different compared exchange rate regime sequences. For in-
stance, while for sij =FU and s̃ij =FF̃ we estimate 73 distinct sub-populations,

whereas for the tuple {UU,UB̃} we estimate only 2 distinct sub-populations. In
summary, the average number of estimated sub-populations over all exchange
rate sequences to be compared is about 15.83, the respective median equals 9,
and the mode is 5. Notice that swapping the treatment and control sequence –
e.g., comparing {FU,FF̃} with {FF,FŨ} – in Table 8 leads to starkly different
entries across all columns.42

Supplementing the information contained in Table 8, Table A.2 in the Ap-
pendix contains descriptive features of the estimated probabilities of a type I
error under the null hypothesis of similar medians with respect to each esti-
mated sub-population. For each of the six regressors contained in the condi-
tioning set of Table 6, we report the mean, the associated standard deviation,

2.48%, and 2.87% relative to Table 6, referring to the initial state regimes freely floating,
currency band, and currency peg or union, respectively. Finally, for the model under letter
(e) in Table 7 we find increases of 4.02%, 3.81%, and 3.73%, again referring to the initial
state regimes as listed in the above ordering.

41Hence, this may restrict the sub-populations used for subsequent estimations to a subset
of those reported in Table 8.

42This asymmetry of sub-populations may be interpreted as an indication that units among
different observed sequences of exchange rate regimes differ non-randomly.
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the minimum, and the maximum of estimated p-values. In order to produce
tractable sub-populations, we find a minimum cutoff probability of 0.1 to per-
form well for the data-set at hand. This ensures that the respective minima
in Table A.2 are bounded away from 0.1 from below. This means that a unit
may be regarded as belonging to the respective sub-population if in each of the
six dimensions its associated vector of characteristics is equal to the vector of
median characteristics with a probability of a type I error smaller or equal to
the estimated one. Therefore, the cutoff probability of 0.1 may be interpreted
as the maximum amount of dissimilarity we are not willing to accept when
making this statement about probabilities.

4.3 Imputed counterfactual outcomes and estimated av-
erage TTs

We impute each counterfactual outcome under absence of selection bias as
it would have been observed for a treated unit, with observed sequence of
exchange rate regimes sij , had it instead experienced the counterfactual se-
quence s̃ij . Therefore, matching on the balancing score function restores the
marginal outcome distribution of the treated under the respective counterfac-
tual exchange rate regime in t = 1 conditional on X = xij1 ∈ �r. For this,
we employ three different kernel matching algorithms, local linear, local linear
regression-adjusted, and local constant matching, respectively.43 Due to the
linearity of the expectations operator, the first moment of the TTs depends
only on the marginal outcome distributions. Hence, averaging TTs over the
support of estimated sub-populations serves as an estimate of the first (uncon-

ditional) moment of �
s,s̃
ij (X = xij1 ∈ �r). Table 9 presents estimation results

about average TTs.

– Table 9 about here –

For a given initial state in t = 0, Table 9 reports the 18 different average
TTs, Ê�[�

s,s̃
ij (X = xij1 ∈ �r)], that are identified for pairwise comparisons of

potential outcomes in t = 1. These are obtained as frequency-weighted averages
over estimated sub-populations. Moreover, Table 9 summarizes the number of
treated observations, the number of estimated sub-populations included, and
the average bandwidth used for the local constant estimator and the respective
deviations for the local linear estimators employed.44,45

With a few exceptions, the reported averages are of the same sign and mag-
nitude for all of the three estimators employed. Using the local linear estimator

43As outlined in Section 3.4.2, local linear and local constant matching differ by the way
local regression weights are formed from the differences in the balancing score functions of
treated and untreated observations.

44See the annotations in the footnotes of Table 9 for details.
45As noted in Table 9, we used Silverman’s rule of thumb for Gaussian data to determine

the bandwidth. However, we followed the literature and used twice and half of that plug-
in estimate as alternatives to assess the sensitivity of the results. The findings from those
alternative procedures are not qualitatively different from those reported so that we suppress
them in the interest of brevity. The results are available from the authors upon request.
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and freely floating as the initial exchange rate regime state at time t = 0, the
average TTs for the tuples {FF,FB̃}, {FF,FŨ}, and {FU,FB̃} are significantly
different from zero. With the same estimator but a currency band at t = 0, the
average TTs obtained for the tuples {BF,BB̃}, {BB,BF̃}, {BB,BŨ}, {BF,BŨ},
and {BU,BF̃} are significantly different from zero. Finally, when considering
currency peg or union as the exchange rate regime state at time t = 0, the
local linear estimator results in statistically significant average TTs for the tu-
ples {UU,UF̃} and {UU,UB̃}. Considering the obtained pattern of estimates
results in interesting conclusions: six of the significant average TTs suggest
that tighter exchange rate regimes stimulate trade relative to less tight ones,
while four of the significant average TTs support the opposite. By any means,
the pattern of those effects is not clear-cut.

4.4 Testing the homogeneous TTs hypothesis

As mentioned above, the average TTs in Table 9 are calculated from 18 marginal
outcome distributions of treated and imputed control sequences, respectively.
Figures A.1.a-A.1.c in the Appendix contain scatter plots of the raw data dis-
tributions for the respective observed and imputed outcomes over the full set of
estimated sub-populations as reported in Table 8 (using black color for treated
and red color for the imputed control sequences). These figures illustrate clearly
that there is substantive heterogeneity in the distributions of potential out-
comes within different sub-populations for all compared sequences. Yet, while
these figures are indicative of the heterogeneity of TTs in the data, whether
homogeneity of the TTs has to be rejected can be assessed more formally.

– Table 10 about here –

Following the procedure outlined in Section 3.4.3, Table 10 summarizes the
results for the test of homogeneous TTs conditional on observable characteris-
tics determining selection. We infer the distribution of the test-statistic under
the null hypothesis of a zero impact standard deviation from Monte-Carlo sim-
ulations such that the respective quantiles of the simulated distribution may be
associated with the respective probabilities of a type I error.46 Tables A.3.a-
A.3.c in the Appendix contain the respective simulated probabilities of a type I
error. We base estimation on 100,000 Monte-Carlo replications where each draw
is obtained by performing stratified sampling from the imputed counterfactual
distributions. Each block is defined by the respective estimated sub-population
and the relative sample size is about one-third of the full sample.

The findings reported in Table 10 confirm substantive heterogeneity of TTs.
This result is largely insensitive to the propensity score matching algorithm
employed to impute counterfactual outcomes. Of the 54 test statistics reported
in Table 10, only six do not reject the null hypothesis of homogeneity of TTs.
Hence, there is strong support of heterogeneous TTs across the board. We will

46For details see Section 3.4.3 or Appendix E in Heckman, Smith, and Clements (1997).
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base subsequent results on the local linear estimator, which rejects the null
hypothesis in 15 out of 18 cases.

As indicated above, operationalizing the procedure suggested by Heckman,
Smith, and Clements (1997) within our setting relies on an approximation of
the conditioning set. The source of this approximation is the representation
of each unit within the sub-population by the median characteristics rather
than conditioning on the respective characteristics directly. Accordingly, one
might argue that part of the identified heterogeneity in TTs may be artificial
due to this approximation. We aim at addressing this problem as follows. We
also computed the test based on transformed outcomes, obtained as the resid-
uals from a sub-population-specific linear projection of the observed treated
and the estimated counterfactual outcome, respectively, on deviations from
the common sub-population-specific vector of median characteristics.47 Table
A.4 in the Appendix contains the respective results and suggests that exchange
rate regime impact heterogeneity as documented in Table 10 is a fundamental
feature in the data on bilateral exports that does not flow from the aforemen-
tioned approximation.

4.5 Estimated features of the distribution of exchange
rate regime TTs on bilateral exports

Tables 11.a-11.c present estimation results for certain distributional features of
the TTs for the different exchange rate regime transitions considered. While
Table 11.a contains results based on a näıve prior about the rankings of units
in each marginal outcome distribution as introduced in Section 3.3.2, Tables
11.b and 11.c report the ones based on positive and negative priors, respec-
tively. As outlined in Section 3.3.2, the priors are reflected in Kendall’s � as
a measure of rank correlations across marginals consistent with one’s a priori
belief.48 All estimation results are based on a sample of P = 100, 000 distinct
random permutations. The reported bootstrap standard errors are based on 30
bootstrap replications with each sub-sampled block equal to about one-third
of the original data.

Before going into details, it is worth noting that the results do not appear to
be prior-driven and are closely comparable across the different assumptions em-
ployed. This is a desirable feature, in particular, since the mapping of marginal
outcomes in the treatment state into marginal outcomes in the respective con-
trol state entails an imputation of missing information.

47For each sub-population r, we decompose Δy
s
ij and Δŷ

s̃
ij into the component explained

by the deviation of each element in the conditioning set from the respective sub-population-
median and the remaining residual variation. Hence, for each sub-population we obtain
the estimated linear projection residuals from the regression of Δys,r = (Δy

s,r
1 , . . . ,Δy

s,r
Ns )

and Δŷs̃,r = (Δŷs̃,r, . . . ,Δŷ
s̃,r

N s̃ ) on Zr = (zr1 , . . . ,z
r
K), with zrk = xrk,ij1 − q50(xrk,ij1)

where xrk,ij1 the Ns,r × 1 vector of observations on the kth regressor in the rth sub-

population. Hence, we obtain Δûs,r = Δys,rMr and Δûs̃,r = Δŷs̃,rMr, with Mr =
INs,r −Zr(Zr ′Zr)−1Zr ′.

48See Assumption 4b for details.
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– Tables 11.a-11.c about here –

In Tables 11.a-11.c we present estimates of expected location parameters
of the distribution of TTs as well as the expected share of treated units to
experience a positive effect. The reported expectations are estimated over
the support of estimated sub-populations of country-pairs with highly similar
observable characteristics determining selection.49 Therefore, the reported dis-
tributional features represent frequency-weighted averages obtained over the
set of estimated sub-populations. Note that for each sub-population in the
data, the specific average TT of an exchange rate regime transition in Table
9 corresponds to the same distribution as the sub-population-specific location
parameters underlying the weighted averages in Tables 11.a-11.c.50 As in Table
9, each frequency weight is obtained as the estimated number of units observed
within a specific sub-population relative to all units observed within a specific
treatment state.

In the subsequent discussion, we will focus on the results based on a näıve
prior with � ∼ U [−1; 1] as in Table 11.a. From a bird’s eye view, the results
in Table 11.a complement the finings about average TTs in a striking way.
First of all, for each and every one of the estimated TT distributions the 5%
quantile value (Ê�(0.05th quantile)) is negative and significantly different from

zero, while the 95% quantile (Ê�(0.95th quantile)) is positive and significantly
different from zero. Similar conclusions apply even when considering the 25%
and 95% quantiles instead. Based on this evidence, we would not advise a very
risk-averse policy maker to, for instance, abandon a less tight exchange rate
regime in favor of a tighter one. In fact, we would not recommend any action
to such a policy maker given any exchange rate regime state of origin.

Apart from the average TTs in Table 9, the risk-neutral policy maker might
seek advice from the median TT (Ê�(0.5th quantile). In that regard, 10 out
of the 18 estimated median effects in Table 11.a are negative and the rest is
positive (each effect being statistically significantly different from zero).

Table 11.a is organized in three vertical blocks (as Tables 11.b and 11.c).
The one at the top refers to sequences with a freely floating (F) exchange rate
regime at t = 0. The block at the center refers to sequences with a currency
band (B) at t = 0. The block at the bottom indicates sequences with a currency
peg or union (U) at t = 0.

Accordingly, there are three sequences in the top block where units that
actually switched from a freer to a tighter arrangement are compared with

49The reported standard errors are estimated assuming independent observations across
sub-populations.

50It appears useful to emphasize the following. Aggregating average TTs over the support
of sub-populations leads to an estimate of the unconditional average TT. In contrast, aver-
aging other location parameters such as the quantiles in Tables 11.a-11.c over the support of
sub-populations leads to an estimate of the averaged location parameter of the conditional
distribution but not the location parameter for the unconditional distribution of the TTs.
Therefore, the results in Tables 11.a-11.c should be interpreted as to refer to the average
sub-population. By that token, a significant negative 5% quantile together with a signifi-
cant positive 95% quantile in Table 11.a are not inconsistent with a statistically significant
(negative or positive) average TT in Table 9.
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ones that did not ({FB,FF̃} and {FU,FF̃}) or, at least, not to the same degree
({FU,FB̃}). Conversely, there are three pairs in that block which did not at
all or not to the same extent switch to a freer regime as the control units. If
tighter regimes were at least at the median better for trade than less tight ones,
we should observe a positive sign in the first, second, and sixth column and
negative signs in the other columns. Four out of the six signs are not aligned
with this. If anything, we would say that the block at the top of Table 11.a
would support the view that leaving the regime of a freely floating exchange
rate will likely be detrimental to trade and not recommend it to risk-neutral
policy makers who would like to stimulate exports.

We can look at the block at the center from a similar perspective. However,
since the initial state is a currency band, a currency peg or union is the only
option to apply a tighter regime than that by design. If a tighter regime
would stimulate trade relative to freer ones at the median, we would expect a
negative sign in the first, third, fourth, and fifth column, and a positive one in
the second and the sixth column. This is the case for four out of six median
TTs. Hence, at the median in the row labeled Ê�(0.5th quantile), we might
recommend adopting a tighter or avoiding a freer regime than a currency band
to risk-neutral policy makers wishing to stimulate exports, if a currency band
were in place in the outset.

Pegs or currency unions are the exchange rate regime at t = 0 for all TTs
with observed or counterfactual transitions at the bottom of Table 11.a. From
that origin state, an exchange rate regime can only become freer than in the
outset. The question is how such a transition affects bilateral trade. Suppose
again that a risk-neutral policy maker would aim at stimulating trade with the
presumption that tighter exchange rate regimes are better for exports than freer
ones. Such a policy maker would expect a negative sign in the first, second,
and fifth column and a positive one in the third, fourth, and last column in the
row labeled Ê�(0.5th quantile). Those expectations are met in only two out of
six cases.

Together, the 18 TTs evaluated at the median do not suggest a clear-cut
absorbing exchange rate state for risk-neutral policy makers who aim at stim-
ulating trade: on average such individuals would prefer maintaining a floating
regime when starting out with one; they would prefer to leave a currency band
more likely in favor of a tighter regime; but they would on average not want to
stay in such a regime then not stick to the latter. Across the board, there is
no indication that tighter exchange rate regimes induce better expected trade
outcomes than less tight ones.

Sufficiently risk-loving policy makers would feel comfortable in any exchange
rate regime, since already the 75% quantile has an expected value that is posi-
tive. And sufficiently risk-averse policy makers would feel uncomfortable with
almost everything they face since the 25% quantile has an expected value that
is almost always negative (except for one out of 18 possibilities).
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5 Conclusions

The empirical analysis of exchange rate regimes and their effects on bilateral
trade flows entertained vivid attention over the last decade. Research on the
matter focused on (exogenous or endogenous) treatment effects of regime states
or changes thereof under two assumptions: first, that average treatment effects
on trade were sufficient to consider and, second, that it did not matter which
exchange rate regime countries (or country-pairs) were in prior to a transition.
Allowing for selection on observables, the analysis in this paper was conducted
in a framework of pairwise comparisons of multiple heterogeneous treatment
effects among three possible exchange rate regime transitions for a given initial
state. Therefore, this paper set out to allow endogenous exchange rate regime
effects to be fundamentally heterogeneous along two lines: first, within sub-
populations of highly similar units in terms of observables and with the same
treatment; second, across exchange rate regime states prior the transition but
with identical states after transiting.

This led to startling insights from this paper in comparison to earlier work.
According to our findings, there is enormous variability in the expected treat-
ment effects within a given type of exchange rate regime transition that can
not be attributed to characteristics observable to the econometrician. This is
true even when focusing on narrowly defined comparison groups of countries or
country-pairs. Evaluating distributional features at average sample characteris-
tics of country-pairs, expected location parameters indicate that the treatment
impacts always have negative and positive support. However, for an average
country-pair there is always a positive probability of increasing or decreasing
bilateral trade. The respective parameters can all be estimated at high statis-
tical precision so that the result does not flow from a lack of data.

With an eye on economic policy, one could interpret these findings as fol-
lows. Risk-averse policy makers would not find any type of exchange rate
regime state or transition desirable. Most importantly, for risk-neutral policy
makers it is not clear whether tighter or freer regimes would benefit trade more
likely at the median, independent of the state of origin. However, there is also
tremendous variability in median treatment effects for transiting to the same
regime across regime states of origin. For instance, risk-neutral policy makers
from countries with a currency band could be advised to adopt a currency peg
or union on average. Neither could such policy makers in countries with a
freely floating regime be advised to move to a tighter regime, nor could ones
in countries with a currency peg or union be recommended to maintain it in
general.
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Tables

Table 1: Data summary

Δyij DISTij SIZEij SIMIij RLFACij VGDPPCij VINFLij

Mean 0.072 7226.521 48.342 −2.352 8.618 0.003 −0.005

Median 0.075 6947.899 48.311 −1.843 8.985 0.007 0.103

Standard deviation 0.960 4527.260 2.804 1.656 1.280 0.321 1.137

Interquartile range 0.578 6716.922 3.630 2.261 1.598 0.092 1.170

Minimum −10.365 10.479 36.157 −10.043 −3.547 −9.408 −11.125

Maximum 11.760 19772.340 59.100 −0.693 10.681 6.755 4.845

Note: The total number of observations is 160,464, collected as an unbalanced panel from 1965 - 2001 containing ob-
servations on 11,721 county-pairs. About 10.5% of country-pairs are observed for the full spell of 37 years, whereas the
average number of years observed for each country-pair is about 13.7. Finally, about 76.9% of the observations in the
data set correspond to at least 13.7 years of data.

Table 2: Empirical transition matrix among different types of exchange rate regimes

t = 1

Freely floating Currency band Currency peg or union

Freely floating 150,491 139 461
93.7849% 0.0866% 0.2873%

t = 0 Currency band 291 2,441 96
0.1813% 1.5212% 0.0598%

Currency peg or union 512 66 5,967
0.3191% 0.0411% 3.7186%

Note: Italic numbers are percentage sample proportions relative to the total number of 160, 464 country-pair observations.

Table 3: Average change in log-bilateral exports in different exchange rate regime transitions

t = 1

Freely floating Currency band Currency peg or union

Freely floating 0.0729*** 0.0618 0.0734**
7.5593% 6.1892% 7.5292%

t = 0 Currency band 0.1713*** 0.0777*** 0.1318**
18.4964% 8.0576% 13.5371%

Currency peg or union 0.0028 0.0796 0.0476***
0.2098% 7.8794% 4.8754%

1. Reported significance levels are based on bootstrapped standard errors with 100 bootstrap replications.

2. Italic numbers are growth rates in percent which correspond to the respective coefficients.



Table 4: Distributional features of Δyij for different exchange rate regime transitions

FF FB FU BF BB BU UF UB UU

Minimum −10.3651 −4.6444 −3.9512 −2.4454 −6.6050 −1.3863 −6.2653 −3.0684 −7.5167

0.05th quantile −1.3067 −1.1560 −0.9345 −0.3672 −0.6762 −0.4786 −1.2071 −0.9510 −1.0003

0.25th quantile −0.2198 −0.0505 −0.1382 −0.0713 −0.0505 −0.0771 −0.1892 −0.0534 −0.1179

0.50th quantile 0.0758 0.0718 0.0717 0.0774 0.0863 0.0731 0.0432 0.0719 0.0574

0.75th quantile 0.3796 0.2221 0.2467 0.2877 0.2416 0.2888 0.2257 0.2300 0.2373

0.95th quantile 1.4308 0.7860 1.1180 1.0105 0.7413 0.7149 1.0604 0.9303 1.0462

Maximum 11.7604 3.1246 6.9654 5.2592 4.6900 4.1190 7.3778 2.8811 5.5086

Note: The above figures refer to the data cells as defined by the empirical transitions given in Table 2.

Table 5: Potential sources of treatment effect variation

(a) Homogeneous TTs

Implication: Holds for:

�
s,s̃
ij (X = xij1 ∈ �) = �s,s̃ ∀xij1 ∈ �, ∀ij ∈ {1, . . . , Ns}

(b) Heterogeneous TTs by way of heterogeneity in X

Implication: Holds for:

�
s,s̃
ij (X = xij1 ∈ �) = �s,s̃(X = xij1 ∈ �r) ∀xij1 ∈ �r and ∀x∗

ij1 ∈ �r, ∀ij ∈ {1, . . . , Ns}

Note:

I.e., xij1 ∈ �r and x∗
ij1 ∈ �r implies that �

s,s̃
ij (X = xij1 ∈ �r) = �

s,s̃
ij (X = x∗

ij1 ∈ �r). Hence, it follows

that �s,s̃(X = xij1 ∈ �r) does not vary over ij once we condition on �r.

(c) Generally heterogeneous TTs

Implication: Holds for:

�
s,s̃
ij (X = xij1 ∈ �) = �

s,s̃
ij (X = xij1 ∈ �r) ∀xij1 ∈ �r, ∀ij ∈ {1, . . . , Ns}



Table 6: Multinomial logistic estimation of marginal transition probabilities Pr(S1 = sij1∣S0 = sij0,X = xij1)

S1 = B∣S0 =F S1 = U∣S0 =F S1 = F∣S0 =B S1 = U∣S0 =B S1 = F∣S0 =U S1 = B∣S0 =U

DISTij −0.0002*** −0.0001*** −0.0001*** 0.0000 −0.0001*** 0.0001***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

SIZEij 0.3532*** −0.0931*** 0.0155 −0.2609*** 0.1014*** 0.1528***

(0.0456) (0.0242) (0.0323) (0.0511) (0.0145) (0.0437)

SIMIij −0.3464*** −0.1356*** 0.3666*** −0.0088 0.1543*** −0.0974
(0.0579) (0.0307) (0.0395) (0.0548) (0.0319) (0.0662)

RLFACij 0.1041 −0.1642*** 0.5172*** 0.5110*** 0.5156*** −0.1026
(0.0913) (0.0350) (0.0949) (0.1434) (0.0624) (0.0717)

VGDPPCij −0.2913 0.1250 −0.2074 −0.4124 −0.0568 −0.0852
(0.4149) (0.1093) (0.2883) (0.2608) (0.3147) (0.1472)

VINFLij 0.1306** −0.1015*** 0.4643*** 0.3523** 0.0635 0.0580
(0.0650) (0.0386) (0.0987) (0.1584) (0.0472) (0.0989)

constant −25.2707*** 0.0818 −6.1215*** 5.0504*** −11.1945*** −12.0560***

(2.7057) (1.1418) (1.1758) (1.8961) (0.7769) (2.4205)

Log-

pseudolikelihood −4078.4598 −1214.7624 −2021.2251

Wald �2(12) 200.8168*** 272.1213*** 187.3052***

Pseudo R2 0.0383 0.0973 0.0641

1. Cluster-robust standard errors are reported in parentheses; significance of coefficient estimates at 1%, 5%, and 10% is indicated by ***, by
**, and *, respectively.

2. The direction of the effect with respect to the regressors is interpretable relative to the base category stayers i.e., sij1 = sij0.

Table 7: Alternative specifications

Alternative Specification including Pearson Spearman Kendall ΔLL Regressors

(a) log of distance (instead of levels) 0.9680 0.9809 0.8988 -0.23% 6

(b) additional trade variables 0.6755 0.7160 0.5441 6.66% 15

(c) period specific effects 0.6855 0.6979 0.5408 6.30% 12

(d) lag 1 of time-varying regressors 0.8397 0.8961 0.7358 1.98% 12

(e) square and interaction terms 0.7500 0.7315 0.5781 3.85% 27

1. The first three columns report measures of average correlation of predicted marginal transition probabilities as obtained after the model as
reported in Table 6 and those obtained from the various alternative specifications as listed right above.

2. The fourth column reports the average relative gain in the log-pseudolikelihood of the respective alternative specification with respect to the
likelihood of the model in Table 6 as ΔLL.

3. A more elaborate description of the respective alternative specifications is given in the text.



Table 8: Estimated sub-populations (as as-
sembled by sufficiently similar characteristics
determining selection)

sij , s̃ij R̂ N̄s,r N̄ s̃,r

FB,FF̃ 23 5.87 6542.70

(8.48) (18388.77)

FU,FF̃ 73 6.23 2061.52

(13.53) (4999.46)

FF,FB̃ 5 29955.80 25.80

(47807.55) (21.61)

FF,FŨ 31 3872.39 12.65

(9852.42) (26.35)

FB,FŨ 10 13.40 41.80

(26.46) (36.47)

FU,FB̃ 5 74.20 26.40

(43.81) (39.66)

BF,BB̃ 10 29.10 244.10

(20.57) (207.01)

BU,BB̃ 10 9.40 243.30

(10.75) (255.29)

BB,BF̃ 8 285.88 35.63

(176.59) (50.34)

BB,BŨ 5 440.80 17.80

(411.35) (12.52)

BF,BŨ 8 19.75 9.38

(31.21) (8.30)

BU,BF̃ 10 7.90 24.00

(8.36) (24.85)

UF,UŨ 36 14.03 165.53

(23.08) (255.10)

UB,UŨ 4 16.50 1491.75

(19.00) (2617.27)

UU,UF̃ 35 163.80 14.11

(204.14) (16.12)

UU,UB̃ 2 2983.50 33.00

(2380.83) (9.90)

UF,UB̃ 5 64.40 12.00

(100.36) (17.56)

UB,UF̃ 9 7.11 39.44

(11.74) (76.45)

1. The reported number of sub-populations R̂ refers to
those intervals where the grid search algorithm em-
ployed converged to a subinterval with at least one
treated (Ns,r) and at least two untreated (N s̃,r) ob-
servations to ensure the identification requirement for
sub-population-specific local constant regression esti-
mates of the mean treatment parameter on the treated.
The two columns, N̄s,r and N̄ s̃,r, contain the average
number of treated and untreated observations over the
estimated sub-populations 1, . . . , R̂.

2. The numbers reported in parentheses are the respec-
tive standard errors.

3. The minimum cutoff probability for non-rejection of
the null of equivalent medians for the six independent
variables contained in X is set to � = 0.1.

4. Note there is Table A.2 in the Appendix where we
report the estimated probabilities of a type I error for
all regressors contained in the model.



Table 9: Estimated average treatment effects on the treated

Ê�[�
s,s̃
ij (X = xij1 ∈ �r)] when initial state exchange rate regime is freely floating

FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

Local linear matching 0.0621 0.0160 0.0243 −0.2210 0.0285 −0.7102
(0.0624) (0.0429) (0.0025) (0.0029) (0.0554) (0.0296)

Local linear regression adjusted matching 0.0626 0.0166 −0.0231 −0.1997 0.0187 −0.7470
(0.0626) (0.0428) (0.0025) (0.0029) (0.0560) (0.0300)

Local constant matching 0.0623 0.0152 0.0554 −0.0852 0.0415 0.0849
(0.0624) (0.0430) (0.0028) (0.0029) (0.0559) (0.0403)

Ns local constant estimator 98 290 149779 120038 116 371
(± local linear estimators) (±0) (±0) (±0) (-3983) (± 0) (-22)

R̂ local constant estimator 5 11 5 31 3 5
(± local linear estimators) (±0) (±0) (±0) (-8) (±0) (-1)

Avg. ℎ̂r local constant estimator 0.00008 0.00003 0.00053 0.00017 0.04580 0.04280
(± local linear estimators) (±0.00000) (±0.00000) (±0.00000) (+0.00001) (±0.00000) (+0.00204)

Ê�[�
s,s̃
ij (X = xij1 ∈ �r)] when initial state exchange rate regime is currency band

BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

Local linear matching 0.1192 0.0670 −0.1163 −0.0278 0.2155 0.6606
(0.0337) (0.0680) (0.0131) (0.0137) (0.0963) (0.0903)

Local linear regression adjusted matching 0.1233 0.0633 −0.1656 −0.0557 0.1785 0.3903
(0.0334) (0.0674) (0.0135) (0.0142) (0.0981) (0.0885)

Local constant matching 0.1198 0.0722 −0.2227 −0.0755 0.2105 −0.2213
(0.0343) (0.0686) (0.0142) (0.0135) (0.0480) (0.0952)

Ns local constant estimator 281 80 2287 2202 148 58
(± local linear estimators) (±0) (±0) (±0) (-127) (-94) (±0)

R̂ local constant estimator 8 4 8 5 4 3
(± local linear estimators) (±0) (±0) (±0) (-1) (-1) (±0)

Avg. ℎ̂r local constant estimator 0.00701 0.00225 0.01602 0.00512 0.02089 0.01460
(± local linear estimators) (±0.00000) (±0.00000) (±0.00000) (+0.00010) (−0.00598) (±0.00000)

Ê�[�
s,s̃
ij (X = xij1 ∈ �r)] when initial state exchange rate regime is currency peg or union

UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

Local linear matching −0.0638 0.0213 −0.1190 0.0086 0.0781 −0.0971
(0.0417) (0.0907) (0.0098) (0.0000) (0.0625) (0.1061)

Local linear regression adjusted matching −0.0656 0.0222 −0.0820 −0.0823 0.2281 −0.0711
(0.0417) (0.0907) (0.0099) (0.0103) (0.0648) (0.1104)

Local constant matching −0.0635 0.0254 0.0186 −0.0263 −0.0030 −0.0897
(0.0418) (0.0908) (0.0124) (0.0104) (0.0589) (0.1080)

Ns local constant estimator 441 62 5713 5967 315 38
(± local linear estimators) (±0) (±0) (-809) (±0) (-58) (±0)

R̂ local constant estimator 13 2 33 2 4 1
(± local linear estimators) (±0) (±0) (-10) (±0) (-2) (±0)

Avg. ℎ̂r local constant estimator 0.00197 0.00115 0.00211 0.00434 0.02209 0.00936
(± local linear estimators) (±0.00000) (±0.00000) (+0.00006) (±0.00000) (+0.00564) (±0.00000)

1. The above results were obtained including only those sub-populations with ≥ 9 nine treated observations.

2. As suggested in Rosenbaum and Rubin (1984), the Ê�[�
s,s̃
ij (X = xij1 ∈ �r)] were obtained as frequency-weighted averages over the respective

sub-populations.

3. Sub-population-specific standard errors are obtained as suggested in Lechner (2001), and the respective estimates for the aggregate parameters

were approximated assuming independent observations across the �1, . . . ,�R̂ with R̂ the number of estimated sub-populations. As applying large
sample results may not be justified for each sub-population, we replace Lechner’s unconditional variance estimate for the untreated outcome by the
conditional variance estimate as obtained by the respective local polynomial estimator.

4. Sub-population-specific bandwidth estimates (ℎ̂r) were obtained using Silverman’s rule of thumb for Gaussian data. However, we report averages
of the respective estimates, obtained over all sub-populations used for estimation.

5. Ns denotes the number of treated observations.



Table 10: Test for heterogeneous treatment effects on the treated conditional on observable characteristics

Initial state exchange rate regime is freely floating

FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

Local linear matching 9.4049∗∗∗ 49.5721∗∗∗ 4.4181 34.4276∗∗∗ 5.5411∗∗∗ 16.6446∗∗∗

Local linear regression adjusted matching 9.4124∗∗∗ 49.5707∗∗∗ 4.4431 33.7631∗∗∗ 5.6126∗∗∗ 17.3357∗∗∗

Local constant matching 9.5378∗∗∗ 46.4653∗∗∗ 2.4120∗∗∗ 23.6864∗∗∗ 5.7171∗∗∗ 0.9303∗∗∗

Initial state exchange rate regime is currency band

BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

Local linear matching 2.6526∗∗∗ 1.6587∗∗∗ 6.7090∗∗∗ 1.9042∗∗∗ 1.0178∗∗∗ 23.8445

Local linear regression adjusted matching 2.5800∗∗∗ 1.6079∗∗∗ 6.1811∗∗∗ 1.9491∗∗∗ 0.9651∗∗∗ 12.0922

Local constant matching 2.7156∗∗∗ 1.8128∗∗∗ 3.0729∗∗∗ 2.4131∗∗∗ 1.1730∗∗∗ 1.5424∗∗∗

Initial state exchange rate regime is currency peg or union

UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

Local linear matching 77.4847∗∗∗ 1.0464∗∗∗ 3.9792∗∗∗ 0.6598∗∗∗ 1.6382∗∗∗ 11.3008

Local linear regression adjusted matching 76.9971∗∗∗ 1.0446∗∗∗ 4.0012∗∗∗ 0.7250∗∗∗ 1.6671∗∗∗ 11.5574

Local constant matching 80.8891∗∗∗ 1.0545∗∗∗ 11.1642∗∗∗ 0.6787∗∗∗ 4.4354∗∗∗ 2.5381∗∗∗

1. Under the null hypothesis of homogeneous treatment effects, once we know xij1 ∈ �r, the lower bound for the standard
deviation of the distribution of treatment impacts should not be significantly different from zero for each of the estimated
sub-populations. Hence, the reported significance indicates whether those estimates are statistically different from zero, and
therefore rejection of the null indicates heterogeneous treatment effects on the treated conditional on xij1 ∈ �r.

2. The above reported numbers are the sub-population sums over the estimates for the lower bound of the standard deviation
for the distribution of the treatment effect on the treated with respect to the compared outcomes. For each sub-population,
estimation results were obtained as suggested by the procedure in Heckman, Smith, and Clements (1997).

3. As suggested in Heckman, Smith, and Clements (1997), we estimate Monte-Carlo cutoff values for rejection of the null stated
in expression (2) in section 3.4.3. The estimated values are given in the appendix.



Table 11.a: Estimated features of the impact distributions aggregated over sub-populations for näıve
prior about country-pairs’ rankings in either marginal outcome distribution � ∼ U [−1; 1]

Initial state exchange rate regime is freely floating

FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

Ê�(Minimum) −1.2492 −1.6947 −3.5072 −4.6446 −1.3575 −2.8993
(0.0000) (0.0000) (0.0005) (0.0007) (0.0001) (0.0044)

Ê�(0.05th quantile) −0.8722 −0.9702 −0.9027 −1.6871 −0.6321 −1.5068
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0027)

Ê�(0.25th quantile) −0.0914 −0.2273 −0.1606 −0.5163 −0.1072 −0.8973
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0031)

Ê�(0.5th quantile) 0.0384 −0.0052 0.0843 −0.1685 0.0402 −0.7156
(0.0000) (0.0000) (0.0005) (0.0005) (0.0001) (0.0020)

Ê�(0.75th quantile) 0.1887 0.2082 0.3111 0.1505 0.1583 −0.5036
(0.0000) (0.0000) (0.0005) (0.0006) (0.0001) (0.0038)

Ê�(0.95th quantile) 0.8699 1.1355 1.0203 1.2745 0.7473 0.1895
(0.0000) (0.0000) (0.0003) (0.0006) (0.0001) (0.0025)

Ê�(Maximum) 1.9532 1.8586 3.3615 3.9300 2.6963 0.9681
(0.0000) (0.0000) (0.0004) (0.0008) (0.0001) (0.0046)

Ê�(Share impact > 0) 0.5816 0.4759 0.5592 0.4593 0.5948 0.2541
(0.0000) (0.0000) (0.0007) (0.0004) (0.0000) (0.0022)

Initial state exchange rate regime is currency band

BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

Ê�(Minimum) −0.9765 −0.9502 −4.9291 −5.6597 −0.5887 −0.7009
(0.0001) (0.0001) (0.0007) (0.0004) (0.0004) (0.0049)

Ê�(0.05th quantile) −0.3977 −0.5492 −0.9066 −0.8274 −0.5411 −0.2819
(0.0001) (0.0001) (0.0005) (0.0003) (0.0004) (0.0033)

Ê�(0.25th quantile) −0.1063 −0.1524 −0.2482 −0.1755 −0.1285 0.4514
(0.0001) (0.0001) (0.0003) (0.0002) (0.0003) (0.0029)

Ê�(0.5th quantile) 0.0430 0.0054 −0.1013 −0.0226 0.0208 0.6267
(0.0001) (0.0001) (0.0002) (0.0003) (0.0004) (0.0042)

Ê�(0.75th quantile) 0.2251 0.1847 0.0536 0.1449 0.3598 0.7976
(0.0001) (0.0001) (0.0004) (0.0002) (0.0004) (0.0036)

Ê�(0.95th quantile) 0.9951 1.1228 0.5805 0.6947 1.7747 1.9422
(0.0001) (0.0001) (0.0005) (0.0003) (0.0004) (0.0029)

Ê�(Maximum) 2.3163 1.8529 3.5421 3.6894 2.1864 2.5050
(0.0001) (0.0001) (0.0008) (0.0004) (0.0005) (0.0037)

Ê�(Share impact > 0) 0.5591 0.5179 0.3966 0.5004 0.6111 0.4483
(0.0011) (0.0063) (0.0003) (0.0006) (0.0000) (0.0000)

Initial state exchange rate regime is currency peg or union

UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

Ê�(Minimum) −3.2090 −2.7015 −3.8112 −7.2109 −5.9430 −3.1372
(0.0001) (0.0001) (0.0004) (0.0004) (0.0005) (0.0002)

Ê�(0.05th quantile) −1.2274 −1.1246 −0.9715 −1.1234 −0.8998 −1.1491
(0.0001) (0.0001) (0.0004) (0.0003) (0.0004) (0.0002)

Ê�(0.25th quantile) −0.2553 −0.1047 −0.3090 −0.2345 −0.1962 −0.1471
(0.0001) (0.0001) (0.0003) (0.0002) (0.0004) (0.0003)

Ê�(0.5th quantile) −0.0229 −0.0015 −0.1116 −0.0522 0.0593 −0.0569
(0.0001) (0.0000) (0.0003) (0.0001) (0.0005) (0.0002)

Ê�(0.75th quantile) 0.2064 0.1623 0.0835 0.1352 0.2996 0.0763
(0.0000) (0.0001) (0.0003) (0.0002) (0.0004) (0.0003)

Ê�(0.95th quantile) 0.9327 1.1793 0.7615 0.9122 1.1398 0.8489
(0.0001) (0.0001) (0.0003) (0.0003) (0.0005) (0.0002)

Ê�(Maximum) 2.2894 1.5796 3.3497 4.7963 7.1196 0.9811
(0.0001) (0.0001) (0.0005) (0.0003) (0.0005) (0.0003)

Ê�(Share impact > 0) 0.4559 0.4839 0.4082 0.4291 0.5720 0.3947
(0.0013) (0.0000) (0.0003) (0.0002) (0.0000) (0.0000)

1. Estimation results are based on drawing 100,000 permutations for each sub-population of county-pairs. Bootstrap estimates of
standard errors are reported in parenthesis. They are based on 30 bootstrap replications with a sample size of about one-third
of the full sample.

2. The reported above figures are based on frequency weighted averages of the respective parameters as obtained for each estimated
sub-population of country-pairs. Aggregation across sub-populations is performed assuming independent observations across
them.

3. For each sub-population estimation results were obtained as suggested by the procedure in Heckman, Clements, and Smith (1997)
applied to the blocks defined by the respective sub-populations. However, we perform sub-sampling by directly mapping each
sampled observation into the respective counterfactual distribution, except for {FF,FB̃} and {FF,FŨ}, where we follow Heckman,
Clements, and Smith (1997) and rather base estimation on mapping percentile means, due to computational infeasibility of the
direct approach.



Table 11.b: Estimated features of the impact distributions aggregated over sub-populations for positive
prior about country-pairs’ rankings in either marginal outcome distribution � ∼ U(0; 1]

Initial state exchange rate regime is freely floating

FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

Ê�(Minimum) −1.2430 −1.6851 −3.4840 −4.5608 −1.3449 −2.7039
(0.0000) (0.0000) (0.0004) (0.0007) (0.0001) (0.0035)

Ê�(0.05th quantile) −0.8662 −0.9610 −0.8820 −1.6109 −0.6202 −1.3309
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0025)

Ê�(0.25th quantile) −0.0881 −0.2222 −0.1509 −0.4742 −0.1006 −0.8172
(0.0000) (0.0000) (0.0003) (0.0005) (0.0001) (0.0016)

Ê�(0.5th quantile) 0.0385 −0.0052 0.0808 −0.1685 0.0402 −0.6983
(0.0000) (0.0000) (0.0006) (0.0004) (0.0001) (0.0009)

Ê�(0.75th quantile) 0.1855 0.2031 0.2938 0.1080 0.1517 −0.5997
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0014)

Ê�(0.95th quantile) 0.8639 1.1263 0.9921 1.1986 0.7354 0.0109
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0026)

Ê�(Maximum) 1.9470 1.8490 3.3310 3.8465 2.6837 0.7712
(0.0000) (0.0000) (0.0005) (0.0008) (0.0001) (0.0044)

Ê�(Share impact > 0) 0.5816 0.4759 0.5600 0.4591 0.6063 0.2428
(0.0000) (0.0000) (0.0011) (0.0003) (0.0041) (0.0014)

Initial state exchange rate regime is currency band

BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

Ê�(Minimum) −0.9610 −0.9257 −5.6495 −5.6495 −0.5195 −0.5186
(0.0001) (0.0001) (0.0007) (0.0004) (0.0003) (0.0026)

Ê�(0.05th quantile) −0.3833 −0.5256 −0.8829 −0.8183 −0.4739 −0.1843
(0.0001) (0.0001) (0.0005) (0.0003) (0.0003) (0.0021)

Ê�(0.25th quantile) −0.0984 −0.1396 −0.2366 −0.1703 −0.0948 0.3634
(0.0001) (0.0001) (0.0002) (0.0002) (0.0003) (0.0027)

Ê�(0.5th quantile) 0.0431 0.0064 −0.1011 −0.0227 0.0209 0.6260
(0.0001) (0.0001) (0.0002) (0.0003) (0.0004) (0.0047)

Ê�(0.75th quantile) 0.2171 0.1719 0.0428 0.1399 0.3227 0.8487
(0.0001) (0.0001) (0.0003) (0.0002) (0.0003) (0.0038)

Ê�(0.95th quantile) 0.9806 1.0992 0.5533 0.6854 1.7066 1.9647
(0.0001) (0.0001) (0.0005) (0.0003) (0.0003) (0.0036)

Ê�(Maximum) 2.3008 1.8285 3.5121 3.6792 2.1165 2.5169
(0.0001) (0.0001) (0.0006) (0.0005) (0.0004) (0.0050)

Ê�(Share impact > 0) 0.5650 0.5125 0.3958 0.5026 0.6296 0.4483
(0.0015) (0.0000) (0.0003) (0.0005) (0.0000) (0.0000)

Initial state exchange rate regime is currency peg or union

UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

Ê�(Minimum) −3.1927 −2.6929 −3.7856 −7.2078 −5.9184 −3.1193
(0.0001) (0.0001) (0.0005) (0.0003) (0.0005) (0.0002)

Ê�(0.5th quantile) −1.2121 −1.1166 −0.9485 −1.1205 −0.8769 −1.1327
(0.0001) (0.0001) (0.0004) (0.0002) (0.0004) (0.0002)

Ê�(0.25th quantile) −0.2468 −0.1002 −0.2962 −0.2331 −0.1838 −0.1384
(0.0001) (0.0001) (0.0003) (0.0002) (0.0005) (0.0003)

Ê�(0.5th quantile) −0.0229 −0.0016 −0.1116 −0.0521 0.0593 −0.0570
(0.0001) (0.0001) (0.0003) (0.0001) (0.0005) (0.0002)

Ê�(0.75th quantile) 0.1982 0.1579 0.0707 0.1337 0.2870 0.0673
(0.0000) (0.0001) (0.0003) (0.0002) (0.0004) (0.0002)

Ê�(0.95th quantile) 0.9174 1.1713 0.7383 0.9093 1.1171 0.8326
(0.0001) (0.0001) (0.0003) (0.0003) (0.0004) (0.0002)

Ê�(Maximum) 2.2732 1.5710 3.3243 4.7932 7.0949 0.9634
(0.0001) (0.0001) (0.0005) (0.0004) (0.0005) (0.0003)

Ê�(Share impact > 0) 0.4537 0.4839 0.4071 0.4289 0.5720 0.3947
(0.0006) (0.0000) (0.0004) (0.0003) (0.0010) (0.0000)

1. Estimation results are based on drawing 100,000 permutations for each sub-population of county-pairs. Bootstrap estimates of
standard errors are reported in parenthesis. They are based on 30 bootstrap replications with a sample size of about one-third
of the full sample.

2. The reported above figures are based on frequency weighted averages of the respective parameters as obtained for each estimated
sub-population of country-pairs. Aggregation across sub-populations is performed assuming independent observations across
them.

3. For each sub-population estimation results were obtained as suggested by the procedure in Heckman, Clements, and Smith (1997)
applied to the blocks defined by the respective sub-populations. However, we perform sub-sampling by directly mapping each
sampled observation into the respective counterfactual distribution, except for {FF,FB̃} and {FF,FŨ}, where we follow Heckman,
Clements, and Smith (1997) and rather base estimation on mapping percentile means, due to computational infeasibility of the
direct approach.



Table 11.c: Estimated features of the impact distributions aggregated over sub-populations for negative
prior about country-pairs’ rankings in either marginal outcome distribution � ∼ U [−1; 0)

Initial state exchange rate regime is freely floating

FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

Ê�(Minimum) −1.2555 −1.7044 −3.5315 −4.7278 −1.3701 −3.0959
(0.0000) (0.0000) (0.0005) (0.0007) (0.0001) (0.0038)

Ê�(0.05th quantile) −0.8782 −0.9795 −0.9247 −1.7632 −0.6440 −1.6852
(0.0000) (0.0000) (0.0004) (0.0006) (0.0001) (0.0026)

Ê�(0.25th quantile) −0.0947 −0.2324 −0.1721 −0.5586 −0.1137 −0.9946
(0.0000) (0.0000) (0.0005) (0.0005) (0.0001) (0.0039)

Ê�(0.5th quantile) 0.0384 −0.0052 0.0859 −0.1685 0.0402 −0.7152
(0.0000) (0.0000) (0.0005) (0.0006) (0.0001) (0.0027)

Ê�(0.75th quantile) 0.1920 0.2133 0.3256 0.1926 0.1649 −0.4048
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0031)

Ê�(0.95th quantile) 0.8759 1.1447 1.0454 1.3510 0.7592 0.3668
(0.0000) (0.0000) (0.0004) (0.0005) (0.0001) (0.0023)

Ê�(Maximum) 1.9596 1.8682 3.3888 4.0135 2.7089 1.1624
(0.0000) (0.0000) (0.0004) (0.0008) (0.0001) (0.0037)

Ê�(Share impact > 0) 0.5728 0.4724 0.5551 0.4611 0.5862 0.2783
(0.0035) (0.0000) (0.0012) (0.0003) (0.0000) (0.0010)

Initial state exchange rate regime is currency band

BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

Ê�(Minimum) −0.9920 −0.9746 −4.9594 −5.6700 −0.6589 −1.1190
(0.0001) (0.0001) (0.0006) (0.0005) (0.0004) (0.0030)

Ê�(0.05th quantile) −0.4121 −0.5728 −0.9342 −0.8366 −0.6093 −0.6811
(0.0001) (0.0001) (0.0005) (0.0003) (0.0004) (0.0024)

Ê�(0.25th quantile) −0.1143 −0.1654 −0.2636 −0.1806 −0.1655 0.2312
(0.0001) (0.0001) (0.0004) (0.0002) (0.0003) (0.0030)

Ê�(0.5th quantile) 0.0430 0.0054 −0.1012 −0.0227 0.0208 0.6287
(0.0001) (0.0001) (0.0003) (0.0003) (0.0004) (0.0059)

Ê�(0.75th quantile) 0.2331 0.1977 0.0690 0.1501 0.3970 1.0181
(0.0001) (0.0001) (0.0005) (0.0003) (0.0003) (0.0033)

Ê�(0.95th quantile) 1.0095 1.1464 0.6082 0.7038 1.8420 2.3419
(0.0001) (0.0001) (0.0005) (0.0002) (0.0003) (0.0031)

Ê�(Maximum) 2.3318 1.8774 3.5727 3.6995 2.2557 2.9234
(0.0001) (0.0001) (0.0006) (0.0004) (0.0003) (0.0052)

Ê�(Share impact > 0) 0.5552 0.5250 0.3955 0.4996 0.6111 0.4787
(0.0000) (0.0000) (0.0004) (0.0005) (0.0000) (0.0074)

Initial state exchange rate regime is currency peg or union

UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

Ê�(Minimum) −3.2252 −2.7102 −3.8366 −7.2139 −5.9677 −3.1549
(0.0001) (0.0001) (0.0005) (0.0003) (0.0005) (0.0003)

Ê�(0.05th quantile) −1.2427 −1.1327 −0.9947 −1.1262 −0.9225 −1.1655
(0.0001) (0.0001) (0.0003) (0.0003) (0.0004) (0.0002)

Ê�(0.25th quantile) −0.2637 −0.1091 −0.3219 −0.2362 −0.2088 −0.1563
(0.0001) (0.0001) (0.0003) (0.0002) (0.0004) (0.0003)

Ê�(0.5th quantile) −0.0230 −0.0015 −0.1116 −0.0522 0.0591 −0.0569
(0.0001) (0.0001) (0.0003) (0.0001) (0.0006) (0.0002)

Ê�(0.75th quantile) 0.2148 0.1667 0.0963 0.1368 0.3123 0.0854
(0.0001) (0.0001) (0.0003) (0.0002) (0.0004) (0.0003)

Ê�(0.95th quantile) 0.9480 1.1873 0.7845 0.9150 1.1625 0.8653
(0.0001) (0.0001) (0.0003) (0.0003) (0.0004) (0.0002)

Ê�(Maximum) 2.3056 1.5882 3.3751 4.7994 7.1441 0.9990
(0.0001) (0.0001) (0.0005) (0.0004) (0.0005) (0.0003)

Ê�(Share impact > 0) 0.4626 0.4839 0.4113 0.4293 0.5693 0.3947
(0.0000) (0.0000) (0.0003) (0.0002) (0.0018) (0.0000)

1. Estimation results are based on drawing 100,000 permutations for each sub-population of county-pairs. Bootstrap estimates of
standard errors are reported in parenthesis. They are based on 30 bootstrap replications with a sample size of about one-third
of the full sample.

2. The reported above figures are based on frequency weighted averages of the respective parameters as obtained for each estimated
sub-population of country-pairs. Aggregation across sub-populations is performed assuming independent observations across
them.

3. For each sub-population estimation results were obtained as suggested by the procedure in Heckman, Clements, and Smith (1997)
applied to the blocks defined by the respective sub-populations. However, we perform sub-sampling by directly mapping each
sampled observation into the respective counterfactual distribution, except for {FF,FB̃} and {FF,FŨ}, where we follow Heckman,
Clements, and Smith (1997) and rather base estimation on mapping percentile means, due to computational infeasibility of the
direct approach.



Appendix

Table A.1: List of all 136 countries with information on years included in the estimation sample

NATO code Country name Years in panel

earliest latest number

1 AGO Angola 1995 1997 3
2 ALB Albania 1996 2001 6
3 ARG Argentina 1965 2001 37
4 ARM Armenia 1998 2001 4
5 AUS Australia 1965 2001 37
6 AUT Austria 1965 2001 37
7 AZE Azerbaijan 1998 2001 4
8 BDI Burundi 1971 2001 31
9 BEL Belgium 1999 2001 3
10 BEN Benin 1997 2001 5
11 BFA Burkina Faso 1967 2001 35
12 BGD Bangladesh 1991 2001 11
13 BGR Bulgaria 1995 2001 7
14 BLR Belarus 1997 2001 5
15 BLZ Belize 1985 2001 17
16 BOL Bolivia 1965 2001 37
17 BRA Brazil 1985 2001 17
18 BRB Barbados 1972 2001 30
19 CAF Central African Republic 1985 1999 15
20 CAN Canada 1965 2001 37
21 CHE Switzerland 1965 2001 37
22 CHL Chile 1965 2001 37
23 CHN China 1991 2001 11
24 CIV Cte d’Ivoire 1965 2001 37
25 CMR Cameroon 1973 2001 29
26 COG Congo 1990 1998 9
27 COL Colombia 1965 2001 37
28 CPV Cape Verde 1988 2001 14
29 CRI Costa Rica 1965 2001 37
30 CYP Cyprus 1965 1997 33
31 CZE Czech Republic 1998 2001 4
32 DEU Germany 1996 2001 6
33 DMA Dominica 1985 1997 13
34 DNK Denmark 1965 2001 37
35 DOM Dominican Republic 1965 2001 37
36 DZA Algeria 1974 2001 28
37 ECU Ecuador 1965 2001 37
38 EGY Egypt 1965 2001 37
39 ESP Spain 1965 2001 37
40 EST Estonia 1997 2001 5
41 ETH Ethiopia 1970 2001 32
42 FIN Finland 1965 2001 37
43 FJI Fiji 1974 2000 27
44 FRA France 1965 2001 37
45 GAB Gabon 1967 2001 35
46 GBR UK and Northern Ireland 1965 2001 37
47 GEO Georgia 2000 2001 2
48 GHA Ghana 1969 2001 33
49 GMB Gambia 1968 2001 34
50 GNB Guinea-Bissau 1992 2001 10
51 GRC Greece 1965 2001 37
52 GRD Grenada 1981 2001 21
53 GTM Guatemala 1965 2001 37
54 GUY Guyana 1999 2000 2
55 HKG China, Hong Kong 1986 2001 16
56 HND Honduras 1965 2001 37
57 HRV Croatia 1999 2001 3
58 HTI Haiti 1971 1999 29
59 HUN Hungary 1977 2001 25
60 IDN Indonesia 1969 2001 33
61 IND India 1965 2001 37
62 IRL Ireland 1965 2001 37
63 IRN Iran 1966 2001 22
64 ISL Iceland 1965 2001 37
65 ISR Israel 1965 2001 37

(Table continued on following page)



(Table A.1 continued)

NATO code Country name Years in panel

earliest latest number

66 ITA Italy 1965 2001 37
67 JAM Jamaica 1965 2001 37
68 JOR Jordan 1974 2001 28
69 JPN Japan 1965 2001 37
70 KAZ Kazakhstan 1998 2001 4
71 KEN Kenya 1965 2001 37
72 KGZ Kyrgyzstan 2000 2001 2
73 KHM Cambodia 1999 2000 2
74 KNA Saint Kitts and Nevis 1984 2001 18
75 KOR Republic of Korea 1971 2001 31
76 LCA Saint Lucia 1984 2001 18
77 LKA Liechtenstein 1965 2001 37
78 LTU Lithuania 1997 2001 5
79 LUX Luxembourg 1999 2001 3
80 LVA Latvia 1996 2001 6
81 MAR Morocco 1965 2001 37
82 MDA Republic of Moldova 1999 2001 3
83 MDG Madagascar 1969 2001 33
84 MEX Mexico 1965 2001 37
85 MKD Macedonia 1998 2001 4
86 MLI Mali 1993 2001 9
87 MLT Malta 1998 1999 2
88 MOZ Mozambique 1992 2001 10
89 MRT Mauritania 1990 2000 11
90 MUS Mauritius 1970 2001 32
91 MWI Malawi 1985 2001 17
92 MYS Malaysia 1969 2001 33
93 NER Niger 1968 2001 34
94 NGA Nigeria 1965 2001 34
95 NIC Nicaragua 1977 2001 25
96 NLD Netherlands 1965 2001 37
97 NOR Norway 1965 2001 37
98 NPL Nepal 1983 2001 19
99 NZL New Zealand 1965 2001 37
100 PAK Pakistan 1965 2001 37
101 PAN Panama 1965 2001 37
102 PER Peru 1965 2001 37
103 PHL Philippines 1965 2001 37
104 PNG Papua New Guinea 1976 2000 25
105 POL Poland 1987 2001 15
106 PRT Portugal 1965 2001 37
107 PRY Paraguay 1965 2001 37
108 ROM Romania 1995 2001 7
109 RUS Russian Federation 1997 2001 5
110 RWA Rwanda 1971 2001 27
111 SEN Senegal 1972 2001 30
112 SGP Singapore 1970 1997 28
113 SLE Sierra Leone 1965 1997 33
114 SLV El Salvador 1965 2001 37
115 SVK Slovakia 1998 2001 4
116 SVN Slovenia 1997 2001 5
117 SWE Sweden 1965 2001 37
118 SYC Seychelles 1975 2001 27
119 SYR Syrian Arab Republic 1965 2001 37
120 TCD Chad 1988 2001 14
121 TGO Togo 1971 2001 31
122 THA Thailand 1965 2001 37
123 TTO Trinidad and Tobago 1965 2001 37
124 TUN Tunisia 1988 2001 14
125 TUR Turkey 1970 2001 32
126 TZA United Republic of Tanzania 1990 2001 12
127 UGA Uganda 1985 2001 17
128 UKR Ukraine 1997 2001 5
129 URY Uruguay 1965 2001 37
130 USA United States of America 1965 2001 37
131 VCT Saint Vincent and Grenadines 1981 2001 21
132 VEN Venezuela 1965 2001 34
133 ZAF South Africa 1965 2001 37
134 ZAR Congo 1968 1998 28
135 ZMB Zambia 1990 2001 12
136 ZWE Zimbabwe 1983 2001 19

1. The above table lists countries by their NATO three-letter code.

2. The last three columns summarize some features of years included in the sample. Since we are considering a differences-in-differences
cross section, note that the earliest year refers to the earliest t = 0 and the latest year to the latest t = 1.



Table A.2: Type I errors as associated with estimated sub-populations (assembled by sufficiently similar characteristics
determining selection)

sij , s̃ij R̂ Pr(q50(xk,ij1) = q50(xk,lm1)∣H0) > � over sub-populations �1, . . . ,�R̂

DISTij SIZEij SIMIij RLFACij VGDPPCij VINFLij

FB,FF̃ 23 Mean 0.2669 0.2558 0.2773 0.2508 0.2700 0.2650
Standard deviation 0.1657 0.1714 0.1937 0.1684 0.1877 0.1612
Minimum 0.1025 0.1025 0.1080 0.1024 0.1063 0.1084
Maximum 0.7372 0.8182 0.7951 0.8182 0.8182 0.7388

FU,FF̃ 73 Mean 0.2949 0.2742 0.2363 0.2730 0.2963 0.2561
Standard deviation 0.2488 0.2460 0.2008 0.2476 0.2647 0.2033
Minimum 0.1039 0.1002 0.1002 0.1002 0.1025 0.1010
Maximum 1.0000 1.0000 0.9986 0.9995 1.0000 1.0000

FF,FB̃ 5 Mean 0.3240 0.2203 0.4374 0.1385 0.3943 0.4614
Standard deviation 0.2149 0.2327 0.2205 0.0427 0.2251 0.2061
Minimum 0.1028 0.1024 0.1568 0.1014 0.1299 0.1568
Maximum 0.6152 0.6360 0.7059 0.2040 0.6387 0.7050

FF,FŨ 31 Mean 0.5129 0.4306 0.2939 0.3766 0.3988 0.3860
Standard deviation 0.3348 0.3217 0.2521 0.3002 0.3123 0.2961
Minimum 0.1065 0.1018 0.1006 0.1006 0.1025 0.1290
Maximum 0.9986 0.9977 0.9986 1.0000 0.9993 1.0000

FB,FŨ 10 Mean 0.4944 0.3836 0.3678 0.2480 0.4548 0.3811
Standard deviation 0.3536 0.2485 0.2726 0.1975 0.3161 0.3644
Minimum 0.1213 0.1042 0.1042 0.1082 0.1042 0.1150
Maximum 0.9411 0.9372 0.8111 0.7098 0.9411 0.9411

FU,FB̃ 5 Mean 0.6476 0.7350 0.5998 0.3929 0.4688 0.2968
Standard deviation 0.2881 0.3020 0.4216 0.2719 0.3294 0.2456
Minimum 0.1991 0.2511 0.1004 0.1742 0.2106 0.1083
Maximum 1.0000 1.0000 1.0000 0.7761 1.0000 0.6764

BF,BB̃ 10 Mean 0.6308 0.4711 0.4761 0.4533 0.4434 0.3979
Standard deviation 0.2614 0.2282 0.2374 0.3044 0.2800 0.2934
Minimum 0.1127 0.1473 0.1295 0.1225 0.1076 0.1184
Maximum 0.9619 0.7720 0.8154 0.9188 0.7986 1.0000

BU,BB̃ 10 Mean 0.1773 0.3432 0.3537 0.3111 0.2791 0.2886
Standard deviation 0.0693 0.2538 0.2468 0.1705 0.1380 0.1305
Minimum 0.1004 0.1042 0.1595 0.1042 0.1310 0.1310
Maximum 0.3173 0.8807 0.9479 0.6373 0.5054 0.5054

BB,BF̃ 8 Mean 0.4938 0.4817 0.3817 0.4131 0.4529 0.4486
Standard deviation 0.2746 0.2496 0.1985 0.2681 0.3583 0.2510
Minimum 0.1686 0.1559 0.1511 0.1452 0.1274 0.1078
Maximum 0.9682 0.8674 0.6229 0.8674 0.9938 0.8105

BB,BŨ 5 Mean 0.4658 0.2464 0.6215 0.5107 0.4808 0.7015
Standard deviation 0.2281 0.2234 0.3647 0.4382 0.3206 0.2748
Minimum 0.1510 0.1105 0.2193 0.1134 0.1556 0.3341
Maximum 0.7018 0.6415 0.9866 0.9866 0.9740 0.9913

BF,BŨ 8 Mean 0.4576 0.4163 0.5181 0.5219 0.4226 0.2975
Standard deviation 0.3111 0.3606 0.3630 0.3974 0.2713 0.2620
Minimum 0.1025 0.1025 0.1025 0.1025 0.1025 0.1025
Maximum 1.0000 1.0000 1.0000 1.0000 0.9762 0.8350

BU,BF̃ 10 Mean 0.4554 0.3585 0.4184 0.3275 0.3186 0.2405
Standard deviation 0.3380 0.3001 0.3437 0.2552 0.2456 0.1647
Minimum 0.1025 0.1025 0.1025 0.1025 0.1255 0.1025
Maximum 1.0000 1.0000 1.0000 1.0000 0.9617 0.6101

UF,UŨ 36 Mean 0.2941 0.2976 0.4575 0.3430 0.4401 0.4256
Standard deviation 0.2278 0.2752 0.3307 0.2542 0.3243 0.2796
Minimum 0.1025 0.1025 0.1025 0.1021 0.1025 0.1025
Maximum 0.9510 0.9896 1.0000 0.9866 1.0000 0.9906

UB,UŨ 4 Mean 0.4986 0.2586 0.4345 0.2133 0.4877 0.3502
Standard deviation 0.2188 0.2641 0.3168 0.1017 0.4223 0.4182
Minimum 0.1931 0.1204 0.1456 0.1352 0.1148 0.1210
Maximum 0.7108 0.6546 0.7576 0.3558 0.9990 0.9771

UU,UF̃ 35 Mean 0.3689 0.2601 0.5044 0.3249 0.4952 0.4463
Standard deviation 0.2685 0.2124 0.3076 0.2440 0.3160 0.2987
Minimum 0.1015 0.1026 0.1087 0.1103 0.1213 0.1103
Maximum 0.9304 0.9708 1.0000 0.9590 1.0000 1.0000

UU,UB̃ 2 Mean 0.3660 0.4992 0.5934 0.3684 0.5950 0.5504
Standard deviation 0.0673 0.2556 0.5737 0.0639 0.1200 0.6358
Minimum 0.3185 0.3185 0.1878 0.3232 0.5101 0.1009
Maximum 0.4136 0.6799 0.9991 0.4136 0.6799 1.0000

UF,UB̃ 5 Mean 0.3804 0.3449 0.5306 0.3003 0.4033 0.4718
Standard deviation 0.3757 0.2274 0.3897 0.3399 0.3551 0.4554
Minimum 0.1365 0.1410 0.1365 0.1368 0.1365 0.1365
Maximum 1.0000 0.6197 1.0000 0.9079 1.0000 1.0000

UB,UF̃ 9 Mean 0.3423 0.3640 0.3880 0.3694 0.4194 0.4466
Standard deviation 0.3754 0.2947 0.3015 0.3101 0.3354 0.3532
Minimum 0.1038 0.1200 0.1056 0.1056 0.1348 0.1348
Maximum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1. Note that the above table is supplementary to Table 8.

2. The reported number of sub-populations R̂ refers to those intervals where the grid search algorithm employed converged to a subinterval
with at least one treated and at least two untreated observations to ensure the identification requirement for sub-population-specific
local constant regression estimates of the mean treatment parameter on the treated. The minimum cutoff probability is set to � = 0.1.



Table A.3.a: Monte-Carlo cutoff probabilities of a type I error under homogeneous treatment effects
model conditional on observable characteristics according to Table 10 (local linear estimator)

Initial state exchange rate regime is freely floating

P-value FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

0.5 0.003588 0.088780 1.745033 7.087390 0.022410 1.685495
0.4 0.004309 0.144315 1.911719 15.673199 0.028710 2.080119
0.3 0.007785 0.172653 2.473584 15.840049 0.035864 2.613189
0.2 0.009854 0.211893 4.306368 20.862979 0.042652 3.382499
0.15 0.010408 0.230870 4.540957 21.018914 0.047554 3.946179
0.1 0.011078 0.250529 6.263743 22.061207 0.060944 4.727414
0.05 0.023859 0.272455 6.439683 22.310780 0.072659 6.065987
0.01 0.026175 0.299986 8.172912 27.318576 0.096814 9.024355
0.001 0.027351 0.324312 8.187630 27.569707 0.116209 12.913621
0.0001 0.027926 0.343707 8.195470 27.830175 0.132764 15.453836

Initial state exchange rate regime is currency band

P-value BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

0.5 0.017642 0.053711 0.886459 0.033915 0.194762 13.616267
0.4 0.023799 0.061991 1.050672 0.126169 0.236127 14.335145
0.3 0.027589 0.070035 1.252895 0.149808 0.263848 19.851686
0.2 0.030885 0.081569 1.529680 0.177528 0.303403 26.171081
0.15 0.032785 0.090530 1.720614 0.192171 0.337662 27.836446
0.1 0.035130 0.160745 1.983591 0.208517 0.377798 31.158695
0.05 0.038784 0.182366 2.419126 0.233524 0.468652 33.125687
0.01 0.047495 0.205122 3.361928 0.273186 0.605699 41.571677
0.001 0.056536 0.221639 4.554662 0.313049 0.672234 44.311811
0.0001 0.061888 0.231844 5.510080 0.365844 0.715352 46.003185

Initial state exchange rate regime is currency peg or union

P-value UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

0.5 0.161905 0.000633 0.251999 0.000240 0.145377 1.894255
0.4 0.183952 0.000724 0.316621 0.000276 0.248689 15.825827
0.3 0.212000 0.000829 0.373657 0.000318 0.351624 16.462965
0.2 0.255887 0.000965 0.426936 0.000373 0.422037 17.094595
0.15 0.286277 0.001057 0.457470 0.000410 0.459277 17.401181
0.1 0.322771 0.001183 0.494627 0.000461 0.496720 17.847468
0.05 0.371431 0.001385 0.548335 0.000540 0.546789 18.233908
0.01 0.464020 0.001841 0.653986 0.000682 0.633481 19.208048
0.001 0.586643 0.002373 0.789634 0.000858 0.729961 19.970333
0.0001 0.658769 0.002736 0.900501 0.001042 0.794562 20.163348

1. For each estimated sub-population, the reported above Monte-Carlo cutoff values were estimated
as suggested by Heckman, Smith, and Clements (1997). (They give a detailed description in
their Appendix E.)

2. The given estimates are based on 100,000 random samples drawn from the blocks of imputed
control observations as defined by the respective sub-populations. Hence, for each block the size
of each random sample is about one third the size of the actual sample size. As in analogy to
Heckman, Smith, and Clements (1997), also treated observations are generated by sampling from
the imputed control sample and then adding a constant in order to simulate the distribution of
the test-statistic under the null hypothesis.

3. Hence, for each Monte-Carlo draw the lower bound for the sub-population-specific standard
deviation is calculated (assuming perfect positive dependence among marginals conditional on
observable characteristics).

4. Finally, the respective quantiles of the simulated distribution of the test-statistic under the null
are assigned the corresponding probabilities as reported in the above table.



Table A.3.b: Monte-Carlo cutoff probabilities of a type I error under homogeneous treatment
effects model conditional on observable characteristics according to Table 10 (local linear regression
adjusted estimator)

Initial state exchange rate regime is freely floating

P-value FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

0.5 0.003249 0.089344 1.744333 7.445375 0.022415 1.742154
0.4 0.003821 0.143735 1.910408 16.013042 0.028029 2.157002
0.3 0.007584 0.172988 2.471141 16.174916 0.035301 2.717412
0.2 0.009433 0.211269 4.294380 21.281581 0.042336 3.513874
0.15 0.009822 0.228961 4.533644 21.433316 0.047327 4.098593
0.1 0.010929 0.248568 6.253418 22.501497 0.058592 4.928729
0.05 0.021787 0.271635 6.429297 22.745029 0.070225 6.350460
0.01 0.024634 0.300211 8.160419 27.849089 0.094288 9.445191
0.001 0.025401 0.325216 8.176291 28.092911 0.110311 13.236050
0.0001 0.025892 0.343356 8.185038 28.405210 0.121168 16.790024

Initial state exchange rate regime is currency band

P-value BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

0.5 0.018349 0.067016 1.065828 0.035047 0.142281 6.188985
0.4 0.022019 0.076207 1.302415 0.149666 0.163338 6.831437
0.3 0.025161 0.084535 1.606460 0.173358 0.189195 8.807162
0.2 0.028312 0.097123 1.957509 0.194380 0.220492 11.969711
0.15 0.030210 0.107188 2.183693 0.206682 0.245895 12.875629
0.1 0.032635 0.220257 2.492642 0.221216 0.292678 13.986477
0.05 0.036357 0.242293 3.001361 0.242649 0.373395 15.401100
0.01 0.045624 0.267892 4.028799 0.284503 0.464557 19.124707
0.001 0.054525 0.287514 5.133432 0.326049 0.548122 21.346663
0.0001 0.059238 0.297785 6.257850 0.367674 0.614857 22.939759

Initial state exchange rate regime is currency peg or union

P-value UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

0.5 0.164033 0.000642 0.241045 0.000271 0.165802 1.433355
0.4 0.187218 0.000741 0.292670 0.000317 0.210747 15.642348
0.3 0.216158 0.000857 0.338450 0.000366 0.273589 16.604562
0.2 0.261545 0.001013 0.382870 0.000433 0.359517 16.921856
0.15 0.292160 0.001120 0.409342 0.000480 0.420033 17.256995
0.1 0.328559 0.001271 0.440785 0.000551 0.491771 17.891317
0.05 0.378451 0.001519 0.485911 0.000666 0.573272 18.159828
0.01 0.469380 0.002070 0.569899 0.000838 0.679153 19.171004
0.001 0.597057 0.002705 0.670463 0.001001 0.785365 19.588519
0.0001 0.657588 0.003237 0.757224 0.001159 0.873714 19.697337

1. For each estimated sub-population, the reported above Monte-Carlo cutoff values were estimated
as suggested by Heckman, Smith, and Clements (1997). (They give a detailed description in
their Appendix E.)

2. The given estimates are based on 100,000 random samples drawn from the blocks of imputed
control observations as defined by the respective sub-populations. Hence, for each block the size
of each random sample is about one third the size of the actual sample size. As in analogy to
Heckman, Smith, and Clements (1997), also treated observations are generated by sampling from
the imputed control sample and then adding a constant in order to simulate the distribution of
the test-statistic under the null hypothesis.

3. Hence, for each Monte-Carlo draw the lower bound for the sub-population-specific standard
deviation is calculated (assuming perfect positive dependence among marginals conditional on
observable characteristics).

4. Finally, the respective quantiles of the simulated distribution of the test-statistic under the null
are assigned the corresponding probabilities as reported in the above table.



Table A.3.c: Monte-Carlo cutoff probabilities of a type I error under homogeneous treatment effects
model conditional on observable characteristics according to Table 10 (local constant estimator)

Initial state exchange rate regime is freely floating

P-value FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

0.5 0.001266 0.031926 0.000703 0.182605 0.011356 0.146495
0.4 0.001483 0.036003 0.000813 0.214611 0.014044 0.174132
0.3 0.001707 0.041120 0.000955 0.259694 0.022909 0.213248
0.2 0.001958 0.050409 0.001156 0.333166 0.028078 0.252635
0.15 0.002114 0.055808 0.001304 0.383729 0.031054 0.277329
0.1 0.002332 0.064193 0.001514 0.452177 0.034160 0.312717
0.05 0.004261 0.072999 0.001879 0.565123 0.039519 0.370234
0.01 0.005491 0.085332 0.002654 0.761456 0.055437 0.489905
0.001 0.006106 0.093992 0.003659 0.959717 0.066798 0.636520
0.0001 0.006455 0.100132 0.004380 1.090795 0.070772 0.746074

Initial state exchange rate regime is currency band

P-value BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

0.5 0.014692 0.021406 1.003787 0.018034 0.184550 0.070136
0.4 0.023977 0.025303 1.028886 0.021364 0.214208 0.131800
0.3 0.027759 0.029767 1.055923 0.025345 0.247276 0.141551
0.2 0.030855 0.034060 1.562160 0.030472 0.296751 0.150032
0.15 0.032625 0.037103 1.683084 0.033951 0.322900 0.155004
0.1 0.034748 0.041006 1.734107 0.038788 0.360853 0.161022
0.05 0.037983 0.046259 1.859979 0.046098 0.453426 0.170198
0.01 0.043868 0.056383 2.093900 0.059342 0.590190 0.189097
0.001 0.049221 0.068143 2.117615 0.074689 0.677024 0.212424
0.0001 0.053433 0.076358 2.123738 0.087303 0.744728 0.232674

Initial state exchange rate regime is currency peg or union

P-value UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

0.5 0.129411 0.000481 0.241705 0.000158 0.043357 0.325104
0.4 0.147112 0.000547 0.259594 0.000185 0.048719 0.858443
0.3 0.168008 0.000625 0.281029 0.000218 0.054747 0.936748
0.2 0.192361 0.000728 0.309075 0.000262 0.062118 1.011051
0.15 0.206124 0.000797 0.328636 0.000292 0.066596 1.043352
0.1 0.226563 0.000889 0.355161 0.000335 0.072331 1.093898
0.05 0.257220 0.001039 0.399977 0.000406 0.080855 1.167196
0.01 0.312166 0.001375 0.504750 0.000566 0.098231 1.301958
0.001 0.364009 0.001813 0.650699 0.000775 0.119293 1.446719
0.0001 0.394360 0.002097 0.807999 0.001000 0.137826 1.480472

1. For each estimated sub-population, the reported above Monte-Carlo cutoff values were estimated
as suggested by Heckman, Smith, and Clements (1997). (They give a detailed description in
their Appendix E.)

2. The given estimates are based on 100,000 random samples drawn from the blocks of imputed
control observations as defined by the respective sub-populations. Hence, for each block the size
of each random sample is about one third the size of the actual sample size. As in analogy to
Heckman, Smith, and Clements (1997), also treated observations are generated by sampling from
the imputed control sample and then adding a constant in order to simulate the distribution of
the test-statistic under the null hypothesis.

3. Hence, for each Monte-Carlo draw the lower bound for the sub-population-specific standard
deviation is calculated (assuming perfect positive dependence among marginals conditional on
observable characteristics).

4. Finally, the respective quantiles of the simulated distribution of the test-statistic under the null
are assigned the corresponding probabilities as reported in the above table.



Table A.4: Test for heterogeneous treatment effects on the treated conditional on observable characteristics (robust version)

Initial state exchange rate regime is freely floating

FB,FF̃ FU,FF̃ FF,FB̃ FF,FŨ FB,FŨ FU,FB̃

Local linear matching 4.4325∗∗∗ 38.4077∗∗∗ 4.4076 27.7566∗∗∗ 1.5273∗∗∗ 9.1459∗∗∗

Local linear regression adjusted matching 4.4631∗∗∗ 38.5102∗∗∗ 4.4413 27.7425∗∗∗ 1.5377∗∗∗ 9.3761∗∗∗

Local constant matching 4.4344∗∗∗ 38.4245∗∗∗ 2.2350∗∗∗ 22.2173∗∗∗ 1.5421∗∗∗ 0.7752∗∗∗

Initial state exchange rate regime is currency band

BF,BB̃ BU,BB̃ BB,BF̃ BB,BŨ BF,BŨ BU,BF̃

Local linear matching 1.8370∗∗∗ 0.7083∗∗∗ 5.4662∗∗∗ 1.6320∗∗∗ 0.5034∗∗∗ 7.2517∗∗∗

Local linear regression adjusted matching 1.8473∗∗∗ 0.7321∗∗∗ 5.3076∗∗∗ 1.7380∗∗∗ 0.4194∗∗∗ 3.5912∗∗∗

Local constant matching 1.8562∗∗∗ 0.7402∗∗∗ 2.4357∗∗∗ 2.1051∗∗∗ 0.6794∗∗∗ 0.4728∗∗∗

Initial state exchange rate regime is currency peg or union

UF,UŨ UB,UŨ UU,UF̃ UU,UB̃ UF,UB̃ UB,UF̃

Local linear matching 6.0222∗∗∗ 0.9058∗∗∗ 3.5101∗∗∗ 0.6584∗∗∗ 1.0009∗∗∗ 0.3468∗∗∗

Local linear regression adjusted matching 6.0481∗∗∗ 0.9293∗∗∗ 3.5892∗∗∗ 0.7079∗∗∗ 1.1792∗∗∗ 0.3690∗∗∗

Local constant matching 6.1773∗∗∗ 0.9180∗∗∗ 9.4416∗∗∗ 0.7192∗∗∗ 2.2471∗∗∗ 0.3587∗∗∗

1. Under the null hypothesis of homogeneous treatment effects, once we know xij1 ∈ �r, the lower bound for the standard
deviation of the distribution of treatment impacts should not be significantly different from zero for each of the estimated
sub-populations. Hence, the reported significance indicates whether those estimates are statistically different from zero, and
therefore rejection of the null indicates heterogeneous treatment effects on the treated conditional on xij1 ∈ �r.

2. The above reported numbers are the sub-population sums over the estimates for the lower bound of the standard deviation
for the distribution of the treatment effect on the treated with respect to the compared outcomes. Estimation results were
obtained as suggested by the procedure in Heckman, Smith, and Clements (1997) accommodated for the need to control for
within-sub-population differences in the conditioning sets. Hence, we base computation of the test statistic on the variation in
the estimated treatment effects on the treated net off the variation explained by deviations from the vector of sub-population
medians. Hence, the above results are based on the therefore obtained residual variation.

3. As suggested in Heckman, Smith, and Clements (1997), we estimate Monte-Carlo cutoff values for rejection of the null stated
in expression (2) in Section 3.4.3. The estimated values are given in the Appendix.



Figure A.1.a: Sub-population-specific potential outcomes when initial state exchange rate regime is freely floating
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0.69 0.78 0.82 0.88 0.94 0.98

−4

−3

−2

−1

0

1

2

3

4

5

6

�
��
��
��
��

��
��
��

��
�
�
�
��

��
�
�
��
��

��
��

��
��
�

� ��������������������� �������� ��� �� ����� �� � �

FB,FŨ
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1. Observed sequence ��� in black and imputed control observations for sequence �̃�� in red; control observations imputed by local linear
propensity score matching.

2. The abscissa plots the conditional probabilities to receive treatment evaluated at the vector of median characteristics as associated
with the respective sub-population as summarized within Table 8.



Figure A.1.b: Sub-population-specific potential outcomes when initial state exchange rate regime is currency band
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1. Observed sequence ��� in black and imputed control observations for sequence �̃�� in red; control observations imputed by local linear
propensity score matching.

2. The abscissa plots the conditional probabilities to receive treatment evaluated at the vector of median characteristics as associated
with the respective sub-population as summarized within Table 8.



Figure A.1.c: Sub-population-specific potential outcomes when initial state exchange rate regime is currency peg or union
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1. Observed sequence ��� in black and imputed control observations for sequence �̃�� in red; control observations imputed by local linear
propensity score matching.

2. The abscissa plots the conditional probabilities to receive treatment evaluated at the vector of median characteristics as associated
with the respective sub-population as summarized within Table 8.
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