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Abstract

We propose a method for modifying a given density forecast in a way that incorporates

the information contained in theory-based moment conditions. An example is "improving" the

forecasts from atheoretical econometric models, such as factor models or Bayesian VARs, by

ensuring that they satisfy theoretical restrictions given for example by Euler equations or Taylor

rules. The method yields a new density (and thus point-) forecast which has a simple and

convenient analytical expression and which by construction satisfies the theoretical restrictions.

The method is flexible and can be used in the realistic situation in which economic theory does not

specify a likelihood for the variables of interest, and thus cannot be readily used for forecasting.

1 Introduction

A survey of the literature on macroeconomic forecasting over the past couple of decades reveals two

general and opposite trends. On the one hand, the vast majority of the literature has focused on

"atheoretical" econometric models that are able to capture both the dynamics of a variable and the

interdependencies among variables in a way that results in accurate forecasts. One of the lessons

learned from this strand of the literature is that accurate forecasting relies in great part on being

able to extract the information contained in large datasets while at the same time avoiding the

curse of dimensionality, which is the common theme of various econometric methods that have now

become standard tools in the forecaster toolbox, such as factor models (Stock and Watson, 2002,

Forni, Hallin, Lippi, and Reichlin, 2000), Bayesian VARs (BVARs, e.g., Litterman, 1986; Giannone,

Lenza, and Primiceri, 2010) and forecast combination such as Bayesian Model Averaging (Raftery,

Madigan, and Hoeting, 1997; Aiolfi, Capistrán Carmona, and Timmermann, 2010), bagging (Inoue

and Kilian, 2008), and other similar techniques. On the other hand, some forecasters, in particular at

central banks and policy institutions, have become increasingly dissatisfied with the inability of these
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econometric models to "tell a story" (Edge, Kiley and Laforte, 2008). A small "theoretical" literature

has thus emerged that tries to address these concerns and suggests forecasting using theory-based

models directly, such as Dynamic Stochastic General Equilibrium models (DSGEs, e.g., Smets and

Wouters, 2003; Edge, Kiley, and Laforte, 2010; Christoffel, Coenen, and Warne, 2010) or no-arbitrage

affine term structure models (Ang and Piazzesi, 2003). One major limitation of this approach, which

the methods that we propose in this paper overcome, is that economic theory typically only provides

a set of partial- or general-equilibrium restrictions that are moreover nonlinear, which implies that in

general a likelihood for the variables of interest is not known and the model must be approximated

before it can be used for forecasting. A final branch of the literature has considered "hybrid"

approaches which for example use the theoretical model to form priors to impose on the parameters

of the econometric model (An and Schorfheide, 2007; Schorfheide, 2000) or construct an optimal

combination of the theoretical and econometric models (Del Negro and Schorfheide, 2004; Carriero

and Giacomini, 2011).

The motivation for this paper is similar to that of the "hybrid" approach, since our premise is

that it is legitimate to ask whether economic theory can be useful for forecasting, but we also argue

that one should not discard what has been learned from decades of forecasting with atheoretical

econometric models. We depart from the "hybrid" literature by considering an environment in which

a forecaster has a way to generate density forecasts for a vector of economic variables (for example

using BVARs or factor models) and also has a set of theoretical restrictions expressed as (nonlinear)

moment conditions which are typically not satisfied by the initial density forecasts. These moment

conditions could for example be Euler equations or moment conditions implied by Taylor rules.

One key feature of our approach is that it does not require the theoretical restrictions to specify

a likelihood for the variables of interest. In fact, the typical situation that a forecaster encounters

is that the econometric model uses a large number of predictors (often hundreds for factor models

and BVARs) but the theoretical restrictions only involve a small number of variables. Further,

economic theory often only suggests partial equilibrium restrictions or, even in the context of general

equilibrium models, one might want to focus on only a subset of the equations in the model. In both

the "theoretical" and the "hybrid" literatures, instead, the key assumption is that the theoretical

model specifies a likelihood for all the variables in the system, which is problematic since for the vast

majority of economic models, such as DSGEs, the exact likelihood is not known due to the model

being highly nonlinear. The necessity to obtain a likelihood in the existing literature means that in

practice one needs to approximate the model by linearizing it around the steady-state and adding

distributional assumptions on the errors. One undesirable consequence of this focus on likelihoods is

that the theoretical models which are currently considered in the literature are only approximations
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of the truth which moreover do not necessarily satisfy the restrictions implied by the theory.

In a nutshell, we propose the following procedure for forecasting the vector Yt+h based on the

information set Ωt, when there are a set of theory-based moment restrictions that are assumed to be

valid for all t :

Et[g(Yt+h, θ0)] = 0. (1)

The subscript t indicates conditioning on Ωt and θ0 is assumed to be known, calibrated, or estimated

on a different data set than the one used for forecasting. The moment conditions could involve only

a subset of the variables in Yt+h.

1. For each t = 1, ..., T − h (where for example t = 1, ..., T − h is the out-of-sample portion of the

available sample), start with an econometric model that does not in general satisfy the moment

conditions but is known to give accurate forecasts (e.g., a BVAR or a factor model), and let

ft(yt+h) be the density forecast implied by the model at time t.

2. Project ft(yt+h) onto the space of distributions that satisfy the moment conditions. Proposition

1 shows that this projection step yields a new density �ft(yt+h) which is known in closed form

and is given by
�ft(yt+h) = ft(yt+h) exp

�
ηt + λ�

tg(yt+h, θ0)
�
. (2)

The new density by construction satisfies the moment conditions (1).

3. Estimate ηt and λt by (numerically) solving the following equations:

λt = min
λ

�
ft(x) exp

�
λ�g(x, θ0)

�
dx (3)

ηt = log

��
ft(x) exp

�
λ�
tg(x, θ0)

�
dx

�−1

and use this new density for (point- or density-) forecasting.

The "projected" or "tilted" density �ft(yt+h) can be interpreted as the density which, out of all the

densities that satisfy the moment conditions Et[g(Yt+h, θ0)] = 0, is the closest to the initial density

ft(yt+h) according to a Kullback-Leibler measure of divergence (see, e.g., White (1996)). Note

that the theoretical restrictions will in typical applications involve only a subset of the components

of Yt+h, but, because of the likely dependence among the variables in the system, imposing the

moment conditions on the joint density of Yt+h potentially affects all the conditional densities and

thus the forecast for each variable. Moreover, the projected density will by construction reflect

any nonlinearity in the dependence among the component of Yt+h that is specified by the moment

conditions. Such nonlinearity is difficult to capture using existing methods due to the fact that the

moment conditions only give partial information about the joint distribution of the variables.
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The parameter ηt is an integration constant that ensures that (2) is a well-defined density. As

we show in Section 2, ηt can also be related to the relative Kullback Leibler Information Criterion

(KLIC), which measures the relative divergence of the original and the projected densities from the

true density. In the context of out-of-sample forecast evaluation, the relative KLIC equals the relative

logarithmic scoring rule which forms the basis for the test of equal density forecast accuracy proposed

by Amisano and Giacomini (2007).

The vector λt represents the weights assigned to each moment condition, and, loosely speaking, it

can be interpreted as a measure of the importance of each theoretical restriction, since a λt close to

zero indicates that the original model almost satisfies the moment conditions, whereas large values of

λt suggest that the initial density requires a large amount of tilting in order to satisfy the theoretical

restrictions.

It is important to note that the procedure yields a new density which has a known analytical form

but in general is not a member of a known family (for example, even though the initial density is

normal in typical applications to macroeconomic forecasting, the projected density will not be normal

in all but a few special cases). The fact that our method gives a density that is not in the same family

as the original density forecast is a useful feature of our approach, as it allows one to understand the

effects of imposing theoretical restrictions on the entire shape of the distribution, rather than just

focusing on the first and possibly second moment, as is typically done in the literature.

To gain some insight into how the projection step modifies a density forecast and why this could

result in an improvement in accuracy, we show in Figure 1 an actual example from our empirical

application. The figure shows two out-of-sample density forecasts for CPI at one particular point in

time: the histogram is the one-step-ahead density forecast of CPI implied by an "atheoretical" BVAR

for CPI, GDP, nondurable and service real consumption (Ct), the federal funds rate and the real yield

of a one year bond Rt. The dashed line is the density forecast obtained by incorporating into the

BVAR the Euler condition Et

�
0.96

�
Ct+1

Ct

�−2
(1 +Rt+1)− 1

�
= 0, using our projection method. The

vertical line represents the realization of the variable.

[Figure 1 about here.]

As one can see from the figure, in this instance the incorporation of the Euler equation restrictions

does not seem to modify the shape of the BVAR density but rather it shifts it and almost centers it

around the actual realization of the variable, thus yielding a substantially more accurate point- and

density forecast.
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2 Motivating example

This section shows a simple example where an analytical expression for the projected density can be

easily obtained, which provides some intuition for our method. Suppose that the true conditional

density ht (yt+1) of the variable of interest Yt+1 is unknown apart from its conditional mean µt, which

implies the moment condition Et [Yt+1 − µt] =
�
(yt+1 − µt)ht(yt+1)dyt+1 = 0. In this example µt

can be time-varying or constant, and the only simplifying assumption is that µt is known or estimated

using a different dataset than the one on which the density forecasts are evaluated. For example, µt

could be pinned down by economic theory or depend on structural parameters that are calibrated or

estimated using microeconometric data, or in this simple example it could represent, e.g., the mean

forecast from a survey of professional forecasters.

Suppose that one has available a sequence of one-step-ahead density forecasts {ft(yt+1)}T−1
t=1

∼ N(�µt, 1), which do not necessarily satisfy the moment conditions in that �µt may be different from

µt. In order to obtain a new sequence of density forecasts which by construction have the correct

mean, our procedure suggests projecting ft(yt+1) onto the space of densities with mean µt at each

t = 1, ..., T − 1, which yields a sequence of new density forecasts �ft(yt+1) :

�ft(yt+1) = ft(yt+1) exp {ηt + λt(yt+1 − µt)} (4)

=
1√
2π

exp

�
−1

2
(yt+1 − �µt)

2 + ηt + λt(yt+1 − µt)

�
.

In this simple case one can find analytical expressions for λt and ηt :

λt = µt − �µt (5)

ηt =
1

2
(µt − �µt)

2,

which shows that λt and ηt are related to the degree of misspecification in the conditional mean of

the initial forecast, with the limiting case ηt = λt = 0 occurring when the initial density satisfies the

moment conditions and thus no projection is necessary. In this simple example of a mean restriction

on a single variable the projection step simply recenters the density forecast at the theoretical mean.

It also happens that the projected density (4) is a normal with mean µt and variance 1, but the

projected density is no longer normal as soon as one considers a different type of (e.g., nonlinear)

moment condition or a non-normal initial density. In more realistic scenarios in which the initial

density is multivariate the projection step will in general affect both the marginal densities and the

dependence among the variables. For example, in the empirical application in Section 4 we show how

to impose the restrictions implied by the Euler equation on a multivariate density forecast implied

by a BVAR.
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Since the Euler equation imposes a nonlinear restriction on the joint density of consumption and

interest rates, the projected density forecast will by construction reflect the nonlinear dependence

structure implied by the Euler equation as well as its effects on the conditional density of each variable

in the VAR. Note that, because of the nonlinearity of the Euler equation and the fact that it only

gives partial information about the distribution of the variables involved, it is otherwise challenging

to construct a multivariate conditional density that satisfies these restrictions.

Besides representing the integration constant, ηt can also be related to the "local relative Kullback

Leibler information criterion" ∆KLICt considered by Giacomini and Rossi (2010), which in this case

measures the relative divergence of the initial and the projected densities from the true density:

∆KLICt = E [log ht (Yt+1) /ft (Yt+1)]− E
�
log ht (Yt+1) / �ft (Yt+1)

�
(6)

= E
�
log �ft (Yt+1)− log ft (Yt+1)

�
= E [ηt + λt(Yt+1 − µt)]

= E [Et [ηt + λt(Yt+1 − µt)]] = E [ηt] .

In the context of an out-of-sample evaluation exercise where ft is the density forecast and Yt+1 the

realization of the variable, one can further interpret (6) as a measure of the relative accuracy of

the density forecasts �ft (yt+1) and ft (yt+1) , according to a logarithmic scoring rule, as proposed

by Amisano and Giacomini (2007). One can see from (5) that E [ηt] ≥ 0, which implies that the

projected density is always weakly closer to the truth and the projected density forecast is weakly

more accurate than the initial density forecast. We prove in Proposition 2 below that this result is

valid in general.

3 Projected density forecasts

In this section we show how to incorporate theoretical restrictions expressed in the form of moment

conditions into an existing density forecast, such as that implied by an theoretical econometric model.

Let Yt be a n× 1 vector of variables of interest, and suppose the user has available a sequence of

h−step ahead density forecasts {ft(yt+h)}T−h
t=1 , where the index t reflects the fact that the density

forecasts are based on the information set at time t and are thus typically time-varying, either in

their parameters, or, less commonly, in their functional form. The forecasts can be, but are not

necessarily, obtained by estimating some econometric model in an out-of-sample fashion, in which

case t = 1 is the first out-of-sample observation and T − h is the size of the out-of-sample portion

of the sample. Even though we don’t make it explicit for notational convenience, the forecasts in

this case will depend on parameters estimated using in-sample data by any of the three schemes

usually employed in the literature: a fixed scheme (where all forecasts depend on the same in-sample
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parameters estimated using data up to time t = 1), rolling scheme (the time-t forecast depends

on parameters estimated using the most recent R observations, for some arbitrary R) or recursive

scheme (the time-t forecast depends on parameters estimated using all observations in the sample

up to time t).

We assume that the user wishes to incorporate in the forecasts a set of theoretical restrictions

given by k moment conditions:

Et[g(Yt+h, θ0)] = 0, (7)

which could for example be (a subset of) the equilibrium conditions from a structural economic

model, such as Euler conditions.

We allow for the possibility that the moment conditions only involve a subset of the components

of Yt.

A key simplifying assumption that we make in the paper is that θ0 is either known (e.g., g (·) are

moments of the distribution from surveys of forecasters data), calibrated (e.g., g (·) are equilibrium

conditions from a calibrated structural model) or estimated on a different data set than the one on

which the forecasts are evaluated (e.g., θ0 are deep parameters characterizing tastes and technology

that can be estimated using microeconometric data). In addition, for example when some of the

parameters do not have an obvious structural interpretation, θ0 could be estimated using in-sample

data, in which case the moment conditions should be interpreted as being conditional on the in-sample

parameter estimate �θt, so that the theoretical restriction (7) becomes

Et[g(Yt+h,�θt)] = 0. (8)

The starting point and motivation for our procedure is the acknowledgment that the initial density

forecasts ft do not necessarily satisfy the moment conditions (7), in the sense that
�
g(x, θ0)ft(x)dx

may not be zero at time t. In order to incorporate the information contained in the theoretical

restrictions, we propose projecting each density forecast onto the space of densities that satisfy

the moment conditions, which yields a new sequence of density forecasts
�
�ft(yt+h)

�T−h

t=1
that by

construction satisfy the moment conditions. The projected density forecast at time t, �ft(yt+h), is

the (unique) density which, out of all the densities that satisfy the moment conditions, is the closest

to the initial density ft(yt+h) according to a Kullback-Leibler measure of divergence. The following

proposition shows how to construct the projected density forecasts.

Proposition 1. If a a solution �ft (yt+h) to the constrained minimization

min
ht∈H

�
log

ht(x)

ft(x)
ht(x)dx (9)

s.t.

�
g(x, θ0)ht(x)dx = 0,
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exists, then it is unique and it is given by

�ft (yt+h) = ft(yt+h) exp
�
ηt + λ�

tg(yt+h, θ0)
�
, (10)

where ηt and λt solve

λt = min
λ

�
ft(x) exp

�
λ�g(x, θ0)

�
dx (11)

ηt = log

��
ft(x) exp

�
λ�
tg(x, θ0)

�
dx

�−1

.

Proof. The optimization problem can be restated as

min
ht∈H

�
γ

�
ht(x)

ft(x)

�
ft(x)dx (12)

s.t.

�
g(x, θ0)ht(x)dx = 0,

where γ(u) = u log u, is a convex function. By convexity, we have that γ(u) � γ(v) + γ�(v)(u − v).

Let ht(x) be any feasible density. Feasible means that
�
g(x, θ0)f̃t(x)dx = 0. Then, when evaluated

at u = ht(x)/ft(x) and v = f̃t(x)/ft(x) = exp(ηt+λtg(x, θ0)), the inequality above can be rewritten

as

γ

�
ht(x)

ft(x)

�
� γ

�
f̃t(x)

ft(x)

�
+
�
ηt + λ�

tg(x, θ0) + 1
� �

ht(x)/ft(x)− f̃t(x)/ft(x)
�
. (13)

Integrating both sides with respect to ft(x), and using the feasibility of ht(x) and the optimality of

f̃t(x), we obtain
�

γ

�
ht(x)

ft(x)

�
ft(x)dx �

�
γ

�
f̃t(x)

ft(x)

�
ft(x)dx, (14)

from which the result follows.

Proposition 1 does not give conditions for the existence of the density. More simply it says that,

if a solution exists, it must be of the exponential form given in (10). In facts, giving conditions under

which the solution to the constrained optimization exists is a nontrivial task. A sufficient condition

is that the set of densities satisfying the moment conditions is closed. The problem in (10) is often

referred to as a (constrained) maximum entropy problem, see, among other, Jaynes (1968); Csiszár

(1975); Golan et al. (1996); Golan (2002, 2008); Maasoumi (1993, 2007).

The construction of the projected density at each step t in practice can be carried out by numer-

ically approximating the integrals in (11) and thus implementing the following steps:

1. For each t = 1, ..., T − h, generate S draws
�
yst+h

�S

s=1
from ft(yt+h)

2. Solve λt = minλ
1
S

�S
s=1 ft(y

s
t+h) exp

�
λ�g(yst+h, θ0)

�

8



3. Let ηt = log
�

1
S

�S
s=1 ft(y

s
t+h) exp

�
λ�
tg(y

s
t+h, θ0)

��−1

The following proposition shows that the projected density forecast obtained by the method

just described is weakly more accurate than the initial forecast, when accuracy is measured by the

logarithmic scoring rule (e.g., Amisano and Giacomini, 2007).

Proposition 2. Consider the logarithmic scoring rule for the h−step ahead density forecast ft :

L(ft, Yt+h) = log ft(Yt+h),

where Yt+h is the realization of the variable at time t+ h. A density forecast ft is more accurate the

larger the expected value of L(ft, Yt+h). If Et[g(Yt+h, θ0)] = 0 for all t, then

E
�
L
�
�ft, Yt+h

�
− L (ft, Yt+h)

�
≥ 0 for all t.

Proof. Note that

E
�
L
�
�ft, Yt+h

�
− L (ft, Yt+h)

�
= E

�
log ft(Yt+h) + ηt + λ�

tg(Yt+h, θ0)− log ft(Yt+h)
�

= E
�
Et

�
ηt + λ�

tg(Yt+h, θ0)
��

= E [ηt] .

We show that ηt � 0, for each t, which in turn implies that E[ηt] ≥ 0. By the information inequality

(e.g., Theorem 2.3 of White (1996)) we have that
�

log
�ft(x)
ft(x)

�ft(x)dx � 0,

with equality if and only ft = �ft, almost surely. Since �ft(x) = exp(ηt+λtg(x, θ0))ft(x), we have that

0 �
�

log
�ft(x)
ft(x)

�ft(x)dx =

�
log

exp(ηt + λtg(x, θ0))ft(x)

ft(x)
�ft(x)dx

=

�
log exp(ηt + λtg(x, θ0)) �ft(x)dx =

�
ηt �ft(x)dx+ λt

�
g(x, θ0) �ft(x)dx

= ηt,

where the last equality follows from the fact that �ft(x) satisfies the moment conditions by construc-

tion.

4 Empirical illustration: incorporating Euler equation restrictions

into BVARs

In this section we show an application of our techniques to macroeconomic forecasting using the US

dataset described by Stock and Watson (2008). This dataset has been widely investigated, and a
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number of econometric methods have been shown to produce accurate forecasts, including forecast

combinations, factor models and Bayesian shrinkage. All of these methods tend to perform equally

well in applications (e.g., Giacomini and White, 2006 and De Mol, Giannone, and Reichlin, 2008),

so we choose one method, a BVAR, as representing the best currently known method for forecasting

key macroeconomic variables in the Stock and Watson (2008) dataset. The goal of this application is

to ask whether the already accurate but "atheoretical" forecasts based on the BVAR can be further

improved by incorporating the economic restrictions embedded in a simple Euler equation.

Our starting point is the sequence of h−step ahead density forecasts based on the model consid-

ered by Giannone, Lenza and Primiceri (2010), which is a BVAR(4):

Yt = C +B1Yt−1 + . . .+BpYt−4 + εt (15)

εt ∼ N(0,Σ)

with a prior that is a natural conjugate variant of the Minnesota prior of Doan et al. (1984) and

Litterman (1986), also considered by Banbura et al. (2010). This variant shrinks all VAR coefficients

towards zero except for coefficients on the own lags of each component of Yt, which are either set to

one (for variables that exhibit persistence) or to zero (for close to stationary variables). The degree

of shrinkage is controlled by a single hyperparameter. See Giannone et al. (2010) for details on the

model and the priors. Note that the BVAR predictive density for the one-step ahead forecast is a

multivariate normal, whereas for longer horizons the predictive density is obtained by simulation.

We will present results for various forecast horizons h. The BVAR point forecasts are the expected

value of the predictive density

Ef
t Yt+h =

�
yt+hft(yt+h)dyt+h, (16)

which can be approximated by the average of the draws:

�Y f
t+h =

1

S

S�

s=1

yst+h. (17)

The theoretical moment restriction that we seek to incorporate into the BVAR density forecasts

is the Euler equation:

Et

�
β

�
Ct+1

Ct

�−α

(1 +Rt+1)− 1

�
= 0, (18)

which for the h−step forecast horizon implies

Et

�
β

�
Ct+h

Ct+h−1

�−α

(1 +Rt+h)− 1

�
= 0, (19)

where Ct is nondurable and service real consumption, and Rt+1 is the real yield of a one year bond.

The bond yield is deflated by using the Consumer Price Index.
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When imposing the Euler equation restrictions on the BVAR density we have the choice of

interpreting (19) as a restriction on the levels of consumption or on consumption’s growth rates.

Note that for the levels case, equation (19) is a restriction on the joint density of Yt+h and Yt+h−1,

which can be obtained as f(yt+h, yt+h−1) = f(yt+h−1)ft+h−1(yt+h). To construct the projected

density forecast at time t, f̃t(yt+h), we first obtain the projected joint density as

f̃(yt+h, yt+h−1) = f(yt+h, yt+h−1) exp(ηt + λtg(yt+h, yt+h−1)), (20)

where

g(Yt+h, Yt+h−1) = β

�
Ct+h

Ct+h−1

�−α

(1 +Rt+h)− 1 (21)

and (ηt,λt) are constructed by drawing {yst+h, y
s
t+h−1}Ss=1 from f(yt+h, yt+h−1) = f(yt+h−1)ft+h−1(yt+h)

and solving

argmin
(η,λ)

S�

s=1

exp(η + λg(yst+h, y
s
t+h−1)). (22)

The h−step ahead point forecast at time t based on the projected density is then given by

E
�f
t Yt+h =

�
yt+hf̃(yt+h, yt+h−1)dyt+hdyt+h−1, (23)

which can be approximated by

�Y �f
t+h =

S�

s=1

wtsy
s
t+h, (24)

with wts = exp(ηt + λtg(yst+h, y
s
t+h−1))/S.

The next section reports the results of an out-of-sample exercise comparing the performance of

the BVAR to that of the projected BVAR that incorporates the Euler equation restrictions. We will

conduct an out-of-sample evaluation exercise that compares the point forecast accuracy of the two

models in terms of the mean square forecast error(MSFE) of the point forecast �Yt+h:

MSFE =
1

T − h

T−h�

t=1

�
(Yt+h − �Yt+h)

2
�
, (25)

and the density forecast accuracy in terms of the average logarithmic scoring rule of the density

forecast ft:
1

T − h

T−h�

t=1

log ft(Yt+h). (26)

4.1 Results

Similarly to Giannone et al (2010), we consider a subset of Stock and Watson’s (2008) dataset which

originally contained 149 U.S. quarterly variables covering a broad range of categories including in-

come, industrial production, capacity, employment and unemployment, consumer prices, producer
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prices, wages, housing starts, inventories and orders, stock prices, interest rates for different maturi-

ties, exchange rates, and money aggregates. The time span is from the first quarter of 1959 through

the last quarter of 2008.

We present results for both a "small" model with 5 variables (GDP, CPI, Federal Fund Rate,

the yield on the one year bond, Consumption) and a "medium" model which contains 25 variables

including all the variables considered by Smets and Wouters (2007) as well as investment, hours

worked, wages and other labor market, financial and monetary variables.

Both small and medium BVARs are estimated in an out-of-sample fashion using a rolling window

of length R = 80 and for forecast horizons h = 1, 4, 8. The procedure yields a total of T − h =

114 − h BVAR forecast densities ft(yt+h). We have tried different value for the hyperparameters

that regulates the amount of shrinkage and, although the analysis is quantitatively sensitive to this

choice, the qualitative results are rather robust. For this reason, we only present the results for a

single hyperparameter.

We then construct the projected density forecasts that incorporate the Euler equation (19), for

β = 0.96 and α = {1, 1.3, 1.6, 2, 2.3, 2.6}. For these combinations of parameters, we fail to reject at

the 5% significance level the null hypothesis that the moment conditions hold.

To motivate our method and give a sense of the gains in forecast performance that one could

expect, it is useful to ask whether the density forecasts implied by the BVAR already satisfy the

moment conditions, in which case the scope for improvement when using our method would be

minimal. For this purpose, Figure 2 reports the Euler equation errors implied by the BVAR and

computed as
1

S

S�

s=1

g(yst+h, y
s
t+h−1),

where g (·) is defined in (21) for β = 0.96, α = 2 and (yst+h, y
s
t+h−1) are draws from the BVAR as in

(22). The dotted lines represent the associated 95% predictive interval.

[Figure 2 about here.]

Figure 2 confirms that there are periods in which the densities implied by the BVAR do not satisfy

the Euler equation. This is particularly noticeable for the small BVAR and for forecast horizon h = 1,

in which case one would expect to observe gains from imposing the Euler restrictions, whereas the

small BVAR densities for h = 8 appear to already satisfy the Euler equations and one would not

therefore expect major gains in forecasting performance from the projection step. These predictions

are borne out in the MSFE comparisons presented in Table 1 and discussed in the next section. In

the following sections we investigate whether the extent to which the BVAR densities fail to satisfy
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the theoretical restrictions is sufficient to induce significant improvements in forecasting performance

when forecasting with Euler-projected densities.

4.1.1 Point forecast performance

Table 1 reports the MSFE ratios of the point forecasts implied by the small BVAR relative to

those implied by the Euler-projected BVAR. An entry greater than one indicates that the projected

forecasts are more accurate and stars signal rejection at the 5equal MSFE according to the Giacomini

and White (2006) test. Table 2 contains the results for the same selection of five variables but when

the initial forecast is that implied by the medium BVAR.

[Table 1 about here.]

[Table 2 about here.]

From Table 1 we see that in the small BVAR the incorporation of the Euler restrictions in the vast

majority of cases results in an improvement in accuracy, but the improvement is only statistically

significant for the one-step-ahead forecast of CPI, for which the accuracy gains are moreover sizable.

Table 2 reveals that in the context of the medium BVAR there are generally gains from imposing the

Euler condition, but the gains are not significant except in the case of the four-step-ahead forecast

of consumption. The results in Tables 1 and 2 are robust to a number of different choices for the

Euler equation parameter α and for the hyperparameter that controls the amount of shrinkage in the

BVAR.

To gain some insight into how and why the projection step results in more accurate forecasts,

we focus on the one-step-ahead forecast of CPI in the small model, which is the case in which we

observed the largest gains from imposing the Euler equation restrictions. To understand whether the

superior performance is due to a few isolated episodes as opposed to being observed throughout the

sample, Figure 3 plots the difference in absolute forecast errors for the BVAR and the Euler-projected

BVAR.

[Figure 3 about here.]

The figure shows that the Euler-projected BVAR is more accurate than the BVAR in the vast

majority of the sample, and the magnitude of the improvement is particularly large in the first part

of the sample.
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4.1.2 Density forecast performance

Here we present results about the relative performance of the density forecast implied by the BVAR

relative to that of the Euler-projected BVAR, which considers the multivariate density as a whole.

Tables 3 and 4 report the relative accuracy of the two forecasts in the small and the medium BVAR,

respectively, and for different forecast horizons and choices of the Euler equation parameter α. As

we can see from Table 3, in the case of the small BVAR there appears to be no improvement

in the density forecast accuracy of the model as a whole when imposing the Euler condition, as

indicated by values of the Amisano and Giacomini (2007) test statistic which are all insignificant.

The situation is radically different for the medium BVAR, for which Table 4 reveals that there are

significant improvements in the density forecast performance deriving from the incorporation of the

Euler equation restrictions, at medium and long forecast horizons. The improvements are moreover

robust to a number of different choices for the Euler equation parameters and the forecast horizons.

[Table 3 about here.]

[Table 4 about here.]

4.1.3 Summary of empirical results and comments

Our results generally point to the conclusion that there can be improvements in accuracy from

incorporating theoretical restrictions into an already accurate atheoretical forecast. In terms of

density forecast performance, the gains in accuracy were large and significant when the initial forecast

was based on the medium BVAR and for medium and long forecast horizons, whereas there were

no significant gains when the initial forecast was from the small BVAR. In terms of point forecast

performance, the improvements were only significant in two cases (the one-step-ahead forecast of CPI

implied by the small BVAR and the four-step-ahead forecast of real nondurable consumption implied

by the medium BVAR). When they did occur, the gains in accuracy were of sizable magnitude. The

fact that imposing the Euler condition improved the CPI forecast in the small BVAR but not in the

medium BVAR can be reconciled with the findings in Stock and Watson (1999), who showed that

the best model for forecasting U.S. inflation is an econometric model that incorporates an index of

aggregate economic activity based on a large number of variables. This suggests that one possible

reason for the lack of gains from projection that we observed in the medium BVAR is that this model

is large enough to already capture something akin to the index of aggregate activity, whereas the

small BVAR is too small to do so and therefore its forecasts still have scope for improvement. There

are several directions in which our empirical analysis could be extended, for example by incorporating

additional economic restrictions and/or investigating whether the low gains from the procedure could
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be due to misspecification of the Euler condition. We do not pursue these extensions in this paper

and leave them for future research.

5 Conclusion

Economic theory often implies restrictions on the joint distribution of variables that are expressed as

(nonlinear) moment conditions, such as Euler equations, which do not generally provide conditional

densities that can be used for forecasting. On the other hand, there are several methods in the

literature that have been shown to provide accurate forecasts, but they are usually based on atheo-

retical econometric models that do not satisfy the theory-based restrictions. We bridge this gap by

proposing a method that takes as the starting point a density forecast, such as an accurate forecast

implied by an econometric model, and modifies it in a way that ensures that the new density forecast

satisfies the theoretical restrictions. The incorporation of the theoretical restrictions is achieved by

a projection step which involves solving a relatively simple numerical optimization problem, whose

complexity grows with the number of restrictions one wishes to impose.

We illustrate our method with an application to the Stock and Watson (2008) dataset that asks

whether imposing the restrictions implied by an Euler condition can improve the point- and density

forecasts implied by a BVAR - currently known as one of the best methods for forecasting a number

of key macroeconomic variables. We find that even imposing such a simple restriction can sometimes

give sizable gains in forecast accuracy, which suggests that it is worthwhile to use our methods to

further investigate whether economic theory does indeed "tell a story" that forecasters should listen

to.
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Figure 1: The figure shows two out-of-sample density forecasts for CPI at one particular point in
time: the histogram is the one-step-ahead density forecast of CPI implied by a BVAR for CPI, GDP,
nondurable and service real consumption, the federal funds rate and the real yield of a one year bond;
the dashed line is the projected density forecast that incorporates the Euler equation restrictions
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Figure 2: Euler equation error for forecast horizons h = 1, 4, and 8. Each panel plots the Euler
equation (β = .96, and α = 2) error under the approximated density implied by the small BVAR
(top panels) and medium BVAR (bottom panels) and the 95% predictive bands.
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Figure 3: Absolute forecasting error of the CPI series. The black line is the difference between the
absolute forecasting error of the Small BVAR and the absolute forecasting error of the Euler-projected
forecast with parameters β = .96 and α = 2.
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GDP CPI FFR Tbill Cons

α = 1
h = 1 1.06 9.95∗ 0.87 1.02 0.95
h = 4 1.00 1.10 1.00 1.01 1.00
h = 8 1.00 1.04 1.00 1.00 0.99

α = 1.6
h = 1 1.03 9.40∗ 0.85 1.03 0.80
h = 4 1.00 1.09 1.00 1.00 0.99
h = 8 1.00 1.04 0.99 1.00 0.99

α = 2
h = 1 0.97 9.44∗ 0.85 1.03 0.71
h = 4 1.00 1.09 0.99 1.00 0.98
h = 8 1.00 1.03 0.99 1.00 0.98

α = 2.3
h = 1 0.99 8.12∗ 0.85 1.04 0.68
h = 4 1.00 1.08 0.99 1.00 0.98
h = 8 1.00 1.01 0.99 1.00 0.98

Table 1: Point forecast performance. Each entry consists of the ratio between the MSFE of the Small
BVAR and the MSFE of the Euler-projected BVAR. A star indicates that the difference is significant
at the 5% level according to the Giacomini and White (2006) test.
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GDP CPI FFR Tbill Cons

α = 1
h = 1 1.02 1.09 1.04 1.02 0.99
h = 4 0.98 1.02 1.06 0.99 1.33∗∗

h = 8 1.02 1.03 1.06 1.04 1.08
α = 1.6

h = 1 1.01 1.04 1.02 0.99 0.99
h = 4 1.06 1.00 1.08 1.00 1.53∗∗

h = 8 1.01 1.03 1.04 1.03 1.07
α = 2

h = 1 1.01 0.99 1.01 1.00 1.04
h = 4 1.08 1.01 1.08 0.99 1.58∗∗

h = 8 1.02 1.02 1.02 1.00 1.09
α = 2.3

h = 1 1.01 0.97 1.01 1.00 1.07
h = 4 1.08 1.02 1.08 0.98 1.60∗∗

h = 8 1.01 1.02 1.03 1.02 1.05

Table 2: Point forecast performance. Each entry consists of the ratio between the MSFE of the
Medium BVAR and the MSFE of the Euler-projected BVAR. Two stars indicates that the difference
is significant at the 1% level according to the Giacomini and White (2006) test.
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α = 1 α = 1.3 α = 1.6 α = 2 α = 2.3
h = 1 0.9764 0.8693 0.8143 0.7247 0.5439
h = 2 -0.0251 -0.0520 -0.0817 -0.1222 -0.1582
h = 3 -0.0555 -0.0808 -0.1084 -0.1457 -0.1785
h = 4 -0.0567 -0.0797 -0.1034 -0.1393 -0.1664
h = 5 -0.0659 -0.0872 -0.1064 -0.1418 -0.1635
h = 6 -0.0612 -0.0809 -0.1025 -0.1337 -0.1554
h = 7 -0.0539 -0.0695 -0.0907 -0.1172 -0.1363
h = 8 -0.0503 -0.0665 -0.0732 -0.1081 -0.1302

Table 3: Density forecast performance. Entries are the test statistics of the Amisano and Giacomini
(2007) test comparing the small BVAR and the Euler-projected density forecasts. Positive (negative)
values indicate that the projected density forecast is more accurate (less accurate) than the BVAR
forecasts. Values outside the (−1.96, 1.96) interval denote rejection of the null hypothesis of equal
performance at the 5% significance level.
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α = 1 α = 1.3 α = 1.6 α = 2 α = 2.3
h = 1 -0.824 -0.943 -2.021 -1.629 -0.598
h = 2 -0.208 -0.103 -0.748 0.407 0.530
h = 3 1.114 1.018 1.920 2.240 2.231
h = 4 3.508 3.520 3.223 3.267 3.292
h = 5 3.087 3.296 3.503 3.687 3.842
h = 6 2.758 3.144 3.570 4.366 4.205
h = 7 3.086 3.203 3.337 3.539 3.865
h = 8 3.137 2.734 3.039 4.330 3.615

Table 4: Density forecast performance. Entries are the test statistics of the Amisano and Giacomini
(2007) test comparing the medium BVAR and the Euler-projected density forecasts. Positive (neg-
ative) values indicate that the projected density forecast is more accurate (less accurate) than the
BVAR forecasts. Values outside the (−1.96, 1.96) interval denote rejection of the null hypothesis of
equal performance at the 5% significance level.
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