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ABSTRACT

Industries at the World Technology Frontier:
Measuring R&D Efficiency in a Non-Parametric DEA Framework

This paper identifies the leading country-industry combinations that define the
world technology frontier in manufacturing. Using a unique industry dataset
compiled from EU KLEMS and PATSTAT, it explores which countries and
industries reveal the most efficient innovation processes. We combine a
traditional nonparametric frontier approach with super-efficiency and tests for
return to scale properties using bootstrap procedures to derive consistent and
robust efficiency estimates. Our analysis of 17 OECD countries and 13
industries between 2000 and 2004 shows that Germany, the United States,
and Denmark have the highest R&D efficiency on average in total
manufacturing. However, sector-specific efficiency scores reveal substantial
variation across countries. The principal industries determining the technology
frontier are electrical and optical equipment, machinery, and chemical and
mineral products. Our results suggest that in case of limited resources, priority
should be given to the industries that promise the largest output for the
available amount of investment. Instead of generally increasing the R&D-to-
GDP ratio--as suggested in the Lisbon Agenda--policymakers might target
future R&D efforts to those industries that are economically important and
reveal excellent performance.
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1 Introduction

The Lisbon Agenda for competitiveness included two targets for research and development (R&D): 1)
R&D expenditures relative to gross domestic product (GDP) were expected to increase to 3% by 2010;
and 2) the business sector would be responsible for about two-thirds of the expenditures. Despite the
R&D target for 2010, only Finland, Sweden, Japan and South Korea achieved R&D above 3% (Figure 1);
the worst performers were Italy, Spain and Poland. In 2008 Sweden had ranked first at 3.7%. Our
analysis of 17 OECD countries raises questions about benchmarking all countries against the Lisbon
Agenda’s single common target. For instance, could another type of performance measure and
assessment of R&D target a country’s limited financial resources to achieve the highest possible levels of

innovation?

Figure 1
R&D as a percentage of GDP
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Source: OECD Main Science and Technology Indicators.

Our goals are to identify the best-performing countries and industries for benchmarking and to gain
insights about the strengths and weaknesses of innovation strategies that improve R&D efficiency.
Although the extant literature generally focuses only on the country level, we suggest that the industry
level is more useful. In fact, neglecting the importance of industrial specialization can skew performance
rankings (van Pottelsberghe de la Potterie 2008). A country like Finland, which has specialized in
information and communication technologies, will reveal a relatively high R&D intensity since this

particular industry requires high R&D expenditures. On the contrary, specialization in low R&D industries



like food, wood or paper will inevitably generate a low R&D to GDP ratio at the country level.
Consequently, R&D efficiency will be affected as a rise in inputs necessitates growth in output to become
or remain efficient. In other words, benchmarking at the industry level allows a finer-grained
examination of countries’ domains of specialization relative to the industries that occupy the technology
frontier. In addition, a thorough analysis of R&D efficiency provides the opportunity to critically evaluate
the creation of a European Research Area by increasing investment in R&D activities to 3% of GDP, since

both the size and the efficient use of invested resources matter when planning future investment.

Furthermore, we suggest that countries with less-efficient industries could employ our findings to
improve their own processes and performance. For example, the obtained efficiency scores could be used
as an alternative measure for determining a country’s distance to frontier in empirical applications. Until
recently, research has focused on differences in labor productivity to capture frontier distance where the
United States usually serves as the benchmark, implying that it marks the frontier (Acemoglu et al. 2006;
Aghion et al. 2009). The advantage of efficiency scores is that they help us endogenously define the

frontier without assuming a specific production function, lead country or industry.

In short, this paper identifies the country-industry combinations that define the world technology
frontier in the manufacturing sector. It explores which countries reveal the most efficient industry-
specific innovation processes. First, we derive efficiency estimates for the entire manufacturing sector at
the country level. Second, we proceed to the industry level and identify those county-industry
combinations that define the world technology frontier. Third, we focus on selected industries — those
mainly defining the technology frontier — and conduct separate efficiency analyses to account for

industry-specific production technologies.

We build on the empirical literature concerning the importance of level and dynamics of R&D
expenditures for economic growth (Guellec and van Pottelsberghe de la Potterie 2001) which shows that
countries utilizing their R&D resources inefficiently will be penalized with a growth discount. Based on
the theoretical concept of an ideas/knowledge production function framework stemming from the
endogenous growth literature, our efficiency assessment relies on the existing literature applying a
knowledge/patent production function framework (e.g. Hall and Ziedonis 2001) and adapts it to evaluate

the efficiency of the ideas generation process over countries and industries.

We assemble a unique industry dataset compiled from EU KLEMS3 and PATSTAT# We match European
patent applications to the EU KLEMS industry-level data by using the concordance developed by Schmoch
et al. (2003). We conduct our analysis using nonparametric efficiency measurement methods and identify
the differences in the efficiencies on the country and industry levels using a traditional nonparametric

frontier approach, i.e. data envelopment analysis (DEA). This method requires no specification of the

3 A detailed description of the dataset is provided in Timmer et al. (2007, 2008).
4 European Patent Office Worldwide Statistical Database: PATSTAT version 1/2008.



functional form of the ideas generation process, or any a priori information concerning the importance of
inputs and outputs. Since DEA is a deterministic approach, extreme observations can have a strong
influence on the calculated efficiencies. We circumvent this problem by using the super-efficiency
approach of Banker and Chang (2006) to detect and then remove extreme observations from the sample
to achieve a consistent and robust technology frontier. The unique dataset allows us to compare
industries of varying economic size in our model. Since it is both statistically and economically important
to determine whether the underlying technology exhibits increasing, constant, or decreasing returns to
scale, we test the hypotheses of constant returns to scale using the bootstrap procedure proposed by

Simar and Wilson (2002).

Our paper is organized as follows: Section 2 introduces the analytical framework and briefly summarizes
the literature in this field. In Section 3, the methodology of DEA is introduced. Section 4 describes the
model specification and data. The empirical results for total manufacturing and by industry are presented

in Section 5. Section 6 summarizes the findings and concludes.

2 Measurement of R&D Efficiency

A knowledge production function is central to many endogenous economic growth models in which
innovation plays a crucial role in sustaining long-term growth. Innovation becomes even more important
to productivity growth when a particular national industry approaches the world technology frontier,
because at that point, imitation, as opposed to true innovation, is less feasible. The resources available for
the generation of new knowledge are often limited and thus must be used as efficiently as possible to
sustain and promote long-term growth. We particularly focus on the economic process generating new
knowledge which becomes manifest in inventions that can lead to cost reductions in the form of process
innovations or to the development of new products or technologies. More specifically, we analyze
whether there are substantial performance differences in ideas creation between countries and

industries.

Our model follows the knowledge production function framework first articulated by Griliches (1979)
and implemented by Pakes and Griliches (1984), Jaffe (1986) and Hall and Ziedonis (2001), among
others. Innovative output is the product of knowledge-generating inputs, similar to the production of
physical goods. Some observable measures of inputs, such as R&D expenditure, existing knowledge and
high-skilled labor, are invested in knowledge production. These “inputs” are directed toward producing
economically valuable ideas. The production process is viewed as leading from R&D and human capital

(the inputs) to some observable output measure of innovative activity:

I,=f(R&D,,HS,

ci’



where [ is innovative output, R& D, denotes the R&D capital stock as a proxy for efforts and

accumulated knowledge, and HSC,. captures human capital. The unit of observation is the country (c)

industry (i) level. Innovative output is approximated by patent applications.

Based on the knowledge production function framework, the empirical literature confirms the
importance of R&D capital to the knowledge creation process (e.g. Mairesse and Mohnen 2004), for an
overview see Hall and Mairesse 2006); however, far less attention has been paid to the importance of the

efficient use of scare resources in this process.

Rousseau and Rousseau (1997) were the first to use a DEA approach. Using a sample of 18 developed
countries, they applied an input-oriented, constant returns to scale model with two outputs — the
number of scientific publications and the number of granted patents — and used GDP, along with
population and R&D investment, as input factors. They concluded that in 1993, Switzerland was the most
efficient country in Europe, followed closely by the Netherlands. Using the same framework, Rousseau
and Rousseau (1998) extended their work by including the non-European countries, specifically the
United States, Canada, Australia, and Japan. The authors reaffirmed that Switzerland, followed by the

Netherlands, had the highest R&D efficiency.

Lee and Park (2005) measured R&D efficiency in 27 countries with a special emphasis on Asia. They
expanded Rousseau and Rousseau’s basic framework by using the technology balance of receipts as an
additional output of the innovation process. In their basic model, Austria, Finland, Germany, Hungary, and

Great Britain were found to occupy the technology frontier.

Wang and Huang (2007) proposed a three-stage approach to evaluating the relative technical efficiency of
R&D across 30 OECD member and nonmember countries that controlled for cross-country variation in
external factors, such as the enrollment rate in tertiary education, PC density, and English proficiency. A
first stage applied an input-oriented DEA analysis with variable returns to scale where patents and
publications served as outputs and R&D expenditure and researchers as inputs. They found that about
half the countries in their sample were efficient in R&D activity. A second stage investigated the influence
of external effects caused by environmental factors outside the efficiency evaluation. Using the results,
they conducted an additional DEA which indicated a decrease in the number of efficient countries due to

the external factors.

5 Some authors (e.g. Rousseau and Rousseau 1997, 1998) suggest including publications as an additional
output; we do not, for three reasons: 1) recent studies reveal a number of measurement problems
inherent in publication counts, such as double-counting in the case of co-authoring (Sharma and Thomas
2008); 2) since detailed publication data are not available at the industry level, assigning publications to
industries is problematic and would involve the difficult and probably not entirely objective task of
matching journals to sectors; 3) publication counts have the potential to introduce a language bias in
favor of English-speaking countries.



Recently, Sharma and Thomas (2008) measured the efficiency of the R&D process across 18 countries
using a DEA approach that applied both constant and variable returns to scale production technologies.
Their approach deviated from previous work in two ways: they considered a time lag between R&D
expenditure and patents, and they included developing countries in their analysis. Their main findings
indicated that when using the constant returns to scale approach, Japan, South Korea, and China occupied
the efficiency frontier, whereas within the variable returns to scale framework, Japan, South Korea, China,

India, Slovenia, and Hungary were efficient.

Cullmann et al. (2011) updated the measurement of R&D efficiency in the OECD using a DEA approach
with variable returns to scale, including outlier detection by means of super-efficiency analysis. Efficiency
scores were calculated using intertemporal frontier estimation for the period 1995 to 2004. They found
that Sweden, Germany and the United States were located on or close to the technology frontier. The
authors further analyzed the impact of the regulatory environment using a bootstrap procedure recently
suggested by Simar and Wilson (2007a). The results showed that barriers to entry, aimed at reducing
competition, actually reduced R&D efficiency by attenuating the incentive to innovate and to allocate

resources efficiently.

This paper makes three important contributions. While previous studies focus on the aggregate country
level, our point of departure is the manufacturing sector, which we then separate by industry in order to
identify those having highly efficient research processes. In addition, we allow for industry-specific
frontiers to investigate whether the countries defining the frontier at the country level also show
excellent performance in selected industries. Methodologically, we test for the form of returns to scale by

means of bootstrap (Simar and Wilson 2002) and include outlier detection (Banker and Chang 2006).

3 Methodology

As mentioned above, we employ DEA, a nonparametric approach® that measures the efficiency of a
decision-making unit (DMU). This approach requires no assumption about the functional form of a
production function or any a priori information on the importance of inputs and outputs. Central to DEA
is the production frontier, defined as the geometrical locus of optimal production plans (Simar and
Wilson 2007b). Using linear programming techniques, we construct a piecewise linear surface, or
frontier, that envelops the data as a reference point. The individual efficiencies of each DMU relative to
the production frontier are then calculated by means of distance functions. The distance to the frontier is
thus a measure of inefficiency. There are basically two types of DEA models: those that maximize outputs,
leaving the input vector fixed (output-oriented), and those that minimize inputs, keeping the output
vector constant (input-oriented). We use the output-oriented approach, because when resources devoted

to R&D are usually scarce, it is reasonable to assume that countries will seek to maximize their innovative



output to foster long-term growth.

Different assumptions can be made regarding the underlying technology that defines the frontier. In this
paper, we distinguish between the two types of technology, constant returns to scale (CRS, Charnes et al.
1978), and variable returns to scale (VRS, Banker et al. 1984). CRS assumes that all DMUs produce at their
optimal scale, and VRS accounts for existing scale inefficiencies. Using the CRS specification when VRS is
appropriate leads to technical efficiency scores being confounded by scale efficiencies. Hence, if we
assume, a priori, a CRS technology without investigating the possibility that it is non-constant, we run the
risk that our efficiency estimates will be inconsistent. On the other hand, if we assume VRS when, in fact,
the technology exhibits global constant returns to scale, there may be a loss of statistical efficiency (Simar

and Wilson 2002). Formally, the only difference between the CRS and the VRS specifications is the

presence of an additional convexity constraint 2 A=1.

Formally, the efficiency score of the i-th industry in a sample of N industries and K countries in the VRS

model is determined by the following optimization problem (Coelli et al. 2005):
max,, ¢
S.t. ,
-¢y, +YA =0
X, —XA=0
[1'A=1
A=0
where A is an (N X K)xl vector of constants and X and Y represent input and output vectors

respectively. A further reflects the respective weights for inputs and outputs assigned to each firm. ¢

measures the radial distance between the observation (Xi,yi) and the efficiency frontier, hence

1=<¢=oo (Farell-type efficiency scores, Farell 1957). In the empirical application, we give efficiency
1
scores defined by TE = 0 = — which vary between 0 and 1. A value of 1 indicates that an industry is fully

efficient and thus located on the efficiency frontier, whereas DMUs with efficiency scores below 1 are

assumed to be inefficient.

Simar and Wilson (2002) have proposed a bootstrap procedure to overcome the problem of DEA
techniques being deterministic.” Thus, we apply their method and test the null hypothesis (Ho) of a global

CRS production frontier against the alternative hypothesis (H1) that the production frontier exhibits VRS.

6 Another common nonparametric envelopment approach is free disposal hull (FDH, Desprins et al.
1984). In contrast to DEA, FDH relaxes the assumption of a convex production set and only presumes free
disposability.

7 Statistical inference is drawn based on the bootstrap methodology for estimating confidence intervals
for efficiency scores (Simar and Wilson 1998).



Then, the test statistic is the estimated ratio between the usual CRS and the VRS efficiency scores

R émis (x,y)
w=é$R';—

v (x,y)

Next, we project the observations (Xi,yl.) onto the respective frontiers and the distance between the

two estimates forms the test statistic. The distribution of the test statistic @ under Ho is unknown and

therefore bootstrapping — as suggested by Efron (1957) — is applied to generate pseudo samples. This

procedure provides us with an empirical distribution of (C?)b —6?)) which we use to determine the

corresponding p-values.8

Note that our DEA estimator is a deterministic frontier approach, assuming that all observations are
technically attainable.® The main drawback of such models is their high sensitivity to outliers and
extreme values in the data (Simar and Wilson 2000, 2007b). Outliers are the extreme observations that
are often caused by errors in measuring inputs or outputs. It is therefore important to assess ex ante
whether the data contain outliers that drive the location of the efficiency boundary, inappropriately
influencing the performance estimations of the other DMUs in the sample. We use the super-efficiency
method proposed by Andersen and Petersen (1993) and Banker and Chang (2006) to identify and
remove extreme values ex ante. The concept is based on the idea of re-estimating the production frontier
with different sets of observations from the sample. At every step, one of the efficient DMUs is excluded
from the reference set to make it possible to obtain efficiency scores that exceed 1. If an efficient
observation is an outlier, it is more likely to have an output level greater than other observations with
similar input levels; such outliers are more likely to have a super-efficiency score greater than 1. Banker
and Chang (2006) suggest that DMUs with efficiency scores larger than 1.2 should be considered outliers

and removed from the sample before conducting the final DEA calculation.

4 Model Specification and Data

We assemble a sample of 13 EU-countries!® and Australia (AU), Japan (JP), South Korea (KR), and the
United States (US) during 2000 and 2004.1! Our unique dataset on input and output for the efficiency

8 The empirical distribution resembles the unknown distribution of (Lf)z - d))

9 We are aware that applied linear programming might not reveal all efficiency slacks. However, we
follow Coelli et al. (2005) who claim that “the importance of slacks can be overstated” when accepting the
argument of Ferrier and Lovell (1990) that slacks may essentially be viewed as allocative inefficiencies
and that an analysis of technical efficiency can therefore reasonably concentrate on the radial efficiency
scores.

10 Belgium (BE), Czech Republic (CZ), Denmark (DK), Finland (FI), France (FR), Germany (DE), Ireland
(IE), Italy (IT), Netherlands (NL), Poland (PL), Spain (ES), Sweden (SE), United Kingdom (GB).

11The truncation point is determined by the availability of patent applications, which are published 18
months after application. We further impose one restriction on the industry-specific country patent
aggregates, namely, that at least 15 patents are applied for within a certain year, to ensure that sufficient



analysis derives from EU KLEMS and PATSTAT and covers 13 industries.

We estimate a cross-industry cross-country pooled frontier, where each observation is a single industry-
country combination in time without considering the panel structure of the data. We are aware that a
pooled intertemporal frontier is unable to capture technological change and dynamic efficiency changes.
However, we believe it is reasonable to assume that the process of knowledge generation is not subject to
short-term technology changes. Process improvements — as caused by environmental factors like
deregulation or education — will lead to improvements only in the medium term.2 Another reason for
assuming a constant intertemporal frontier is the limited sample size at the industry level. In the
empirical application, we provide efficiency estimates for selected industries to relax the assumption of a
common frontier encompassing all industries. At this level, we are confronted with only 17 observations
per year, and as Simar and Wilson (2007b) recently showed via Monte Carlo simulations, this would bias
our results due to the curse of dimensionality problem. We therefore decide against estimating yearly

frontiers and presume the knowledge production technology to be constant during 2000 and 2004.

R&D investment and manpower serve as inputs and patent applications approximate innovative output.
Our information on patent applications is taken from the European Patent Office’s database, because an
application to an international authority, in contrast to one made to a national authority, can be viewed as
a signal that the patentee believes the invention to be valuable enough to justify the expense associated
with an international application. Central to our exercise is constructing patent aggregates by country,
industry, and year, and we build the variable using all patent applications filed with the EPO with a
priority date between 2000 and 2004. We assign the patent applications to the inventor’s country,
because it is more indicative of the invention’s location. In line with the prior literature, we consider only

the first inventor’s country of residence (e.g. Wang 2007; WIPO 2008).

Patents are assigned to industries based on the concordance developed by Schmoch et al. (2003), who
used expert assessments and micro-data evidence on the patent activity of firms in the manufacturing
industry to link technologies to industry sectors.!3 The international patent classification (IPC) classes
provided in the patent applications are grouped into 44 technological fields and then assigned to
industries based on the NACE!* code. Because patent applications usually contain more than one
technology class and none can be interpreted as its main class, a weighting scheme is needed to avoid
double-counting patents. Thus, we weight every class mentioned in an application by the reciprocal of the

total number of classes.

patent activity is present in each sector of the countries covered. A relaxation of this restriction to 5
produced largely the same results, but introduced more noise in the estimation of averages.

12 We also experimented with 3-year samples and found comparable results. However, this forced us to
further reduce our sample coverage.

13The authors argue that patents are most widely used in the manufacturing sector to protect intellectual
property.

14 Nomenclature générale des activités économiques dans les Communautés européennes.



However, further aggregation of NACE classes is needed to match the patent data to the input data
sources.!> Human capital and R&D effort serve as the inputs in our model. R&D stocks provided by the EU
KLEMS database approximate the R&D resources used in the innovative process at the sector level. From
a theoretical point of view, R&D stocks are preferable to annual R&D expenditures, because they capture
the amount of knowledge available in an economy although, in practice, assumptions must be made when
calculating the initial stock. We build the R&D stocks in the EU KLEMS database according to the

perpetual inventory method.16

Manpower invested in R&D is usually captured by the number of researchers per country published by
the OECD in the Main Science and Technology Indicators (OECD 2008b). However, these data are not
available at the sector level and so we approximate human capital input by the share of skilled workers,
since it is plausible that researchers and support staff are mainly recruited from this group. The exact
distinction between high-skilled and medium-skilled workers is somewhat vague due to differences in
national educational systems (Timmer et al. 2007). In the case of high-skilled labor, we assume
comparability only for bachelor degrees. Therefore, we include both high- and medium-skilled labor as
inputs to control for heterogeneity across countries’ educational systems, and our findings suggest that
the main results are robust with respect to the use of skilled or only high-skilled labor. Data on high- and

medium-skilled labor at the sector level are available from the EU KLEMS database.

Table 1
Summary statistics: (2000-2004)

Variable Description Mean S.D. Min Max
Output Variable
Patents Patent applications at the 885.71 16 17664

EPO, unit of observation:
country-industry
Input Variables
R&D Stock of R&D 12479.4 40855.95 1.13 370589.2
expenditures,
expenditures are deflated
using PPPs of 2000, unit
of observation: country-
industry
High-skilled Number of high-skilled 107.4 232.21 0.11 2008.9
workers, country-level
data
Medium-skilled Number of medium- 428.76 583.66 0.74 3355.31
skilled workers, country-
level data

15 A detailed description of the concordance appears in Appendix A.1.

16 The depreciation rate equals 12%. The calculation of R&D stocks is explained in detail in 0’'Mahony et
al. 2008. Stocks are deflated using implicit PPPs at constant 2000 prices taken from the OECD (OECD
2008D).
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Table 1 consolidates the sample statistics of the input and output variables in our analysis. On average,
across countries, industries, and years, 886 patents have been applied for at the EPO, although there is
much heterogeneity within this average, ranging from a minimum of 16 patents to a maximum of 17664.
A similar pattern is observed in the R&D stocks. In line with expectations, the share of high-skilled

workers is substantially smaller (one-quarter) than the share of medium-skilled workers.

The aggregated manufacturing-level data (Appendix Table A.2) show that the United States has the
highest average number of patent applications at the EPO which is of interest considering the “home” bias
of the European countries in our sample. Japan is third in patenting activity. In Europe, Germany is the
most frequent patent applicant with an average R&D stock almost twice that of France. A remarkably low
amount of patents originates from Spain, even though the average Spanish R&D stock is substantially
higher than Finland, Denmark and Australia. There is considerable variation of high-skilled and medium-
skilled workers across countries, e.g. the number of high-skilled workers in South Korea is more than four

times that of Germany.

We calculate the industry-specific means of our input-output variables by averaging over years
(Appendix Table A.3). The industries in our sample exhibiting the highest patent intensity are chemicals
and chemical products, electrical and optical equipment, and machinery. Fewer inventions are patented
in the wood and coke and petroleum sectors. Comparing these observations to the average R&D stocks
reveals that the patenting-intensive industries are also R&D-intensive with the exception of the transport
equipment sector which exhibits huge R&D stocks, but a relatively low patent-to-R&D ratio. Consistent
with recent literature on R&D efficiency (e.g. Sharma and Thomas 2008; Wang and Huang 2007), we
impose a two-lag structure for inputs to account for the fact that R&D efforts do not immediately result in

innovative output (Hall et al. 1986).

5 Results

There are three steps in our empirical analysis:
1. Derive efficiency estimates for the manufacturing sector at the country level to deliver a first
research performance assessment which can be compared to previous studies in this field.
2. ldentify the efficient industries with respect to R&D efforts by proceeding to industry- and
country-specific data, thereby accounting for patterns of industrial specialization and “allowing”
countries to occupy the frontier only in certain industries.

3. Conduct separate efficiency analyses of the industries that define the frontier in step 2.

5.1 Cross-country comparison

A first impression of R&D efficiency in manufacturing results from comparing the average efficiencies at

the country level. We derive the averages by aggregating over sector-level data and then conducting a

11



variable returns to scale!” DEA analysis using these country-level aggregates. We implicitly assume a
time-invariant technology frontier and focus on the distance of countries from the estimated frontier.18
Table 2 displays averages of the corresponding values for the period from 2000 to 2004. It shows that
Germany, Denmark, the United States, the Netherlands, and Belgium are the most efficient with respect to
innovative output in manufacturing. The high average efficiency of the United States, indicative of its
strong position in the international context, is especially noteworthy due to our use of European patent

data to approximate innovative output.1®

Table 2

Average R&D efficiency in total manufacturing

Country R&D efficiency score
Germany 0.975

Denmark 0.974

United States of America 0.930

Netherland 0.910

Belgium 0.892

Ireland 0.891

Finland 0.865

aly 0744
Sweden 0.668

Japan 0.618

Australia 0.534

France 0.521

SouthKorea 0426
United Kingdom 0.422

Spain 0.381

Poland 0.378

Czech Republic 0.153

Notes: Output-oriented DEA with variable returns to scale.

Our results for total manufacturing can be summarized by grouping the sample countries according to

their average R&D efficiency in manufacturing:

17 As shown by Sharma and Thomas (2008), most countries reveal increasing returns to scale, hence, a
constant returns to scale technology is inappropriate.

18 An alternative method would be to compare the technology frontiers of different years by means of
Malmquist indices (Coelli et al. 2005). This approach is impossible in the case of unbalanced panels and
therefore not applicable to our dataset since we do not observe sufficient patenting activity across all
years, countries, and sectors.

19 The use of European patent data will tend to underestimate the output and thus the performance of
non-European countries such as the United States, Japan, Australia, and South Korea. Inventors in these
countries tend to first seek patent protection in their home markets and expand protection globally only
for valuable inventions.

1



o high efficiency: Germany, Denmark, the United States, the Netherlands, Belgium,
Ireland, Finland
o medium efficiency: Italy, Sweden, Japan, Australia, France

. low efficiency: South Korea, the United Kingdom, Spain, Poland, the Czech Republic.

Regarding the Lisbon Agenda, we observe that countries already reaching the 3% threshold — Finland,
Sweden, South Korea and Japan — do not belong to the group revealing high efficiency with the exception
of Finland. However, the United States and Denmark with R&D intensities of about 2.7% show excellent
research performance in manufacturing. These findings suggest that high R&D intensities do not
automatically imply high efficiency scores, since intensities they are mainly driven by a country’s
industrial structure. To undertake a thorough performance assessment we must compare individual
positions of countries across industries at the industry level. Nevertheless, our results at this stage
indicate that Finland, Denmark and the United States generally outperform at relatively high R&D- to-GDP

ratios.

The small European economies, i.e. Denmark, Belgium, the Netherlands, Ireland, and Finland, show a
significantly high level of R&D efficiency, whereas the United Kingdom, France, and Spain, lag behind. A
possible explanation is that it is easier for smaller countries to link research conducted at universities to
private business R&D activities due to the smaller number of large companies. We suggest that increasing

R&D in such countries is an avenue for fostering innovation and growth.

Some of our findings should be treated with caution, e.g. the efficiency values for South Korea and Poland,
because of the unavailability of data. Additionally, our patent data only extend to 2004. Since patenting is
usually a result of R&D efforts, our efficiency assessment may simply be too “early” for South Korea, since
very recent data show a drastic increase in Korean patent activity locally and at the international level
(OECD 2008a). Poland has the lowest R&D intensity in our sample, an indication that it has not yet caught
up. Another country with a low innovative capacity is the Czech Republic, which is only now entering the
international patenting arena. The country has increased its R&D efforts to about 1.5% of GDP, making it
an interesting candidate — as South Korea — for performance assessment in future studies when the

data on innovative output for 2005 to 2009 become available to researchers.
Comparing our results to Cullmann et al. (2011) reveals considerable overlap: they also found that

Germany, the United States, the Netherlands and Finland belong to the best-performing countries, while

the Czech Republic and Poland lag behind. Overall, their R&D efficiency ranking confirms our findings.
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5.2 Accounting for Industrial Specialization

The next step is to measure R&D efficiency across countries and industries by conducting DEA using a
pooled sample of industry-country observations.2? We identify industries that define the frontier and
account for industrial specialization patterns of countries by considering sectors separately. As this is the
first attempt to measure R&D efficiency at the industry level, we need to test whether the underlying
technology exhibits constant or variable returns to scale, because previous evidence is not available. A p-
value of 7.7 percent for the Simar and Wilson (2002) test statistic suggests rejecting the hypothesis of
constant returns to scale. Hence, we allow for variable returns to scale in frontier estimation. The
assumption of a constant technology frontier enveloping all industries will be relaxed in the next section
when we conduct specific efficiency analyses for selected industries. To ensure the estimation of a
consistent and robust technology frontier across countries and industries, we apply ex ante outlier
detection by means of super-efficiency analysis (Banker and Chang 2006). Table 3 compares the average
scores across industries. We observe that the estimation exhibits average technical efficiencies of
between 0.11 and 0.64, which are relatively low compared to other empirical work. The low mean
efficiencies are caused by the large within-sample variation in R&D efficiency across countries, which
may also result from the different specialization profiles of countries. On average, the electrical and
optical equipment sector obtains the highest efficiency scores followed by machinery, and chemicals and
chemical products. Weak R&D performance appears in food and beverages, pulp and paper, and transport

equipment.

Table 3
Average R&D efficiency at the industry level (2000-2004)

Industry description R&D efficiency score
Food products, beverages, and tobacco 0.114
Textiles, textile products, leather, and footwear 0.232
Wood, products of wood and cork 0.250
Pulp, paper, paper products, printing, and publishing 0.175
Coke, refined petroleum products, and nuclear fuel 0.219
Chemicals and chemical products 0.531
Rubber and plastics products 0.542
Other nonmetallic mineral products 0.505
Basic metals and fabricated metal products 0.299
Machinery 0.591
Electrical and optical equipment 0.638
Transport equipment 0.216
Manufacturing NEC, recycling 0.454

Notes: Output-oriented DEA with variable returns to scale. Averages are calculated across countries and
years.

20 Poland and the Czech Republic are omitted due to insufficient data at the sector level.
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The huge variation in average efficiencies emphasizes the need to conduct R&D performance assessments
at the industry level. Otherwise, as mentioned earlier, efficiency rankings will be skewed since a country
specializing in machinery will most likely appear to outperform a country specializing in the food sector

at the aggregate level, but not necessarily in the respective industry.

Chemicals, pharmaceuticals, information and communication technology and machinery are among the
most patent-intensive industries (Sheehan et al. 2004), a phenomenon possibly resulting from the
different strategic motives for patenting in these industries (Noel and Schankerman 2006; Schneider
2008). We could argue that it is not surprising to find a higher average R&D efficiency in electrical and
optical equipment, chemicals (including pharmaceuticals), plastics products, and machinery simply
because these industries tend to seek patent protection more frequently. However, these industries also
exhibit greater R&D intensities and thereby larger R&D stocks compared to others, as shown in our
descriptive statistics in Section 4. Our results therefore suggest that the observable ideas generation

process is simply more efficient in these industries and thus drives the technology frontier.

To gain further insights about the relationship of R&D performance assessment and industrial
specialization, we are interested in the efficient country-industry combinations that suggest excellent
research performance (Table 4). The electrical and optical equipment industry is efficient in the
Netherlands, Germany, the United States, and Finland. Due to the underlying panel structure of our data,
we usually observe industries in countries for five consecutive years. However, a certain country-industry
combination does not necessarily have to be efficient every year to stay at the technology frontier, and
that is exactly what we observe: country-industry combinations occupy the frontier for one or two years
and lag slightly behind for the rest of the estimation period. An example is the German electrical and
optical equipment industry, which is fully efficient only once but reaches an average efficiency of 0.93.
This is the second-highest value in the cross-country comparison; only the United States outperforms
Germany, with an average of 0.96 in the electrical and optical equipment industry. Hence, the high R&D

efficiency in this industry is one of the driving forces behind the high overall U.S. efficiency score.

Other industries at the technology frontier include machinery, rubber and plastics, and mineral and
chemical?! products. Germany’s chemical industry reaches the frontier in three out of five years. Germany
also has large average efficiency scores of 0.93 and 0.89 for machinery and rubber and plastics,
respectively. Our results further confirm that the small European countries, Finland, the Netherlands and
Denmark, are some of the best-performing countries in terms of R&D efficiency, with special strength in
specific industries. For example, Finland shows an excellent performance in rubber and plastics, mineral
products and electrical and optical equipment, while Denmark plays a leading role in transport

equipment. The Netherlands actually reaches the frontier in four industries: coke, rubber and plastics
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products, machinery, and electrical and optical equipment. Overall, we find electrical and optical
equipment to be the most important industry when determining the technology frontier, followed by

machinery, and mineral products.

Table 4
R&D-efficient country-industry combinations (2000-2004)

Industry description R&D-efficient countries

Food products, beverages, and tobacco -
Textiles, textile products, leather, and footwear -
Wood, products of wood and cork Italy (1)
Pulp, paper, paper products, printing, and publishing -

Coke, refined petroleum products, and nuclear fuel  Netherlands (1)

Chemicals and chemical products Germany (3)
Rubber and plastics products Finland (1), Netherlands (1)
Other nonmetallic mineral products Denmark (3), Finland (2), Italy (1)

Basic metals and fabricated metal products -

Machinery Italy (3), Germany (1), Netherlands (1)

Electrical and optical equipment Netherlands (2), Denmark, Finland, Germany, United
States

Transport equipment Denmark (1)

Manufacturing NEC, recycling Germany, Italy, Sweden

Notes: The number in parenthesis is the number of years a country has been on the technology frontier in
the particular industry.

Compared to the R&D efficiency analysis in total manufacturing, we observe countries occupying the
frontier in certain industries that do not belong to the generally highly efficient group. An example is Italy,
which reaches the frontier mainly in machinery but also in mineral products and wood. Wood is known to
be a low R&D intensity industry, which weakens the Italian position in terms of the Lisbon Agenda’s
target, even though this specific industry seems to have a relatively good research performance. This
finding indicates that it might be useful to amend the evaluation of the Lisbon R&D goal with some type of
performance assessment. Naturally, the economic relevance of the corresponding sectors must also be

considered.

In summary, the return to R&D in terms of innovation growth could be enhanced by strategically
increasing R&D investment in those industries in which a country exhibits excellent performance. The
performance assessment should be conducted within the industry, relative to other countries, since R&D

intensity and patenting activity vary substantially across industries. Note that excellent R&D performance

21 Chemical products encompass the pharmaceutical industry, where patent protection has very strong
effects because the process of research and development is so costly and time-consuming that firms need
to ensure protection of their intellectual property via a temporary monopoly (Cohen et al. 2000).
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according to our definition by no means necessitates high R&D intensities, but provides references for

future public investment strategies.

5.3 Results for Selected Industries

Recognizing that our assumption of a commonly technology frontier across industries can be challenged,
we now relax the assumption and conduct separate industry-specific frontier estimations to identify
leading countries, as well as those lagging behind, for our selected industries: electrical and optical

equipment, machinery, and chemical products.

Table 5 presents each industry’s share of a country’s gross output in total manufacturing. On average,
these industries account for 32% of gross output. The distribution across countries provides insights
about the respective specialization patterns. Again using Italy as an example, we observe a share of 12.3%
of machinery in 2004, which is the second-highest in our sample. Recall that we also find Italy to be highly
efficient in this respective sector, even though it ranges only in the midfield in total manufacturing R&D

efficiency.

Table 5

Share in gross output of total manufacturing (in %) in 2004

Country Chemicals and Machinery Electrical and 2
chemical products optical equipment

Australia 7.61 5.48 3.25 16.34
Belgium 16.74 4.78 5.13 26.64
Denmark 10.90 12.52 11.51 34.93
Finland 6.39 11.63 19.51 37.54
France 11.64 6.92 9.54 28.09
Germany 9.51 12.58 12.74 34.83
Ireland 26.83 1.64 28.69 57.16
Italy 8.24 12.30 8.21 28.75
Japan 9.22 8.92 16.92 35.05
Netherlands 18.41 7.67 8.31 34.39
South Korea 10.76 7.04 22.34 40.14
Spain 8.46 5.51 5.78 19.76
Sweden 8.51 11.24 12.55 32.30
United Kingdom 11.29 7.50 10.08 28.87
United States 11.03 7.12 13.45 31.60

Source: EU KLEMS database, own calculations.

Conducting separate DEA analysis for the frontier industries generally corroborates our earlier findings
as shown in Table 6. Germany and Denmark occupy the research frontier along with the United States

and the Netherlands. In the case of the United States however, the machinery sector reveals a comparably
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low innovative capacity, given its R&D efficiency profile. Generally, we also observe a relatively weak
performance on the part of South Korea, the United Kingdom, and Spain, indicating that these countries

have the potential to raise output, given their levels of R&D efforts.

For electrical and optical equipment, Japan, Finland and Belgium join the group of leading countries,
whereas Italy and Spain show the weakest performances. Returning to the subject of countries’
specialization profiles, Finland is notable. Section 5.2 points out that Finland has already reached the
frontier in this industry, which is confirmed in our sector-specific analysis. The share of gross output in
total manufacturing of nearly 20% emphasizes the importance of this sector for the Finnish economy;

hence, a high R&D intensity coincides with an excellent research performance and economic relevance.

Table 6
Average R&D efficiency scores for selected industries (2000-2004)

Country Chemicals and chemical Machinery Electrical and optical
products equipment
Australia 0.95 0.53 0.72
Belgium 0.77 0.94 0.81
Denmark 0.97 091 0.92
Finland 0.86 0.59 0.82
France 0.87 0.62 0.70
Germany 0.99 0.93 0.94
Ireland 0.72 0.96 0.56
Italy 0.77 0.99 0.40
Japan 0.52 0.36 0.83
Netherlands 1.00 0.94 0.81
South Korea 0.47 0.53 0.50
Spain 0.52 0.34 0.28
Sweden 0.54 0.52 0.56
United Kingdom 0.35 0.34 0.55
United States 0.99 0.44 0.96

Notes: 1. Output-oriented DEA with variable returns to scale.
2. Industry-specific frontiers are determined.
3. Averages are calculated across years.

Regarding the machinery industry, our earlier results show this sector as highly efficient in Italy,
Germany, and the Netherlands. Italy’s proficiency in this sector is again confirmed by the present
estimation results. The group of highly efficient countries in machinery also includes Belgium and Ireland.
Surprisingly, all other countries exhibit a sharp decline in R&D efficiency, with Japan, Spain, the United
Kingdom, and the United States occupying surprisingly weak positions. Compared to other industries, the
efficiency gap in machinery production most obviously separates our study countries into high and low

performers.
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In the chemicals and chemical products industry, the Netherlands, Germany, the United States and
Denmark are again the dominant players. The industry-specific analysis confirms the already identified
leading groups of countries, with Australia close behind. At the end of the distribution are South Korea,
Spain, and Japan with a low average efficiency of about 0.5 and the United Kingdom with the lowest score

of 0.35.

6. Conclusion

This paper analyzes R&D efficiency at the industry level in manufacturing for 13 European member and 4
nonmember countries between 2000 and 2004. We consider three inputs: knowledge stocks

approximated by R&D expenditures and high- and medium-skilled labor to capture human capital.

Grouping the countries according to their average R&D efficiency score summarizes the results for total

manufacturing:

o high efficiency: Germany, Denmark, the United States, the Netherlands, Belgium,

Ireland, Finland

o medium efficiency: Italy, Sweden, Japan, Australia, France
o low efficiency: South Korea, the United Kingdom, Spain, Poland, and the Czech
Republic

As R&D investment and efficiency depend on national industrial structures, the reasonable and useful
level for performance assessments is the industry domain. We observe countries occupying the frontier
in certain industries that do not belong to the generally highly efficient group, e.g. Italy in machinery, and
mineral products, and countries determining the frontier for the aggregate being superior only in certain
sectors, e.g. Finland in electrical and optical equipment and mineral products. Generally, we find electrical
and optical equipment is the dominant industry when determining the technology frontier, followed by

machinery, and mineral products.

Conducting separate DEA analyses for selected industries corroborates the results from the pooled
estimation and provides further insights about the relative position of countries in economically-
important industries. Again, we find support for the usefulness of industry-specific analyses as we
observe country-specific R&D efficiency profiles with substantial variation across sectors, e.g. a relatively
low score of the United States in machinery. Estimating distinct industry frontiers gives a clearer picture
of national strengths and weaknesses. More specifically, it reveals the size of the gap between the efficient

and less-efficient countries, since it no longer assumes that a common frontier envelops all industries.
We believe that our work can provide guidance to policymakers interested in improving innovative
performance and ensuring long-term economic growth. When resources are limited, priority should be

given to the industries that promise the largest output for the available amount of investment. Instead of
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generally increasing the R&D-to-GDP ratio, policymakers might target future R&D efforts to those
industries that are economically important and reveal excellent performance. We caution that our
findings should not be inappropriately over-generalized, particularly since our work is a first attempt to
evaluate R&D performance at the industrial sector. A finer-grained sector classification and the use of
efficiency measurements within industries to benchmark against international competitors could provide

additional insights.
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Appendix A

Table A.1

Concordance assigning IPC classes to European NACE22

NACE (Rev.1) Industry description

IPC Classes

15t16 Food products, beverages,
and tobacco

17t19 Textiles, textile products,
leather, and footwear

20 Wood, products of wood
and cork

21t22 Pulp, paper, paper products,
printing, and publishing

23 Coke, refined petroleum
products, and nuclear fuel

24 Chemicals and chemical
products

25 Rubber and plastics
products

26 Other nonmetallic mineral
products

27t28 Basic metals and fabricated
metal products

29 Machinery

22 Based on Schoch et al. (2003).

AO1H, A21D, A23B, A23C, A23D, A23F, A23G,
A23], A23K, A23L, A23P, C12C, C12F, C12G, C12H,
C12], C13F, C13], C13K, A24B, A24D, A24F

D04D, D04G, D04H, D06C, D06J, DO6M, DO6N,
D06P, D06Q, A41B, A41C, A41D, A41F, A43B,
A43C, B68B, B68C

B27D, B27H, B27M, B27N, E04G

B41M, B42D, B42F, B44F, D21C, D21H, D21]
C10G, C10L, GO1V

B01J, BO9B, B0O9C, B29B, C01B, C01C, CO1D, CO1,
CO1G, CO2F, CO5B, CO5C, CO5D, COSF, CO5G,
C07B, CO7C, CO7F, CO7G, CO8B, CO8C, COSF, C08,
C08J, CO8K, CO8L, C09B, C09C, CO9D, CO9K, C10B,
€10C, C10H, C10J, C10K, C12S, C25B, F17C, F17D,
F25], G21F, AO1N, B27K, A61K, A61P, CO7D,
CO7H, C07J, CO7K, C12N, C12P, C12Q, CO9F, C11D,
DO6L, A62D, CO6B, CO6C, CO6D, CO8H, C09G,
CO9H, C09J, C10M, C11B, C11C, C14C, C23F, C23G,
D01C, F42B, F42D, GO3C, DO1F

A45C, B29C, B29D, B60C, B65D, B67D, E02B,
F16L, H02G

B24D, B28B, B28C, B32B, C03B, C03C, C04B,
E04B, E04C, E04, EO4F, G21B

B21C, B21G, B22D, C21B, C21C, C21D, C22B,
C22C, C22F, C25C, C25F, C30B, DO7B, EO3F,
E04H, F27D, HO1B, A01L, A44B, A47H, A47K,
B21K, B21L, B22F, B25B, B25C, B25F, B25G,
B25H, B26B, B27G, B44C, B65F, B82B, C23D,
C25D, E01D, EO1F, E02C, E03B, E03C, E03D,
E05B, E05C, EO5D, EOSF, E05G, E06B, FO1K,
F15D, F16B, F16P, F16S, F16T, F17B, F22B, F22G,
F24], G21H

B23F, FO1B, FO1C, FO1D, FO3B, FO3C, FO3D, FO3G,
F04B, FO4C, F04D, F15B, F16C, F16D, F16F, F16H,
F16K, F16M, F23R, A62C, BO1D, B04C, BOSB,
B61B, B65G, B66B, B66C, B66D, B66F, C10F,
C12L, F16G, F22D, F23B, F23C, F23D, F23G,
F23H, F23], F23K, F23L, F23M, F24F, F24H, F25B,
F27B, F28B, F28C, F28D, F28F, F28G, GO1G,
HOSF, A01B, A01C, A01D, AO1F, A01G, A01],
AO01K, A01M, B27L, B21D, B21F, B21H, B21],
B23B, B23C, B23D, B23G, B23H, B23K, B23P,
B23Q, B24B, B24C, B25D, B25], B26F, B27B,
B27C, B27F, B27J, B28D, B30B, E21C, A21C,



30t33

34135

34135

Electrical and optical
equipment

Transport equipment

Transport equipment

A22B, A22C, A23N, A24C, A41H, A42C, A43D,
BO1F, B02B, B02C, B03B, B03C, BO3D, BO5C,
B0O5D, B06B, B07B, B07C, B08B, B21B, B22C,
B26D, B31B, B31C, B31D, B31F, B41B, B41C, B41,
B41F, B41G, B41L, B41N, B42B, B42C, B44B,
B65B, B65C, B65H, B67B, B67C, B68F, C13C,
C13D, C13G, C13H, C14B, C23C, D01B, D01D,
D01G, DO1H, D02G, DOZH, D02], D03C, D03D,
D03], D04B, D04C, D05B, D05C, D06B, D06G,
DO6H, D21B, D21D, D21F, D21G, E01C, E02D,
EO2F, E21B, E21D, E21F, F04F, F16N, F26B,
HO5H, B63G, F41A, F41B, F41C, F41F, F41G,
F41H, F41], F42C, G21], A21B, A45D, A47G, A47],
A47L,B01B, DO6F, E06C, F23N, F24B, F24C,
F24D, F25C, F25D, HO5B

B41], B41K, B43M, GO2F, GO3G, GO5F, GO6C,
G06D, GO6E, GO6F, G06G, GO6], GO6K, GO6M,
GO6N, GO6T, GO7B, GO7C, GO7D, GO7F, GO7G,
G09D, G09G, G10L, G11B, HO3K, HO3L, HO2K,
HO2N, HO2P, HO1H, HO1R, HO02B, HO1M, F21H,
F21K, F21L, F21M, F21S, F21V, HO1K, B60M,
B61L, F21P, F21Q, GO8B, G08G, G10K, G21C,
G21D, HO1T, HO2H, HO2M, HO5C, B81B, B81C,
G11C, HO1C, HO1F, HO1G, HO1]J, HO1L, GO9B,
G09C, HO1P, HO1Q, HO1S, HO2J, HO3B, HO3C,
HO3D, HO3F, HO3G, HO3H, HO3M, H04B, H04]J,
HO04K, H04L, H04M, H04Q, HO5K, GO3H, HO3]J,
HO04H, HO4N, HO4R, HO04S, A61B, A61C, A61D,
A61F, A61G, A61H, A61], A61L, A61M, A61N,
A62B, B01L, B04B, C12M, GO1T, G21G, G21K,
HO5G, F15C, G01B, GO1C, GO1D, GO1F, GO1H,
G01J], GO1M, GO1N, GO1R, GO1S, GO1W, G12B,
GO1K, GO1L, GO5B, G08C, G02B, G02C, GO3B,
G03D, GO3F, GO9F, G04B, G04C, G04D, GO4F,
G04G

B60B, B60D, B60G, B60H, B60], B60, B60L, B60N,
B60P, B60Q, B60R, B60S, B60T, B62D, EO1H
FO1L, FO1M, FO1N, FO1P, FO2B, F02D, FO2F,
F02G, FO2M, FO2N, FO2P, F16], GO1P, GO5D,
GO5G, B60F, B60V, B61C, B61D, B61F, B61G,
B61H, B61], B61K, B62C, B62H, B62], B62K,
B62L, B62M, B63B, B63C, B63H, B63], B64B,
B64C, B64D, B64F, B64G, E01B, FO2C, F02K,
FO3H

B60B, B60D, B60G, B60H, B60], B60, B60L, B60N,
B60P, B60Q, B60R, B60S, B60T, B62D, EO1H
FO1L, FO1M, FO1N, FO1P, FO2B, F02D, FO2F,
F02G, FO2M, FO2N, FO2P, F16], GO1P, GO5D,
GO5G, B60F, B60V, B61C, B61D, B61F, B61G,
B61H, B61], B61K, B62C, B62H, B62], B62K,
B62L, B62M, B63B, B63C, B63H, B63], B64B,
B64C, B64D, B64F, B64G, E01B, FO2C, FO2K,
FO3H
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Table A.2

Summary statistics: country level (2000-2004)

Country Patents R&D High-skilled Medium-skilled

Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max
lAustralia 988.73 396.14 120.00 1316.00 | 11475.31 731.60 10695.31 12383.88 | 233.67 25.12 187.79 265.04| 912.41 23.81 873.58 942.2
Belgium 179146  513.58 703.00 2408.00 |21247.66 691.09 20295.03 21869.15| 100.09 2.44 9631 104.06| 500.09 2746 45192 5349
Denmark 1008.82  322.45 292.00 1377.00 | 8068.75 737.58 7192.70 892498 | 26.56 3.53 20.86 30.81 | 416.68 19.29 377.02 4404
Finland 129391  465.58 184.00 1756.00 | 12844.10 1342.51 11251.02 14380.25| 185.62 16.26 155.60 205.53| 346.51 19.14 311.06 369.2
France 8311.46 2627.65 1425.00 10909.00 {126489.10 3404.08 122569.80 130383.50| 417.88 34.32 379.91 505.69|3739.69 93.07 3543.70 3829.
Germany 31328.55 10153.03 6738.00 40494.00 |235506.10 7169.71 227042.00 243748.10| 923.38 27.03 899.79 984.07|7594.50 265.25 7175.89 8119.¢
[reland 214.45 89.01 47.00 329.00 3149.89 153.26 2965.63 3322.22 | 65.04 16.89 40.53 91.21 | 428.75 24.28 39341 4549
[taly 492991 1409.71 1909.00 6488.00 | 42905.19 114.67 42765.27 43019.69 | 248.24 14.71 225.13 266.75|8513.60 153.87 8127.31 8717.!
Japan 21125.64 7292.83 2606.00 27615.00 |486848.40 18084.60 465781.70 507609.80| 4215.53 74.92 4058.65 4320.42|15395.44 943.06 14044.3916722.
Netherlands 3431.82 118597 777.00 4747.00 | 24787.83 446.53 24222.00 25293.68 | 83.75 14.64 65.56 108.82|1319.26 55.68 1205.07 1375.¢
South Korea 171991 1323.35 526.00 4548.00 | 69024.85 3494.39 66553.94 71495.76 | 2750.78 430.54 2317.89 3472.43| 6073.16 397.72 5340.16 6761.(
Spain 937.64 362.05 441.00 1631.00 | 1683296 1105.64 15624.49 18158.09 | 523.04 119.31 318.33 685.37|1441.02 230.98 995.70 1730.:
Sweden 244173 63441 728.00 3008.00 |36348.87 2820.43 32826.70 3934542 | 116.89 27.35 84.87 165.36| 870.20 30.12 835.65 926.6
United Kingdom 6117.46 1961.52 801.00 7673.00 |97799.71 2146.41 95243.11 100233.10| 781.08 69.20 660.10 851.81|5356.43 569.71 4325.81 6002.
United States 33048.82 10558.20 3428.00 39608.00 |880727.00 5370.19 873631.70 886484.20| 7781.95 380.48 7083.66 8304.06|22283.022549.71 18570.38 24570.

Source: EU KLEMS database and PATSTAT, own calculations.
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Table A.3

Summary statistics: industry level (2000-2004)

Industry Patents R&D High-skilled Medium-skilled

Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max | Mean S.D. Min Max
Food products, beverages, 1728.4 44.4 1688.0 1781.0 |39514.3 2113.7 37416.1 41892.0 |1466.1 45.6 1414.7 1539.0| 8342.7 105.6 8240.3 8509.:
and tobacco
Textiles, textile products, 1159.2 132.2 968.0 1311.0 |10461.8 247.9 10109.2 10670.9 | 492.6 53.2 421.1 550.1 | 4409.0 502.6 3823.1 5084.
leather, and footwear
Wood, products of wood and | 178.4 40.5 139.0 229.0 | 3206.6 925.8 1838.5 3865.2 | 213.6 49.1 145.2 272.4 |1888.6 265.7 1530.6 2236.:
cork
Pulp, paper products, 1211.8 81.1 1109.0 1290.0 | 24509.5 1870.3 22443.2 26875.3 |2027.1 148.8 1836.7 2173.2| 6162.9 306.4 5844.7 6595.¢
printing, and publishing
Coke, refined petroleum 683.8 23.3 667.0 723.0 |23958.7 1255.6 22586.2 25623.2 | 111.8 5.2 107.1 119.0 | 316.5 18.0 289.3 339.1
products, and nuclear fuel
Chemicals and chemical 28545.2 892.0 27214.0 29570.0|368141.9 13914.7 353882.7 384520.4 {15869 30.7 15529 1628.1|3406.5 127.6 3261.5 3564.:
products
Rubber and plastics products| 5617.4 1069 5496.0 5734.0 |37502.2 1949.3 35219.4 39634.4 | 928.7 314 893.7 9629 |4114.7 155.2 3984.6 4344.
Other nonmetallic mineral 3789.8 236.3 3487.0 4124.0 |22539.5 2454 22347.6 228659 | 526.8 9.0 518.7 538.9 | 2863.2 141.0 2713.2 3056.¢
products
Basic metals and fabricated | 6307.6 128.1 6162.0 6455.0 |62275.4 5639 61605.1 62982.3 |1798.8 46.2 1750.0 1869.9|10166.4 316.3 9891.5 10637.
metal products
Machinery, NEC 24701.8 686.5 24001.0 25828.0|144652.2 6548.6 137205.5 151711.5 ({1911.0 109.7 1812.0 2066.9| 7989.2 489.9 7545.3 8633.¢
Electrical and optical 56945.4 1828.0 55674.0 60165.0(779547.2 38031.6 735008.9 816686.9 (4081.3 138.4 3916.6 4249.4|9973.3 899.6 9080.8 11099.
equipment
Transport equipment 11288.0 802.7 10531.0 12345.0|502620.9 16632.0 488258.5 522170.6 |2134.1 111.6 2049.3 2295.6| 7145.6 1579 7011.5 7367.¢
Manufacturing, NEC 2256.8 65.4 2188.0 2343.0 |15615.8 1050.5 14448.7 16803.1 | 695.6 22.8 669.9 721.5|38754 181.0 3721.8 4147.

Source: EU KLEMS database and PATSTAT, own calculations
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