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about the validity of widely used identifying assumptions the structural VAR 
literature has continuously evolved since the 1980s. This survey traces the 
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1 Introduction

Notwithstanding the increased use of estimated dynamic stochastic general equilibrium (DSGE)

models over the last decade, structural vector autoregressive (VAR) models continue to be the work-

horse of empirical macroeconomics and finance. Structural VAR models have four main applications.

First, they are used to study the average response of the model variables to a given one-time struc-

tural shock. Second, they allow the construction of forecast error variance decompositions that

quantify the average contribution of a given structural shock to the variability of the data. Third,

they can be used to provide historical decompositions that measure the cumulative contribution

of each structural shock to the evolution of each variable over time. Historical decompositions are

essential, for example, in understanding the genesis of recessions or of energy price spikes in the

data (see, e.g., Edelstein and Kilian 2009). Finally, structural VAR models allow the construction

of forecast scenarios conditional on hypothetical sequences of future structural shocks (see, e.g.,

Waggoner and Zha 1999; Baumeister and Kilian 2011).

VAR models were first proposed by Sims (1980a) as an alternative to traditional large-scale

dynamic simultaneous equation models. Sims’ research program stressed the need to dispense with

ad hoc dynamic restrictions in regression models and to discard empirically implausible exogeneity

assumptions. He also stressed the need to model all endogenous variables jointly rather than one

equation at a time. All of these points have stood the test of time. There is a large literature on the

specification and estimation of reduced-form VAR models (see, e.g., Watson 1994, Lütkepohl 2005,

2011). The success of such VAR models as descriptive tools and to some extent as forecasting tools

is well established. The ability of structural representations of VAR models to differentiate between

correlation and causation, in contrast, has remained contentious.

Structural interpretations of VAR models require additional identifying assumptions that must

be motivated based on institutional knowledge, economic theory, or other extraneous constraints

on the model responses. Only after decomposing forecast errors into structural shocks that are

mutually uncorrelated and have an economic interpretation can we assess the causal effects of these

shocks on the model variables. Many early VAR studies overlooked this requirement and relied

on ad hoc assumptions for identification that made no economic sense. Such atheoretical VAR

models attracted strong criticism (see, e.g., Cooley and LeRoy 1985), spurring the development of

more explicitly structural VAR models starting in 1986. In response to ongoing questions about

the validity of commonly used identifying assumptions the structural VAR model literature has

continuously evolved since the 1980s. Even today new ideas and insights are being generated.

This survey traces the evolution of this literature. It focuses on alternative approaches to the
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identification of structural shocks within the framework of a reduced-form VAR model, highlighting

the conditions under which each approach is valid and discussing potential limitations of commonly

employed methods.

Section 2 focuses on identification by short-run restrictions. Section 3 reviews identification

by long-run restrictions. Identification by sign restrictions is discussed in section 4. Section 5

summarizes alternative approaches such as identification by heteroskedasticity or identification based

on high-frequency financial markets data and discusses identification in the presence of forward-

looking behavior. Section 6 discusses the relationship between DSGE models and structural VAR

models. The conclusions are in section 7.

2 Identification by Short-Run Restrictions

Consider a -dimensional time series ,  = 1   . We postulate that  can be approximated

by a vector autoregression of finite order . Our objective is to learn about the parameters of the

structural vector autoregressive model

0 = 1−1 + +− + 

where  denotes a mean zero serially uncorrelated error term, also referred to as a structural

innovation or structural shock. The error term is assumed to be unconditionally homoskedastic,

unless noted otherwise. All deterministic regressors have been suppressed for notational convenience.

Equivalently the model can be written more compactly as

() = 

where () ≡ 0 − 1 − 2
2 −  − 

 is the autoregressive lag order polynomial. The

variance-covariance matrix of the structural error term is typically normalized such that:

 (
0
) ≡ Σ =  

This means, first, that there are as many structural shocks as variables in the model. Second,

structural shocks by definition are mutually uncorrelated, which implies that Σ is diagonal. Third,

we normalize the variance of all structural shocks to unity. The latter normalization does not involve

a loss of generality, as long as the diagonal elements of 0 remain unrestricted. We defer a discussion

2



of alternative normalizations until the end of this section.1

In order to allow estimation of the structural model we first need to derive its reduced-form

representation. This involves expressing  as a function of lagged  only. To derive the reduced-

form representation, we pre-multiply both sides of the structural VAR representation by −10 :

−10 0 = −10 1−1 + +−10 − +−10 

Hence, the same model can be represented as:

 = 1−1 + +− + 

where  = −10   = 1  , and  = −10 . Equivalently the model can be written more

compactly as:

() = 

where () ≡  − 1 − 2
2 −  − 

 denotes the autoregressive lag order polynomial.

Standard estimation methods allow us to obtain consistent estimates of the reduced-form parameters

  = 1  , the reduced-form errors , and their covariance matrix (
0
) ≡ Σ (see Lütkepohl

2005).

It is clear by inspection that the reduced-form innovations  are in general a weighted average

of the structural shocks . As a result, studying the response of the vector  to reduced-form

shocks  will not tell us anything about the response of  to the structural shocks . It is the

latter responses that are of interest if we want to learn about the structure of the economy. These

structural responses depend on   = 0   The central question is how to recover the elements

of −10 from consistent estimates of the reduced-form parameters, because knowledge of −10 would

enable us to reconstruct  from  = 0 and   = 1   from  = 0.

By construction,  = −10 . Hence, the variance of  is:

(
0
) = −10 (

0
)
−10
0

Σ = −10 Σ
−10
0

Σ = −10 −100

1 It is worth noting that, in general, structural shocks do not correspond to particular model variables. For example,

in a VAR system consisting of only price and quantity, we can think of a demand shock and a supply shock each

shifting prices and quantities. In fact, if price and quantity variables were mechanically associated with price and

quantity shocks, this would be an indication that the proposed model is not truly structural.
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where we made use of Σ =  in the last line. We can think of Σ = −10 −100 as a system of

nonlinear equations in the unknown parameters of −10 . Note that Σ can be estimated consistently

and hence is treated as known. This system of nonlinear equations can be solved for the unknown

parameters in −10 using numerical methods, provided the number of unknown parameters in −10

does not exceed the number of equations. This involves imposing additional restrictions on selected

elements of−10 (or equivalently on0). Such restrictions may take the form of exclusion restrictions,

proportionality restrictions, or other equality restrictions. The most common approach is to impose

zero restrictions on selected elements of −10 .

To verify that all of the elements of the unknown matrix −10 are uniquely identified observe

that Σ has ( + 1)2 free parameters. This follows from the fact that any covariance matrix

is symmetric about the diagonal. Hence, ( + 1)2 by construction is the maximum number

of parameters in −10 that one can uniquely identify. This order condition for identification is

easily checked in practice, but is a necessary condition for identification only. Even if the order

condition is satisfied, the rank condition may fail, depending on the numerical values of the elements

of −10 . Rubio-Ramirez, Waggoner and Zha (2010) discuss a general approach for evaluating the

rank condition for global identification in structural VAR models.

The earlier discussion alluded to the existence of alternative normalization assumption in struc-

tural VAR analysis. There are three equivalent representations of structural VAR models that differ

only in how the model is normalized. All three representations have been used in applied work. In

the discussion so far we made the standard normalizing assumption that Σ =  , while leaving

the diagonal elements of 0 unrestricted. Identification was achieved by imposing identifying re-

strictions on −10 in  = −10 . By construction a unit innovation in the structural shocks in this

representation is an innovation of size one standard deviation, so structural impulse responses based

on −10 are responses to one-standard deviation shocks.

Equivalently, one could have left the diagonal elements of Σ unconstrained and set the diagonal

elements of 0 to unity in  = 0 (see, e.g., Keating 1992). A useful result in this context is that

0 being lower triangular implies that 
−1
0 is lower triangular as well. However, the variance of the

structural errors will no longer be unity if the model is estimated in this second representation, so

the implied estimate of −10 must be rescaled by one residual standard deviation to ensure that the

implied structural impulse responses represent responses to one-standard deviation shocks.

Finally, these two approaches may be combined by changing notation and writing the model

equivalently as

0 = Υ
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with Σ =  such that Σ = −10 ΥΥ
0−100 . The two representations above emerge as special

cases of this representation with the alternative normalizations of 0 =  orΥ =  . The advantage

of the third representation is that it allows us to relax the assumption that eitherΥ =  or 0 =  ,

which sometimes facilitates the exposition of the identifying assumptions. For example, Blanchard

and Perotti (2002) use this representation with the diagonal elements of Υ normalized to unity, but

neither Υ nor 0 being diagonal.

2.1 Recursively Identified Models

One popular way of disentangling the structural innovations  from the reduced-form innovations

 is to "orthogonalize" the reduced-form errors. Orthogonalization here means making the errors

uncorrelated. Mechanically, this can be accomplished as follows. Define the lower-triangular  ×

matrix  with positive main diagonal such that  0 = Σ. Taking such a Cholesky decomposition

of the variance-covariance matrix is the matrix analogue of computing the square root of a scalar

variance.2

It follows immediately from the condition Σ = −10 −100 that −10 =  is one possible solution

to the problem of how to recover . Since  is lower triangular, it has (+1)2 free parameters,

so all parameters of  are exactly identified. As a result, the order condition for identification

is satisfied. Given the lower triangular structure of  , there is no need to use numerical solution

methods in this case, but if we did impose the recursive exclusion restrictions on −10 and solved

numerically for the remaining parameters, the results would be identical to the results from the

Cholesky decomposition. The advantage of the numerical approach discussed earlier is that it

allows for alternative nonrecursive identification schemes and for restrictions other than exclusion

restrictions.

It is important to keep in mind that the "orthogonalization" of the reduced-form residuals by

applying a Cholesky decomposition is appropriate only if the recursive structure embodied in  can

be justified on economic grounds.

• The distinguishing feature of "orthogonalization" by Cholesky decomposition is that the result-
ing structural model is recursive (conditional on lagged variables). This means that we impose

a particular causal chain rather than learning about causal relationships from the data. In

essence, we solve the problem of which structural shock causes the variation in  by imposing a

particular solution. This mechanical solution does not make economic sense, however, without

a plausible economic interpretation for the recursive ordering.

2Standard software provides built-in functions for generating the Cholesky decomposition of Σ.
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• The neutral and scientific sounding term "orthogonalization" hides the fact that we are making
strong identifying assumptions about the error term of the VAR model. In the early 1980s,

many users of VARs did not understand this point and thought the data alone would speak for

themselves. Such "atheoretical" VAR models soon were severely criticized (see, e.g., Cooley

and LeRoy 1985). This critique spurred the development of structural VAR models that impose

nonrecursive identifying restrictions (e.g., Sims 1986; Bernanke 1986; Blanchard and Watson

1986). It also prompted more careful attention to the economic underpinnings of recursive

models. It was shown that in special cases the recursive model can be given a structural or

semistructural interpretation.

•  is not unique. There is a different solution for  for each ordering of the  variables in

the VAR model. It is sometimes argued that one should conduct sensitivity analysis based on

alternative orderings of the  variables. This proposal makes no sense for three reasons:

1. On the one hand, we claim to be sure that the ordering is recursive, yet on the other hand we

have no clue in what order the variables are recursive. This approach is not credible.

2. For a small VAR model with  = 4, for example, there are 4 · 3 · 2 · 1 = 24 permutations of
the ordering. Nobody seriously tries out this many model specifications, nor would there be

much hope that the results would be the same in each case, unless the reduced-form errors are

uncorrelated, which can be checked by inspecting the off-diagonal elements of Σ.

3. Even if there were no difference across these 24 specifications, this would only prove that the

results are robust among all recursive orderings, but there is no reason for the model to be

recursive in the first place. This point is best illustrated by example. Let  denote the price

and  the quantity of a good. Price and quantity are driven by structural demand shocks 



and supply shocks  . All dynamics are suppressed for expository purposes such that  = :

µ




¶
| {z }



=

⎡⎣ 1 −05
05 1

⎤⎦
| {z }


−1
0

µ



¶
| {z } 



In this example, by construction Σ is diagonal and the observable data are uncorrelated such

that all recursive orderings are identical. This outcome obviously does not imply that any of
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the recursive orderings are valid. In fact, −10 differs from

 = (Σ) = 

⎛⎝⎡⎣ 125 0

0 125

⎤⎦⎞⎠ =

⎡⎣ 1118 0

0 1118

⎤⎦
by construction. This point holds more generally. Let  = −10  denote the true structural

relationship and  =  be the Cholesky relationship. Then

 = −1 = −1
¡
−10 

¢ 6= 

so the Cholesky decomposition will fail to identify the true structural shocks.

2.2 Sources of Identifying Restrictions

The preceding subsection stressed that, unless we can come up with a convincing rationale for a

particular recursive ordering, the resulting VAR impulse responses, variance decompositions, and

historical decompositions are economically meaningless. This raises the question of where the eco-

nomic rationale of identifying restrictions on −10 or 0 comes from. There are a number of potential

sources. One is economic theory:

• In some cases, we may wish to impose the structure provided by a specific economic model,
although in that case the empirical results will only be as credible as the underlying theory. A

case in point is Blanchard’s (1989) structural VAR analysis of the traditional Keynesian model

involving an aggregate demand equation, Okun’s law, a price-setting equation, the Phillips

curve and a monetary policy rule.

• Another strategy is to specify an encompassing model that includes as special cases various
alternative structural models implied by different economic models, allowing tests for overi-

dentifying restrictions. The advantage of this approach is that it avoids conditioning on one

specific model that may be incorrect. Of course, this type of structural VAR model no longer

admits a Cholesky representation and must be estimated by numerical methods using the gen-

eralized method of moments (GMM). This strategy has been used, for example, by Bernanke

and Mihov (1998) who model the market for bank reserves as part of a study of U.S. monetary

policy. Within a semistructural VAR framework they jointly analyze a vector of policy indi-

cators rather than a single indicator (such as the federal funds rate). Their approach allows

for changes in the operating procedures of the Federal Reserve over time.
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Often there is no fully developed theoretical model available in which case identification may be

achieved by using extraneous information or by using selective insights from economic theory:

• Information delays: Information may not be available instantaneously because data are re-
leased only infrequently, allowing us to rule out instantaneous feedback. This approach has

been exploited in Inoue, Kilian and Kiraz (2009), for example.

• Physical constraints: For example, a firm may decide to invest, but it takes time for that

decision to be made and for the new equipment to be installed, so measured physical investment

responds with a delay.

• Institutional knowledge: For example, we may have information about the inability of suppli-
ers to respond to demand shocks in the short run due to adjustment costs, which amounts to

imposing a vertical slope on the supply curve (see Kilian 2009). Similarly, Davis and Kilian

(2011) exploit the fact that gasoline taxes (excluding ad valorem taxes) do not respond instan-

taneously to the state of the economy because lawmakers move at a slow pace. This feature of

the data allows them to treat gasoline taxes as predetermined with respect to domestic macro-

economic aggregates. Moreover, given that consumers are effectively unable to store gasoline,

anticipation of gasoline tax changes can be ignored in this setting.

• Assumptions about market structure: Another common identifying assumption in empirical
work is that there is no feedback from a small open economy to the rest of the world. This

identifying assumption has been used, for example, to motivate treating the U.S. interest

rate as contemporaneously exogenous with respect to the macroeconomic aggregates of small

open economies such as Canada (see, e.g., Cushman and Zha 1997). This argument is not

without limitations, however. Even if a small open economy is a price taker in world markets,

both small and large economies may be driven by a common factor invalidating this exclusion

restriction. In a different context, Todd (1990) interprets Sims’ (1980b) recursive VAR model

of monetary policy in terms of alternative assumptions about the slopes of money demand and

money supply curves.

• Another possible source of identifying information are homogeneity restrictions on demand
functions. For example, Gali (1992) imposes short-run homogeneity in the demand for money

when assuming that the demand for real balances is not affected by contemporaneous changes

in prices (given the nominal rate and output). This assumption amounts to assuming away

costs of adjusting nominal money holdings. Similar homogeneity restrictions have also been

used in Bernanke (1986).

8



• Extraneous parameter estimates: When impact responses (or their ratio) can be viewed as
elasticities it may be possible to impose values for those elasticities based on extraneous infor-

mation from other studies. This approach has been used by Blanchard and Perotti (2002), for

example. Similarly, Blanchard and Watson (1986) impose nonzero values for some structural

parameters in 0 based on extraneous information. If the parameter value cannot be pinned

down with any degree of reliability, yet another possibility is to explore a grid of possible struc-

tural parameters values, as in Abraham and Haltiwanger (1995). A similar approach has also

been used in Kilian (2010) and Davis and Kilian (2011) in an effort to assess the robustness

of their baseline results.

• High-frequency data: In rare cases, it may be possible to test exclusion restrictions more di-
rectly. For example, Kilian and Vega (2011) use daily data on U.S. macroeconomic news to

formally test the identifying assumption of no feedback within the month from U.S. macro-

economic aggregates to the price of oil. Their work lends credence to exclusion restrictions in

monthly VAR models ruling out instantaneous feedback from domestic macroeconomic aggre-

gates to the price of oil.

It is fair to say that coming up with a set of credible short-run identifying restrictions is difficult.

Whether a particular exclusion restriction is convincing, often depends on the data frequency, and

in many cases there are not enough credible exclusion restrictions to achieve identification. This fact

has stimulated interest in the alternative identification methods discussed in sections 3, 4 and 5.

2.3 Examples of Recursively Identified Models

2.3.1 Example 1: A Simple Macroeconomic Model

Let  = (  ) where  is the log price level,  is log real GDP,  the log of a

monetary aggregate such as M1, and  the federal funds rate. The data are quarterly and the

proposed identification is recursive such that:⎛⎜⎜⎜⎜⎜⎜⎝












⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
 0 0 0

  0 0

   0

   

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
1

2

3

4

⎞⎟⎟⎟⎟⎟⎟⎠ 

Note that each line can be viewed as an equation. This may be seen by multiplying through each

term on the right-hand side. Each reduced-form shock is a weighted average of selected structural
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shocks. The letters , , ...,  represent the weights attached to the structural shocks. For example,

the first equation is 

 = 1 + 0 + 0 + 0, the second reads 


 = 1 + 2 + 0 + 0, etc.

One way of rationalizing this identification would be to interpret the first two equations as an

aggregate supply and aggregate demand model with a horizontal AS curve and downward-sloping

AD curve. 1 moves the price level and real output, so it must be a shift of the AS curve. 2

moves real output only, so it must represent a shift of the AD curve. The third equation could be

interpreted as a money demand equation derived from the quantity equation:  =  , where 

stands for velocity and  for real income. Hence, 3 can be interpreted as a velocity shock or money

demand shock, if we take real GDP to represent real income. The last equation could represent a

monetary policy reaction function. The Federal Reserve systematically responds to 

  


  and 

(as well as lags of all variables). Any change in the interest rate not accounted for by this response,

would be an exogenous monetary policy (or money supply) shock. Such policy shocks could arise

from changes in the composition of the Federal Open Market Committee, for example, or may reflect

reactions to events such as 9/11 or the housing crisis that are not captured by standard policy rules.

It is easy to spot the limitations of this model. For example, why does money demand not respond

to the interest rate within a quarter? How plausible is the horizontal supply curve? These are the

types of questions that one must ask when assessing the plausibility of a structural VAR model.

This example also illustrates that theory typically is not sufficient for identification, even if we are

willing to condition on a particular theoretical model. For example, if the AS curve were vertical,

but the AD curve horizontal by assumption, the first two equations of the structural model above

would have to be modified. More generally, no recursive structure would be able to accommodate

a theoretical model in which the AS and AD curves are neither horizontal nor vertical, but upward

and downward sloping. This point highlights the difficulty of specifying fully structural models of

the macroeconomy in recursive form and explains why such models have been largely abandoned.

2.3.2 Example 2: A Model of the Global Market for Crude Oil

The second example is a structural VAR model of the global market for crude oil based on Kilian

(2009). Let  = (∆  ) where ∆ denotes the percent change in world crude oil

production,  is a suitably detrended measure of the log of global real economic activity, and

 is the log of the real price of oil. The data are monthly.⎛⎜⎜⎜⎝

∆








⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
 0 0

  0

  

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝


 



 


  


⎞⎟⎟⎟⎠ 
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This model of the global market for crude oil embodies a vertical oil supply curve and a downward-

sloping oil demand curve (conditional on lags of all variables). There are two demand shocks that

are separately identified by the delay restriction that other oil-demand shocks may raise the price of

oil, but without slowing down global real economic activity within the same month.

One might question whether one could have imposed an overidentifying restriction of the form

 = 0. In other words, one would expect that higher oil prices triggered by unanticipated oil supply

disruptions would not slow down global real activity within the month any more or less than other

oil demand shocks. It turns out that the estimate of  is essentially zero, even without imposing

that restriction, making this point moot. One also could question whether the short-run supply

curve is truly vertical. Defending this assumption requires institutional knowledge of oil markets or

extraneous econometric evidence. For example, Kellogg (2011) provides independent microeconomic

evidence from Texan oil wells that oil producers are unresponsive to demand shocks in the short run

even in competitive environments.

2.3.3 Example 3: Semistructural Models of Monetary Policy

The preceding two examples are recursively identified VAR models that are fully identified in that

each structural shock is identified. Often we do not have enough restrictions to fully identify a VAR

model. This has prompted the development of semistructural or partially identified VAR models.

The idea of semistructural models is that in some cases we may be satisfied if we can identify one

structural shock only. The most common application are VAR models of monetary policy shocks.

The simplest example is a quarterly model for  = (∆  ) where ∆ denotes real GDP

growth,  the inflation rate, and  the federal funds rate. We use the Cholesky decomposition to

compute ⎛⎜⎜⎜⎝

∆






⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
 0 0

  0

  

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

1

2

3

⎞⎟⎟⎟⎠ 

The only shock that is identified in this model is the monetary policy shock, 3 . The last equation

of the model is interpreted as a monetary policy reaction function. The Federal Reserve responds

to 
∆
 and  . 

3
 represents a monetary policy shock. In contrast, 

1
 and 2 are not identified,

except if we are willing to accept a particular version of the AS/AD model. This is not required,

if we are interested in 3 only, because any alternative decomposition of the first two shocks would

leave 3 unaffected. Thus, we impose the recursive structure on the first two equations as a matter

of convenience only. Models of this type have been commonly used in empirical work. The policy
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variable in semistructural VAR models need not be the short-term interest rate. A similar approach

to identification may be followed with alternative policy indicators such as nonborrowed reserves

(see, e.g., Strongin 1995). Regardless of the details of the specification, this identification scheme

requires that the shock of interest be ordered at (or near) the bottom of the recursive ordering.

Semistructural VAR models of monetary policy have five important weaknesses. First, the model

does not allow for feedback within a given quarter from 3 to ∆ and . This seems implausible

at least at quarterly frequency. Because ∆ is not available at higher frequency, there is little

we can do about this problem.3 It might seem that the same identification scheme would be more

credible if we replaced ∆ by the growth rate of industrial production and estimated the model at

monthly frequency. This is not the case. One problem is that industrial output accounts for only a

fraction of total output. Moreover, real GDP is a measure of value added, whereas industrial output

is a gross output measure. Finally, it is well known that the Federal Reserve is concerned with

broader measures of real activity, making a policy reaction function based on industrial production

growth economically less plausible and hence less interesting. In this regard, a better measure of

monthly U.S. real activity would be the Chicago Fed’s monthly principal components index of U.S.

real activity (CFNAI). Yet another approach in the literature has been to interpolate quarterly

real GDP data based on the fluctuations in monthly industrial production data and other monthly

indicators. Such ad hoc methods not only suffer from the same deficiencies as the use of industrial

production data, but they are likely to distort the structural impulse responses to be estimated.

Second, the Federal Reserve may respond systematically to more variables than just ∆ and

. Examples are housing prices, stock prices, or industrial commodity prices. To the extent that

we have omitted these variables from the model, we will obtain biased estimates of  and , and

incorrect measures of the monetary policy shock 3 . In essence, the problem is that the policy

shocks must be exogenous to allow us to learn about the effects of monetary policy shocks. Thus,

it is common to enrich the set of variables ordered above the interest rate relative to this simple

benchmark model and estimate much larger VAR systems (see, e.g., Bernanke and Blinder 1992;

Sims 1992; Christiano, Eichenbaum and Evans 1999).

Adding more variables, however, invites overfitting and undermines the credibility of the VAR

estimates. Standard VAR models cannot handle more than half a dozen variables, given typical

sample sizes. One potential remedy of this problem is to work with factor augmented VAR (FAVAR)

models, as in Bernanke and Boivin (2003), Bernanke, Boivin and Eliasz (2005), Stock and Watson

3The Bureau of Economic Analysis does not release monthly U.S. real GDP data. Unofficial measures of monthly

U.S. real GDP constructed similarly to the official quarterly data have recently been provided by Macoeconomic

Advisers, LLC. These time series for the time being are not long enough for estimating VAR models of monetary

policy, however.
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(2005) or Forni, Giannone, Lippi and Reichlin (2009). Alternatively, one can work with large-scale

Bayesian VAR models in which the cross-sectional dimension  is allowed to be larger than the

time dimension  , as in Banbura, Giannone and Reichlin (2010). These large-scale models are

designed to incorporate a much richer information structure than conventional semistructural VAR

models of monetary policy. Such models have three distinct advantages over conventional small to

medium sized VAR models. First, they allow for the fact that central bankers form expectations

about domestic real activity and inflation based on hundreds of economic and financial time series

rather than a handful of time series. Second, they allow for the fact that economic concepts such

as domestic economic activity and inflation may not be well represented by a single observable time

series. Third, they allow the user to construct the responses of many variables not included in

conventional VAR models. There is evidence that allowing for richer information sets in specifying

VAR models improves the plausibility of the estimated responses. It may mitigate the price puzzle,

for example.4

Third, the identification of the model hinges on the monetary policy reaction function being

stable over time. To the extent that policymakers have at times changed the weights attached to

their inflation and output objectives or the policy instrument, it becomes essential to split the sample

in estimating the VAR model. The resulting shorter sample in turn makes it more difficult to include

many variables in the model due to the lack of degrees of freedom. It also complicates statistical

inference.

Fourth, the VAR model is linear. It does not allow for a lower bound on the interest rate, for

example, making this model unsuitable for studying the quantitative easing of the Federal Reserve

Board in recent years.

Fifth, most VAR models of monetary policy ignore the real-time nature of the policy decision

problem. Not all data relevant to policy makers are available without delay and when data become

available, they tend to be preliminary and subject to further revisions. To the extent that monetary

policy shocks are defined as the residual of the policy reaction function, a misspecification of the

policymaker’s information set will cause biases in the estimated policy shocks. Bernanke and Boivin

(2003) is an example of a study that explores the role of real-time data limitations in semistructural

VAR models. Their conclusion is that − at least for their sample period − the distinction between
real-time data and ex-post revised data is of limited importance.

4The price puzzle refers to the finding of a statistically significant increase in the price level in response to an

unanticipated monetary tightening in models of this type. Sims (1992) suggested that this puzzle could be resolved by

including global commodity prices as an indicator of future inflation in the model. This idea is reasonable because the

Federal Reserve considers global commodity prices as a predictor of inflation. Hanson (2004), however, showed the

there is little correlation between the ability of alternative measures of global commodity prices to predict inflation and

to resolve the price puzzle. Indeed, subsequent research has shown that the price puzzle more often than not persists

even after including global commodity prices in the VAR model, suggesting that the model remains misspecified.
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Finally, it is useful to reiterate that the exercise contemplated in structural VAR models is

an unanticipated monetary policy shock within an existing monetary policy rule. This exercise is

distinct from that of changing the monetary policy rule (as happened in 1979 under Paul Volcker

or in 2008 following the quantitative easing of the Federal Reserve Board). The latter question is of

independent interest, but much harder to answer. The role of systematic monetary policy has been

stressed in Leeper, Sims, and Zha (1996) and Bernanke, Gertler, and Watson (1997), for example.

Econometric evaluations of the role of systematic monetary policy, however, remain controversial

and easily run afoul of the Lucas critique (see, e.g., Kilian and Lewis (2011) and the references

therein).

2.3.4 Example 4: Models of the Transmission of Energy Price Shocks

Whereas the semistructural VAR model of monetary policy is sensitive to omitted variable biases by

construction, this is not true for all semistructural models. Consider the example of a model of the

transmission of energy price shocks in which the price of energy is predetermined with respect to all

domestic macroeconomic aggregates, consistent with empirical evidence in Kilian and Vega (2011).

A case in point is the recursively identified monthly bivariate model utilized in Edelstein and Kilian

(2009):

µ

∆


∆

¶
=

⎡⎣  0

 

⎤⎦µ1
2

¶


where ∆ denotes the percent change in U.S. energy prices and ∆ denotes percent growth

in real U.S. energy consumption. The model is semistructural in that only the innovation in the

price of energy, 1 , is explicitly identified. Under the maintained assumption that the price of

oil is predetermined with respect to all U.S. included and excluded macroeconomic aggregates,

the response of domestic energy consumption to an energy price innovation will be asymptotically

invariant to the omission of other domestic macroeconomic aggregates. In other words, the response

of ∆ to 1 remains unaffected if, for example, we add the interest rate  as a second variable ordered

below energy prices:

⎛⎜⎜⎜⎝
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The intuition for this invariance result is best seen by simplifying the problem to a static model.

Energy prices being predetermined (i.e., contemporaneously exogenous) with respect to domestic
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macroeconomic aggregates means that we can interpret a nonzero contemporaneous correlation be-

tween the price of energy and energy consumption as evidence of a causal link from the price of energy

to real energy consumption. In the bivariate case, the problem of finding that causal relationship

reduces to that of deriving the correlation of these two variables from their joint distribution. Now

consider adding interest rates () as a third variable. If we are interested in the correlation between

∆ and ∆, we will have to marginalize the joint distribution for (∆ ∆) such that we obtain the

marginal distribution for (∆∆), from which the correlation in question can be computed. Note

that there is no gain from adding more variables in this case. We obtain exactly the same result

from the distribution of (∆∆). The additional variables are irrelevant in population. In the

dynamic case, the argument becomes more subtle because cross-sectional aggregation also affects

the dynamics of the reduced-form VAR model, as discussed in Lütkepohl (2005), but asymptotically

the same argument goes through based on sieve interpretations of structural VAR models (see, e.g.,

Inoue and Kilian 2002). This result is fundamentally different from the case of semistructural VAR

models of monetary policy, in which the policy reaction function is typically ordered last. In the

latter case, the omission of other variables ordered above the policy reaction function immediately

invalidates the identification of the monetary policy shock.

2.3.5 Example 5: The Permanent Income Model of Consumption

Cochrane (1994) proposes another application of the recursive model. His interest is not in identifying

demand or supply shocks, but in decomposing permanent and transitory shocks within the framework

of the permanent income model of consumption. The standard permanent income model implies that

log real consumption () and log real income () are cointegrated such that the consumption-

income ratio is stationary. Cochrane imposes this cointegration restriction on the reduced-form VAR

model for ( ). The permanent income model also predicts that if income changes unexpectedly

without a corresponding change in consumption, then consumers will regard the shock to income as

having purely transitory effects on income. Cochrane identifies such a shock by recursively ordering

innovations to consumption first in the Cholesky decomposition of the reduced-form error-covariance

matrix. This decomposition allows him to separate permanent from transitory shocks and to quantify

their importance for the variability of consumption and income:

⎛⎝ 





⎞⎠ =

⎡⎣  0

 

⎤⎦⎛⎝ 







⎞⎠ 
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Note that by construction consumption only depends on the permanent shock, whereas income in

addition depends on the transitory shock.5 Cochrane verifies that the response of income to the

transitory shock is indeed rapidly mean-reverting, whereas the response of income to a shock that

moves both consumption and income on impact has long-lasting effects on income, as expected from a

permanent shock. Moreover, much of the consumption response to a permanent shock is immediate,

whereas the response of consumption to a transitory shock is close to zero at all horizons.6 Unlike

in our earlier examples, this methodology is silent about the economic interpretation of permanent

and transitory shocks. There is no way to determine from the data whether these shocks refer to

supply shocks or demand shocks, for example, or to preference shocks, policy shocks, or technology

shocks. In general, the transitory and permanent shocks will be a mixture of these deeper economic

shocks.

2.4 Examples of Nonrecursively Identified Models

Not all structural VAR models have a recursive structure. Increasing skepticism toward atheoretical

recursively identified models in the mid-1980s stimulated a series of studies proposing explicitly

structural models identified by nonrecursive short-run restrictions (see, e.g., Bernanke 1986; Sims

1986; Blanchard and Watson 1986). As in the recursive model, the identifying restrictions on

0 or 
−1
0 generate moment conditions that can be used to estimate the unknown coefficients in

0. Efficient estimation of 0 in these models can be cast in a GMM framework in which, in

addition to the predetermined variables in the reduced form, the estimated structural errors are

used as instruments in the equations with which the structural errors are assumed uncorrelated. In

general, solving the moment conditions for the unknown structural parameters will require iteration,

but in some cases the GMM estimator can be constructed using traditional instrumental-variable

techniques (see, e.g., Watson 1994; Pagan and Robertson 1998). An alternative commonly used

approach is to model the error distribution as Gaussian and to estimate the structural model by

full information maximum likelihood methods. This approach involves the maximization.of the

concentrated likelihood with respect to the structural model parameters subject to the identifying

restrictions (see, e.g., Lütkepohl 2005).

5The terminology of transitory shocks and permanent shocks is somewhat misleading in that any shock by con-

struction involves a one-time disturbance only. A transitory shock, more precisely, is defined as a shock with purely

transitory effects on the observables, whereas a permanent shock refers to a shock with permanent (or long-run) effects

on the observables.
6 It can be shown that the results of Cochrane’s model would be exactly identical to the results from a model in

which the transitory shock has no long-run effect on the level of income and consumption, provided consumption

follows a pure random walk. Such long-run restrictions will be discussed in section 3.
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2.4.1 Example 6: Fiscal Policy Shocks

Blanchard and Perotti (2002) introduce a model of U.S. fiscal policy that deviates from the usual

recursive structure. They propose a quarterly model of the U.S. economy for  = (  ),

where  refers to real taxes,  to real government spending, and  to real GDP. All variables

are in logs. Ignoring lags, the model can be written as

⎛⎜⎜⎜⎝










⎞⎟⎟⎟⎠ =
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 + 



 +  + 




 + 

 + 




⎞⎟⎟⎟⎠
Blanchard and Perotti first provide institutional arguments for the delay restriction  = 0 which

rules out automatic feedback from economic activity to government spending within the quarter.

They then show that the within-quarter response of taxes to economic activity, , can be derived

on the basis of extraneous tax elasticity estimates and shown to equal  = 208. The parameters 

and  are left unrestricted. The potential endogeneity between taxes and spending is dealt with by

imposing either  = 0 or  = 0. In the latter case, for example, we obtain

⎛⎜⎜⎜⎝
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⎞⎟⎟⎟⎠
This system can easily be solved numerically imposing the two exclusion restrictions and the

equality restriction on  when constructing the second moments. Note that Blanchard and Perotti

effectively treat the first two innovations as mutually exogenous without imposing the overidentifying

restriction on . An obvious concern is that the model does not allow for the anticipation of fiscal

shocks. Blanchard and Perotti discuss how this concern may be addressed by changing the timing

assumptions and adding further identifying restrictions, if we are willing to postulate a specific form

of foresight. Another concern is that the model does not condition on the debt structure (see, e.g.,

Chung and Leeper 2007). Allowing for the debt structure to matter would result in a nonlinear

dynamic model not contained within the class of VAR models.

2.4.2 Example 7: An Alternative Simple Macroeconomic Model

Keating (1992) discusses a variation of the simple macroeconomic model we discussed earlier that

does not impose a recursive structure and involves a different economic interpretation:
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The first equation again represents a horizontal AS curve, but the second equation now can be

interpreted as an IS curve, allowing real output to respond to all other model variables. The third

equation represents a simple money supply function, according to which the central bank adjusts the

rate of interest in relation to the money stock, and the fourth equation is a money demand function

in which short-run money holdings rise in proportion to nominal income, yielding the final restriction

required for exact identification. Unlike in the earlier example, money holdings are allowed to depend

on the interest rate as well. Clearly, this model specification embodies a very different view of what

monetary policy makers do than more recently developed structural VAR models motivated by the

literature on Taylor rules (see Taylor 1993).

2.4.3 Limitations of Nonrecursively Identified Models

Nonrecursively identified VAR models more closely resemble traditional simultaneous equation mod-

els. This means that they also are susceptible to the usual weaknesses of such models including the

difficulty of finding strong instruments in identifying causal effects. A case in point is the literature

on the liquidity effect. The liquidity effect refers to the short-run negative response of interest rates

to an unanticipated monetary expansion. Although the presence of such an effect has been suspected

for a long time, it has only been in the 1990s that structural VAR studies emerged concluding that

there is a liquidity effect. Whereas the evidence of a liquidity effect is at best mixed in recursively

identified models of monetary policy, empirical VAR studies based on nonrecursive simultaneous

equation systems have reliably produced a strong liquidity effect. This evidence might seem to sug-

gest that more explicitly structural models are inherently superior to earlier semistructural models

of monetary policy, but Pagan and Robertson (1998) show that the instruments underlying the three

most important nonrecursive studies of the liquidity effect appear weak in the econometric sense,

calling into question any inferences made about the magnitude of the liquidity effect.

3 Identification by Long-Run Restrictions

One alternative idea has been to impose restrictions on the long-run response of variables to shocks.

In the presence of unit roots in some variables but not in others, this may allow us to identify at

18



least some shocks. The promise of this alternative approach to identification is that it will allow

us to dispense with the controversy about what the right short-run restrictions are and to focus on

long-run properties of models that most economists can more easily agree on. For example, it has

been observed that most economists agree that demand shocks such as monetary policy shocks are

neutral in the long run, whereas productivity shocks are not. This idea was first introduced in the

context of a bivariate model in Blanchard and Quah (1989).

Consider the structural VAR representation

() = 

and the corresponding structural vector moving average (VMA) representation

 = ()−1 = Θ()

Also consider the reduced-form VAR model

() = 

and the corresponding reduced-form VMA representation

 = ()−1 = Φ()

By definition

 = −10 

Σ = −10 −100

where we imposed Σ =  . Recall that

() = −10 ()

−10 = ()()−1

so for  = 1

−10 = (1)(1)−1
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and hence

Σ = −10 −100

=
£
(1)(1)−1

¤ £
(1)(1)−1

¤0| {z }
[(1)−1]0(1)0

Premultiply both sides by (1)−1 and post-multiply both sides by
¡
(1)−1

¢0
= [(1)0]−1:

(1)−1Σ
¡
(1)−1

¢0
= (1)−1(1)(1)−1

£
(1)−1

¤0
(1)0 [(1)0]−1

(1)−1Σ
¡
(1)−1

¢0
=

£
(1)−1

¤ £
(1)−1

¤0
Φ(1)ΣΦ(1)

0 = Θ(1)Θ(1)0

 (Φ(1)ΣΦ(1)
0) =  (Θ(1)Θ(1)0)

The key observation is that the expression on the left-hand side (LHS) can be estimated from the

data. Both bΣ and the cumulative sum bΦ(1) = b(1)−1 are observable based on the reduced-form
model, given that (1) ≡ −1− −, so if we put enough restrictions on Θ(1), we can uniquely

pin down the remaining elements of Θ(1) using numerical methods. Because the LHS represents a

variance-covariance matrix, as in the case of short-run identification, we need(−1)2 restrictions
on Θ(1) to satisfy the order condition for exact identification. If the exclusion restrictions on Θ(1)

are recursive, it suffices to apply a Cholesky decomposition to bΦ(1)bΣbΦ(1)0.
What does it mean to impose restrictions on Θ(1)? Observe that Θ(1) = (1)−1 represents the

sum of the structural impulse response coefficients. Its elements measure the long-run cumulative

effects of each structural shock  on each variable , so, for an I(1) variable entering the VAR model

in log differences,

Θ(1) = 0

means that the log-level of this variable  is not affected in the long run by structural innovation .

Imposing zero restrictions on selected elements of Θ(1) allows us to differentiate between structural

shocks that affect the log-level of an I(1) variable in the long run and shocks that do not. Clearly,

it does not make sense to put any such restrictions on VAR variables that are I(0) because, for I(0)

variables expressed in log- levels, Θ(1) 6= 0 ∀ by construction.
Given a sufficient number of exclusion restrictions on the elements of Θ(1) allows us to solve for
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the remaining elements of Θ(1), which provides an estimate of

−10 = (1)Θ(1)

where (1) can be consistently estimated. Once we have estimated −10 , we can proceed as in

the case of short-run identifying restrictions. Although we do not consider this case, note that it

would be straightforward to combine short-run and long-run identifying restrictions in estimating

−10 , when using numerical solution methods. A good example is Gali (1992).

3.1 Examples of Models Identified by Long-Run Restrictions

3.1.1 Example 8: A Model of Aggregate Demand and Aggregate Supply

The first example is the original analysis in Blanchard and Quah (1989). Let  denote the unem-

ployment rate and  log real GDP. Consider

 =

⎛⎝ ∆



⎞⎠
where by assumption  ∼ (0), but  ∼ (1). In principle, any other stationary variable such

as the capacity utilization rate would have done just as well as the second element of . Below we

use the notation for a diagonal Σ matrix.

(1) = ⎡⎣ 1 0

−1 1

⎤⎦⎛⎝ ∆
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 = Θ(1)

The -subscripts may be dropped because all relationships are long-run relationships.

Equivalently, we could have imposed Σ = 2. In that case

Θ(1) =

⎡⎣ 1 0

−1 3

⎤⎦−1 =
⎡⎣ 11(1) 0

21(1) 22(1)

⎤⎦ =  (Φ(1)ΣΦ(1)
0)
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which can be solved using the Cholesky decomposition instead of numerical methods. Either

way the identifying assumption is that aggregate demand shocks do not have long-run level effects

on real GDP. Most applications of long-run restrictions involve a close variation on the theme of

Blanchard and Quah (1989), in which the aggregate supply shock is interpreted as a permanent

aggregate productivity shock. The analysis in Gali (1999) is a good example. Even if more variables

are included in VAR models based on long-run restrictions, the focus typically is on identifying the

responses to aggregate productivity shocks only as opposed to other structural shocks.7

3.1.2 Example 9: A Keynesian Model

The second example is from Keating (1992). The data vector includes real output (), the real

interest rate (), real money balances ( − ) and the monetary aggregate (). There are four

structural shocks: an aggregate supply shock, and IS shock, a money demand shock and a money

supply (or monetary policy) shock:

 = 

 = 1+ 

−  = 2+ 3 + 

 = 4+ 5 + 6(− ) + 

which implies

(1) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

−1 1 0 0

−2 −3 1 0

−4 −5 −6 1

⎤⎥⎥⎥⎥⎥⎥⎦

−1

Although this example is somewhat old-fashioned, it is included as a counterpart to the earlier

macroeconomic VAR examples based on short-run restrictions. The first identifying assumption is

that in the long run only AS shocks affect real output. Second, monetary shocks do not affect capital

accumulation and hence do not affect the IS curve. Third, money supply shocks do not affect real

balances in the long run.

7A generalization of the approach of Blanchard and Quah (1989) was proposed by King, Plosser, Stock and Watson

(1991). King et al. consider a baseline model for output, consumption and investment. Unlike in Blanchard and

Quah (1989), in their model all variables are affected by the productivity shock in the long run. In other words, the

model variables are cointegrated. King et al. are interested in using this model to differentiate between the three

variables’ responses to the common productivity shock and their responses to the two remaining transitory shocks.

The difficulty in models such as this one lies in finding an economically credible identification of the transitory shocks.

King et al. rely on an atheoretical recursive ordering of the two transitory shocks, making it difficult to interpret the

impulse response results. This problem is compounded when the model is augmented to include additional permanent

shocks. There is no obvious rationale for a recursive ordering of multiple permanent shocks.
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3.1.3 Example 10: A Model of the Neoclassical Synthesis

The third example is Shapiro and Watson’s (1988) model of the U.S. economy that exploits insights

from neoclassical economics about long-run behavior, while allowing for Keynesian explanations of

short-run behavior. Unlike the preceding example, Shapiro and Watson do not take a stand on

the economic model underlying the short-run behavior. Let  denote the log of hours worked, 

the price of oil,  the log of real GDP,  inflation and  the nominal interest rate. Shapiro

and Watson decompose fluctuations in  = (∆∆∆∆  − ) in terms of labor supply

shocks, technology shocks and two aggregate demand shocks. The first identifying assumption is

that aggregate demand shocks have no long-run effects on real GDP or hours worked. The second

identifying assumption is that the long-run labor supply is exogenous, which allows Shapiro and

Watson to separate the effects of shocks to technology and to labor supply. The third identifying

assumption is that exogenous oil price shocks have a permanent effect on the level of all variables

but hours worked. The two aggregate demand shocks may be interpreted as goods market (IS)

and money market (LM) shocks. No effort is made to identify the two aggregate demand shocks

separately. The matrix of long-run multipliers is

(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 0 0 0 0

0  0 0 0

   0 0

    

    

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the structure of (1) is not recursive.

3.2 Limitations of Long-Run Restrictions

One important limitation of long-run identification schemes is that they require us to take a stand

on the presence of exact unit roots in the autoregressive lag order polynomial (). This means that

this alternative approach is more limited in scope than VAR models based on short-run restrictions.

In addition, there also are serious concerns about the reliability of long-run restrictions:

• One weakness of VAR models identified by long-run restrictions is that they require an accurate
estimate of the impulse responses at the infinite horizon. This, however, is akin to pinning

down the dominant autoregressive root of the process. We know that it is not possible to

estimate accurately the long-run behavior of an economic time series from a short time span of
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data. For that reason one would expect such structural VAR models to be unreliable in finite

samples. Exactly this point was made by Faust and Leeper (1997).

• Second, numerical estimates of the responses in VAR models identified by long-run restrictions
are identified only up to their sign. This fact matters. For example, researcher have been

frequently interested in the sign of the response of real output to a productivity shock. Without

further identifying assumptions, models based on long-run restrictions cannot resolve this

question.

• A third concern is that the I(0) variable used to aid in the identification often itself is quite
persistent. The unemployment rate used in Blanchard and Quah’s (1989) model is a good

example. In this regard, Gospodinov (2010) proves that the impulse responses of interest are

not consistently estimable under the long-run identification scheme when the process for this

variable is parameterized as local to unity, and that standard confidence intervals are invalid.

The paper studies the statistical properties of the impulse response estimator in the context

of the technology shock example where labor productivity (or real output) is assumed to have

an exact unit root and hours worked (or the unemployment rate) are modeled as a near-

integrated process. Gospodinov expresses this estimation problem as an instrumental variable

problem and demonstrates that it is equivalent to a weak-instrument problem. This analysis

suggests that many applications of this methodology based on models with highly persistent

I(0) variables have been invalid.

• Fourth, it has been observed that the conclusion from Blanchard-Quah type VAR models

are sensitive to whether the second variable (e.g., unemployment rate or hours worked) is

entered in levels or differences. In related work, Gospodinov, Maynard, and Pesavento (2011)

clarify the empirical source of the extensive debate on the effect of technology shocks on

unemployment/hours worked. They find that the contrasting conclusions from specifying

the second VAR variable in levels as opposed to differences can be explained by a small,

but important, low frequency co-movement between hours worked and labor productivity or

output growth, which is allowed for in the level specification but is implicitly set to zero

in the differenced specification. Their theoretical analysis shows that, even when the root

of hours is very close to one and the low frequency co-movement is quite small, assuming

away or explicitly removing the low frequency component can have important implications

for the long-run identifying restrictions, giving rise to biases large enough to account for the

empirical difference between the two specifications. Which specification is right is ultimately

an economic question and continues to be debated. For a closely related analysis also see
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Canova, Lopez-Salido and Michelacci (2010).

4 Identification by Sign Restrictions

Skepticism toward traditional identifying assumptions based on short-run or long-run exclusion

restrictions in recent years has made increasingly popular an alternative class of structural VAR

models in which structural shocks are identified by restricting the sign of the responses of selected

model variables to structural shocks. This approach was pioneered by Faust (1998), Canova and De

Nicolo (2002) and Uhlig (2005) in the context of VAR models of monetary policy. For example, Uhlig

(2005) postulated that an unexpected monetary policy contraction is associated with an increase in

the federal funds rate, the absence of price increases and the absence of increases in nonborrowed

reserves for some time following the monetary policy shock. Uhlig showed that sign-identified models

may produce substantially different results from conventional structural VAR models. Sign-identified

VAR models have become increasingly popular in other areas as well and are now part of the

mainstream of empirical macroeconomics. They have been used to study fiscal shocks (e.g., Canova

and Pappa 2007; Mountford and Uhlig 2009; Pappa 2009), technology shocks (e.g., Dedola and Neri

2007), and various other shocks in open economies (e.g., Canova and De Nicolo 2002; Scholl and

Uhlig 2008), in oil markets (e.g., Baumeister and Peersman 2010; Kilian and Murphy 2011a,b), and

in labor markets (e.g., Fujita 2011), for example.

Identification in sign-identified models requires that each identified shock is associated with a

unique sign pattern. Sign restrictions may be static, in which case we simply restrict the sign of

the coefficients in −10 . Unlike traditional exclusion restrictions, such sign restrictions can often

be motivated directly from economic theory. In addition, one may restrict the sign of responses at

longer horizons, although the theoretical rationale of such restrictions is usually weaker. There is

a misperception among many users that these models are more general and hence more credible

than VAR models based on exclusion restrictions. This is not the case. Note that sign-identified

models by construction are more restrictive than standard VAR models in some dimensions and less

restrictive in others. They do no nest models based on exclusion restrictions.

For a given set of sign restrictions, we proceed as follows. Consider the reduced-form VAR model

() = , where  is the -dimensional vector of variables, () is a finite-order autoregressive

lag polynomial, and  is the vector of white noise reduced-form innovations with variance-covariance

matrix Σ. Let  denote the corresponding structural VAR model innovations. The construction of

structural impulse response functions requires an estimate of the × matrix −10 in  = −10 

Let  denote the lower triangular Cholesky decomposition that satisfies Σ =  0. Then
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−10 =  also satisfies Σ = −10 −10
0 for any orthogonal  × matrix . Unlike  ,  will

in general be nonrecursive. One can examine a wide range of possible solutions −10 by repeatedly

drawing at random from the set D of orthogonal matrices . Following Rubio-Ramirez, Waggoner

and Zha (2010) one constructs the set of admissible models by drawing from the setD and discarding

candidate solutions for−10 that do not satisfy a set of a priori sign restrictions on the implied impulse

responses functions.

The procedure consists of the following steps:

1. Draw an  × matrix  of (0 1) random variables. Derive the  decomposition of 

such that  =  · and 0 =  .

2. Let = 0. Compute impulse responses using the orthogonalization −10 = . If all implied

impulse response functions satisfy the identifying restrictions, retain . Otherwise discard .

3. Repeat the first two steps a large number of times, recording each  that satisfies the restric-

tions (and the corresponding impulse response functions).

The resulting set B−10 in conjunction with the reduced-form estimates characterizes the set of

admissible structural VAR models.

The fraction of the initial candidate models that satisfy the identifying restriction may be viewed

as an indicator of how informative the identifying restrictions are about the structural parameters.

Note that a small fraction of admissible models is not an indication of how well the identifying

restrictions fit the data. There is no way of evaluating the validity of identifying restrictions based

on the reduced form. All candidate models by construction fit the data equally well because they

are constructed from the same reduced-form model.

4.1 Interpretation

A fundamental problem in interpreting VAR models identified based on sign restrictions is that there

is not a unique point estimate of the structural impulse response functions. Unlike conventional

structural VAR models based on short-run restrictions, sign-identified VAR models are only set

identified. This problem arises because sign restrictions represent inequality restrictions. The cost

of remaining agnostic about the precise values of the structural model parameters is that the data

are potentially consistent with a wide range of structural models that are all admissible in that they

satisfy the identifying restrictions. Without further assumptions there is no way of knowing which

of these models is most likely. A likely outcome in practice is that the structural impulse responses

implied by the admissible models will disagree on the substantive economic questions of interest.
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• One early approach of dealing with this problem, exemplified by Faust (1998), has been to
focus on the admissible model that is most favorable to the hypothesis of interest. This allows

us to establish the extent to which this hypothesis could potentially explain the data. It may

also help us to rule out a hypothesized explanation, if none of the admissible models supports

this hypothesis. The problem is that this approach is not informative about whether any one

of the admissible models is a more likely explanation of the data than some other model.

• A second approach has been to dispense with point estimates of the structural impulse re-

sponses and to report pointwise confidence intervals only. The construction of classical con-

fidence intervals for sign-identified models has recently been discussed in Moon, Schorfheide,

Granziera and Lee (2009). Unlike in structural VAR models based on exclusion restrictions,

the asymptotic distribution of the structural impulse responses is nonstandard and the con-

struction of nonstandard confidence intervals is computationally costly.

• The third and most common approach has been to rely on Bayesian methods of inference.
Under the assumption of a conventional inverse Wishart-Gaussian prior on the reduced-form

parameters and a uniform prior on the rotation matrices, one can construct the posterior

distribution of the impulse responses by simulating posterior draws from the reduced-form

posterior and applying the identification procedure to each reduced-form posterior draw. The

role of the prior is to provide smoothness without which one could not construct a posterior

distribution for the structural impulse responses. In simulating this posterior distribution,

care must be taken that the posterior is approximated using a sufficiently large number of

reduced-form draws as well as a sufficiently large number of rotations for each posterior draw

from the reduced form.

Given the posterior distribution of the structural impulse responses we can make probability

statements about the structural impulse responses. The standard approach in the literature

for many years has been to report the vector of pointwise posterior medians of the structural

impulse responses as a measure of the central tendency of the impulse response functions.

This approach suffers from two distinct shortcomings. First, the vector of pointwise posterior

median responses (often referred to as the median response function) will not correspond to the

responses of any of the admissible models, unless the pointwise posterior medians of all impulse

response coefficients in the VAR system correspond to the same structural model, which is

highly unlikely a priori. Thus, the median response function lacks a structural economic

interpretation (see, e.g., Fry and Pagan 2011). Second, median response functions are not a

valid statistical summary of the set of admissible impulse response functions. It is well known
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that the vector of medians is not the median of a vector. In fact, the median of a vector-valued

random variable does not exist, rendering the vector of pointwise medians inappropriate as a

statistical measure of the central tendency of the impulse response functions. This means that

even if there were an admissible structural model with the same impulse response function as

the median response function, there would be no compelling reason to focus on this model in

interpreting the evidence. In fact, it has been shown that posterior median response functions

may be quite misleading about the most likely response dynamics in sign-identified models

(see, e.g., Kilian and Murphy 2011a; Inoue and Kilian 2011).

• A solution to this problem has recently been proposed in Inoue and Kilian (2011) who show how
to characterize the most likely admissible model(s) within the set of structural VAR models

that satisfy the sign restrictions. The most likely structural model can be computed from the

posterior mode of the joint distribution of admissible models both in the fully identified and in

the partially identified case. The resulting set of structural response functions is well defined

from an economic and a statistical point of view. Inoue and Kilian also propose a highest-

posterior density credible set that characterizes the joint uncertainty about the set of admissible

models. Unlike conventional posterior error bands or confidence bands for sign-identified VAR

models, the implied credible sets for the structural response functions characterize the full

uncertainty about the structural response functions.

4.2 Extensions

Since the introduction of VAR models based on sign restrictions several researchers have made

proposals to facilitate the interpretation of a set of admissible structural impulse response functions.

Broadly speaking, there are two approaches. One approach involves the use of a penalty function to

narrow down the set of admissible models to a singleton (see, e.g., Uhlig 2005). For example, Francis,

Owyang, Roush and DiCecio (2010) identify a technology shock as that shock which satisfies sign

restrictions and maximizes the forecast-error variance share in labor productivity at a finite horizon.

Faust (1998) appeals to an analogous argument regarding the effects of monetary policy shocks on

real output. Penalty functions help in assessing worst case (or best case) scenarios, based on the set

of admissible models, but the results are best thought of as providing evidence that some outcome

is possible rather than that it is true or that it is the most likely outcome.

An alternative approach has been to narrow down the set of admissible responses by imposing

additional restrictions. The idea is to reduce the set of admissible models to a small number of

admissible models that are easier to interpret and, ideally, have similar impulse responses. For ex-
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ample, Canova and De Nicolo (2002) and Canova and Paustian (2011) propose to reduce the number

of admissible solutions by imposing additional structure in the form of sign restrictions on dynamic

cross-correlations. They motivate these restrictions based on properties of DSGE models and show

that these restrictions are needed to recover the DSGE model responses from data generated by

DSGE models. In related work, Kilian and Murphy (2011a,b) propose additional identifying restric-

tions based on bounds on impact price elasticities in the context of a structural oil market VAR

model. This can be considered a special case of imposing a prior distribution on the values of these

price elasticities.

Imposing such additional restrictions has been shown to improve the ability of sign-identified

VARs to discriminate between alternative data generating processes. The use of all available infor-

mation in identifying structural shocks from sign-identified models is not merely an option − it is
essential. There is a perception among some applied users that remaining agnostic about all but a

small number of sign restrictions can only increase the chances of inferring the true structural re-

sponses from sign-identified VAR models. This perception is erroneous. In constructing the posterior

distribution of the structural responses one implicitly assumes that all admissible models are equally

likely a priori. If we know this assumption to be violated and fail to impose further restrictions,

we end up averaging models with incorrect probability weights invalidating the implied posterior

distribution of the impulse responses. For example, Kilian and Murphy (2011a) demonstrate that

oil market VAR models identified by sign restrictions only may imply large responses of the real

price of oil to oil supply shocks, yet these responses can be ruled out merely by imposing a bound

on the short-run price elasticity of oil supply, consistent with long-established views in the literature

and extraneous empirical evidence that this elasticity is close to zero. They further show that the

failure to impose this additional identifying information would have misled researchers by assigning

more importance to oil supply shocks than is warranted by the data.

4.3 Examples of Sign-Identified VAR Models

4.3.1 Example 11: An Alternative Model of Monetary Policy Shocks

Uhlig (2005) proposes replacing a conventional semistructural model of monetary policy by a model

based only on sign restrictions. His set of model variables consists of monthly U.S. data for the log

of interpolated real U.S. GDP, the log of the interpolated GDP deflator, the log of a commodity

price index, total reserves, nonborrowed reserves and the federal funds rate. Uhlig postulates that

an unexpected monetary policy contraction is associated with an increase in the federal funds rate,

the absence of price increases and the absence of increases in nonborrowed reserves for some time
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following the policy shock.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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where + and − denotes the postulated sign of the impact response and × denotes no restriction.
The model is partially identified in that only the response to an unanticipated monetary tightening

is identified. It is also set-identified in that sign restrictions are consistent with a range of admissible

models. The same sign restrictions are imposed for half a year following the monetary policy shock.

As shown by Uhlig (2005), this model is uninformative even about the direction of the real GDP

response to a monetary policy shock. If the identifying restrictions are strengthened by the restriction

that the response of real GDP is negative in month 6 following a monetary policy tightening, however,

inference can be sharpened considerably (see Inoue and Kilian 2011). This additional restriction

allows us to remain agnostic about the short- and long-run responses of real GDP, while expressing

the common conviction that a monetary tightening is associated with a decline in real activity in

the foreseeable future.

4.3.2 Example 12: An Alternative Model of the Global Market for Crude Oil

We already considered a fully identified monthly model of the global market for crude oil based on

exclusion restrictions on −10 . Inoue and Kilian (2011) provide an alternative fully identified model

based on sign restrictions:
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Here the required signs of each element of −10 have been indicated by + and −. Flow supply
shocks are normalized to correspond to supply disruptions. An unanticipated flow supply disruption

causes oil production to fall, the real price of oil to increase, and global real activity to fall on impact.

An unanticipated increase in the flow demand for oil driven by the global business cycle causes global

oil production, global real activity and the real price of oil to increase on impact. Other positive oil
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demand shocks (such as shocks to oil inventory demand driven by forward-looking behavior) cause

oil production and the real price of oil to increase on impact and global real activity to fall. In

addition, the impact price elasticity of oil supply is bounded above by 0.025, as suggested by Kilian

and Murphy (2011a). This bound is consistent with widely held views among oil economists that

the short-run price elasticity of oil supply is close to zero (also see Kellogg 2011). The elasticity in

question can be expressed as the ratio of two impact responses, making it straightforward to discard

draws that violate that restriction. Finally, following Baumeister and Peersman (2009) the real price

of oil is restricted to be positive for the first year in response to unanticipated oil supply disruptions

and in response to positive oil demand shocks.

5 Alternative Structural VAR Approaches

VAR models identified by sign restrictions are the most popular alternative to VAR models identi-

fied by short-run or long-run exclusion restrictions, but not the only alternative. Discomfort with

semistructural models of monetary policy in particular has stimulated the development of two more

methodologies. It has been noted, in particular, that the sequences of policy shocks identified by

such models do not always correspond to common perceptions of when policy shocks occurred. For

example, Rudebusch (1998) compares estimates of monetary policy shocks from semistructural VAR

models to financial market measures of policy shocks and finds little correspondence. He views this

as evidence against the identifying assumptions employed in semistructural VAR models of monetary

policy (also see Cochrane and Piazzesi 2002).

5.1 Financial Market Shocks

This critique stimulated a new identification method by Faust, Swanson, and Wright (2004) who

identify monetary policy shocks in monthly VAR models based on high-frequency futures market

data. Using the prices of daily federal funds futures contracts, they measure the impact of the

surprise component of Federal Reserve policy decisions on the expected future trajectory of interest

rates. It is shown how this information can be used to identify the effects of a monetary policy

shock in a standard VAR. This alternative approach to identification is quite different than the

conventional identifying restrictions in monetary policy VAR models in that it dispenses with the

exclusion restrictions used in semistructural models of monetary policy.

Faust et al.’s procedure involves two key steps: First, they use the futures market to measure

the response of expected future interest rates to an unexpected change in the Federal Reserve’s

target rate. Specifically, they treat the change in the futures rate on the day on which a change in
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the Fed’s target federal funds rate is announced as a measure of the change in market expectations.

This interpretation requires that risk premia remain unchanged. Faust et al. further postulate that

this change in expectations is due to the policy shock only. In other words, no other news move

the market on that day and the policy announcement itself does not reveal information about other

structural shocks. In the second step, they impose that the impulse responses of the funds rate to

the monetary policy shock in the VAR model must match the response measured from the futures

data.

While these two steps are conceptually straightforward, carefully implementing them in practice

requires dealing with several complications. Measuring the response of the funds rate to policy

shocks in the futures data requires taking account of several peculiar aspects of the futures market

and testing the validity of the underlying assumptions. Moreover, the information from the futures

market only set-identifies the structural VAR model. The most striking implication of set identifica-

tion is that one must give up on point estimation of the structural responses and focus on confidence

intervals instead, similar to classical inference in sign-identified VAR models.

In their empirical analysis, Faust et al. find that the usual recursive identification of monetary

policy shocks is rejected, as is any identification that insists on a monetary policy shock having no

effect on prices contemporaneously. This confirms our earlier concerns with semistructural monetary

policy VAR models. Their identification also eliminates the price puzzle − the finding in the bench-
mark recursive identification that the impulse response of prices first rises slightly but significantly,

before falling. Faust et al. nevertheless find that only a small fraction of the variance of output can

be attributed to monetary policy shocks, as has been shown by the sign-identification methodology

in Faust (1998).

D’Amico and Farka’s (2011) analysis of stock market and interest rate data takes this approach

a step further. Rather than just estimating the response of stock returns to monetary policy shocks

identified from high-frequency data, they propose a VAR methodology for estimating simultaneously

the response of stock returns to policy decisions and the Federal Reserve’s contemporaneous reac-

tion to the stock market. Their methodology has broad applicability when modeling asset prices.

D’Amico and Farka’s approach involves two steps. In the first step, the response of the stock market

to policy shocks is estimated outside the VAR model by measuring changes in intraday S&P500

futures prices immediately before and after policy announcements. The monthly policy shock is

obtained by summing the intraday shocks over the course of a given month. In the second, step,

D’Amico and Farka impose that external estimate when estimating the response of the federal funds

rate to stock returns in a monthly VAR model.
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5.2 Identification by Heteroskedasticity

Rigobon (2003) develops yet another method for solving the VAR identification problem based on

the heteroskedasticity of the structural shocks. Heteroskedasticity may arise, for example, as a result

of financial crises. In the baseline model, Rigobon considers heteroskedasticity that can be described

as a two-regime process and shows that the structural parameters of the system are just identified.

He also discusses identification under more general conditions such as more than two regimes, when

common unobservable shocks exist, and situations in which the nature of the heteroskedasticity is

misspecified.

For expository purposes recall the two-equation model of demand and supply based on price and

quantity data. All lags have been suppressed for notational convenience:

µ
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 1

⎤⎦µ1
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Under the standard assumption of unconditional homoskedasticity, it can be shown that the

reduced-form error covariance matrix is:

Σ =
1

(1− )
2

⎡⎣ 222 + 21 22 + 21

· 22 + 221

⎤⎦ 
where 21 and 22 denote the variance of the first and the second structural shock. There are

three moments in four unknowns (, , 21, 
2
2 ), so without further assumptions such as  = 0 or

 = 0 it is not possible to identify the structural shocks from the data in this baseline model. This

is the basic identification problem discussed throughout this survey.

Now suppose that there are two regimes in the variances of the structural shocks. Further suppose

that the difference between regimes is that in one regime the unconditional variance of the supply

shock increases relative to the unconditional variance of the demand shocks, while the parameters

 and  remain unchanged across regimes. This variance shift suffices to approximate the slope of

the demand curve.

As a result of the regime shift, we obtain two expressions of the variance-covariance matrix, one

for each regime  {1 2} :

Σ =
1

(1− )
2

⎡⎣ 222 + 21 22 + 21

· 22 + 221

⎤⎦ 
This means that there are now six moments in six unknowns, allowing us to solve for all six
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structural parameters (, , 211, 
2
21, 

2
12, 

2
22) without restricting  or . Rigobon (2003)

applies this methodology to the problem of characterizing the contemporaneous relationship between

the returns on Argentinean, Brazilian, and Mexican sovereign bonds - a case in which standard

identification methodologies do not apply. Rigobon’s approach is of particular interest for modeling

asset prices because instantaneous feedback must be assumed when trading is near-continuous. It is

not without serious limitations, however. Not only is there uncertainty about the existence, number,

and timing of the variance regimes, but in practice we are not likely to know whether a high volatility

regime is caused by a relative increase in the volatility of demand shocks or of supply shocks without

assuming the answer to the identification question. This means that we do not know whether we

are identifying the supply curve or the demand curve, which is the central question of interest.

This problem is particularly apparent in modeling the global market for crude oil. Researchers

have proposed competing views of what increased oil price volatility in the 1970s and Rigobon’s

methodology would not be able to tell us which view is supported by the data. This concern is less

of an issue if the shock of interest can be associated with one variable only, as would be the case

when modeling monetary policy shocks within a policy reaction function.

The latter case is discussed in Lanne and Lütkepohl (2008). Lanne and Lütkepohl propose a

test of overidentifying restrictions within the structural VAR framework of Bernanke and Mihov

(1998). Their test exploits evidence of structural change in the variance-covariance matrix of the

reduced-form shocks. As in Rigobon’s work, the maintained assumption is that the autoregressive

parameters are time-invariant. Volatility in the shocks is significantly higher during the Volcker

period than the post-Volcker period. This volatility change may be used to test alternative models

of the money market. Based on monthly U.S. data for 1965 to 1996, Lanne and Lütkepohl conclude

that a model in which monetary policy shocks are associated with shocks to nonborrowed reserves is

rejected by the data, whereas a model in which the Federal Reserve accommodates demand shocks

to total reserves is not rejected.

In closely related work, Lanne, Lütkepohl and Maciejowska (2010) address the issue of how to

detect structural changes in the volatility of the VAR errors in the data. They consider the important

special case of volatility shifts that follow a Markov regime switching model (see Sims and Zha 2006).

Identification is achieved by assuming that the shocks are orthogonal across states and that only the

variances of the shocks change across states, while the other model parameters remain unaffected.

Modeling the reduced-form errors as a Markov regime switching model provides data-dependent

estimates of the dates of volatility shifts, conditional on the assumed number of regimes.

Finally, a related identification methodology for vector autoregressions with nonnormal residuals

has also been discussed by Lanne and Lütkepohl (2010). It is well known that VAR regression
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errors are frequently nonnormal. These errors may be modeled as a mixture of normal distributions.

That assumption is useful, for example, when the reduced-form error distribution has heavy tails

and a tendency to generate outliers. In that case, one may think of the outliers as being generated

by a different distribution than the other observations and identification may be obtained by het-

eroskedasticity across regimes. Unlike in Rigobon’s approach, the unconditional error distribution

remains homoskedastic, however, and the regime switches in the model are generated endogeneously.

5.3 Identification in the Presence of Forward-Looking Behavior

It is important to stress that standard VAR models of monetary policy are concerned with responses

to unanticipated policy shocks. They have nothing to say about the effects of anticipated monetary

policy shocks. For further discussion also see Leeper, Sims and Zha (1996), Bernanke and Mihov

(1998), Christiano, Eichenbaum and Evans (1999), and Sims (2009). The anticipation of policy

shocks is an even greater concern when modeling fiscal policy shocks or productivity shocks and

requires fundamental modifications in the analysis. The mere possibility of forward-looking behavior

greatly complicates the identification of structural shocks in VAR models.

The maintained assumption in structural VAR analysis is that the structural data generating

process can be represented as a VAR model. In other words, we start with the structural VAR

representation with the objective of recovering the structural VMA representation. Suppose that

instead we started with the premise that the data generating process is of the form of the structural

VMA

 = Θ()

where the number of variables equals the number of structural shocks. Not every structural

VMA has an equivalent structural VAR representation. Expressing the structural VMA process as

a structural VAR process of the form

Θ()−1 = () = 

requires all roots of det(Θ()) to be outside the unit circle. This condition rules out models with

unit roots in the moving average polynomial, for example, because in that case the moving average

polynomial is not invertible. This situation will arise when the data have been overdifferenced.

Such cases can be handled by transforming the data appropriately. A more serious complication is

that the moving average roots may be inside the unit circle. In this case, the model is said to be
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nonfundamental. Such representations imply the same autocovariance structure as the fundamental

representation, but the underlying structural shocks cannot be recovered from current and past

observations of the variables included in the VAR model even asymptotically. Consequently, when

the economic model does not guarantee fundamentalness, standard structural impulse response

analysis may be misleading (see Lippi and Reichlin 1993, 1994).

How concerned we should be with that possibility depends on whether nonfundamental repre-

sentations can be shown to arise in economic theory. In this regard, Hansen and Sargent (1991)

illustrated that nonfundamental representations may arise in rational expectations models when

agents respond to expectational variables that are not observable to the econometrician. This result

suggests extreme caution in interpreting structural VAR models when the VAR information set is

smaller than that of the agents making economic decisions in the real world, as would typically be

the case in models with forward-looking behavior. If we think of asset prices containing information

about expected movements in real macroeconomic aggregates, for example, then a VAR including

only real macroeconomic aggregates would be misspecified. In particular, we would not be able to

recover the true structural shocks of this economy from the reduced-form VAR representation under

any possible identification scheme. If we simply ignored this problem, we would end up identifying

seemingly structural shocks without economic meaning. For further discussion see Lippi and Reich-

lin (1993, 1994), Blanchard and Quah (1993), Forni et al. (2009) and Leeper et al. (2011). A formal

test of the non-fundamentalness of a given structural VAR model was proposed by Giannone and

Reichlin (2006). Specifically, they showed that Granger causality from a set of omitted variables to

the variables included in the structural VAR model implies that the structural shocks in the original

VAR system are not fundamental.

It may seem that the problem of nonfundamental VAR representations could be mitigated, if not

avoided altogether, by augmenting the set of VAR variables with forward-looking variables such as

asset prices, survey measures of expectations, or professional forecasts. This strategy, however, may

undermine commonly used approaches to identification. Consider, for example, a semistructural

model of monetary policy of the type discussed earlier. If we add stock prices to the list of variables

the Federal Reserve responds to in setting interest rates, we are implicitly assuming that stock prices

do not respond instantaneously to interest rates, which does not seem plausible. If we order stock

prices below the interest rate, on the other hand, we prevent the Federal Reserve from responding

to a variable that matters for agents’ economic decisions and hence should matter to the Federal

Reserve. Thus, the presence of forward-looking variables often requires additional modifications in

the model. Only recently, VAR models have been adapted to allow for forward-looking behavior of

some form. Such extensions are nontrivial. Here we consider three illustrative examples. None of
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the examples provides a generic solution to the problem of modeling forward-looking behavior, but

they illustrate that at least in special cases these problems may be overcome.

5.3.1 Example 13: Shocks to Expectations about Future Oil Demand and Oil Supply

Conditions

The first example is a model of the global spot market for crude oil proposed by Kilian and Murphy

(2011b). Identification is based on a four-variable model including the change in above-ground global

inventories of crude oil in addition to the three variables already included in Kilian and Murphy

(2011a). The key observation is that any change in expectations about future oil demand and oil

supply conditions must be reflected in a shift in the demand for oil inventories, conditional on past

data. By including these inventories (the change of which is denoted by ∆) in the model and

simultaneously identifying all shocks that move inventories it becomes possible to identify the effect

of shifts in expectations without having to measure expectations explicitly. The model is identified

by a combination of sign restrictions on the impact responses, bounds on the impact price elasticities

of oil demand and of oil supply, and dynamic sign restrictions on the responses to unexpected flow

supply disruptions. The impact sign restrictions are:
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In other words, on impact, a negative flow supply shock shifts the supply curve to the left along

the demand curve, resulting in a decline in the quantity and an increase in the price of oil, which

causes real activity to decline. A positive flow demand shock is associated with increased real activity.

Quantity and price increase, as the demand curve shifts to the right along the supply curve, while

real activity increases by construction. The inventory responses to flow supply and flow demand

shocks are ambiguous a priori and hence remain unrestricted. A positive speculative demand shock

reflecting expectations of a tightening oil market is associated with an increase in inventories and

in the real price of oil by construction. The accumulation of inventories requires oil production to

increase and oil consumption (and hence real activity) to decline. Effectively, this model further

decomposes the other oil demand shock in Inoue and Kilian (2011) into a speculative component

driven by shifts in expectations and a residual containing only the remaining oil demand shocks. In

addition, the model imposes that the impact price elasticity of oil supply is bounded above and that

the impact price elasticity of oil demand (defined to incorporate the inventory response) is restricted
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to be negative and smaller in magnitude than the long-run price elasticity of oil demand which can

be estimated from cross-sectional data. Both elasticities can be expressed as ratios of structural

impulse responses on impact. Finally, the model imposes that the sign restrictions on the responses

to a flow supply shock remain in effect for one year.

It may seem that this oil market model is incomplete in that it excludes the price of oil futures

contracts, which is commonly viewed as an indicator of market expectations about future oil prices.

This is not the case. The spot market and the futures market for oil are two distinct markets linked

by an arbitrage condition. Thus, if there is speculation in the oil futures market, by arbitrage there

should be speculation in the spot market reflected in increased inventory demand (see Alquist and

Kilian 2010). Not only does economic theory imply that oil futures prices are redundant in this

model of the spot market, but one can use the Giannone and Reichlin (2006) test to show that the

oil futures spread does not Granger cause the variables in the Kilian and Murphy model, consistent

with the view that the structural shocks are fundamental.8

5.3.2 Example 14: Anticipated Technology Shocks

A second example of a structural VAR model of forward-looking behavior is Barsky and Sims (2011)

who focus on expectations about future aggregate productivity. They postulate that the log of

aggregate productivity, , is characterized by a stochastic process driven by two structural shocks.

The first shock is the traditional surprise technology shock, which impacts the level of productivity

in the same period in which agents observe it. The second shock reflects information about future

technology and is defined to be orthogonal to the first shock.9 The two shocks jointly account for

all variation in . The two structural shocks are identified as follows:

 = [11() 12()]

µ
1

2

¶

where12(0) = 0 such that only 1 affects current productivity, making 2 the future technology

shock. Effectively, Barsky and Sims treat  as predetermined with respect to the rest of the

economy. This identifying assumption leaves a wide range of possible choices for 2 In practice,

8One could have considered an alternative specification in which the oil futures spread replaces the change in crude

oil inventories, but one-year oil futures contracts did not exist on a monthly basis prior to 1989, so this alternative

specification would involve a much smaller sample size. The advantage of the specification in Kilian and Murphy

(2011b) is that it remains equally valid even in the absence of an oil futures market (or when arbitrage for some

reason is less than perfect). Nor would a model based on the oil futures spread allow the imposition of bounds on the

oil demand elasticity.
9Barsky and Sims refer to this shock as a news shock, following a terminology common in the recent macroeconomic

literature. This is somewhat misleading in that news shocks have traditionally been defined as unexpected changes to

observed aggregates (see, e.g., Kilian and Vega 2011). Rather the second shock captures expected changes in future

productivity.
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2 is identified as the shock that best explains future movements in +1  +  not accounted

for by its own innovation, where  is some finite horizon. This approach, of course, amounts to

constructing the best possible case for the role of shocks to expectations rather than necessarily the

most likely case.

The estimated VAR model includes a total factor productivity series as well as selected macro-

economic aggregates.  is ordered first. The procedure is implemented by constructing candidate

solutions of the form , where  denotes the lower triangular Cholesky decomposition of Σ and

 a conformable orthogonal matrix, as in the case of sign-identified VAR models. The ability of a

shock to explain future movements of the data is measured in terms of the forecast-error variance

decomposition. Because the contribution of the second shock to the forecast error variance of 

depends only on the second column of −10 , Barsky and Sims choose the second column,  to solve

the optimization problem:

∗ = argmax
X
=0

Ω12()

subject to the first element of  being zero and 0 = 1 where Ω() denotes the share of the

forecast error variance of variable  attributable to structural shock  at horizon  expressed in terms

of the structural parameters of the model (also see Lütkepohl 2005).

5.3.3 Example 15: Anticipated Tax Shocks

In related work, Leeper, Walker and Yang (2011) address the problem of anticipated tax shocks in

the context of the model of Blanchard and Perotti (2002). Although Blanchard and Perotti as part

of a sensitivity analysis relaxed the assumption of no foresight in their baseline model, they only

investigated a very limited form of tax foresight involving one quarter of anticipation. Clearly, there

is no compelling reason for agents not to be more forward-looking.

Leeper et al. propose a more general approach. Their starting point is the observation that the

differential U.S. Federal tax treatment of municipal and treasury bonds embeds news about future

taxes. The current spread, , between municipal bonds and treasury bonds may be viewed as an

implicit tax rate. This implicit tax rate is a weighted average of discounted expected future tax

rates and should respond immediately to news about expected future tax changes. This motivates

treating  as a variable containing expectations of future tax shocks. Assuming market efficiency,

the implicit tax rate reveals the extent to which agents do or do not have foresight. A simple test

is whether  contains useful predictive information for the variables modeled by Blanchard and

Perotti. Leeper et al. demonstrate that  Granger causes the variables in Blanchard and Perotti’s
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VAR model, indicating that this model is not fundamental. Their solution is to augment the model

of Blanchard and Perotti with data on the spread, , resulting in the four-variable system:

⎛⎜⎜⎜⎜⎜⎜⎝
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They add the identifying assumption that news contained in the interest rate spread,  , has no

direct effect on current output, tax revenue and spending. The resulting structural VAR model can

be used to construct responses both to unanticipated and anticipated tax revenue shocks. Leeper et

al. show that their model produces markedly different impulse response estimates from Blanchard

and Perotti’s model and suggests that agents’ foresight may extend as far as five years.

6 Structural VAR Models and DSGE Models

Both structural VAR models and DSGE models were developed in response to the perceived failure

of traditional large-scale econometric models in the 1970s. Proponents of DSGE models responded to

this evidence by developing fully structural models that facilitated policy analysis, but at the expense

of requiring strong assumptions about market structures, functional forms and about the exogeneity

and dynamic structure of the underlying forcing variables. Proponents of structural VAR models

responded by proposing dynamic simultaneous equation models that required minimal assumptions

about the dynamics of the model variables, no assumptions about the exogeneity of any variable,

and minimal assumptions about the structure of the economy. They dispensed in particular with

the imposition of cross-equation restrictions in an effort to make the structural VAR model robust

to alternative ad hoc modeling choices.

An obvious question is under what conditions these modeling approaches are compatible and

under what conditions one might be able to learn from one approach about the other. This has

been less of a concern for DSGE proponents (who often reject the structural VAR approach on a

priori grounds) than for proponents of the structural VAR approach, some of whom have viewed

results from structural VAR models as informative for DSGE modeling (see, e.g., Gali 1999). Re-

cent research has shown that comparisons of structural VAR estimates with DSGE models are not

straightforward:

• Not every DSGE model will have a structural VAR representation. Fernandez-Villaverde,

Rubio-Ramirez, Sargent and Watson (2007) discuss invertibility conditions that must be met
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for data from a DSGE model to have a structural VAR representation. Whether this fact is a

concern for structural VAR modeling depends on whether we view the excluded DSGE models

as practically relevant.

Conversely, not every structural VAR model will correspond to an existing DSGE model. This

does not necessarily mean that the structural VAR model lacks theoretical support. It may

also reflect our inability to write down and solve more articulated theoretical models.

• The state-space representation of a DSGE model’s log-linearized equilibrium often can be

expressed in terms of a reduced-form VARMA(,) process for the observable DSGE model

variables. It rarely will take the form of a finite-order VAR() process. Integrating out some

of the model variables will further affect the nature of the VARMA representation. Under

suitable conditions, the resulting VARMA model for the observables can be inverted and

expressed as a VAR(∞) model, which in turn can be approximated by a sequence of finite-
order VAR() processes, where  increases with the sample size at a suitable rate. The use of

an autoregressive sieve approximation has important implications for lag order selection and

for statistical inference in the implied VAR() model (see, e.g., Inoue and Kilian 2002).

An obvious concern in practice is how well a VAR(∞) model may be approximated by a
VAR() in finite samples. One important area of current research is how to select . The

answer depends in part on which aspect of the DSGE model we are interested in. This

is an open area of research. Simulation evidence suggests that in some cases the VAR()

approximation to the VAR(∞) process may be poor for realistic sample sizes for any feasible
choice of .

• The existence of an approximate reduced-form VAR() representation is a necessary, but not

a sufficient condition for the existence of a structural VAR() representation. One additional

condition is that the number of shocks in the DSGE model must match the number of shocks

in the VAR model. Recall that we postulated that Σ is of full column rank. This means

that there must be as many shocks as variables in the VAR model. Many DSGE models

have fewer shocks than variables. For example, a textbook real business cycle model has only

one technology shock, so, when fitting a VAR to output, investment and consumption data

generated from this DSGE model, Σ would be of reduced rank if the DSGE model were

correct. Clearly, the DSGE model and VAR model specifications are incompatible in that

case. Users of DSGE models have responded to this problem by either adding ad hoc noise

without structural interpretation (such as measurement error) or by augmenting the number of

economic shocks in the DSGE model (preference shocks, fiscal shocks, monetary shocks, etc).
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This can be problematic if the additional shocks in the DSGE model have no clear structural

interpretation or involve questionable exogeneity assumptions.

Another additional condition is that the restrictions imposed in identifying the structural

shocks in the VAR model must be consistent with the underlying DSGE model structure. This

is rarely the case when using short-run exclusion restrictions, so caution must be exercised in

comparing results from DSGE and structural VAR models. The use of long-run restrictions as

in Gali (1999) circumvents this problem in part, but it requires the user to take a strong stand

on the presence of unit roots and near-unit roots, it requires the DSGE model to be consistent

with these assumptions, it focuses on one shock at the expense of others, and it suffers from

its own limitations as discussed earlier. Simulation evidence on the efficacy of this approach

is mixed (see, e.g., Gust and Vigfusson 2009). Perhaps the best hope for matching structural

VAR models and DSGE models is the use of sign restrictions. Canova and Paustian (2011)

report considerable success in recovering responses generated by DSGE models with the help

of sign-identified structural VAR models. They stress the importance of not being too agnostic

about the identification, however. It is generally easier to recover the underlying population

responses when more variables are restricted, for a given number of identified shocks, or when

more structural shocks are identified in the VAR model. Moreover, models based on weak

identifying restrictions may become unreliable when the variance of the shock in question is

small in population. This conclusion is further reinforced by the discussion in Kilian and

Murphy (2011a) of the dangers of relying on excessively agnostic sign-identified VAR models.

• The earlier comments about forward-looking behavior continue to apply. As noted by Sims
(2009), when the data are generated by a DSGE model in which shocks are anticipated by the

agents, there is a missing state variable in the structural VAR representation of the observ-

ables and structural VAR models will be unable to recover the true structural shocks. There

is evidence that this problem need not be fatal, however. Even when the conditions for the in-

vertibility of the state-space representation fail, the degree of misspecification of the structural

VAR responses may be small.

This discussion highlights that in general caution must be exercised in comparing structural VAR

and DSGE model estimates. Interest in such comparisons has further increased in recent years, as

Bayesian estimation methods have facilitated the estimation of the state-space representation of

DSGE models, making it possible to dispense with VAR models in estimating structural impulse

responses. At the same time, there has been increasing recognition that DSGE models not only are

sensitive to ad hoc modeling choices, but often suffer from weak identification of the structural pa-
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rameters. Unless we are very confident about the adequacy of the DSGE model structure, estimates

of DSGE models may be misleading, and calibration of the model parameters will be preferable.

Moreover, even if the model structure is adequate, structural parameter estimates may be sensitive

to the choice of priors. Thus, both the structural VAR approach and the DSGE model approach

have to be used with care and the best we can hope for is that both types of models paint a similar

picture.

7 Conclusion

In addition to continued innovation in the area of the identification of structural shocks from VAR

models, recent years have witnessed a number of generalizations of the underlying reduced-form VAR

framework. One of the main concerns in the VAR literature we already alluded to is that policy rules

and more generally that the structure of the economy may evolve over time. In some cases, such

temporal instability may be modeled within a linear VAR framework. For example, Edelstein and

Kilian (2009) showed how time variation in the share of energy expenditures in total consumption

may be modeled within a linear VAR framework by redefining energy price shocks in terms of shocks

to the purchasing power of consumers. A similar approach was taken by Ramey and Vine (2011) in

modeling gasoline price rationing. An alternative approach pioneered by Primiceri (2005), Benati

(2008), Canova and Gambetti (2009), and Baumeister and Peersman (2010) has been to allow for

explicit smooth time variation in the parameters of the structural VAR model. The development

of structural TVP-VAR models is challenging because the identifying restrictions themselves may

be time-varying. Structural VAR models have also been extended to allow for more specific nonlin-

earities such as regime-switching, threshold nonlinearities, or GARCH in mean (see, e.g., Elder and

Serletis 2010). Not all nonlinearities lend themselves to structural VAR analysis, however. For ex-

ample, Kilian and Vigfusson (2011a,b) show that certain models involving asymmetric transmissions

of shocks may not be represented as structural VAR models. They propose an alternative non-VAR

representation of dynamic asymmetric structural models.

A second development has been the integration of results from the literature on data-dimension

reduction in forecasting from large cross sections. One example is the development of factor aug-

mented VAR (FAVAR) models as in Bernanke, Boivin and Eliasz (2005) or Stock and Watson (2005).

An alternative approach has been the use of large-scale Bayesian VAR models as in Banbura, Gi-

annone, and Reichlin (2010). Both model frameworks allow the user to generate impulse responses

for a much larger set of variables than traditional VAR models. A third development has been the

increased popularity of panel VAR models (see, e.g., Canova 2007).
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These developments illustrate that there is much life left in the research program started by

Sims (1980a,b). As with all methodologies, structural vector autoregressions can be powerful tools

in the right hands, yet potentially misleading if used blindly. Credible applications require careful

consideration of the underlying economic structure. Although not every problem can be cast in

a structural VAR framework, structural VAR models are likely to remain an important tool in

empirical macroeconomics. There is no indication that DSGE models, in particular, are ready to

take the place of structural vector autoregressions. Both approaches have their distinct advantages

and disadvantages, and it remains up to the researcher to decide which class of models is more

appropriate for a given question.
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