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wins. We study two variations of this model where contestant 1 either knows 
or does not know the realization of the noise before she chooses her effort. 
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investigate the effect of a random noise on the expected highest effort in this 
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Sequential All-Pay Auctions with Noisy Outputs

Ella Segev� Aner Selay

July 20, 2011

Abstract

We study a sequential all-pay auction with two contestants who are privately informed

about a parameter (ability) that a¤ects their cost of e¤ort. In the model, contestant 1 (the

�rst mover) exerts an e¤ort in the �rst period which translates into an observable output

but with some noise, and contestant 2 (the second mover) observes this noisy output. Then,

contestant 2 exerts an e¤ort in the second period, and wins the contest if her output is larger

than or equal to the observed noisy output of contestant 1; otherwise, contestant 1 wins.

We study two variations of this model where contestant 1 either knows or does not know

the realization of the noise before she chooses her e¤ort. Contestant 2 does not know the

realization of the noise in both variations. For both variations, we characterize the subgame

perfect equilibrium and investigate the e¤ect of a random noise on the expected highest e¤ort

in this contest.

Keywords: Sequential contests, noisy outputs.

JEL classi�cation: D44, O31, O32

1 Introduction

In an all-pay auction with a single prize, the contestant with the highest e¤ort (output) wins the

entire prize, but all the contestants bear the cost of their e¤ort. In the economic literature, all-pay

�Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, email: el-

lasgv@bgu.ac.il
yEconomics Department, Ben-Gurion University of the Negev, email: anersela@bgu.ac.il
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auctions are usually studied under complete information where each contestant�s type (her valua-

tion for winning or her ability) is common knowledge (see, for example, Hillman and Riley 1989;

Leininger 1991; Baye et al. 1996; Che and Gale 1998, 2000; and Siegel 2009), or under incomplete

information where each contestant�s type is private information and only the distribution of the

contestants�types is common knowledge (see, for example, Amman and Leininger 1996; Krishna

and Morgan 1997; Gavious et al. 2003; Moldovanu and Sela 2001, 2006; and Moldovanu et al.

2010). In the all-pay auction with either complete information or incomplete information e¤orts

translate deterministically into observable outputs such that the contestant who made the highest

e¤ort is also the one with the highest output and this contestant wins the contest. However, in

real-life contests, the relationship between the contestant�s e¤ort and her observable output is

usually not deterministic. Rather, it is frequently the case that there is some noise in the process

that maps e¤orts into measured outputs. Contests with outputs which are not deterministically

determined by e¤orts have received some attention in the literature. For example, Lazear and

Rosen (1981) considered a contestant�s output to be a stochastic function of the unobservable

e¤ort and the identity of the most productive agent to be determined by an external shock. This

model is known in the literature as a rank-order tournament and was later extended and general-

ized by several authors, e.g., Green and Stokey (1983), Nalebu¤ and Stiglitz (1983), Rosen (1986),

Krishna and Morgan (1998) and Akerlof and Holden (2008). The all-pay auction under complete

information is actually the limiting case of the rank-order tournament when the noise approaches

zero. In this paper, similarly to the rank-order tournament, we assume that the output is a sto-

chastic function of the e¤ort, but in contrast to the rank-order tournament model, we analyze

sequential all-pay auctions under incomplete information. Thus the novelty of this paper lies in

the fact that we combine incomplete information and noisy outputs in the same model.

The paper�s outline is as follows. In Section 2 we present our model of a sequential all-pay

auction with two contestants who are privately informed about a parameter (ability) that a¤ects

their cost of e¤ort. Contestant 1 (the �rst mover) exerts an e¤ort x1 in the �rst period, and

contestant 2 (the second mover) observes a noisy output of contestant 1�s e¤ort, x1 + t, where

t is the noise term. Then, contestant 2 exerts an e¤ort x2 in the second period, and wins the

contest if her e¤ort is larger than or equal to the noisy output of contestant 1, i.e., x2 � x1 + t;

otherwise, contestant 1 wins. The random noise t is uniformly distributed on an interval [�k; k]
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where k describes the magnitude of the random noise and determines its variance.1 The smaller the

value of k is, the higher is the contest�s accuracy. This type of sequential contest was previously

studied by Segev and Sela (2011) without the presence of a random noise (i.e., when k = 0).

Here, we characterize the subgame perfect equilibrium of this contest with a random noise and

focus on the e¤ect of the noise on the contestants�e¤orts. The assumption of a noisy output in

a sequential contest is relevant in various applications, including sport contests such as athletics

and gymnastics, political races in which the candidates compete with each other in a sequence of

speeches, and court trials where the lawyers of both sides make their �nal speeches sequentially.

We present two variations of the model. In the �rst one (Section 3 - Symmetric Information)

we assume that both contestants do not know the realization of the noise when they exert their

e¤ort. We show that when the magnitude of the noise, k, increases, then in equilibrium less types

of contestant 1 will exert a positive e¤ort in the contest. If the magnitude of the random noise

is su¢ ciently high, contestant 1 will have no incentive to exert any positive e¤ort since anyway

she wins with zero e¤ort. Thus, we focus on a more interesting case where the magnitude of the

random noise is relatively low (k goes to zero). One could hypothesize that even a small noise can

have a large impact on contestant 1�s equilibrium e¤ort and dramatically change it with respect

to the contest without the noise. In our model, however, we show that the marginal e¤ect of the

magnitude of the random noise, k, on the contestants�strategies goes to zero when k goes to zero.

Thus, we conclude that the equilibrium behavior in the sequential all-pay auction is robust under

the existence of a small noise.

In the second variation of our model (Section 3 - Asymmetric Information) we assume that

contestant 1 knows the realization of the noise when exerting her e¤ort, while contestant 2 does

not. We thus assume that contestant 1 has more information about the contest than contestant

2. This assumption describes contests in which the �rst mover has the opportunity to gather

information about the contest environment before exerting an e¤ort. This commonly occurs in

market situations when one �rm identi�es the market earlier than the other �rm which enables

her to evaluate correctly the connection between the e¤ort and the observed output. We show

that a positive realization of noise decreases contestant 1�s equilibrium e¤ort for any type who

1The model can be studied for any symmetric distribution of noise but then a closed-form expression for the

subgame perfect equilibrium cannot be derived.
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exerts a positive e¤ort while a negative realization increases it with respect to the contest without

any noise. Moreover, in equilibrium, the probability that contestant 1 will exert a positive e¤ort

in the contest decreases in the absolute value of the noise. Therefore, we conclude that a positive

realization of noise decreases the expected output of contestant 1. The e¤ect of a negative noise

is ambiguous since, on the one hand, it increases the output of contestant 1 for any type who

exerts a positive e¤ort, but on the other, it decreases the incentive to exert a positive e¤ort in

the contest. It is worth noting that the e¤ects of a positive and a negative noise with the same

absolute value do not balance each other such that the total e¤ect on the contestants�outputs

is not necessarily zero. However, similarly to the case when both contestants do not know the

realization of the noise, we show that the marginal e¤ect of the magnitude of the random noise,

k, on the contestants� strategies goes to zero when k goes to zero. Hence, independent of the

information of the contestants on the random noise, the equilibrium behavior in the sequential

all-pay auction is robust under the existence of a small noise.

Section 5 concludes. All proofs are in the appendix.

2 The model

We consider a sequential all-pay auction with two contestants where contestant 1 (the �rst mover)

exerts an e¤ort x1 in the �rst period, while contestant 2 (the second mover) observes an output

of x1 + t where t represents a random noise that is drawn from a uniform distribution on the

interval [�k; k] ; k � 0 and this information is common knowledge. The value of k determines the

variance of the random noise and the smaller the value of k is the higher is the contest�s accuracy.

Contestant 2 exerts an e¤ort x2 in the second period, and wins the contest if the e¤ort x2 is larger

than or equal to x1 + t; otherwise, contestant 1 wins. The valuation of both contestants for the

prize is 1. An e¤ort xi costs xiai where ai � 0 is the ability (or type) of contestant i which is private

information to i. Contestant i�s ability is drawn independently from the interval [0; 1] according to

a cumulative distribution function Fi which is common knowledge. We assume that Fi; i = 1; 2 has

a positive and continuous density function F 0i > 0: Since the ability of the players is distributed

on [0; 1] we can assume that the output is limited to this interval and therefore we assume that if

x1+ t � 0; then contestant 2 observes an output of zero while if x1+ t � 1 she observes an output
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of 1. The goal of the contest designer is to maximize the expected highest output in this contest.

3 Symmetric information

Assume that both contestants do not know the realization of the noise t when exerting their e¤ort.

If contestant 1 exerts an e¤ort of b1 (a1) in the �rst period, contestant 2 observes a noisy output

of b1 (a1) + t. Then contestant 2�s equilibrium strategy is given by

b2 (a2) =

8<: 0 if a2 < b1 (a1) + t

b1 (a1) + t if a2 � b1 (a1) + t
(1)

In the following, we assume that k � 1
2
and that F2 is concave. Then we can show (see the proof

of Proposition 1) that contestant 1�s equilibrium strategy satis�es k � b1(a1) � 1 � k: In that

case, contestant�s 1 maximization problem is given by

max
b1

�Z k

�k
F2 (b1 + t)

1

2k
dt� b1

a1

�
The F.O.C. is therefore Z k

�k

1

2k
F 02 (b1 + t) dt�

1

a1
= 0 (2)

The S.O.C. is Z k

�k

1

2k
F 002 (b1 + t) dt < 0 (3)

If F2 is concave then the S.O.C. holds everywhere. Thus, according to the above analysis, contes-

tant 1�s equilibrium strategy is as follows:

Proposition 1 In the sequential all-pay auction, for every concave distribution function F2, the

equilibrium strategy of contestant 1 is given by b1 (a1) = 0 for all 0 � a1 < a�1; and for all a1 � a�1
it is implicitly de�ned by

1

2k
F2 (b1(a1) + k)�

1

2k
F2 (b1(a1)� k) =

1

a1
(4)

The cuto¤ type a�1 is implicitly de�ned by

1

2k

Z k

�k
F2 (b1(a

�
1) + t) dt�

b1(a
�
1)

a�1
=
1

2k

Z k

0

F2 (t) dt (5)

where b1(a�1) is implicitly de�ned by (4).
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Proof. See Appendix.

In the following we use Proposition 1 to illustrate the contestants�behavior in a sequential

all-pay auction.

Example 1 Assume a sequential all-pay auction where contestant 2�s type is distributed according

to F2 (a2) =
p
a2: By (4), contestant 1�s equilibrium strategy is implicitly given by

1

2k

�p
b1 + k �

p
b1 � k

�
=
1

a1

Thus, contestant 1�s equilibrium strategy is explicitly given by

b1 (a1) =

8<: 0 if 0 � a1 < a�1
a21
4
+ k2

a21
if a�1 � a1 � 1

The cuto¤ type a�1 is de�ned by (5)

1

2k

Z k

�k

�
a21
4
+
k2

a21
+ t

� 1
2

dt�
�
a1
4
+
k2

a31

�
=
1

2k

Z k

0

t
1
2dt

Therefore

a�1 = c
p
k

where c is the solution to the equation

4c3 � 3c4 + 4 = 0) c ' 1:637 2

Note that contestant 1�s e¤ort is increasing in a1 for all a1 �
p
2k = 1:414 2

p
k and therefore for

all a1 � a�1. Moreover, for a given type a1 who exerts a positive e¤ort, the e¤ort is increasing in

k. Note also that a�1 approaches zero when k ! 0. In that case, contestant 1 will exert an e¤ort

of b1 (a1) =
a21
4
: Finally, note that a�1 � 1 i¤ k �

�
1

1: 637 2

�2
= 0:373 08. That is, if k > 0:373 08

contestant 1; independent of her type, exerts an e¤ort of b1 = 0: The following �gure presents the

equilibrium e¤ort of contestant 1 when k = 0:1 and a�1 ' 0:517 73.
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Figure 1: The equilibrium e¤ort function as a function of the type.

Our goal in the following is to examine the e¤ect of the size of the interval of the random noise,

k, on the contestants�behavior, and particularly on the expected highest output in the contest.

The expected highest output in our model is equal to contestant 1�s expected output which is

given by

TE1 =

Z 1

a�1

�
1

2k

Z k

�k
(b1 (a1) + t) dt

�
f1(a1)da1 =

Z 1

a�1

b1 (a1) f1(a1)da1 (6)

where b1(a1) is de�ned by (4). If k is su¢ ciently large, no type of contestant 1 will exert a positive

e¤ort (i.e., a�1 = 1). The following example illustrates contestant 1�s expected e¤ort in the contest.

Example 2 Consider a sequential all-pay auction with two contestants whose types are distributed

according to F1 (x) = F2 (x) =
p
x. Then, by (6), the expected highest e¤ort is given by

TE1 =

Z 1

1:637
p
k

�
a21
4
+
k2

a21

�
1

2
p
a1
da1 =

1

20
� k

2

3
� 0:01236k 54

Figure 2 depicts the expected highest e¤ort as a function of k:
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Figure 2: The expected highest e¤ort as a function of k

We next show that the cuto¤ type a�1 increases in k for any (concave) distribution of contestant

2�s types.

Proposition 2 The ex-ante probability that contestant 1 will exert a positive e¤ort in the sequen-

tial all-pay auction decreases in the magnitude of the random noise, i.e.,

da�1
dk

> 0

Proof. See Appendix.

The e¤ect of the magnitude of the random noise on the contestants�expected e¤orts is am-

biguous. On the one hand, from the above proposition, it decreases the ex-ante probability that

contestant 1 will exert a positive e¤ort, but, on the other, in some cases it increases the e¤ort of

contestant 1 for any given type (as in Example 1 where b1 (a1) is increasing in k). However, the

following result shows that if the magnitude of the random noise k is small enough, then it has no

e¤ect on the expected e¤ort of contestant 1.

Proposition 3 In the sequential all-pay auction, if F 02 (x)!1 when x! 0; the marginal e¤ect

of the magnitude of the random noise, k, on the expected highest output is zero when k approaches

zero, i.e.,

lim
k!0

dTE1
dk

= 0
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Proof. See Appendix.

Note that the condition in the above proposition, F 02 (x) ! 1 when x ! 0, holds for all

concave distribution functions of the form F (x) = x; 0 <  < 1. Moreover, since contestant

2 only equalizes the output of contestant 1 the e¤ect of the random noise is similar on both

contestants. Thus, we conclude that a relatively small noise in the sequential all-pay contest does

not result in a dramatic change in the contestants�output. In other words, the sequential all-pay

auction is robust under a small noise with respect to the contestants�outputs.

3.1 Asymmetric information

In many market situations the �rst player to arrive at the market gathers the available information

and can successfully evaluate the connection between her e¤ort and the observable output. Assume

therefore that contestant 2 does not know the value of the realization of the noise t which is

uniformly distributed on the interval [�k; k] ; while contestant 1 knows the realization of t before

she exerts her e¤ort. Note, however, that contestant 2�s behavior will not be changed when

contestant 1 knows the realization of t. Then, as in the previous section, the equilibrium strategy

of contestant 2 is given by

b2 (a2) =

8<: 0 if a2 < b1 (a1) + t

b1 (a1) + t if a2 � b1 (a1) + t

Given a noise of t, contestant 1 with ability a1 solves the following optimization problem:

max
b1

�
F2(b1 + t)�

b1
a1

�
(7)

The F.O.C. is then

F 02(b1 + t)�
1

a1
= 0 (8)

The S.O.C. is

F 002 (b1 + t) < 0 (9)

We assume again that F2 is concave. Thus, contestant 1�s equilibrium strategy is as follows:
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Proposition 4 In the sequential all-pay auction, for every concave distribution function F2, the

equilibrium strategy of contestant 1 is given by

b1(a1) =

8<: 0 if a1 < a

(F 02)
�1( 1

a1
)� t if a1 � a

(10)

If 0 � t � (F 02)
�1 (1) ; the cuto¤ type a = a� is determined by

(F 02)
�1(

1

a�
)� t = 0, a� =

1

F 02 (t)
(11)

and if t < 0; the cuto¤ type �a = a�� is determined by

F2((F
0
2)
�1(

1

a��
))� 1

a��

�
(F 02)

�1(
1

a��
)� t

�
= 0 (12)

Finally, if t > (F 02)
�1 (1) then a = 1

Note that b1(a1) + t < 1 for all a1 � 1 and therefore the maximization problem (7) is well

de�ned. Moreover, if t > (F 02)
�1 (1) then all types of contestant 1 exert a zero e¤ort. If t < 0; the

cuto¤ �a = a�� is the type whose expected payo¤ is equal to zero when a positive e¤ort is exerted.

Finally, given the realization of the noise t, contestant 1�s equilibrium e¤ort is (weakly) increasing

in her type.

By Proposition 4, a positive noise decreases contestant 1�s output and a negative noise increases

it with respect to the situation without any noise. The noise, either negative or positive, increases

the cuto¤, that is, it decreases the ex-ante probability that contestant 1 will exert a positive e¤ort.

Thus, a positive noise necessarily decreases contestant 1�s expected output. However, the e¤ect of

a negative noise on contestant 1�s expected e¤ort is ambiguous since, on the one hand, it increases

the e¤ort, but, on the other, it increases the probability that contestant 1 will exert a zero e¤ort.

Note that if contestant 1 exerts a positive e¤ort when t is positive as well as when t is negative

with the same absolute value, then by (10) her e¤ort when the noise is negative is higher by 2t

than when the noise is positive. However, a positive noise and a negative noise, even if they have

the same absolute value, by (11) and (12) will a¤ect di¤erently contestant 1�s decision whether or

not to exert a positive e¤ort. The following result provides a condition on the distribution function

of contestant 2�s types for which a negative noise encourages a larger set of contestant 1�s types

10



to exert a positive e¤ort in the contest than a positive noise with the same absolute value. Thus,

this result also provides a condition according to which a negative noise is better than a positive

one with the same absolute value from the viewpoint of a designer who wishes to maximize the

expected highest output.

Proposition 5 In a sequential all-pay contest with t � (F 02)
�1 (1), assume that the following

condition holds
F2(t)

F 02(t)
� 2t (13)

Then, if contestant 1 exerts a positive e¤ort with a positive noise t; she also exerts a positive e¤ort

with a negative noise of �t; i.e., we have

a�� � a�

In that case, a negative noise of �t yields a higher expected output of contestant 1 than a positive

noise of t:

Proof. See Appendix.

Condition (13) is satis�ed in particular for all concave distribution functions of the forms

F2(t) = t ,for 0 <  � 1
2
: Thus, for all these distribution functions, a negative noise yields a

higher expected output of contestant 1 than a positive noise with the same absolute value.

The expected highest output, given a noise of t, is equal to the expected output of contestants

1 which is given by

TE1 (t) =

Z 1

�a

((F 02)
�1(

1

a1
)� t)F 01(a1)da1 (14)

If t is uniformly distributed on the interval [�k; k] and k � (F 02)
�1 (1), the expected output of

contestant 1 is given by

TE1 =

Z k

0

�Z 1

a�
b1 (a1)F

0
1(a1)da1

�
1

2k
dt+

Z 0

�k

�Z 1

a��
b1 (a1)F

0
1(a1)da1

�
1

2k
dt (15)

=

Z k

0

1

2k

�Z 1

a�
(F 02)

�1(
1

a1
)F 01(a1)da1 � t(1� F1(a�))

�
dt

+

Z 0

�k

1

2k

�Z 1

a��
(F 02)

�1(
1

a1
)F 01(a1)da1 � t(1� F1(a��))

�
dt

In the following example, we illustrate the equilibrium strategy and the e¤ect of a random

noise on the expected highest output in a sequential all-pay auction.
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Example 3 Consider a sequential all-pay auction where both contestants� types are distributed

according to F (x) =
p
x: Then, by (10), (11) and (12) for 0 � t � 1

4
; contestant 1�s equilibrium

strategy is given by

b1(a1) =

8<:
a21
4
� t if a1 � 2

p
t

0 if a1 < 2
p
t

and for t < 0; it is given by

b1(a1) =

8<:
a21
4
� t if a1 � 2

p
�t

0 if a1 < 2
p
�t

By (15), the expected output of contestants 1 is

1) for t � 0

TE1 (t � 0) =
Z 1

2
p
t

(
a21
4
� t) 1

2
p
a1
da1 =

4

5

p
2t

5
4 � t+ 1

20

and
dTE1
dt

=
p
2t

1
4 � 1

Then for all 0 � t � 1
4
; we have dTE1

dt
� 0; that is, any positive noise decreases the expected output

of contestant 1 compared to the case without any noise.

2) for t < 0

TE1 (t < 0) =

Z 1

2
p
�t
(
a21
4
� t) 1

2
p
a1
da1 =

1

20
� 6
5

p
2 (�t)

5
4 � t

and
dTE1
dt

=
3

2

p
2 (�t)

1
4 � 1

Thus, for all t > �0:04939; dTE
dt
� 0 and for all t < �0:04939; dTE

dt
� 0: In other words, a small

negative noise increases contestant 1�expected output, and a large negative noise decreases it. We

plot the expected highest e¤ort as a function of the realization of the noise t in Figure 3.
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Figure 3: The expected highest e¤ort as a function of t

If t is uniformly distributed on [�k; k] for k � 1
4
then

TE1 =

Z k

0
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Z 0
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dt

=
1

2k

�Z k

0

�
4

5

p
2t

5
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In Figure 4 we can see that the expected e¤ort of contestant 1 decreases in the magnitude of the

random noise k:
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Figure 4: The expected highest e¤ort as a function of k
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In the above example, although the random noise is symmetrically distributed around zero, the

equilibrium output of contestant 1 is not symmetric, i.e., b1(a1; t) 6= b1(a1;�t) and, in particular

the expected highest e¤ort is not symmetric around zero as can be seen in Figure 3. In the

following, we show that when the magnitude of the noise k is small enough the e¤ect of the

negative noises will be positive and will balance the negative e¤ect of the positive noises such that

the overall e¤ect of random noise on contestant 1�s expected e¤ort will be zero.

Proposition 6 In the sequential all-pay auction, if F 02 (x)!1 when x! 0; the marginal e¤ect

of the magnitude of the random noise, k; on the expected highest output is zero when k approaches

zero, i.e.,

lim
k!0

dTE1
dk

= 0:

Proof. See Appendix.

Proposition 6 demonstrates that the sequential all-pay auction is robust under a small noise in

contestant 1�s output when she knows the realization of the noise before she exerts the e¤ort. Thus,

by Propositions 3 and 6 we can conclude that with either symmetric or asymmetric information

on the realization of random noise, a relatively small noise has no e¤ect on the expected highest

e¤ort.

4 Concluding remarks

We established the existence of a subgame perfect equilibrium in the sequential all-pay auction

with noisy outputs. We showed that when the noise is uniformly distributed around zero, this

auction is robust in the sense that the marginal e¤ect of small noises on the contestants�expected

highest e¤ort is zero. In other words, in a sequential all-pay auction, small noises do not have a

dramatic e¤ect on the contestants�output with respect to the contest without any noise. Owing

to the complexity of the environment we focused here on a speci�c distribution of the random

noise, namely, the uniform distribution. However, we conjecture that our results will hold for

other distributions of random noise as long as they are symmetrically distributed around zero.
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5 Appendix

5.1 Proof of Proposition 1

We wish to characterize the equilibrium e¤ort function b1 (a1) of contestant 1 when the equilibrium

e¤ort function of contestant 2 is given by (1). We divide our analysis into the following three cases:

1. b1(a1) < k 2. b1(a1) > 1� k and 3. k � b1(a1) � 1� k.

1) Assume �rst that b1 (a1) < k: Then contestant 10s maximization problem is given by

max
b1

�Z �b1

�k
F2(0)

1

2k
dt+

Z k

�b1
F2 (b1 + t)

1

2k
dt� b1

a1

�
= max

b1

�Z k

�b1
F2 (b1 + t)

1

2k
dt� b1

a1

�
The F.O.C. is given by Z k

�b1

1

2k
F 02 (b1 + t) dt�

1

a1
= 0

Thus,
1

2k
F2 (b1 + k) =

1

a1
(16)

The S.O.C. is given by

1

2k
F 02 (0) +

Z k

�b1

1

2k
F 002 (b1 + t) dt =

1

2k
F 02 (b1 + k)

Since F 02 (b1 + k) > 0, the S.O.C. does not hold and therefore the maximum is never achieved at

an internal e¤ort b1 2 (0; k).

2) Assume now that b1 (a1) > 1� k: Then, contestant 10s maximization problem is given by

max
b1

�Z 1�b1

�k
F2 (b1 + t)

1

2k
dt+

Z k

1�b1

1

2k
dt� b1

a1

�
The F.O.C. is

1

2k

Z 1�b1

�k
F 02 (b1 + t) dt�

1

a1
= 0

Thus,
1

2k
(1� F2(b1 � k)) =

1

a1
(17)

Let a1 = 1: Then if b1(1) > 1� k we obtain

1

2k
(1� F2 (b1(1)� k)) <

1

2k
(1� F2 (1� 2k)) <

1

2k
(1� (1� 2k)) = 1

15



The second inequality is due to our assumption that F2 is concave. This inequality contradicts

equation (17) and therefore b1(1) < 1�k; which implies by the monotonicity of b1 that b1(a1) < 1�k

for all a1 � 1:

3) When k � b1(a1) � 1� k, contestant�s 1 maximization problem is given by

max
b1

�Z k

�k
F2 (b1 + t)

1

2k
dt� b1

a1

�
The F.O.C. is therefore Z k

�k

1

2k
F 02 (b1 + t) dt�

1

a1
= 0

The S.O.C. is Z k

�k

1

2k
F 002 (b1 + t))dt < 0

If F2 is concave then the S.O.C. holds everywhere. Thus, the equilibrium strategy of contestant

1, b1(a1), is implicitly determined by

1

2k
F2 (b1 + k)�

1

2k
F2 (b1 � k) =

1

a1

where b1(a1) is a an increasing function. The cuto¤ type a�1 is the type who is indi¤erent between

an e¤ort of zero and an e¤ort given by (4). Therefore it is given by

1

2k

Z k

�k
F2 (b1(a

�
1) + t) dt�

b1(a
�
1)

a�1
=
1

2k

Z k

0

F2 (t) dt

where b1(a�1) is implicitly de�ned by (4). By the analysis in case (1) it is possible that an interval

of types will �nd it optimal to exert b1 = k. We show next, however, that no such interval exists.

Denote by â1 the type who by equation (4) is supposed to exert an e¤ort of b1 (â1) = k. Thus â1

is the solution to
1

2k
F2 (2k) =

1

a1

or

â1 =
2k

F2 (2k)

Since F2 is concave, â1 is between 0 and 1. If contestant 1 with type a1 exerts an e¤ort of b1 = 0;

then her expected payo¤ is �a1 (0) =
1
2k

R k
0
F2 (t) dt; while if she exerts an e¤ort of k her expected

payo¤ is �a1 (k) =
1
2k

R k
�k F2 (k + t) dt�

k
a1
. Recall that we already showed that she will never exert
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an e¤ort strictly between 0 and k: The di¤erence between these expected payo¤s is given by

�(a1) = �a1 (0)� �a1 (k) =
1

2k

Z k

0

F2 (t) dt�
1

2k

Z k

�k
F2 (k + t) dt+

k

a1

=
k

a1
� 1

2k

Z 2k

k

F2 (t) dt >
k

a1
� 1
2
F2 (2k)

By the de�nition of â1; we obtain that �(a1) is positive for all a1 < â1. Thus, all types of

contestant 1 that are smaller than â1 will exert an e¤ort of b1 = 0: Therefore no type a1 < â1 can

be indi¤erent between an e¤ort of zero and an e¤ort given by (4) (since by the monotonicity of

the e¤ort function given in (4), b1 (a1) < k). Therefore a�1 � â1. Finally, all a1 2 [â1; a�1] prefer an

e¤ort of zero over an e¤ort given by (4). This follows from the fact that the L.H.S. of equation

(5) is constant while the R.H.S. is increasing in a1

d

da1

�
1

2k

Z k

�k
F2 (b1(a1) + t) dt�

b1(a1)

a1

�
=
b01 (a1)

2k

Z k

�k
F 02 (b1(a1) + t) dt�

b01 (a1)

a1
+
b1 (a1)

a21
=
b1 (a1)

a21
> 0

Therefore all a1 2 [â1; a�1] prefer an e¤ort of zero. Note that all types which are larger than a�1
will exert an e¤ort according to (4), and particularly, since b1 (a1) is a monotonically increasing

function, all the positive e¤orts are larger than k: Q:E:D:

5.2 Proof of Proposition 2

Recall that a�1 is implicitly de�ned as the solution to the equation

1

2k

Z k

�k
F2 (b1(a1) + t) dt�

b1(a1)

a1
� 1

2k

Z k

0

F2 (t) dt = 0

where b1(a�1) is implicitly de�ned by (4). Therefore

da�1
dk

= �

�
� 1
2k2

R k
�k F2 (b1(a1) + t) dt+

1
2k
F2 (b1(a1) + k) +

1
2k
F2 (b1(a1)� k) + 1

2k2

R k
0
F2 (t) dt� 1

2k
F2 (k)

�
b01 (a1)

�
1
2k

R k
�k F

0
2 (b1(a1) + t) dt� 1

a1

�
+ b1(a1)

a21

Note that by equation (4) the denominator is positive. Moreover, we have

1

2k2

Z k

0

F2 (t) dt�
1

2k
F2 (k) < 0

and

2k

�
1

2
(F2 (b1(a1) + k) + F2 (b1(a1)� k))

�
<

Z k

�k
F2 (b1(a1) + t) dt

This last inequality is true since F2 is concave. Therefore, we conclude that
da�1
dk
> 0. Q:E:D:
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5.3 Proof of Proposition 3

If F 02 (x)!1 when x! 0, then in the limit when k goes to zero we have the following equilibrium

strategy for player 1

1

2k
F2 (b1(a1) + k)�

1

2k
F2 (b1(a1)� k) =

1

a1
) (18)

b1(a1) = (F
0
2)
�1
�
1

a1

�
for all a1 � 0

Note that if F 02 (0) is �nite then an interval of types a1 2
h
0; 1

F 02(0)

i
will exert zero e¤ort since the

solution to the maximization problem

max
s

�
F2(b1(s))�

b1 (s)

a1

�
is b1 = 0. But when F 02 (x)!1 when x! 0, all positive types �nd it optimal to exert a positive

e¤ort in the limit when k goes to zero.

By (14) we have
dTE1
dk

=

Z 1

a�1

db1
dk
f1(a1)da1 �

da�1
dk
b1 (a

�) f1(a
�)

Using the implicit condition (4) we obtain that

lim
k!0

db1
dk

= lim
k!0

�
�
1
2k
(F 02 (b1 + k) + F

0
2 (b1 � k))� 1

2k2
(F2 (b1 + k)� F2 (b1 � k))

�
1
2k
(F 02 (b1 + k)� F 02 (b1 � k))

Since F
0
2 (b1) = limk!0

�
1
2k
(F2 (b1 + k)� F2 (b1 � k))

�
and F

00
2 (b1) = limk!0

�
1
2k
(F 02 (b1 + k)� F 02 (b1 � k))

�
,

then

lim
k!0

db1
dk

=
1
k
(F 02(b1)� F 02(b1))

F 002 (b1)
= 0

Moreover, from the above we know that limk!0 a
�
1(k) = 0 if F

0
2 (x) ! 1 when x ! 0, and thus

we obtain that

lim
k!0

dTE1
dk

= 0

Q:E:D:

5.4 Proof of Proposition 5

Given a positive realization and a negative realization of the noise with the same absolute value

we let v = jtj = j�tj ; Then, by (11) when t > 0; a� is determined by

(F 02)
�1(

1

a�
) = v
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and by (12) when t < 0; a�� is determined by

F2((F
0
2)
�1(

1

a��
))� 1

a��

�
(F 02)

�1(
1

a��
) + v

�
= 0

If we replace a�� by a� in the L.H.S. of the last equation we obtain

F2(v)� F 02(v)2v (19)

Thus, if (19) is positive, contestant 1 with type a� has a positive expected payo¤ when the

realization of the noise is �v: Since the expected payo¤ of contestant 1 increases in her type, and

the expected payo¤ of type a�� is zero when the realization of the noise is �v, we obtain that

a�� � a�: Q:E:D:

5.5 Proof of Proposition 6

The derivative of (15) is

dTE1
dk

=
1

2k

�Z 1

a�
(F 02)

�1(
1

a1
)F 01(a1)da1 � k(1� F1(a� (k)))

�
�
Z k

0

1

2k2

�Z 1

a�
b1(a1)F

0
1(a1)da1

�
dt

+
1

2k

�Z 1

a��
(F 02)

�1(
1

a1
)F 01(a1)da1 + k(1� F1(a�� (�k)))

�
�
Z 0

�k

1

2k2

�Z 1

a��
b1 (a1)F

0
1(a1)da1

�
dt

Thus,

lim
k!0

dTE1
dk

= lim
k!0

0@ 1
2k

�R 1
a�(F

0
2)
�1( 1

a1
)F 01(a1)da1 +

R 1
a��(F

0
2)
�1( 1

a1
)F 01(a1)da1

�
� 1

2
(F1(a

�� (�k))� F1(a� (k)))

� 1
2k2

�R k
0

�R 1
a� b1(a1)F

0
1(a1)da1

�
dt+

R 0
�k

�R 1
a�� b1 (a1)F

0
1(a1)da1

�
dt
�

1A
When F 02 (x)!1 when x!1 then limk!0 a

� (k)! 0 and limk!0 a
�� (k)! 0: Therefore,

lim
k!0

dTE1
dk

= lim
k!0

�
1

k

Z 1

0

(F 02)
�1(

1

a1
)F 01(a1)da1 �

1

2k2

Z k

�k

�Z 1

0

b1(a1)F
0
1(a1)da1

�
dt

�
= lim

k!0

1

k

Z 1

0

(F 02)
�1(

1

a1
)F 01(a1)da1 � lim

k!0

1

k

�Z 1

0

b1(a1)F
0
1(a1)da1

�
dt = 0

Q:E:D:
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