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ABSTRACT

Health Insurance without Single Crossing: why healthy people have
high coverage*

Standard insurance models predict that people with high (health) risks have
high insurance coverage. It is empirically documented that people with high
income have lower health risks and are better insured. We show that income
differences between risk types lead to a violation of single crossing in the
standard insurance model. If insurers have some market power, this can
explain the empirically observed outcome. This observation has also policy
implications: While risk adjustment is traditionally viewed as an intervention
which increases efficiency and raises the utility of low health agents, we show
that with a violation of single crossing a trade off between efficiency and
solidarity emerges.
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1. Introduction

A well documented problem in health insurance markets with voluntary insurance (like the US) is
that people either have no insurance at all or are underinsured Standard insurance models (inspired
by the seminal work of Rothschild and Stiglitz (1976) (RS) and Stiglitz (1977)) predict that healthy
people have less than perfect insurance or —in the extreme— no insurance at all. However, both popular
accounts like Cohn (2007) and academic work like Schoen, Collins, Kriss, and Doty (2008) show that
people with low health status are overrepresented in the group of uninsured and underinsured We
develop a model to explain why sick people end up with little or no insurance. We do this by adding
two empirical observations (discussed below) to the RS model: (i) richer people tend to be healthier
and (ii) health is a normal good. Technically speaking, introducing the latter two effects can lead to
a violation of single crossing in the model.

Another indication that the standard RS framework (with single crossing) does not capture reality
well is the following. The empirical literature that is based on RS does not unambiguously show
that asymmetric information plays a role in health insurance markets. One would expect people to
be better informed about their health risks than their insurers —think for example of preconditions,
medical history of parents and other family members or life style. However, some papers, like for
example Cardon and Hendel (2001) or Dowd, Feldman, Cassou, and Finch (1991), do not find evidence
of asymmetric information while others do, e.g. Bajari, Hong, and Khwaja (2006) or Munkin and
Trivedi (2010). The test for asymmetric information employed in these papers is the so called “positive
correlation test,” i.e. testing whether riskier types buy more coverage.

We show that the RS model with a violation of single crossing is capable of explaining why healthy
people have better insurance (in equilibrium) than people with a low health status. In particular the
positive correlation property no longer holds if single crossing is violated. Consequently, testing for
this positive correlation can no longer be viewed as a test for asymmetric information. As mentioned,
we use two well documented stylized facts to motivate this violation of single crossing in the market
for health insurance.

First, richer people face lower health risks, see for example Frijters, Haisken-DeNew, and Shields

(2005), Gravelle and Sutton (2009) or Munkin and Trivedi (2010). Potential explanations for this

In empirical studies, underinsurance is defined using indicators of financial risk. To illustrate, one definition of
underinsurance used by Schoen, Collins, Kriss, and Doty (2008) is “out-of-pocket medical expenses for care amounted
to 10 percent of income or more”. In our theoretical model, underinsurance refers to less than socially optimal/efficient

insurance.

%In the words of Schoen, Collins, Kriss, and Doty (2008, pp. w303): “underinsurance rates were higher among adults

with health problems than among healthier adults”.



correlation between income and health include the following. High income people are better educated
and hence know the importance of healthy food, exercise etc. Healthy food options tend to be more
expensive and therefore better affordable to high income people. Or (with causality running in the
other direction) healthy people are more productive and therefore earn higher incomes. According
to standard insurance models, this would imply that rich people buy less generous health insurance
(compared to poor people). However, richer people have more generous health insurance, for example,
in the form of lower deductibles or higher coverage. Evidence for this can be found in Munkin and
Trivedi (2010), Finkelstein and McGarry (2006), Kuttner (1999) or DeNavas-Walt, Proctor, and Smith
(2008) where the extreme form of underinsurance is emphasized: Low income citizens are more likely
to have no health insurance at all.

The second stylized fact is that health is a normal good. The effect of income on treatment choice
is well documented in the medical literature. The main emphasis in this literature is that patients
with low income cannot afford treatment even if they have a prescription by their doctor. Piette,
Heisler, and Wagner (2004b, p. 384) for instance report that from a sample of chronically ill diabetes
patients “A total of 19% of respondents reported cutting back on medication use in the prior year due
to cost [...]. Moreover, 28% reported forgoing food or other essentials to pay medication costs.” By
extrapolating from their sample to the US population Piette, Heisler, and Wagner (2004a, p. 1786)
conclude that “2.9 million of the 14.1 million American adults with asthma (20%) may be cutting back
on their asthma medication because of cost pressures.” They also document for a number of chronical
conditions that people from low income groups are much more likely to report foregoing prescribed
treatment due to COStSH Further examples can, for instance, be found in Goldman, Joyce, and Zheng
(2007).

For the effect of insurance coverage on treatment choice, Schoen, Collins, Kriss, and Doty (2008,
pp. w305) report that “[bJased on a composite access indicator that included going without at least one
of four needed medical care services, more than half of the underinsured and two-thirds of the uninsured
reported cost-related access problems”. A similar picture emerges in the international comparison by
Schoen, Osborn, Squires, Doty, Pierson, and Applebaum (2010)gH Hence, low income people with high
copayments will tend to forego treatment or choose cheaper treatment options.

Single crossing means that people with higher health risks have a higher willingness to pay for

3For most chronic diseases people with income less than $ 20000 are roughly 2 (5) times more likely to forego prescribed
treatment due to costs than people with an income between $ 20000 and $ 40000 (more than $ 60000); see table 3 in

Piette, Heisler, and Wagner (2004a) for details.
*Li and Trivedi (2010) also show that marginal utility of health insurance coverage is influenced by both income and

risk factors.



marginally increasing coverage, e.g. reducing copayments. If this property holds for all possible
coverage levels, a given indifference curve of a high risk type can cross a given indifference curve of a
low risk type at most once. To see why the stylized facts above can lead to a violation of single crossing,
consider the following. At full coverage (indemnity insurance that pays for all medical costs) high risk
(low health) types will tend to spend more on treatments than low risk types. Hence a small reduction
in coverage, leads to a bigger loss in utility for high risk types. Now consider health insurance with
low coverage where the insured faces substantial copayments. Because health is a normal good, it is
possible that the rich-healthy type spends more on treatment than the low income, low health type.
In that case, a small change in coverage has a bigger effect on the utility of the healthy type than of
the low health agent. The healthy type will therefore have a higher willingness to pay for a marginal
increase in coverage than the low health type. This violates single crossing.

We show that in insurance models without single crossing higher health risks are not necessarily
associated with more coverage while this prediction is inevitable with single crossing. Not only leads
this to predictions that are closer to empirical observations (as documented above), it also has clear
policy implications. We illustrate this with risk adjustment.

Risk adjustment is used by the sponsor (government or employer) of a health insurance scheme to
reduce expected cost differences between types. Based on observable characteristics (like age, gender
etc.) the health insurer is subsidized (taxed/subsidized less) for customers with high (low) expected
costs. This is used in a number of countries like Australia, Canada, Germany, Ireland (until 2008),
The Netherlands, South Africa and the USA (see Ellis (2007) and Armstrong, Paolucci, McLeod, and
Van de Ven (2010)) in both mandatory state insurance and voluntary private insurance. The two main
goals of risk adjustment are efficiency and fairness (or solidarity); see Van de Ven and Ellis (2000) for
an overview of the literature on risk adjustment and the way it is used in practice. Indeed, in the
standard RS model, these two goals go in hand in hand. Starting from zero risk adjustment, increasing
the subsidy to the high risk consumer increases both efficiency and the utility of people with low health
status. Hence the sponsor of the health insurance scheme does not need to choose between these two
objectives. As we show below, this is no longer the case with a violation of single crossing.

In particular, when single crossing is violated, risk adjustment will either increase efficiency (by
reducing co-payments for high risk types) or increase the utility of high risk types; but not both.
Hence when designing the risk adjustment scheme, the sponsor needs to be explicit whether the goal is
efficiency or solidarity. In other words, with a violation of single crossing there is a trade off between

efficiency and equity.

®Clearly, observable characteristics are not a perfect predictor of risk type. Glazer and McGuire (2000) show how the

imperfection of the signals should be taken into account when designing the risk adjustment scheme.



The literature on violations of single crossing is relatively scarce. There are three papers analyzing
perfectly competitive insurance markets with 2 x 2 types: People differ in two dimensions and both
dimensions can either take a high or a low value. In Smart (2000) the two dimensions are risk and risk
aversion. Netzer and Scheuer (2010) model an additional labor supply decision and the two dimensions
are productivity and risk. Wambach (2000) models both wealth and risk. All papers have a pooling
result, i.e. if single crossing does not hold two of the four types can be pooled. Our paper contributes
by deviating from the perfect competition assumption. We show that under imperfect competition
types cannot only be pooled but high risk types might get even less coverage in equilibrium than low
risk types.

Jullien, Salanie, and Salanie (2007) take a different approach to answer the question why high risk
types might have lower coverage in general insurance markets. They use a model where types differ
in risk aversion and single crossing is satisfied. Hence, types with higher risk aversion will have more
coverage in equilibrium. At the same time more risk averse agents might engage more in preventive
behavior. If types are still separated in equilibrium and risk aversion differences remain the driving
force, high risk aversion types will exhibit less risk (due to prevention) and higher coverage. Similar
lines of reasoning can be found in Hemenway (1990) and De Meza and Webb (2001).

Since risk in the health sector is exogenously different for different persons (e.g. due to genetics),
we follow RS and take a different starting point than Jullien, Salanie, and Salanie (2007). We assume
rigsk differences instead of risk aversion differences. The result that high risk people have low coverage
is in our paper not the result of low risk aversion. The driving force is the violation of single crossing
caused by empirically documented income differences between high risks and low risks.

Finally, our paper is related to the industrial economics literature on non-linear pricing in oligopoly
(see, for instance, Armstrong and Vickers (2001), Stole (1995) and Stole (2007)). This literature focuses
on the welfare effects of non-linear pricing in imperfectly competitive markets. Our contribution to
this literature is to do comparative static analysis with respect to risk adjustment. In other words, our
paper has positive (testable) implications for non-linear pricing in oligopoly. Moreover, whereas the
insurance papers mentioned above focus on either perfect competition or monopoly, we actually analyze
all three cases: perfect competition, monopoly and oligopoly. As one would expect, the assumptions
on the competitive situation matter for the results.

In the following section, the model is introduced and illustrated with an example. Then equilibrium
in monopoly and oligopoly is derived. Thereafter we introduce risk adjustment and show the trade off
between efficiency and solidarity in case single crossing is violated. We conclude with the implications

of our model for so called advantageous selection. Proofs are relegated to the appendix.



2. Insurance model

This section introduces a general model of health insurance that allows us to consider both the case
where single crossing (SC) is satisfied and the case where it is not satisfied (NSC). The section concludes
with a model where SC is not satisfied because of income differences between consumer types. Whereas
the RS model predicts that people with high expected health care expenditures have generous coverage
in their insurance, we allow for the case that these people cannot afford such generous insurance.
Following RS, we consider an agent with utility function u(q, p, ) where g € [0, 1] denotes coverage
or generosity of her insurance contractJ p > 0 denotes the price of insurance (insurance premium) and
0 € {0',60"} with 0" > 6' > 0 denotes the type of consumerEI Higher 6 denotes a higher risk in the
sense of higher expected costs (in case ¢" = ¢! = 1; see below). This could, for instance, be the case
due to chronic illness or higher risk due to a genetic precondition. We make the following assumptions

on the utility function.

Assumption 1 The utility function u(q, p,0) is continuous and differentiable. It satisfies ug > 0, u, <

0. We define the indifference curve p(q,u,0) as follows:

u(q,p(q; u,0),0) = u (1)
We assume that these indifference curves p(q,u,8) are differentiable in q and uw with pg = —ug/upy >
0,py = 1/u, <0.
Further, the crossing at ¢ = 1 satisfies:
pe(1,u™,0M) > py (1,4, 6" (C1)

for all u' > @' = u(0,0,6"),u" > a" = u(0,0,0").

In words, utility u is increasing in coverage ¢ and decreasing in the premium p paid for insurance.
For given type 6 and utility level u, the indifference curve p(q,u,6) maps out combinations (g, p) that
yield the same utility. Because higher ¢ leads to higher utility, p increases to keep utility constant.
Hence, indifference curves are upward sloping in (¢,p) space (pg > 0). Increasing u (for given q)

requires a lower price. Thus, raising u shifts an indifference curve downwards (p, < 0).

Apart from literal coverage ~where 1 — g denotes the agent’s copayments— ¢ could, for example, be interpreted as
1/(1 + deductible). Note that in models without moral hazard both parameters are similar in the sense that high risk

types dislike co-payments and deductibles more relative to low risk types.
"We follow RS and much of the risk adjustment literature in assuming that there are only two types. For an analysis

of a violation of single crossing with a continuum of types 6, see Araujo and Moreira (2010) and Schottmiiller (2011).



Type k € {h,l} buys insurance if it leads to a higher utility than her outside option @¥. This
outside option is given by the “empty insurance contract” g =p = 0.

At ¢ = 1 a marginal reduction in ¢ should be compensated by a bigger decrease in p for 8" compared
to #'. This reflects the fact that the 6" type faces higher expected health care expenditures. At g = 1,
i.e. at full coverage, other factors like willingness to pay for treatment (which could be different for
different types) play no role. In this sense, this assumption “defines” what higher 6 means: at ¢ = 1,
higher 6 types face higher expected costs. With the same idea we assume that expected costs for the
insurer of a contract with ¢ = 1 is higher for the #” than for the ' type: c(1,u”,6") > ¢(1,4!, ") for
all u? > @ u! > @. Intuitively, v should not matter for health care consumption at full coverage and
the high risk type will use the insurance more.

To allow for income effects (for instance, in treatment choice; see below) the cost function depends

on u. However, we assume two regularity conditions.

Assumption 2 For each type k € {h,l} and q € [0,1] we assume that
o c,(q,u¥ 0%) >0 for uF >,
o c(1,uF 0%) = c(1,a*,0%), for ub aF > a*.

In words, as the income of the agent increases (which ceteris paribus leads to higher utility), the
agent has more money to spend on treatment. As the insurer pays a fraction ¢ > 0 of these treatments,
this leads to (weakly) higher costs for the insurer. Second, costs at full coverage (¢ = 1) do not vary
in utility. Intuitively, if ¢ = 1 treatments are for free for the agent and there is no reason to forgo
treatments, irrespective of the level of u¥F > ¥ E

Because of (CI), the single crossing condition reads@
pq(q,uh,ﬁh) > pq(q,ul,Hl) > 0 for all ¢ € [0,1] (SC)

and u" > a", u! > @' such that p(q,u”, 0") = p(q,u!,0"). The intuition is the following. Suppose
an indifference curve of type 0" intersects with an indifference curve of type ' in some point (p, q).
Then (SC) implies that the slope of the " indifference curve will be higher. It follows that these two
indifference curves can intersect only once.

We consider both the case where (SC)) is satisfied and the case where it is violated (denoted by
NSC). In both the SC and NSC cases, we maintain the assumption that ¢ = 1 is the efficient insurance
level (EI) for each type 6 € {#',6"}.

8By assumption [J full coverage is socially desirable. Hence we do not consider the case where insurance leads to

inefficiency by inducing over-consumption of treatments.
9This is also called sorting, constant sign or Spence-Mirrlees condition (Fudenberg and Tirole (1991, pp. 259)).



Assumption 3 For a given utility level u*, welfare (and therefore profits) are mazimized at full cov-
erage, i.e.

max p(q7uk70k) - c(Qaukaek) (EI)
qe[ovl}

is mazimized by q = 1 for each k € {h,1} and u* > a".

This basically means that the insurance motive, i.e. transferring risk from a risk averse agent to a
risk neutral insurer, is not overruled by other considerations. To illustrate, we do not assume that the
low income agent’s preference for health /treatment is so low that foregoing insurance would be socially
optimal. Put differently, we assume that full insurance is socially desirable. Underinsurance-with no
insurance as extreme case-results therefore not from first best but from informational distortions and
price discrimination motives.

Our motivation for making this assumption is twofold. First, this assumption simply normalizes
the socially efficient insurance level in the same way as in RS. Hence, we only deviate from the RS
set up by allowing for both SC and NSC. Second, we want to argue that under realistic assumptions,
0" types have less than full insurance. If the optimal insurance level is actually below one, than this
result would follow rather trivially.

The literature on insurance models considers mostly perfect competition We show that with the
assumptions made so far, perfect competition implies ¢" = 1 (even if (SC) is not satisfied). Hence,
market power on the insurance side is needed to get ¢" < 1. Following the RS definition of the perfect
competition equilibrium, we require that (i) each offered contract makes nonnegative profits and (ii)

given the equilibrium contracts there is no other contract yielding positive profits.
Proposition 1 If an equilibrium ezists under perfect competition then ¢" = 1.

As is well known, existence of equilibrium in the RS framework is not guaranteed. Equilibrium does
not exist if the only possible (separating) equilibrium is broken by a pooling contract. If the fraction
of 6" type agents in the population is high enough, then such a deviation to a pooling contract is not
profitable and an equilibrium exists. If an equilibrium exists, it has ¢ = 1.

The proposition shows that even with violations of single crossing, high risk types will get (weakly)
higher coverage than low risk types. Hence we need to deviate from perfect competition to get ¢" < ¢'.
This proposition is in some sense reminiscent of Wambach (2000), Smart (2000) and Netzer and Scheuer
(2010): these papers analyze perfectly competitive insurance markets and a reverse order, i.e. riskier

types have less coverage, is impossible in these papers.

10See Jack (2006) and Olivella and Vera-Hernandez (2007) for exceptions using a Hotelling model to formalize market
power on the insurer side of the market. These papers assume that (SC)) is satisfied and hence find efficient insurance

for the 0" type.



Corollary 1 Whenever " < ¢' is observed, insurers have market power.

Although previous models of insurance markets assume perfect competition, recent research for
the US (see Dafny (2010)) shows that health insurers do have market power. More generally, in most
countries where health insurance is provided by private companies, these firms tend to be big (due to
economies of scale in risk diversification). Hence one would expect them to have some market power.

In order to analyse the contracts offered by insurers with market power, we explicitly introduce the

incentive compatibility (IC) constraints for each type

p(d,u, 0 > p(d',u", 0" (ICy)

p(d" u", 0" > p(g", !, 0 (ICy)

The first constraint implies that the contract intended for 6" (i.e. (¢",p(q",u" 6"))) lies on a
(weakly) lower indifference curve for " than the contract that is meant for the 6" type (¢', p(¢!, u!, 6%)).
That is, the inequality implies u(¢",p",0"%) > u(q',p',0") where p' = p(q¢',u’,0") with i € {h,I}.
Similarly, the second inequality implies that u(q, p’,0') > u(q", p", 6").

Irrespective of the mode of competition and whether (SC) holds, we have the following result that

we use below.

Lemma 1 At least one type has full coverage. If the types are separated under the optimal contract

scheme (¢',p'), (¢",p") with ¢ # ¢", then at most one incentive constraint binds.

We conclude this section with a model where SC is violated due to differences in income between
types. The idea of the model is that for ¢ < 1 people have to finance part of the costs of treatment out
of their own pocket and low income agents may decide to choose cheaper treatment or forgo treatment
altogether. This effect is documented in the medical literature, see for example Piette, Heisler, and
Wagner (2004b), Piette, Heisler, and Wagner (2004a) or Goldman, Joyce, and Zheng (2007).

In particular, we assume that a type € consumer faces health shock s € [0,1] with distribution
(density) function F'(s|6)(f(s|f)). We take s = 1 as the state in which the agent is healthy and needs
no treatment. Lower health states s correspond to worse health. The assumption that the 8" type has
worse health than the ' type can now be stated as F(s|0") > F(s|6') for each s € (0,1). In words,
low s states are more likely for the 8 then for the 6! type.

Once an agent receives a health shock s < 1 she can increase her health by treatment h € H(s) to
health level s + h, where H(s) denotes the set of possible treatments in state s. We assume that the
set H(s) is compact and s +h < 1 for each h € H(s) and each s € [0,1]. That is, treatment cannot

lead to higher health states than not falling ill. If H(s) is a singleton, the consumer has no treatment



choice. If the set H(s) has more than one element, low income consumers with partial insurance, i.e.
q < 1, may decide to choose cheaper treatment than if they have full insurance, i.e. ¢ = 1. We define
h(s) = max{h € H(s)} as the best possible treatment and assume that h(s) is non-increasing in s.
This means that a less afflicted agent (high s < 1) cannot increase his health by treatment more than
an agent who is more seriously ill (low s). If 0 € H(s), an agent can forgo treatment altogether.

Let w(0) denote the wealth (or income) of a type 6 agent. Then we write

1
u(g,p,0) = /0 {v(w(0) —p— (1= q)h(s,q,0),s + (s, q,0)) }dF(s]0)
where h(s,q,0) is defined as: (2)

h(s,q,0) = arg R v(w(@) —p—(1—q)h,s+h)

where v(y, h) is the utility function of an agent which depends on consumption of other goods (y) and
health (h). We assume that v(y, h) satisfies vy, vy, > 0,vyy, v, < 0 and that health is a normal good:
vpy > 0. That is, utility increases in both health and consumption of other goods at a decreasing rate.
As income increases, people’s preference for health increases as well. Further, we assume that income
and health status are negatively correlated: w(0") < w(@'). This negative correlation is empirically
documented, for example, in Frijters, Haisken-DeNew, and Shields (2005), Gravelle and Sutton (2009)
or Munkin and Trivedi (2010).

Using this notation we can write

1
(g, u,0) = g /0 h(s,q,0)dF (s9) (3)

The first order condition for an interior solution h(s, q,0) € H(s) can be written as

(1 =q)vy(w(®) —p— (1 —q)h(s,q,0),s+h(s,q,0)) = vp(w(0) —p— (L —q)h(s,q,0),s+ h(s,q,0)) (4)

To see the implications of this model for single crossing, consider the slope of the indifference curves
in (g, p)-space:

ug _ Jo vy(w(®) —p— (1 - q)hls,q.0). 5 + (s, q,0))h(s,q, 0)dF (s]0)
Up Jo vy(w(0) —p— (1= Q)h(s,q,0), s + h(s,q,0))dF(s|0)

pq(q, u, 9) = - (5)

In words, the slope p, equals the weighted average of treatment h(s, ¢, 6) over the states s with weight

vy (w(8) —p— (1 — q)h(s,4,0), s + h(s,q.0)) f(s]0)
Jo vy (w(8) — p — (1 — q)h(s,q,8), s + h(s,q,6))dF(s]6)

on state s (where the weights integrate to 1).

(6)

10



To illustrate (CT) assume that s+ h(s) = 1 (treatment makes a patient healthy again) then it is

routine to verify that

_ fol vy(w(8) — p,1)h(s)dF(s|6
fol vy(w(f) — p,1)dF (s]0)

where the last equality follows from the fact that v, (w(#) —p, 1) is constant in s. Note that we use here

1
pg(1,u,0) ) :/0 (1 —s)dF(s|0)

that h(s,1,0) = h(s) for both types. If treatment is free (¢ = 1) each agent uses the highest treatment
(h(s)). The stochastic dominance assumption implies that #” puts more weight on low s states (where
h(s) =1 — s is high) compared to #'. Hence under these assumptions, condition (CI)) is satisfied.
(BQ) is satisfied if there are no wealth differences between types, i.e. w(6") = w(f'), and H(s)
satisfies some regularity condition. The idea is that without wealth differences, (@) yields for both
types the same optimal treatment. Put differently, h(s,q,0) is independent of #. If patients choose
more treatment in worse health states, single crossing will be satisfied: due to stochastic dominance, 6"
types have higher weight (G]) on low s states with high h(s). Hence p, in (B is higher for #" than for ¢’
types for all ¢ € [0,1]. Treatment h(s,q,#) is indeed non-increasing in s if H(s) is well behaved: H(s)
is convex for each s and non-increasing in s It then follows from equation () —using the implicit

function theorem— that

dh
(—(1 = @)*vyy +2(1 = q)vyn — vhn) 7= = vhn = (1 = @)vyn (7)
Hence from the assumptions on v it follows that h(s, g, ) is non-increasing in s. As H(s) is non-
increasing, this also holds true for boundary solutions where the implicit function theorem cannot be
used.
However, if w(0") < w(#') then ¢ < 1 can imply that h(s,q,0") < h(s,q,0"). This follows from

equation (), since
dh _ —(1 = q)uyy + vny
dw  —(1- ‘Z)2vyy +2(1 = q)vyn — vpn

Hence, if h(s,q,0') € H(s) is an interior maximum, the 6" type tends to choose lower treatment h.

>0 (8)

In words, since a fraction 1 — ¢ of the treatment cost has to be paid by the insured, a low income

6" patient may choose cheaper treatment than the richer ' type (as health is a normal good). Since

! Alternatively, we can assume that h’(s) € (—1,0) such that s + h(s) is increasing in s. In words, if an agent falls
ill, treatment does not bring back full health. Then a sufficient condition for (CIl) is vyyr > 0: Suppose it were the case
that h’(s) = 0, then py(1,-) would be the same for both types. h'(s) < 0 will now put more weight on low states (as
h(s2) < h(s1) for s1 < s2). vyyn > 0 guarantees that v, is increasing less in s for the high type. Hence, putting more

weight on low states where v, is low affects the 6' type less than the 0" type. Consequently, (CI) is satisfied.
We say that the set H(s) is non-increasing in s if for each s1,s2 with s1 < s2 we have that for each h € H(s2) there

exists b’ € H(s1) such that A’ > h. As a special case this includes the possibility that H(s) = h(s) is a singleton, with
h'(s) < 0.
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he does not utilize the insurance as much as the (rich) low risk type, type 8" has a lower marginal
willingness to pay for insurance coverage (for ¢ close to zero). However, for high levels of coverage, i.e.
q close to 1, wealth differences matter less in the treatment choice because the patient does not have
to pay (much) for the treatment. Consequently, although (CT)) is satisfied with w(8") < w(6"), (SCQ)
can be violated.

Hence, this model —where agents differ in income and treatment choice h € H(s) is endogenous—
can generate the violation of (SCl) mentioned above. In the next section, we give a numerical example

where (SC)) is indeed violated.

3. Example

As an example of an utility function that satisfies the assumptions (CIJ) and (EI) above and violates
(8C), consider the following mean-variance utility set up.?

There are two states of the world: An agent either falls ill or stays healthy. The probability
of falling ill is denoted by F" (F! < F") for type 6" (6'). In the numerical example, we choose
F" =0.07 > 0.05 = F'. Once an agent falls ill, the set of possible treatments is denoted by H = {h,h}.
The utility of an agent of type i = h,l with treatment choice h € {h, h} is written as:

u(g,p,8") = F'(v(h,8") = (1 = q)h) + (1 = F)u(1,6") —p

(9)
~Lr R — F)u(1,0%) — u(h,0) + (1 — q)h)?

where v(h,6") denotes the utility for type i = h,l of having health h and 7' > 0 denotes the degree of

risk aversion. Hence an agent’s utility is given by the expected utility minus %ri times the variance in

the agent’s utility. This is a simple way to capture that the agent is risk averse [

Along an indifference curve where u is fixed, we find the following slope:

dp _

dq F'h(g,0") + 1 F* (1 = F')(v(1,0") — v(h(q,0"),0") + (1 — q)h(q, 0")h(q,0") (10)

13For the Python code used to generate this example, see:

http://sites.google.com/site/janboonehomepage/home/webappendices.
“When an agent of type i buys a product at price p that gives utility v, there are two ways to capture the marginal

utility of income for agent i. First, overall utility can be written as v — a’p where v is the same for each type i and
o' can differ. Low income types are then modelled to have high o'; high marginal utility of income. Alternatively, one
can write v' — ap where « is the same for all types. Then low income types have low v*. We have chosen the latter

formalization with o = 1. The assumption that treatment is a normal good is then implemented by assuming that

v(h,0") — v(h,0") < v(h,8") — v(h,6").
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where h(q, 6?) is the solution for h solving

max o(h,60') = (1 - q)h
he{h,h}

In words, once an agent falls ill, she decides which treatment to choose based on the benefit v(h,6?)
and the out-of-pocket expenses (1 — q)h.

With the parameter values that we consider below, it is the case that
rh (1 — FMY(u(1,0") — v(h, 0")h = ' F'(1 — FY(v(1,60") — v(h,6Y)h (11)

In words, at ¢ = 1 (where both types choose the highest treatment k) the variance terms in the slope
dp/dq (equation (I0)) are equalized. Hence assumption (CI)) is satisfied because F"h > F'h.

For the numerical example we assume h = 0.6,h = 0.2 and the associated utilities for the #"
type equal v(1,0") = 0.9,v(h,0") = 0.7,v(h,0") = 0.45 and similarly for the #' type: v(1,0') =
1.1,v(h,0") = 0.9,v(h, #") = 0.5. Hence, having high health is more important for the # type compared
to the 8" type. This implies that 6 type is willing to spend more on treatment than the 6 type. Since
0.9 — 0.6 > 0.5 — 0.2 the ' type chooses h even if ¢ = 0 (and the inequality is strict for ¢ > 0). This
implies that condition ([EI) is satisfied for the ' type as ¢ does not affect treatment choice and higher
q leads to more insurance (provided by a risk neutral insurer). The 6" type chooses h if ¢ = 1 but
prefers h for low values of ¢. In particular, for ¢ = 0 we have v(h,0") — h < v(h, ") — h. Let ¢ denote

the value for ¢ such that the 6" type is indifferent between treatment h and h:

v(h,0") = (1= Qh =v(b,0") = (1 = O (12)
To verify that (EI) is satisfied for the 6 type, we proceed in two steps. First, consider ¢ > § such that
h(q,0") = h. Then increasing coverage ¢ reduces the variance in utility for the risk averse 6 type and
hence (EI) is satisfied for ¢ > G. Now consider ¢ < § such that h(q, ") = h. In order to satisfy (EI), it
must be the case that profits (price minus expected costs) when offering full coverage are higher than

profits when offering a partial coverage contract yielding the same utility. This can be written as:

Fh(u(h,0") — h) + (1 — F")o(1,0") — " — Lr"Fh(1 — FM)(u(1,0") — v(R,6")* >
FM(v(h,0") — h) + (1 — FMu(1,0") —u" — r"Fh(1 = F")(v(1,0") — v(h,0") + (1 — q)h)?
Note that the right hand side of this inequality increases in ¢ and hence is highest at g. In our numerical

example, we choose r" such that the inequality holds with equality at ¢ = éj This implies that it is
satisfied for all ¢ < ¢ and hence (EI) is satisfied.

®Given this value of 7", ! is chosen to satisfy equation (IT)).
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With the parameter values above, it is routine to verify that (SC)) is violated. Figure [ below shows
two indifference curves for the 6! type (in red) and one for the #” type (in blue). Indeed, for ¢ < § the
indifference curve for the @' type is steeper than for the 8" type. This is due to the fact that the
type buys the expensive treatment h while the 8" type buys h. The kink in the indifference curve for
the 6" type happens at § where the " type switches from the cheap to the more expensive treatment.
Hence small increases in g for ¢ > ¢ are worth more to the 6" type than small increases in ¢ < §. In
fact, the figure shows that for ¢ > §, the indifference curve for the 6" type is steeper than the one for
the 6! type. This is the violation in single crossing.

Hence in a simple mean-variance utility framework, it is straightforward and intuitive to generate

a violation of (SCJ).

4. Insurance market monopoly

This section derives a simple result in a monopoly setting within the general reduced form framework
of section 21 The motivation for analyzing the monopoly case is proposition [} An equilibrium with
q" < ¢! can only exist if insurance companies have market power. Although the extreme case of a
monopoly is not very realistic, it allows to derive a clear cut result and gives some intuition for the

more realistic case of an oligopoly which will be analyzed in the following section.

Proposition 2 The type with the highest willingness to pay for full coverage, i.e. the type 8% with
highest p(1,a*,0F), obtains a full coverage contract in an insurance monopoly. Either his incentive
compatibility or his individual rationality constraint is binding (or both). The other type’s individual

rationality constraint is binding.

Let 6% denote the type with the highest willingness to pay for full coverage. It follows from the
proposition that ¥ obtains a contract (g,p) = (1,p*) for some p¥ < p(1,@*,6%). The monopoly
outcome is now pinned down by the choice of p*. If p¥ = p(1,a*, #%), then both individual rationality
constraints are binding. In this case, type 6% might be excluded, i.e. #~% gets the contract (0,0).
If p* = p(1,a7%,67F), both types are pooled. If p¥ € (p(1,a=%,0=%),p(1,a*,6%)), the equilibrium
separates the types and #~* gets an insurance contract with partial coverage. The optimal level of p*
is determined by the share of 8 types in the population.

A direct implication of proposition 2lis that high risk types will always have full coverage if single

crossing is satisfied. To see this, note that the indifference curve corresponding to @* (that is the

individual rationality constraint) goes through the origin (p,q) = (0,0) for both types. With (SC)) the
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indifference curve of the high risk type is steeper and lies therefore above the individual rationality
constraint of the low risk type for all coverage levels.

Without single crossing this is no longer the case. Figure [Il shows indeed that in our numerical
example the low risk type has a higher willingness to pay for full coverage than the high risk type.
Therefore, a monopolist will give full coverage to low risk types in our example. If the types are

separated, we find that ¢" < ¢! = 1.

5. Insurance market oligopoly

This section characterizes equilibrium in a duopoly insurance market. Again the general reduced form
model introduced in section [ is used. We illustrate with the example from section Bl that equilibria
with ¢" < ¢! exist if single crossing is violated.

There are three reasons why we choose to consider an oligopoly insurance market. First, proposition
[ shows that with perfect competition it is impossible to have ¢" < 1. Second, as mentioned above,
assuming a monopoly market is not very realistic. We are not aware of a country where health insurance
is provided privately by a monopolist. Third, in countries like Germany or the Netherlands, insurance
is mandatory and the government runs a risk adjustment scheme. The next section analyzes the effects
of risk adjustment on efficiency and solidarity. If there is mandatory insurance, risk adjustment has
no effect on the outcome at all in case of monopoly. The reason is that the monopolist serves all types
and hence risk adjustment is a lump sum transfer for a monopolist insurer. As we show below, risk
adjustment (even if the whole market is served, as with mandatory insurance) does affect the market
outcome in case of oligopoly.

The demand share of insurer j € {a,b}’s product on market i € {h,l} is written as D(u;-,uij) €
[0,1]. This function is the same for both types. That is, agents only differ in expected health care
costs and income, not in their preferences over insurers We make the following natural assumption

on demand.

Assumption 4
Dy (uf,ut j) > 0, Dy(uf, u’ ;) <0

An insurer gains market share if it offers consumers higher utility and loses market share if its opponent

offers higher utility. Let ¢ € [0,1] denote the share of 8" types in the population.

16See Bijlsma, Boone, and Zwart (2011) for an analysis where 0" and 6" have different demand elasticities.
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When insurer b chooses u{j, q{f, ué, qé, the maximization problem for insurer a can be written as

max  ¢D(u",u)(p(q",u",0") = c(¢",u",6"))

ulqh,ulq
+ (1= @)D, up)(p(d', ul,0') — e(q', ', 6"))
+ un(p(d', !, 0') = p(d', u", 0M))
+ m(p(q", ", 0") — p(g", o', 0"))

h h h l

We focus on a symmetric pure strategy equilibrium of this problem where w,

ul = ul, ¢ = ¢ = ¢" and ¢\, = ¢} = ¢'. That is, (u", ¢",u!,q") is a solution to (P, h 1)t problem

u

with uf! = u" and u}, = u'. We assume that problem (P, ) is concave such that a solution

is characterized by the first order conditions for ¢", ¢!, u”, u'{:

a(p(q",u",0") — c(q",u",6")) ap(q",u",6")  dp(g", ', 6"

h , h _
a(p(qlaulael) B C(ql’ul’el)) 8p(qlaula91) ap(qlauhaeh)
. 1,1 _ =
(1= 6)Dul ) - + (L S =0 a9
h ., h phy _ h , h ph
oDy (u", u™) (p(g", u", 0™) — c(g", u, 0™)) +¢D1(uh,uh)a(p(q oz ,9% hc(q %)
u
(15)

ap(gt, ut, 6" ap(g,u™, oM

A(p(qh,ut, 0" — (gt ut, 6"
(1 = 6D (s (ple o, 0) — elg',u 6) + (1 — ) Dol ) 22 ()9ul )
16
N oplg', 0 aplg w0 _ o)
Hn oul K oul N

It follows from lemma[Il together with the assumption that is concave that in any separating

equilibrium, exactly one IC constraint is binding. Hence either

pr >0 and p(¢', ul, 0') = p(q!, ut, ")
w =0 and p(qh,uh, Hh) > p(qh,ul,ﬁl)

or

up =0 and p(ql,ul, Hl) > p(ql,uh,ﬁh) (18)
18
p >0  and p(¢",u", 6") = p(¢", ul,0%)

We define the following three cases as solutions to equations (L3))-(L6):
(H) (uly, gl uby, ¢Ly) solves ([3)-(I8) with jy, > 0, =0,

(L) (et gy, ql) solves (T3)-(TE) with g, = 0, > 0 and

"The concavity assumption can be stated in terms of the bordered Hessian of problem . However, it is more

conveniently stated after some more notation is introduced. This is done in equations ([B0) and (B3] below.
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(P) (ulp,qp, v, qp) solves (I3)-(I8) with pup, = py = 0.

It is straightforward to verify that in case of pooling (P) we have ¢ = ¢&, = 1. However, we
are interested in the case where ¢" # ¢! (as this is the relevant case in practice). Further, below we
consider the role of risk adjustment to enhance efficiency. This is only relevant for the case where
for one type we have ¢ < 1. Hence we will ignore the pooling case from here onwards and focus on
separating equilibria (H) and (L).

The following proposition derives sufficient conditions for an (H) and (L) equilibrium.

Proposition 3 With single crossing, solution (H) is a symmetric equilibrium and we have ¢* =1 > ¢,

If single crossing is not satisfied and

e the solution (uly, q¥,uly, q;) under (H) above satisfies
1
p(17u}ﬁ70h) 1 uH7 / pq q7uH7 ) _pq(Q7ulI{70l))dq 2 0 (19)
Yy

then this solution is a symmetric equilibrium and we have ¢" =1 > ¢
e the solution (u?,q%, ub gt ) under (L) above satisfies
1
p(1,ul, 0" — p(1,uf,6") =/ (Pg(q, ul, 0") — pg(q, uf,6"))dg > 0 (20)
qL

then this solution is a symmetric equilibrium and we have ¢¢ =1 > ¢".

The condition () [@0)] in the (H) [(L)] outcome makes sure that (IC)) [(IC})] is satisfied as
well. If (SC)) is satisfied, equation (IC}) is automatically satisfied for the following reason. Because of
incentive compatibility, the two equilibrium indifference curves have to cross somewhere. Under (SC)
the high type’s indifference curve is steeper there (and consequently above the low type’s curve for
slightly higher ¢). By (SC)) there is no other intersection and therefore the high type’s indifference
curve is above the low type’s also at ¢ = 1. Hence condition (I9)) is satisfied. Without single crossing,
the 6" indifference curve is less steep than the ' indifference curve for low ¢ and the other way around
for ¢ close to 1. In that case, we need to check explicitly in the solution whether the IC constraint that
was ignored is indeed satisfied.

To prove existence of the (H) and (L) equilibria in an oligopoly framework, it is sufficient to give
an example for each. The existence of (H) equilibria in oligopoly is already established in the literature
through models satisfying the single crossing assumption, see for example Olivella and Vera-Hernandez
(2007). Here we give an example using the utility setup of section Bl to demonstrate existence of a
(L) equilibrium with oligopoly. Recall from proposition [Tl that there is no (L) equilibrium with perfect

competition.
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Example (cont.)  On the supply side we assume that there are two insurers located at the end
points 0 and 1 of a Hotelling line. Agents are uniformly distributed over the [0,1] interval. An agent
at position x € [0,1] incurs transportation cost xt ((1 — x)t) when buying from insurer a (b). Each
insurer offers a menu of contracts {(q",p"), (¢!, p"), (0,0)} where the first contract is intended for the
0" type, the second for the 6' type and the third “contract” denotes the agent’s outside option of not
buying insurance at all (which will not be used in equilibrium).

We will show that it is straightforward to find examples with a (L) equilibrium. The easiest way to do
this is to find parameter values such that the individual rationality (IR) curve (that is, the indifference
curve p(q,,0)) for the 6" type lies everywhere above the IR curve for the 0" type. As shown in figure[d]
this is the case for the parameter values chosen in section[3. Clearly the Hotelling equilibrium contracts
have to lie on or below the relevant IR curves.

First, assume that ¢ = 0. In words, there are only 6' types. Then it is routine to verify that ¢¢ = 1
(because of assumption[3) and the Hotelling equilibrium price on the 6'-market equals p' = F'h + ¢ '8
This contract is denoted (1,p') in figure 0 for the parameter values in section[d and t = 0.018. As this
contract lies below 0'’s IR curve it is, indeed, the equilibrium outcome. Let ulhotel. denote 0'’s utility
level associated with the (1,p') contract: uﬁwtel_ = u(1,p",0Y). Contract (¢",p") (although not bought
by anyone as ¢ = 0) is defined by the intersection of indifference curve p(q,ulhotel_,ﬁl) (dashed curve
in the figure) and 0"’s IR curve. This is the best contract on 0"’s IR curve that satisfies 0'’s incentive
compatibility constraint.

Now increase ¢ slightly to ¢ > 0 (but small). We claim that this results in a (L) equilibrium with
¢ =1 > q¢". For this to be an equilibrium we need that the indifference curve for the 6 type at g = 1
lies above the indifference curve for the 0" type at ¢ = 1. Note that the equilibrium indifference curve
for the 0" type (p(q,u},,.;,0")) cannot lie above 0"’s IR curve. Hence a sufficient condition for a (L)
equilibrium, is that 6'’s indifference curve p(q, ulhotel.’ 6') at the new Hotelling equilibrium lies above 0" ’s
IR curve at ¢ = 1. We formally show that this is the case in lemma[3d in the appendiz. Intuitively,
small changes in ¢ will lead to small changes in the indifference curve p(q,uﬁwtel_,ﬁl). As this curve is
above 0"’s IR curve at ¢ =1 in case ¢ = 0, it will be above 6"’s IR curve for small positive values of
}.

Hence a straightforward way to generate (L) equilibria is to find examples where the I R constraint
for the 6! type lies above the IR constraint for the 6 type for each ¢ € (0,1]. Then there exist t > 0
and ¢ > 0 such that the example has an (L) equilibrium.

Having proved the existence of a (L) equilibrium, we move to the policy implications of such an

8Recall that in a Hotelling model with constant marginal costs ¢, the equilibrium price is given by ¢ + t. See, for

instance, Tirole (1988, pp. 280).
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Figure 1: Example with parameter values in section [Bland ¢ = 0.018
equilibrium.

6. Risk adjustment

Above we have shown that an equilibrium can exist where 8" types have less than full insurance. This
is in line with the empirical findings mentioned in the introduction where people with low income and
low health status have less generous insurance than people with high income and good health. In this
section, we show what the policy implications are of an equilibrium with ¢" < 1. In particular, risk
adjustment is often presented as a win-win policy: Starting from a separating equilibrium it increases
both the utility of people with bad health (solidarity with those unlucky enough to be born this Way
and it increases equilibrium coverage (efficiency).

That is, when it comes to risk adjustment, there is no trade off between efficiency and distributional
objectives for the government. The papers and country policies surveyed in Van de Ven and Ellis (2000)

see risk adjustment as serving both efficiency and fairness or solidarity. We show below that under a

"9The underlying assumption is that the " type was born with, say a chronic disease like diabetes. Hence 6"’s high
expected health care costs are exogenously given. Then fairness or solidarity considerations can lead the planner to give
a higher weight than X to the 8" type in the objective function. Alternatively, high health care costs can be endogenous
due to, for example, smoking behavior, food habits, drug use etc. See Van de Ven and Ellis (2000) for a discussion of

the limits to solidarity due to such moral hazard effects.
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relatively mild assumption, this result holds in an oligopoly model with SC However, in the NSC
case, the same assumption implies that there is a trade off between efficiency and solidarity. In that
case it is not possible for risk adjustment to increase both ¢ and u”*. Hence in the empirically relevant
case (with ¢" < 1), the sponsor has to choose explicitly whether the goal is efficiency or solidarity.
Risk adjustment cannot promote both goals.

We model risk adjustment as follows. The sponsor, say the government, of the health insurance
scheme pays an insurer p"(p!) for each of its customers that are of type #"(6'). We assume that the
government can perfectly observe each customer’s type

In case (H), we write the profits of insurer a as follows:
T (ug, g, pyup, wh) = 6D (ug, u)(m(ug, 8") + p*) + (1 — 6)D(ug, w) (m (ug, ufy, 6) + ') (21)

where we use the following definition of the functions 7 (with a slight abuse of notation) capturing the
profit margins on the 8" and ' markets resp.:
W(uh’ eh) = p(la uh, eh) - C(l’ uha eh)

(22)
ﬂ(ula uh’ el) = p(ql(ul’ uh)a ul’ el) - C(ql(ul’ uh)’ ula 91)

with ¢! (u!, u") the value of ¢! that solves equation ([TC})) with equality. If (SC) is satisfied, differentiating
the binding (IC})) yields

1.1 pl l h ph dg! 11 gl
(pq(Q7u70)_pq(Q=u 70 )) dul:_pu(Q7u70)
and hence

1 <0 (23)

since the left hand side is negative by (SC)) and the right hand side is positive by assumption [ (p, < 0).
Using a similar derivation, one can show in this case that
dgq’

In words, increasing u” relaxes the (ICZ)) constraint thereby allowing for higher ¢! (for given u!).

Increasing u! does the opposite and hence leads to lower ¢! (for given u”).

20Selden (1998) makes this point using a model with perfect competition where single crossing holds.
2! This assumption is usually justified by assuming that the government has (ex post) more information than the insurer

ex ante. Hence the insurer is not able to (explicitly) select risks ex ante but the government can perfectly risk adjust ex
post. Alternatively, the insurer has the relevant information but is prevented by law to act upon this information. To
illustrate, in the Netherlands an insurer cannot refuse a customer who wants to buy a certain insurance contract. As
mentioned, Glazer and McGuire (2000) show how optimal risk adjustment can work with imperfect signals of customers’

types. In the latter case, the government cannot perfectly observe each customer’s type.
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In case (L) we have:
I (ug, g, p,up, uy) = 6D (ug, up) (7 (ug, ug, 0") + p") + (1 = ) D(ug, up) (7 (ug, 0) + o) (25)
where we use the following definition of the functions 7:

A0 = p(1Lad,0) — (1l 01)
(26)
(u,ut,0") = p(q" (u,u'), u, 0") — e(q" (' ul), u", ")
with ¢"(u”,u') being the value of ¢" that solves equation (TCj) with equality. If the @' indifference
curve is steeper than the 0" indifference curve at ¢”, we find ~with a similar derivation as above— that
da™
i <0
du™
N (27)
di >0
du!
In this case, raising u' relaxes the (TC})) constraint and hence allows for higher ¢" (for given u”).
Let II; denote the derivative of II with respect to its i-th argument. Then for the (H) case, a

symmetric equilibrium (focusing on an interior maximum) is characterized by IT; = Il = 0 which we

write as

oDy (ul, u) (m(u, 0") + p") + D (W, )y (ul, 08) + (1 — ¢)D(u!, ub)mo (ul, u™, 6Y) = 0 (28)

(1= 6) (Da( ) (!, 0) + ) + D i yma (" 0)) =0 (29)
together with the second order conditions:

1111 < 0,119 <0

H11H22 — H%Q >0

The interpretation of the first order condition with respect to u” (equation (2R)) is as follows. By
increasing u/ slightly, insurer a increases the demand for its product on the 6" market on which it
earns the margin 7" 4 p". On the inframargin, however, increasing u” (or equivalently reducing p")
leads to lower profits (m; < 0). Finally, there is the effect of " on the #' market. By increasing u”,
the firm can raise ¢! and still satisfy (TCp)). Hence u” affects the profits on the §' market.

The first order condition with respect to u! (equation (29)) only features the marginal and infra-
marginal effects on the #' market.

In the (L) case, we have II; = IIy = 0 which we write as

oDy (u, ul) (7 (u, ul, 07) + p") + D (Ul w7y (Wl 67) = 0 (31)

1-¢) (D1 (ul, ) (7, 01 + pb) + D(ud, ub)ir (o, el)) oD (UM, ul) o (ul, ul, 0") = 0 (32)
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together with the second order conditions:

1:[11 < O, ﬁgg <0
o R (33)

H11H22 — H%Q >0
The interpretation of the first order conditions with respect to u” and u! is the same as in the (H)
equilibrium. The only difference is that in this case u! has the additional effect on the 8" market via

the (IC}) constraint.

We use the following assumption that we discuss below.

Assumption 5 Assume that both markets are fully covered:

D(u},u' ;) + D(u’ j,uf) =1

for i = h,l. Consider changes in risk adjustment with a fized budget: dp" = dp,dp! = —%dp such
that
¢dp" + (1 — ¢)dp' =0 (34)

Then we assume that in symmetric equilibrium u(p),u!(p) it is the case that

<0 (35)

Health insurance is a product of which one buys one unit or zero. In fact, it is often not allowed
to buy more than one insurance contract due to moral hazard problems (see Pauly (1974)). We follow
the literature on competition with price discrimination and assume that both markets are fully covered
(this is called “full scale competition” by Schmidt-Mohr and Villas-Boas (1999) and “pure competition”
by Stole (1995)). When risk adjustment is implemented at the country level, it usually goes hand
in hand with mandatory insurance (e.g. as in the Netherlands). Indeed, if insurance would not be
mandatory, a cross subsidy (due to risk adjustment) may induce the net payers to forgo insurance
thereby reducing the efficiency of the insurance market. If risk adjustment is organized at the firm
level (as, for instance, in the US with big employers) the scheme is usually so attractive (due to tax
breaks) that the assumption of full scale competition is not an unreasonable one. The advantage of
making this assumption is that the budget constraint for changes in risk adjustment can simply be
written as (34]).

Assumption (B7) states that if an increase in p raises u”, then it decreases u!. This is a natural
assumption: as ph increases (pl decreases) one expects insurers to compete more for oh types (compete

h

less for A types) and hence u” increases (u! decreases). We are especially interested here in the (L)
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equilibrium. Lemma M in the appendix verifies that for the example above this assumption is indeed
satisﬁed

We further motivate this assumption in two ways. The first is to assume that the planner choosing
p has an objective function f(u”(p),u!(p)) that is increasing in both u" and u' (i.e. fi,fo > 0). A
solution to this optimization problem with respect to p is characterized by

du’(p) 5 du' (p)

dp dp =0

fi

h du" (p) du'(p) S
ence —= and I have opposite signs. In words, the planner chooses a value of p that places the

insurance on the Pareto frontier in (u”, u') space. Put differently, if a change in p can raise the utility
of both types, the planner exhausts such possibilities. Then, at the margin, there is trade off between
u” and ul.

The second way to motivate inequality (B3] is in terms of equilibrium selection. In particular,

assumption [ rules out that there exists another equilibrium close by in which both w” and u' are

lower.

Lemma 2 Assume that

Dy (u,u) is independent from the level of u

Let u, ul denote a symmetric equilibrium. Define the following set

B.(u,ut) = {ﬁh <ul it < ul]\/(uh —ah)? + (ut —at)? < 5} (36)

If assumption [ holds, then for ¢ > 0 small enough, the set B.(u" u') does not contain another

symmetric equilibrium.

The assumption implies that in symmetric equilibrium the slope of a firm’s demand function is not

affected by the level of u. This assumption is satisfied in the Hotelling example that we use in this
paper.

h

The lemma excludes the possibility that close to the symmetric equilibrium ", u! there would be

another equilibrium with lower values for both u” and u!. Clearly, such an equilibrium would be more
profitable for both insurers because a first order Taylor expansion implies that
H(ﬂh’ ala Ps aha ﬂl) = H(uha ula Ps uh, ul) + (Hl (uh’ ul’ P, uha ul) + H4(uh’ ul’ P, uha ul))(ah - uh)
+ (H2(uha ul, P uha ul) + H5(uha ul, P uh’ ul))(al - ul)
= H(uh7 ula Ps uh7 ul) - H4(uh7 ula Ps uh7 ul)(uh - ﬁh) - H5(uh7 ul7 P, uh7 ul)(ul - ﬂ’l)

> H(uh7ul7p7 uh7ul)

22The proof of lemma [l is given after the proof of lemma [ below to avoid duplication. That is, we first derive some

general results in the context of lemma[2] and then apply these to the example in lemma [4]
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for @™ close enough to u™!; where we have used the stationarity conditions II; = Il = 0 and
Iy, II5 < 0. And similarly for profit function IT. In this sense, assumption Blrules out a local multiplicity
of equilibria leading to a coordination problem between insurance providers.

Now we can show the following.

Proposition 4 Let u”,u! denote the utility levels for type 0", 60" in a symmetric equilibrium. Assume
that the indifference curves p(q,u”,0") and p(q,u!,0') have one point of intersection. Then the relation

between u” and efficiency is as follows:

e if " =1, a change in p which raises ¢* also increases u®;

e if ¢! =1, a change in p which raises ¢ reduces u™.

The assumption that the indifference curves corresponding to the equilibrium values of u”, !

Cross
once is by definition satisfied if (SC|) holds. SC implies that any indifference curves cross at most
once. In the NSC case, we need a bit more structure. In figure [Il the assumption is satisfied. In fact,
the following reasoning shows that a model with more than one intersection point will not be very
intuitive. In the (L) equilibrium, (20) implies that p(1,u’,8") > p(1,u" 6"). Further, (CI) implies
that py(1,u',0") < py(1,u",0"). Hence, at the first intersection point (at ¢") we have p,(¢",u!,0') >
py(q",u",0"). To generate another intersection point, we need again a switch in slopes p,(q,u', 6') <
pq(q,uh,Hh) for ¢ < ¢". As the slope is related to the treatment choice in our model with income
differences, this would imply that for ¢ close to zero, the low income 8" type decides to spend more on
treatment than the high income 6’ type. This does not seem very reasonable 2

Hence, in the case where ¢" = 1 we find that (at the margin) solidarity (with the unlucky 6" type)
and efficiency (¢') go hand in hand. In terms of the objective function f(u”,u') above: if the planner
decides to put relatively more weight on the 8" type (i.e. fi increases relatively to f»), she will change
p in such a way that both v and ¢ increase.

However, if single crossing is violated and we have ¢ < 1, then it is not possible to raise both u”
and ¢". In other words, in this case there is a trade off between solidarity and efficiency.

The violation of (SC)) is vital to get this result: At (p”,q¢") the slope of #"s indifference curve is

steeper than the slope of the indifference curve of #”. Therefore, an increase in ¢ (efficiency) is valued

23 Another way to put more structure on outcomes in the NSC case is the following. One can allow for more than
one intersection point and then strengthen assumption [l to read that p(q, u*,0%) — ¢(q,u",0%) is increasing in g. Then
firms will choose the intersection point with highest g. Tt is routine to verify that this gives py (¢, u",8") > py(¢', u', 6"
in an (H) equilibrium and p,(¢", ', 0") > p,(¢",u",0") in an (L) equilibrium. Under this assumption, the results in

proposition [ hold as well.
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Figure 2: A change in risk adjustment which increases q.

higher by the 6! type. Consequently, the utility of #” can only be increased if ¢" is reduced as otherwise
incentive compatibility fails.

Figure [ illustrates this graphically. The lines A and B denote parts of indifference curves of a 6
and 6" type. The intersection of these lines gives the coverage g of the type that has less than full
coverage. Given assumption (35), a change in risk adjustment that increases ¢ has to shift the A curve
downwards and the B curve upwards. In the (H) equilibrium, the (steeper) A curve is the indifference
curve of the 6" type. The B curve is the indifference curve of the #' type. The point of intersection
determines ¢'. Hence increasing ¢! and u” go hand in hand.

However, in the (L) equilibrium the steeper A curve is the indifference curve of the 6’ type. In-
creasing ¢" then requires that the indifference curve B for the 6" type shifts upwards. That is, the
utility for the 6" type falls.

7. Conclusion

Standard insurance models, e.g. Rothschild and Stiglitz (1976) or Stiglitz (1977), predict higher
coverage for agents with higher risks. We show that this prediction no longer holds if single crossing
is violated and firms have market power.

In the health care sector agents with higher income have lower risks and more insurance. Put

differently, the predictions of the standard insurance model with single crossing are contradicted by
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the data. We show that the negative correlation between income and risk can cause a violation of
single crossing. With a violation of single crossing, the empirical findings in the health literature can
be reconciled with a standard insurance model.

We show the policy implication of such a violation of single crossing for risk adjustment. The
traditional insurance model (with single crossing) views risk adjustment as a measure increasing effi-
ciency as well as solidarity, i.e. coverage levels are closer to first best and low health agents are better
off. Without single crossing there is a trade off between these two policy goals. This implies that the
sponsor of the health insurance scheme has to be explicit about the goals of risk adjustment.

From an empirical point of view, our paper casts doubt on the positive correlation test: Given our
result that separating equilibria exist in which agents with higher risk have less coverage (negative
correlation), it is evident that the results of such a test have to be interpreted with care. In particular
such a test cannot be used to test for the presence of asymmetric information when single crossing is
violated.

We conclude with a discussion of advantageous selection. This can be modeled by assuming that
people differ in their preferences for risks. If high risk individuals are less risk averse than low risk
people, it can happen that consumers who are willing to pay the most for health insurance are people
with low expected health care costs. Hence offering health insurance with high coverage is especially
attractive for agents with low expected costs: advantageous selection. The implication of some ad-
vantageous selection models is that policies that stimulate insurance coverage are welfare reducing. In
fact, there may be over-insurance in equilibrium. See Einav and Finkelstein (2011) for a recent review
of advantageous selection and empirical papers documenting this in health care markets.

In our model (in the (L) equilibrium), we also see that at the margin low risk types are willing
to pay more for insurance than high risk types. This is caused by the fact that at less than perfect
coverage, low income, high risk types tend to reduce expenditure on treatments. Basically, they cannot
afford the treatments that they need. Hence, although the equilibrium is an advantageous selection
equilibrium, in our model stimulating insurance coverage (e.g. through mandatory insurance at full

coverage) is efficient (because of assumption [3)).
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A. Proof of results

Proof of proposition [l Suppose to the contrary that ¢" < 1 in equilibrium. The contract (¢", p")
leads to nonnegative profits; otherwise it would not be offered in equilibrium. Denote by u” the
utility level #" derives from (¢",p") and by p(q, u”, ") the indifference curve of #" associated with his
contract. By assumption [B] the contract (1,p(1,u”,6")) for type 6" yields higher profits than (¢",p").
For £ > 0 small enough the contract (1,p(1,u”,8") —¢) is strictly preferred by 6" to (¢", p") and yields
higher profits than (¢, p"). If the contract (1, p(1,u”, 8%) —¢) also attracts 0" types, profits will remain
positive as those are better risks. Therefore, (1, p(1,u”,8") —¢) is a profitable deviation, i.e. a contract
with strictly positive profits and demand. Consequently, ¢” < 1 cannot be an equilibrium. Q.E.D.

Proof of lemma [I] We start with the proof of the second statement. Suppose both incentive
constraints were binding, i.e. #" and #' are both indifferent between the two contracts. First, look at
the case where ¢", ¢! < 1. Call the utility levels of the two types under the equilibrium contracts '
and u”. Now take the indifference curves corresponding to these utility levels and call them p(q, ul, Hl)
and p(q,u”, ") and define ¢ = arg maxpye (s n} p(1,u*,6%). Changing 6*’s menu point to (1,p(1,u*,6"))
will increase profits by assumption Bl By the definition of ¢, this change is also incentive compatible.

Second, take the case where ¢* = 1 and ¢* < 1 for some k € h,l and suppose again that both
incentive constraints were binding. But according to assumption Bl pooling on the contract of #* would
lead to higher profits. Hence, at most one incentive constraint is binding.

q* = 1 follows from the argument in the first step and therefore at least one type has to have full
coverage. Q.E.D.

Proof of proposition [2] Define ¢ = arg maxycqp, ) p(1,@*,6%). By lemma [, one type has full
coverage. Suppose that ¢* < 1 and therefore ¢® = 1 with x € {h,l} and k # «. Note that the
individual rationality constraint of 6 cannot be binding as otherwise #* would misrepresent as 6% by
the definition of ¢. But then the incentive compatibility constraint of #* has to be binding as the
monopolist could increase p* otherwise. By assumption [B, the monopolist could achieve a higher profit
by pooling both types on 8%’s contract. This contradicts the optimality of ¢* < 1.

If both types are pooled, the optimal contract will be (¢,p) = (1,p(1,a",0%)) and the individual
rationality constraint of 6% will be binding. If the types are separated, the incentive compatibility
constraint of 8% cannot bind: Since ¢* = 1, pooling on 6*’s contract would lead to higher profits by
assumption [3] if the incentive constraint was binding. As increasing p” relaxes the incentive compati-
bility constraint of #*, the individual rationality constraint of 6 has to bind: Otherwise, increasing p*
would increase profits.

Last note that increasing p* would be feasible and increase profits if neither the incentive compat-
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ibility nor the individual rationality constraint of 6 was binding. Q.E.D.
Proof of proposition [Bl With single crossing, the solution (H) also satisfies (ICj) because (SC)
implies that

1
p(1,uly, 07 — p(1,uly, 0') = /l (pg(g, ully, 0™) — py(q,uly, 0') >0 (37)

qy

By the concavity assumption on problem , the solution (H) is a symmetric equilibrium.
If single crossing is not satisfied, we need to check that (IC}) in case (H) ((IC}) in case (L)) is

satisfied. Using an equation similar to (37)) this is the assumption given in each case. Q.E.D.
Lemma 3 In the example depicted in figure 1l (L) equilibria exist for ¢ > 0.

Proof of lemma [3] We start with two straightforward observations. First, for ¢ = 0 the game has
the unique equilibrium illustrated in figure [ By assumption Bl ¢! = 1 is optimal and then the game is
a standard Hotelling game with exogenous location. Second, an equilibrium will exist for each positive
¢. This follows immediately from the existence theorem in Glicksberg (1952)

Now take a sequence of ¢, > 0 converging to 0, e.g. the sequence {1/n},—12 .. In the game
where ¢ = ¢,, denote expected equilibrium utilities of type # that are offered by firm j € {a,b}
by ul,Z Since u! is chosen from a closed and bounded interval (see footnote 24)), there is a con-
verging subsequence of u!®. With a slight abuse of notation we denote the elements of this subse-

quence by uﬁf as well and continue to work with this subsequence only. To each uﬁf corresponds an
b

equilibrium value wu;,

(associated with the game where ¢ = ¢,). Again there will be a converging

subsequence of u!® because ! is taken from a closed and bounded interval. Continuing in this way

ha

ha , hb ,l
up®,u a v,

we can find a subsequence (u;®, un’, u, ,ug’,q qzb,qfl“,qff’) of equilibria converging to some values
~ha ~hb ~la ~lb sha shb sla 5lb
(@, a, o', a”,q", ¢, ¢, q").

hb la7 alb’ ~ha

To prove the lemma it is sufficient to show that (ﬁha, u, U ghe, ght, gle, (jlb) is an equilibrium
for ¢ = 0. From the uniqueness of the equilibrium for ¢ = 0, it will then follow that there are equilibria
for ¢ > 0 where uY is arbitrarily close to ulo where ué is the unique equilibrium utility of §* for ¢ = 0.

But then ¢" has to be strictly less than 1 (i.e. it is an (L) equilibrium): Type 6’ could achieve
a discretely higher utility than ) in a contract with full coverage where the individual rationality
constraint of 6" holds (see figure [[)), i.e. the incentive compatibility constraint of #' is violated if

¢"=1and v ~ ué. It is evident from figure [ that partial insurance is possible for 6" types and it is

2 The highest relevant utility level is the utility resulting if an agent gets full coverage for free. The individual rationality
constraint gives a minimum utility level. Consequently, the action space is compact (this is obvious for ¢ € [0,1]). As

profit functions are continuous, the theorem applies.
25Tf there are several equilibria, one can choose an arbitrary one.
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routine to check that these partial insurance contracts are profitable. Consequently, 0 < qu < 1forn
high enough.

The last step —showing that (a"®, @, @', 4/ ", ", ¢, ") is an equilibrium for ¢ = 0- follows
Fudenberg and Tirole (1991, pp. 30) and is only sketched: Suppose, it was not an equilibrium. Then

there is a deviation yielding a strictly higher profit for one firm. By the continuity of the profit function,

however, this deviation would also increase profits for (u?®, u?? ule,

uy> ¢ 4’ ', 4,7) close enough to

ha ,,hb , la
n s Up s Un's

under ¢ = ¢,,. Q.E.D.

(ahe, ah®, ale, @b, ghe, ght, gle, §'°) contradicting that (u ul® ghe gh? gl ¢!%) is an equilibrium
Proof of lemma [2] To see what assumption [Blimplies in terms of derivatives of the profit function

I1, we define the matrix A (and analogously A) as

A Ty + Iy IIio + 1135 (38)

ITyo + IIpy  IIpo + 1lo5

This allows us to linearize equations (28)) and (29) as follows (and similarly for equations (3I]) and (B2I)
with A)

dul
A =0
du!
Then it is straightforward to verify that
IIoy =0
H15 <0
. (39)
5 =0
1:[24 <0
Inverting matrix A gives
-1 % Moo + a5 —(Ilyg + Ily5) (40)
—IIyo Iy + Ty
where
A = (Il + yy) (Ilp2 + Tlo5) — io(I112 + I1y5) (41)
Hence, we find
duh
du” 1
o) —qt P (42)
du! I
dp 23

with IT13 = ¢ D1 (u”, u) > 0,Tla3 = —¢ D1 (u!,u') < 0. Using the assumption that Dj(u,u) is indepen-
dent of u, we write
i _
dp

— (Mg + Ig5) — (IT12 + II;5)

A Dy (uh, uh) (43)

¢

[N
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Similarly, we have
du! Ui 4 iy + 1Ty
dp A

Assumption [{ that du”/dp and du!/dp have opposite signs can be written as

= %gﬁ Dy (uh, uh) (44)

sign(Ilyy + 14 + g + Ioy) = sign(Ili2 + 1115 + oo + Io5) (45)

Suppose —by contradiction— that such a second symmetric equilibrium would exist. We write
o =uh — @l 8 = u! — @ where 6", 6! > 0 are small since by assumption (@", ') € B.(u”,u!). Using
a first order Taylor expansion of Iy, Il5 resp. we find
I (u — 6", ul — &%, p,u — 67, ul — &) = T (u”, 4!, p, ', ul) + (T (u”, il p, u®, ub) 4 Thg(ul, ul, p, ul, ul)) ot

h l

+ (H12(uh7ulap7 uhaul) + 1_[15(u 7ul7pauhaul))5

o (ul — 6", ul — &, p,ul — 6" ul — 1) = Hy(ul, !, p,u, ul) + (Hoy (u”, ul, p, u”, ul) + Moy (u”, !, p, ul, ut))o"
+ (HQZ(uh7ulap7 uhaul) + H25(uh7ul7pauhaul))5l

Adding both equations and using the assumption that both (u”,u!) and (@",@') are an equilibrium,
we find that
6"(TIyy + Ty + Moy + Mag) + &' (o + M5 + Iap + Tps) = 0 (46)

However, it follows from equation ([@3]) above that the expression (1111 + IT14 + ITo; +ITo4) has the same
sign as (ITjo + IT;5 4 Iog + Ia5). Together with 6", 6 > 0 this leads to a contradiction.

Similar argument can be given in case of II. Q.E.D.

Lemma 4 Consider the example with mean-variance utility and Hotelling competition. Then condition

(33) is satisfied in (L) equilibrium.

Proof of lemma @] With Hotelling competition, D (u,u) = 1 as consumers are uniformly dis-
tributed on the line [0, 1] Hence Dj(u,w) is independent of v and we can use equation ([@3]). Following
equation (43]), we need to show that

sign(Ilyy + g + oy + Iog) = sign(Ia + oo + Ilos) (47)
In our example, the equilibrium indifference curves at their point of intersection can be written as
p(qh’ul,el) = FZ(U(B’ 91) - (1 - qh)]_l) + (1 - Fl)v(la 91) - ul
— 37 F'(1 = FO)(u(1,6") = v(h, 0" + (1 — ¢")h)?
p(a",ut,0") = F"(0(,0") = (1 = ¢")h) + (1 = F")o(1,0") — u"

— S PP = FM)(0(1,0") — vk, 0") + (1 — ¢")R)*

26More generally, if consumers are distributed with symmetric density function g on [0, 1], it is also true that Dy (u, u) =

g(%) is independent of u.
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Further, ¢"(u”, u') is defined as
p(g" (", '), u, 6") = p(g" (u",ul), ', 6) (48)
From these observations it follows that

pu(q,u,0) = -1

pqu(Qaua 0) =0
d h(,h , 1 h(,h ,1
) dgt(ut )
duh du!
dzqh(uh,ul) _ _dzqh(uh,ul)
(duh)? duldu!
Using this we can write
= S (pe" (), 67) — ol JBE" 4 1)
h h h(,h , 1
1, Ya =W he,h L\ ,h ph 1y 44" (g, ty)
+¢ <§+T> <(pq(q (ua7ua)7ua70 )_ﬁF )W_l
~ 1 - a—y
1I — 1— - 1 l AN Fl N (1 a b
2 ( ¢) <2t(p( 7ua70) h+p) 2+ 2%
ul — ul dg™ (ul, ul,
#0 (3 M5 ) e ).l 6) — ) )

Now it is routine to verify that

- N . dg (u, !
II + o + 1y = _2% <1 + (pg(q", u",0") — RF™) : (dul )> <0

with IIp4 < 0 from equation (BJ). Moreover

i i ) " dh(uP by 1—
Iy + IIpg + a5 = —Q—t(Pq(qh7uh=0h) ~LF") Eiuh = 2t¢

which we will shown to be negative in every (L) equilibrium. Suppose this were not the case, then

dul

d(pg(q", u",0") — hF") > —(1 - ¢)W (49)

where d;‘i:ul) < 0 is the amount u” changes if ¢" is increased marginally while keeping u' constant.

dg"(

The left hand side of @) denotes the additional profits from 6" types when marginally increasing ¢"
while keeping u” fix. The right hand side of (@J) denotes the marginal loss in profits if one reduces
p! such that a marginal increase of ¢" with fixed u” is incentive compatible for the ' types: As
pu(q,u,0) = —1 for both types, the necessary reduction in p' is given by —#}}Z,ul) > 0. But then

increasing ¢ keeping v’ fixed and adjusting p’ to keep incentive compatibility is a profitable deviation

whenever (@J) holds. Tt is strictly profitable as the decrease in p! will attract additional customers from
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the competing insurer. This contradicts that the original situation is an equilibrium and therefore (49])
cannot hold.

Hence equation (7)) has to be satisfied in every (L) equilibrium. Q.E.D.

Proof of proposition @ If ¢" = 1 and given that the equilibrium indifference curves have only one
point of intersection (at ¢') and are continuous, equations (%) and (CII) imply that p,(q',u",6") >
py(q',ul,0Y). Tt follows then from equations ([23) and ([24)) that a change in p which increases ¢’ raises
u” while reducing u!. Given assumption [5] the other possibility is that u! increases while u” falls. But
then equations (23) and ([24) imply that ¢’ falls. Hence the latter case can be ruled out.

Similarly, if ¢ = 1 and given that the equilibrium indifference curves are continuous and only have
one point of intersection (at ¢"), equations ([20) and (CI)) imply that py(g", u,0') > py(g™, u”,0). Tt
follows then from equation (27) that a change in p which raises ¢" must be accompanied by an increase

in «! and a fall in u”. Q.E.D.

36



	DP8501prelims
	HEALTH INSURANCE WITHOUT SINGLE CROSSING: WHY HEALTHY PEOPLE HAVE HIGH COVERAGE

	HealthInsuranceBooneSchottmueller
	Introduction
	Insurance model
	Example
	Insurance market monopoly
	Insurance market oligopoly
	Risk adjustment
	Conclusion
	Proof of results


