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ABSTRACT 

Peer Effects in Education, Sport, and Screen Activities:   
Local Aggregate or Local Average?* 

We develop two different social network models with different economic 
foundations. In the local-aggregate model, it is the sum of friends' efforts in 
some activity that affects the utility of each individual while, in the local-
average model, it is costly to deviate from the average effort of friends. Even 
though the two models are fundamentally different in terms of behavioral 
foundation, their implications in terms of Nash equilibrium are relatively close 
since only the adjacency (social interaction) matrix differs in equilibrium, one 
being the row-normalized version of the other. We test these alternative 
mechanisms of social interactions to study peer effects in education, sport and 
screen activities for adolescents in the United States using the AddHealth 
data. We extend Kelejian's (2008) J test for spatial econometric models 
helping differentiate between these two behavioral models. We find that peer 
effects are not significant for screen activities (like e.g. video games). On the 
contrary, for sport activities, we find that students are mostly influenced by the 
aggregate activity of their friends (local-aggregate model) while, for education, 
we show that both the aggregate performance at school of friends and 
conformism matter, even though the magnitude of the effect is higher for the 
latter. 
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1 Introduction

In many circumstances, the decision of agents to exert effort in education or some other

activity cannot adequately be explained by their characteristics and by the intrinsic utility

derived from it. Rather, its rationale may be found in how peers and others value this

activity. There is indeed strong evidence that the behavior of individual agents is affected

by that of their peers. This is particularly true in education, crime, labor markets, fertility,

participation to welfare programs, etc. (for surveys, see, Glaeser and Scheinkman, 2001;

Moffitt, 2001; Durlauf, 2004; Ioannides and Loury, 2004; Ioannides, 2011). The way peer

effects operates is, however, unclear. Are students working hard at school because their

friends work hard or because they do not want to be different from the majority of their

peers?

The aim of this paper is to help our understanding of social interactions mechanisms by

studying peer effects in education, sport and screen activities for adolescents in the United

States.

For that, we develop two social network models aiming at capturing the different ways

peer effects operate.1 In the local-aggregate model, peer effects are captured by the sum

of friends’ efforts in some activity so that the higher is the number of active friends an

individual has, the higher is her marginal utility of exerting effort. In the local-average

model, peer effects are viewed as a social norm and individuals pay a cost from deviating

from this norm. In this model, each individual wants to conform as much as possible to

the social norm of her reference group, which is defined as the average efforts of her friends.

Conformism is the idea that the easiest and hence best life is attained by doing one’s very

best to blend in with one’s surroundings, and to do nothing eccentric or out of the ordinary

in any way.2 It may well be best expressed in the old saying, “When in Rome, do as the

Romans do”.

We characterize the Nash equilibrium of each model and show under which condition an

interior Nash equilibrium exists and is unique. Even though the two models are fundamen-

1There is a growing literature on networks in economics. See the recent literature surveys by Goyal (2007)
and Jackson (2008).

2In economics, different aspects of conformism and social norms have been explored from a theoretical
point of view. To name a few, (i) peer pressures and partnerships (Kandel and Lazear, 1992) where peer
pressure arises when individuals deviate from a well-established group norm, e.g., individuals are penalized
for working less than the group norm, (ii) religion (Iannaccone 1992, Berman 2000) since praying is much
more satisfying the more average participants there are, (iii) social status and social distance (Akerlof 1980,
1997; Bernheim 1994; Battu et al., 2007, among others) where deviations from the social norm (average
action) imply a loss of reputation and status.
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tally different in terms of behavioral foundation, it turns out that their implications in terms

of Nash equilibrium are relatively close since only the adjacency matrix (which keeps track

on whom each individual is friend with) differs in equilibrium, one being the row-normalized

version of the other.

We then test these two models using the U.S. National Longitudinal Survey of Adolescent

Health (AddHealth), which contains unique detailed information on friendship relationships

among teenagers. Empirical tests of models of social interactions are quite problematic

because of well-known issues that render the identification and measurement of peer effects

quite difficult: (i) reflection, which is a particular case of simultaneity (Manski, 1993) and (ii)

endogeneity, which may arise for both peer self-selection and unobserved common (group)

correlated effects. Our econometric strategy utilizes the structure of the network as well

as network fixed effects and high quality individual information to clearly identify the peer

effects from the contextual affects and from the correlated effects. This approach for the

identification of peer effects, i.e. the use of network fixed effects in combination with high

quality data on social contacts has been used in a number of recent studies based on the

AddHealth data (e.g. Liu et al. 2011; Lin 2010; Patacchini and Zenou, 2012).

We extend Kelejian’s (2008) J test for spatial econometric models to differentiate between

the local-aggregate and the local-average effects in a social-interaction model with network

fixed-effects. We also propose a novel hybrid model encompassing both local-aggregate and

local-average effects, as well as appropriate IV-based estimators for the J test and hybrid

social-interaction model. The traditional 2SLS estimator does not work well for the data

we have in the paper as the first-stage F test suggests the available IVs are weak. To fix

the weak IV problem, we follow Lee (2007a) by generalizing the 2SLS estimator to a GMM

estimator with additional quadratic moment conditions based on the correlation structure

of the error term in the reduced-form equation. The GMM approach is easy to implement,

asymptotic efficient, and allows us to test the hypothesis that the network formation (i.e. the

adjacency matrix) is exogenous (conditional on covariates and network fixed effects) using

an over-identifying restriction test.

We find that peer effects are not significant for screen activities (like e.g. video games).

On the contrary, for sport activities, we find that students are mostly influenced by the

aggregate activity of their friends (local-aggregate model) while, for education, we show that

both the aggregate activity of their friends and the deviation from the social norms matter,

even though the magnitude of the effect is higher for the latter. This indicates that students

tend to conform to the social norm of their friends in terms of grades.

There are several papers that have formalized the local-aggregate model using a network
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approach (see, in particular, Ballester et al., 2006, 2010; Bramoullé and Kranton, 2007;

Galeotti et al., 2009) and have tested this model for education (Calvó-Armengol et al.,

2009) and crime (Calvó-Armengol et al., 2005; Patacchini and Zenou, 2008; Liu et al.,

2011). There are fewer papers that have explicitly modeled the local-average model (Glaeser

and Scheinkman, 2003; Patacchini and Zenou, 2012) and have tested it for education (Lin,

2010; Boucher et al., 2010) and crime (Patacchini and Zenou, 2012). Finally, Ghiglino and

Goyal (2010) develop a theoretical model where they compare the local aggregate and the

local average model in the context of a pure exchange economy where individuals trade in

markets and are influenced by their neighbors. They found that with aggregate comparisons,

networks matter even if all people have same wealth. With average comparisons networks

are irrelevant when individuals have the same wealth. The two models are, however, similar

if there is heterogeneity in wealth.3

To the best of our knowledge, this is the first paper that provides two different social

network models of peer effects (the local-aggregate versus the local-average model) and tests

which one prevails in different activities. This is an important issue since it highlights a

possibly important difference between “quantity” and “quality” of peers.

The paper is organized as follows. In the next section, we expose the two theoretical

models, characterize the Nash equilibrium and show under which condition it exists and is

unique. In Section 3, we describe our data while Section 4 exposes all the econometric issues

we are facing and explains how we solve them. In Section 5, we discuss our results, both

from a statistical and an economic viewpoint. We perform a robustness check of our results

for undirected networks in Section 6. Finally, Section 7 concludes.

2 Theoretical framework

2.1 The model with local aggregates

We develop a network model of peer effects, where the network reflects the collection of

active bilateral influences.

The network Nr = {1, . . . , nr} is a finite set of agents in network gr (r = 1, ..., r),

where r is the total number of networks. We keep track of social connections by a network

Gr = [gij,r], where gij,r = 1 if i and j are direct friends, and gij,r = 0, otherwise. Friendship

3An other interesting paper is that of Clark and Oswald (1998) who propose a choice-theoretical justifi-
cation for the local-aggregate (i.e. conformist) model.
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are reciprocal so that gij,r = gji,r. All our results hold for non-symmetric (directed) networks

but, for the ease of the presentation, we focus on symmetric (undirected) networks in the

theoretical model. We also set gii,r = 0.

Preferences Individuals in network gr decide how much effort to exert in some activity

(education, sport, and screening activities in the empirical analysis). We denote by yi,r the

effort level of individual i in network gr and by Yr = (y1,r, ..., ynr,r)
0 the population effort

profile in network gr. Each agent i selects an effort yi,r ≥ 0, and obtains a payoff ui,r(Yr, gr)

that depends on the effort profile Yr and on the underlying network gr, in the following way:

ui,r(Yr, gr) = (ai,r + ηr + εi,r) yi,r −
1

2
y2i,r + φ1

nrX
j=1

gij,ryi,ryj,r (1)

where φ1 > 0. This utility has two parts: own and peer characteristics, (ai,r + ηr + εi,r) yi,r−
1
2
y2i,r, and peer effects, φ1

Pnr
j=1 gij,ryi,ryj,r. In the first part of (1), ηr denotes the unobservable

network characteristics and εi,r is an error term, meaning that there is some uncertainty in

the benefit part of the utility function. Both ηr and εi,r are observed by the individuals but

not by the econometrician. There is also an ex ante idiosyncratic heterogeneity, ai,r, which

is assumed to be deterministic, perfectly observable by all individuals in the network and

corresponds to the observable characteristics of individual i (like e.g. sex, race, age, parental

education, etc.) and to the observable average characteristics of individual i’s best friends,

i.e. average level of parental education of i’s friends, etc. (contextual effects). To be more

precise, ai,r can be written as:

ai,r =
MX
m=1

βmx
m
i,r +

1

gi,r

MX
m=1

nrX
j=1

gij,r x
m
j,rγm (2)

where gi,r =
Pnr

j=1 gij,r is the number of direct links of individual i, x
m
i is a set ofM variables

accounting for observable differences in individual characteristics of individual i, and βm, γm
are parameters. The benefits from the utility are given by (ai,r + ηr + εi,r) yi,r while the cost

is 1
2
y2i,r; both are increasing in own effort yi,r. The second part of the utility function is:

φ1
Pnr

j=1 gij,ryi,ryj,r, which reflects the influence of friends’ behavior on own action. The peer

effect component can also be heterogeneous, and this endogenous heterogeneity reflects the

different locations of individuals in the friendship network gr and the resulting effort levels.

More precisely, bilateral influences are captured by the following cross derivatives, for i 6= j:

∂2ui,r(Yr, gr)

∂yi,r∂yj,r
= φ1gij,r ≥ 0. (3)
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When i and j are direct friends, the cross derivative is φ1 > 0 and reflects strategic comple-

mentarity in efforts. When i and j are not direct friends, this cross derivative is zero. In

particular, φ1 > 0 means that if two students are friends, i.e. gij,r = 1, and if j increases

her effort, then i will experience an increase in her (marginal) utility if she also increases her

effort. Interestingly, utility increases with the number of friends each person has, weighted

by efforts yj,r. This is the local aggregate model since more active friends implies higher

utility.

To summarize, when individual i exerts some effort in some activity, the benefits of the

activity depends on own ability ai,r, some network characteristics ηr and on some random

element εi,r, which is specific to individual i. In other words, ai,r is the observable part (by

the econometrician) of i’s characteristics while εi,r captures the unobservable characteristics

of individual i. Note that the utility (1) is concave in own decisions, and displays decreasing

marginal returns in own effort levels.

Nash equilibrium
We now characterize the Nash equilibrium of the game where agents choose their effort

level yi,r ≥ 0 simultaneously. At equilibrium, each agent maximizes her utility (1). The

corresponding first-order conditions are:

ui,r(Yr, gr)

∂yi,r
= ai,r + ηr + εi,r − yi,r + φ1

nrX
j=1

gij,ryj,r = 0.

We obtain the following best-reply function for each i = 1, ..., nr:

yi,r = φ1

nrX
j=1

gij,ryj,r + ai,r + ηr + εi,r (4)

Denote by ω1(Gr) the spectral radius of Gr. We have:4

Proposition 1 If ω1μ1(Gr) < 1, the peer effect game with payoffs (1) has a unique interior

Nash equilibrium in pure strategies given by (4).

2.2 The model with local averages

So far, we have seen that the sum of active direct friends had an impact on own utility. This

was referred to as the local aggregate model. Let us now develop the local average model

4All proofs of the propositions in the theoretical model can be found in Appendix A.
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where the average effort level of direct friends affects utility. For that, let us denote the set

of individual i’s best friends (direct connections) as:

Ni,r(gr) = {j 6= i | gij,r = 1}

which is of size gi,r (i.e. gi,r =
Pnr

j=1 gij,r is the number of direct links of individual i). This

means in particular that, if i and j are best friends, then in general Ni,r(gr) 6= Nj,r(gr) unless

the network is complete. This also implies that groups of friends may overlap if individuals

have common best friends. To summarize, the reference group of each individual i in network

r is Ni,r(gr), i.e. the set of her best friends, which does not include herself.

Let g∗ij,r = gij,r/gi,r, for i 6= j, and set g∗ii,r = 0. By construction, 0 ≤ g∗ij,r ≤ 1. Note that
g∗r is a row-normalization of the initial friendship network gr, as illustrated in the following

example, where Gr and G∗r are the adjacency matrices of, respectively, gr and g∗r .

Example 1 Consider the following friendship network gr:

t t t
2 1 3

Figure 1

Then,

Gr =

⎡⎢⎣ 0 1 1

1 0 0

1 0 0

⎤⎥⎦ and G∗r =

⎡⎢⎣ 0 1/2 1/2

1 0 0

1 0 0

⎤⎥⎦
Preferences As above, yi,r denotes the effort level of individual i in network r. Denote

by yi,r the average effort of individual i’s best friends. It is given by:

yi,r =
1

gi,r

nrX
j=1

gij,ryj,r (5)

Each individual i selects an effort yi,r ≥ 0 and obtains a payoff given by the following utility
function:

ui,r(Yr, gr) = (ai,r + ηr + εi,r) yi,r −
1

2
y2i,r −

d

2
(yi,r − yi,r)

2 (6)

with d > 0. All the parameters have the same interpretation as in (1). Let us now interpret

the peer-effect part of this utility function since it is the only aspect that differ from (1).

Indeed, the last term d (yi,r − yi,r)
2 reflects the influence of friends’ behavior on own action.

It is such that each individual wants to minimize the social distance between herself and
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her reference group, where d is the parameter describing the taste for conformity. Here, the

individual loses utility d (yi,r − yi,r)
2 from failing to conform to others. This is the standard

way economists have been modelling conformity (see, among others, Akerlof, 1980, Bernheim,

1994, Kandel and Lazear, 1992, Akerlof, 1997, Fershtman and Weiss, 1998; Patacchini and

Zenou, 2012).

Observe that beyond the idiosyncratic heterogeneity, ai,r, there is a second type of hetero-

geneity, referred to as peer heterogeneity, which captures the differences between individuals

due to network effects. Here it means that individuals have different types of friends and
thus different reference groups yi,r. As a result, the social norm each individual i faces is en-

dogenous and depends on her location in the network as well as the structure of the network.

Indeed, in a star-shaped network (as the one described in Figure 1) where each individual is

at most distance 2 from each other, the value of the social norm will be very different than

a circle network, where the distance between individuals can be very large.

Nash equilibrium
We now characterize the Nash equilibrium of the game where agents choose their effort

level yi,r ≥ 0 simultaneously. The corresponding first-order conditions are:

ui,r(Yr, gr)

∂yi,r
= ai,r + ηr + εi,r − yi,r − d(yi,r − yi,r) = 0

Therefore, using (5), we obtain the following best-reply function for each i = 1, ..., nr:

yi,r = φ2
1

gi,r

nrX
j=1

gij,ryj,r +
ai,r + ηr + εi,r
(1− φ2)

(7)

where φ2 = d/(1 + d). We have:

Proposition 2 Assume φ2 < 1. Then, the peer effect game with payoffs (6) has a unique

interior Nash equilibrium in pure strategies given by (7).

2.3 Local aggregate or local average?

In the local aggregate model, it is the sum of the efforts of her peers that affects the utility of

individual i. So the more individual i has active (i.e. providing effort) friends, the higher is

her utility. On the contrary, in the local-average model, it is the deviation from the average

of efforts of her peers that affects the utility of individual i. So the closer is i’s effort from

the average of her friends’ efforts, the higher is her utility.
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Consequently, the two models are quite different from an economic viewpoint, even

though, from a pure technical point of view, they are not that different (compare the best-

reply functions (4) and (7)). In particular, the adjacency matrix Gr of direct links of the

network totally characterizes the peer effects in the local aggregate model whereas it is a trans-

formation of this matrix Gr to a weighted stochastic matrix G∗r that characterizes the peer

effects in the local-average model. This means that, in equilibrium, in the former model,

individuals are positively affected by the sum of their friends’ effort (non row-normalized

Gr) while, in the latter, they are positively affected by the average effort of their friends

(row-normalized Gr). Observe, however, that in the local-aggregate model, a condition

(φ1ω1(Gr) < 1) is needed for the Nash equilibrium to exist while φ2 < 1 is required in the

local-average model, which is a much weaker condition. Indeed, the condition φ1ω1(Gr) < 1

stipulates that local complementarities must be small enough compared to own concavity,

which prevents multiple equilibria to emerge and, in the same time, rules out corner solu-

tions (i.e., negative or zero solutions). When φ1ω1(Gr) > 1, an equilibrium fails to exist

because the positive feedback from other agents’ contributions is too high and contributions

increase without bound. This is not true in the local-average model since an increase in the

effort of friends does not increase the individual marginal utility of exerting own effort. It

is the average effort that matters. As a result, this condition is always satisfied (this is in

particular due to the fact that the largest eigenvalue of the row-normalized adjacency matrix

G∗r is always equal to 1).
5

From an economic viewpoint, in the local-aggregate model, even if individuals were ex

ante identical (in terms of ai,r and εi,r ), different positions in the network would imply

different effort levels, because it is the sum of efforts that matter. This would not be true

in the local-average model since, in that case, the position in the network would not matter

since it is the deviation from the average effort of friends that affects the utility.

Take for example the star-shaped network with 3 ex ante individuals in Figure 1. In

the local aggregate model, individual 1 will exert the highest effort since she has two direct

friends and will thus receive high local complementarities, given by y2,r + y3,r, whereas the

two other individuals have only one friend and each will only receive y1,r. In the local-

average model, this is not anymore true since the peer effect component of individual 1

is − [y1,r − (y2,r + y3,r) /2]
2 whereas, for individuals 2 and 3, we have: − (y2,r − y1,r)

2 and

− (y3,r − y1,r)
2, respectively. The differences in the direct links are already small and, in

equilibrium, where both direct and indirect links are taken into account, these peer-effect

5We will come back to this condition when we analyse an hybrid model (see in particular Appendix B1,

footnote 23).
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aspects turn out to be the same for all individuals in the network. Indeed, denote αi,r ≡
ai,r + ηr + εi,r and assume that all three individuals are ex ante identical so that α1,r =

α2,r = α3,r = 1 and that φ1 = φ2 = φ. Then, it is easily verified that, for the local-aggregate

model, if φ < 1/
√
2, then y∗1,r = (1 + 2φ) /

¡
1− 2φ2

¢
and y∗2,r = y∗3,r = (1 + φ) /

¡
1− 2φ2

¢
,

with y∗1,r > y∗2,r = y∗3,r. On the other hand, for the local-average model, if φ < 1, then

y∗1,r = y∗2,r = y∗3,r = 1/ (1− φ)2.

In our empirical analysis we would like to determine which model matters the most for

different activities. This will help understand if students are conformist or not. For that, we

will estimate the best-reply functions (4) and (7) using an appropriate econometric strategy.

3 Data description

Our analysis is made possible by the use of a unique database on friendship networks from

the National Longitudinal Survey of Adolescent Health (AddHealth).6

The AddHealth database has been designed to study the impact of the social environment

(i.e. friends, family, neighborhood and school) on adolescents’ behavior in the United States

by collecting data on students in grades 7-12 from a nationally representative sample of

roughly 130 private and public schools in years 1994-95. Every pupil attending the sampled

schools on the interview day is asked to compile a questionnaire (in-school data) contain-

ing questions on respondents’ demographic and behavioral characteristics, education, family

background and friendship. This sample contains information on roughly 90,000 students.

A subset of adolescents selected from the rosters of the sampled schools, about 20,000 indi-

viduals, is then asked to compile a longer questionnaire containing more sensitive individual

and household information (in-home and parental data).7 Those subjects of the subset are

interviewed again in 1995—96 (wave II), in 2001—2 (wave III), and again in 2007-2008 (wave

6This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North
Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National

Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies
and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in
the original design. Information on how to obtain the Add Health data files is available on the Add Health
website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for
this analysis.

7Respondents listened to pre-recorded questions through earphones and then they entered their answers
directly on laptop computers. This administration of the survey for sensitive topics minimizes the potential
for interview and parental influence, while maintaining data security.
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IV).8 For the purpose of our analysis, we focus on wave I because the network information

is only available in the first wave.

From a network perspective, the most interesting aspect of the AddHealth data is the

information on friendships. Indeed, the friendship information is based upon actual friends

nominations. Pupils were asked to identify their best friends from a school roster (up to five

males and five females).9 Knowing exactly who nominates whom in a network, we exploit

the directed nature of the nominations data.10 We focus on choices made and we denote

a link from i to j as gij,r = 1 if i has nominated j as his/her friend in network r, and

gij,r = 0, otherwise.11 By matching the identification numbers of the friendship nominations

to respondents’ identification numbers, one can obtain information on the characteristics of

nominated friends. More importantly, one can reconstruct the whole geometric structure of

the friendship networks. For each school, we thus obtain all the networks of (best) friends.12

Such a detailed information on social interaction patterns allows us to measure the peer

group more precisely than in previous studies.

We exploit this unique data set to understand the impact of peer pressure on individual

behavior for three different outcomes: (i) school performance; (ii) sport activities, such

as playing baseball, softball, basketball, soccer, or football; (iii) screen activities, such as

playing video or computer games.

For each individual, we calculate an index of performance (or involvement) in each cate-

gory using the answers to different related questions.13 More specifically, the school perfor-

mance is measured using the respondent’s scores received in the more recent grading period

in several subjects, namely English or language arts, history or social science, mathematics,

and science. The scores are coded as 1=D or lower, 2=C, 3=B, 4=A. The final composite

score (labeled as GPA index or grade point average index) ranges between 0 and 4.40, with

8The AddHealth website describes survey design and data in details. See:
http://www.cpc.unc.edu/projects/addhealth

9The limit in the number of nominations is not binding (even by gender). Less than 1% of the students
in our sample show a list of ten best friends.
10We also exploit the undirected nature of the friendship data in Section 6.
11As highlighted by Wasserman and Faust (1994), centrality indices for directional relationships generally

focus on choices made.
12Note that, when an individual i identifies a best friend j who does not belong to the same school, the

database does not include j in the network of i; it provides no information about j. Fortunately, in the large
majority of cases (more than 93%), best friends tend to be in the same school and thus are systematically
included in the network.
13This is a standard factor analysis, where the factor loadings of the different variables are used to derive

the total score.

11



mean equals to 3.03 and standard deviation equals to 1.10.

The involvement in sport activities is derived using questions on how often students go

wheeling, play a team sport or do more general physical exercise during the past week. Each

response is coded using an ordinal scale ranging from 0 (i.e. never participate) to 1 (i.e.

participate 1 or 2 times), 2 (participate 3 or 4 times) up to 3 (i.e. participate 5 or more

times). The final index of involvement in sport activities (labeled as sport participation

index) ranges between 0 and 2.95, with mean equals to 1.53 and standard deviation equals

to 1.05.

Similarly, the involvement in screen activities (labeled as screen participation index) is

derived using questions on how many hours a week students watch television, videos or play

video or computer games. The answers take values between 0 and 99 hours for each activity.

The final composite ranges between 0 and 13.01, with mean equals to 1.37 and standard

deviation equals to 1.23.14 Precise definitions of the remaining variables (control variables)

used in our empirical analysis, as well as a summary description of our final sample of students

distinguishing between the different outcomes, can be found in Table C.1 in Appendix C. This

table shows that, on average, the characteristics of the students are remarkably similar. The

large reduction in sample size with respect to the original AddHealth sample is mainly due to

missing values in variables and to the network construction procedure. Indeed, roughly 20%

of the students do not nominate any friends and another 20% cannot be correctly linked (for

example because the identification code is missing or misreported). Also, we do not consider

networks at the extremes of the network size distribution to avoid the possibility that, in

these extreme networks, the strength of peer effects can have extreme values (too low or too

high) that may be a matter of concern. Indeed, our theoretical model and hence our empirical

strategy consider homogenous peer effects across networks. The use of network fixed effects,

which is an important feature of our identification strategy (Section 4.1) prevents us to deal

with this issue. We focus our analysis on networks with network size between 50 and 150

students for all outcomes.15

14Endogenous selection into GPA, sport and screen activitities in not an issue here. Less than 1% and
5% of the students never participated in screen and sport activities, respectively. A final assessment of the
comprehension within the different subjects studied at school (GPA data) is mandatory.
15Our results, however, do not depend crucially on these network size thresholds. They remain qualitatively

unchanged when slightly moving the network size window.
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4 Econometric issues

We begin the test of our theoretical framework by providing an appropriate estimate of

peer effects for the local-aggregate model (bφ1) and for the local-average model (bφ2). Our
econometric strategy is organized as follows. In Section 4.1, we expose our identification

strategy. Section 4.2 presents a J test for model selection aiming at showing which behavioral

mechanism prevails. In Section 4.3, we present the hybrid model, which combines both the

local-aggregate and the local-average model. Finally, in Section 4.4, we detail the appropriate

2SLS and GMM estimators designed to tackle the issue of simultaneity in spatial/network

econometric models.

4.1 Identification strategy

The identification of peer effects raises different challenges that are common to the local-

aggregate and the local-average model.

As stated above, from a behavioral point of view, in the local-aggregate model, it is the

sum of the efforts of the peers that affects the individual utility whereas in the local-average

model, it is the deviation from the average efforts of the peers that affects the individual

utility. From a pure technical point of view, this behavioral distinction implies to deal with

a non row-standardized matrix of social contacts if local aggregates matters (i.e. Gr) and

with a row-standardized social interaction matrix (i.e. G∗r) if instead local averages matter.

Although the information contained in the variation of row sums of the social interaction

matrix may help model identification and estimation efficiency (Liu and Lee, 2010), the basic

empirical issues that arise when one seeks to separately identify peer or endogenous effects

from contextual or exogenous effects are common to both models. Let us discuss each of

them in turn.

4.1.1 The reflection problem

In linear-in-means models, simultaneity in behavior of interacting agents introduces a perfect

collinearity between the expected mean outcome of the group and its mean characteristics.

Therefore, it is difficult to differentiate between the effect of peers’ choice of effort and peers’

characteristics that do impact on their effort choice. This is the so-called reflection problem,

first formulated by Manski (1993). Basically, the reflection problem arises because, in the

standard approach, individuals interact in groups, that is individuals are affected by all

individuals belonging to the same group and by nobody outside the group. In other words,
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groups completely overlap. In the case of social networks, instead, this is nearly never true

since the reference group has individual-level variation. In other words, if i and j are friends

and j and k are friends, it does not necessarily imply that i and k are also friends. This

corresponds to the case of a non-complete network, i.e. everybody is not connected with

everybody else. When this occurs, it creates the ability to identify network effects and to

solve the reflection problem. Indeed, the characteristics of k affects the decisions of i only

indirectly through their effects on the decisions of j. As a result they act as a valid instrument

to determine if i is influenced by the decisions of j, i.e. for the identification of peer effects.

To identify peer effects, one needs only one such intransitivity. In most real-world social

network, there is a very large number of non-overlapping peer groups and the Manski’s

(1993) reflection problem is thus eluded. Peer effects in social networks are thus identified

and can be estimated using 2SLS or maximum likelihood (Lee 2007; Calvó-Armengol et al.,

2009; Lin, 2010).16 The conditions on the parameters that guarantee identification of peer

effects are formally derived in Bramoullé et al. (2009) (Proposition 3) and Calvó-Armengol

et al. (2009) (Proposition 2) for the case of a row-standardized interaction matrix. The

results for the case of a non row-standardized interaction matrix are instead contained in

Liu et al. (2011).

4.1.2 Sorting into groups: Endogeneity of network formation

Although a social network setting allows us to solve the reflection problem, the estimation

results might still be flawed because of the presence of unobservable factors affecting both

individual and peer behavior. It is indeed difficult to disentangle the endogenous peer effects

from the correlated effects, i.e. effects arising from the fact that individuals in the same

network tend to behave similarly because they face a common environment. If individuals

are not randomly assigned into networks, this problem might originate from the possible

sorting of agents. If the variables that drive this process of selection are not fully observable,

potential correlations between (unobserved) network-specific factors and the target regressors

are major sources of bias. A number of papers using network data have dealt with the

estimation of peer effects with correlated effects (e.g., Clark and Loheac 2007; Lee 2007b;

Calvó-Armengol et al., 2009; Lin, 2010; Lee et al., 2010). This approach is based on the use

of network fixed effects and extends Lee (2003) 2SLS methodology. Network fixed effects

can be interpreted as originating from a two-step model of link formation where agents self-

select into different networks in a first step and, then, in a second step, link formation takes

place within networks based on observable individual characteristics only. An estimation

16A more technical exposition of these results can be found in Liu and Lee (2010).
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procedure alike to a panel within group estimator is thus able to control for these correlated

effects. One can get rid of the network fixed effects by subtracting the network average

from the individual-level variables.17 As detailed in the next section, this paper follows this

approach.

One might also question the presence of problematic unobservable factors that are not

network-specific, but rather individual-specific. In this respect, the richness of the infor-

mation provided by the AddHealth questionnaire on adolescents’ behavior allow us to find

proxies for typically unobserved individual characteristics that may be correlated with our

variable of interest. Specifically, to control for differences in leadership propensity across

adolescents, we include an indicator of self-esteem, and we use mathematics score as an

indicator of ability. Also, we attempt to capture differences in parenting and more general

social influences by including parental care and indicators of the student’s school attachment

and relationship with teachers.

Our identification strategy is based on the assumption that any troubling source of hetero-

geneity (if any), which is left unexplained by our unusually large set of observed (individual

and peers) characteristics can be captured at the network level, and thus taken into account

by the inclusion of network fixed effects. In other words, our particularly large informa-

tion on individual and peer variables, which also includes behavioral characteristics, should

reasonably explain the process of selection into groups whereas network fixed effects might

capture any remaining source of selection on unobservables.

To be more precise, we allow link formation (as captured by our matrix Gr) to be cor-
related with observed individual characteristics, contextual effects and unobserved network

characteristics (captured by the network fixed effects). We will test the hypothesis that Gr

is exogenous (conditional on covariates and network fixed effects) using an over-identifying

restrictions (OIR) test, as described in Lee (2007a). The moment conditions used in the

GMM estimation of a spatial autoregressive model (such as the ones used in our empirical

investigation) are based on the assumption that Gr is exogenous. If the OIR test cannot

reject the null hypothesis that the moment conditions (or restrictions) are correctly speci-

fied, then it provides evidence that Gr can be considered as exogenous. If the number of

restrictions is small relative to the sample size, the OIR test statistic given by the GMM

objective function (23) evaluated at the GMM estimator follows a chi-squared distribution

17Bramoullé et al. (2009) also deal with this problem in the case of a row-normalized interaction ma-
trix. In their Proposition 5, they provide formal conditions on network topology structure under which, by
subtracting from the variables the network average, social effects are again identified. These conditions are
typically satisfied in real-world social networks.
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with degrees of freedom equal to the number of over-identifying restrictions (Lee, 2007a,

Proposition 2).

Given that Gr is exogenous (conditional on covariates and network fixed effects), the

identification of the local aggregate effect (bφ1) versus local average effect (bφ2) hinges on the
variation in row sums of Gr. In the case that each student has the same number of friends

as everyone else in the same group, we cannot separately identify those two effects.

Our econometric strategy thus utilizes the structure of the network as well as network

fixed effects and high quality individual information to clearly identify the peer effects from

the contextual affects and from the correlated effects. This approach for the identification

of peer effects, i.e. the use of network fixed effects in combination with high quality data on

social contacts has been used in a number of recent studies based on the AddHealth data

(e.g. Patacchini and Zenou, 2012; Liu et al. 2011; Lin 2010).

In the following section, we propose a test for model selection designed to detect which

behavioral mechanism better represents the data at hand.

4.2 J test for model selection

4.2.1 Empirical models

Let r̄ be the total number of networks in the sample, nr be the number of individuals in the

rth network, and n =
Pr̄

r=1 nr be the total number of sample observations. Let us define

the ex ante heterogeneity ai,r of each individual in network r as (see (2)):

ai,r = x0i,rβ +
1

gi,r

nrP
j=1

gij,rx
0
j,rγ.

The empirical model corresponding to (4), i.e., the local-aggregate model, can be written as:

yi,r = φ1
nrP
j=1

gij,ryj,r + x0i,rβ1 +
1

gi,r

nrP
j=1

gij,rx
0
j,rγ1 + η1r + 1i,r, (8)

for i = 1, · · · , nr and r = 1, · · · , r̄, where xi,r = (x1i,r, · · · , xmi,r)0, gi,r =
Pnr

j=1 gij,r and 1i,r’s

are i.i.d. innovations with zero mean and variance σ21 for all i and r.

The empirical model corresponding to (7), i.e., the local-average model, is:

yi,r = φ2
1

gi,r

nrX
j=1

gij,ryj,r + x0i,rβ2 +
1

gi,r

nrP
j=1

gij,rx
0
j,rγ2 + η2r + 2i,r, (9)

where η2r = ηr/(1− φ2) and 2i,r’s are i.i.d. innovations with zero mean and variance σ22 for

all i and r.
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Let Yr = (y1,r, · · · , ynr,r)0,Xr = (x1,r, · · · , xnr,r)0, 1r = ( 11,r, · · · , 1nr,r)
0, 2r = ( 21,r, · · · , 2nr,r)

0.

Denote the nr×nr sociomatrix (adjacency matrix) by Gr = [gij,r], the row-normalized Gr by

G∗r, and an nr-dimensional vector of ones by 1nr . Then, models (8) and (9) can be written

in matrix form as:

H1 : Yr = φ1GrYr +X∗
r δ1 + η1r1nr + 1r,

H2 : Yr = φ2G
∗
rYr +X∗

r δ2 + η2r1nr + 2r,

where X∗
r = (Xr, G

∗
rXr), δ1 = (β01, γ

0
1)
0 and δ2 = (β02, γ

0
2)
0. For a sample with r̄ groups, stack

up the data by defining Y = (Y 0
1 , · · · , Y 0

r̄ )
0, X∗ = (X∗0

1 , · · · , X∗0
r̄ )

0, G = D(G1, · · · , Gr̄), G∗ =

D(G∗1, · · · , G∗r̄) and ι = D(1n1, · · · , 1nr̄), where D(A1, · · · , AK) is a block diagonal matrix in

which the diagonal blocks are mk×nk matrices Ak’s. Furthermore, define l = (
0
l1, · · · , 0

lr̄)
0

and ηl = (ηl1, · · · , ηlr̄)0 for l = 1, 2. For the entire sample, the two models are, respectively,

H1 : Y = φ1GY +X∗δ1 + ι · η1 + 1, (10)

H2 : Y = φ2G
∗Y +X∗δ2 + ι · η2 + 2, (11)

4.2.2 Augmented models

The test of model H1 against model H2 To test against the model specification H2,

one can estimate the following augmented model of H1,

Y = α1YH2 + φ1GY +X∗δ1 + ι · η1 + 1, (12)

where YH2 is a predictor of Y under H2 such that YH2 = φ2G
∗Y +X∗δ2+ ι · η2 (see Kelejian

and Prucha, 2007; Kelejian and Piras, 2011). Thus, a test of the null model (10) against the

alternative one (11) would be in terms of the hypotheses H0 : α1 = 0 against Ha : α1 6= 0.
Substitution of the predictor YH2 into (12) gives

Y = α1(φ2G
∗Y +X∗δ2) + φ1GY +X∗δ1 + ι · (η1 + α1η2) + 1 (13)

= Z∗1ϑ1 + ι · (η1 + α1η2) + 1,

where Z∗1 = [(φ2G
∗Y +X∗δ2), GY,X

∗] and ϑ1 = (α1, φ1, δ
0
1)
0.

In this model, we treat η1 and η2 as vectors of unknown parameters. When the number of

groups r̄ is large, we have the incidental parameter problem. Let J = D(J1, · · · , Jr̄), where
Jr = Inr − 1

nr
1nr1

0
nr . The within transformation of the second line of (13) gives

JY = JZ∗1ϑ1 + J 1. (14)
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The proposed J test can be implemented by the following two steps:

(1) Estimate model H2 by the quasi-maximum-likelihood (QML) method of Lee et al.

(2010). Let the preliminary QML estimators of φ2 and δ2 be denoted by φ̃2 and δ̃2.

(2) Estimate the feasible counterpart of model (14)

JY = JZ̃∗1ϑ1 + J 1, (15)

where Z̃∗1 = [(φ̃2G
∗Y +X∗δ̃2), GY,X

∗], by the 2SLS or GMM method described in Section

4.4. If the estimated α1 is insignificant, then this is evidence against model H2.

The test of model H2 against model H1 The test of model H2 against model H1 can

be carried out in a similar manner. Consider the following augmented model of H2,

H2 : Y = α2YH1 + φ2G
∗Y +X∗δ2 + ι · η2 + 2, (16)

where YH1 is a predictor of Y under H1 such that YH1 = φ1GY +X∗δ1 + ι · η1. Thus, the
test of the null model (11) against the alternative (10) would be in terms of the hypotheses

H0 : α2 = 0 against Ha : α2 6= 0. The within transformation of (16) gives

JY = JZ∗2ϑ2 + J 2. (17)

where Z∗2 = [(φ1GY +X∗δ1), G
∗Y,X∗] and ϑ2 = (α2, φ2, δ2)

0.

The proposed J test can be implemented by the following two steps:

(1) Estimate model H1 by the 2SLS with IVs J [X,G∗X,GX]. Let the preliminary 2SLS

estimators of φ1 and δ1 be denoted by φ̃1 and δ̃1.

(2) Estimate the feasible counterpart of model (17)

JY = JZ̃∗2ϑ2 + J 2, (18)

where Z̃∗2 = [(φ̃1GY +X∗δ̃1), G
∗Y,X∗], by the 2SLS or GMM method described in Section

4.4. If the estimated α2 is insignificant, then that is evidence against model H1.

4.3 The hybrid network model

As an alternative to the augmented models of the J test, we consider a hybrid model encom-

passing both local-aggregate and local-average effects,

yi,r = φ1
nrP
j=1

gij,ryj,r + φ2
1

gi,r

nrP
j=1

gij,ryj,r + x0i,rβ +
1

gi,r

nrP
j=1

gij,rx
0
j,rγ + ηr + i,r. (19)
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For the entire sample, model (19) can be written in matrix form

Y = φ1GY + φ2G
∗Y +X∗δ + ι · η + , (20)

where δ = (β0, γ0)0. Let J = D(J1, · · · , Jr̄), where Jr = Inr − 1
nr
1nr1

0
nr . The network fixed

effect can be eliminated by the within transformation with J such that

JY = φ1JGY + φ2JG
∗Y + JX∗δ + J . (21)

The within model (21) can be estimated by the 2SLS and GMM methods described in the

next subsection.

Under the restriction φ1 = 0, model (21) becomes

JY = φ2JG
∗Y + JX∗δ + J .

This restricted model only captures local-average effects, and it can be estimated by the

QML method proposed by Lee et al. (2010).18 On the other hand, under the restriction

φ2 = 0, model (21) becomes

JY = φ1JGY + JX∗δ + J ,

which only captures local-aggregate effects. This model can be estimated by the 2SLS and

GMM methods proposed by Liu and Lee (2010).

Observe that, in our case, where the only difference between the local-average and local-

aggregate models is captured by a single parameter, the J test procedure has little advantage

over the hybrid model (19) as the latter nests the two alternative network models. In other

words, in our case where the only difference between the local aggregate and the local

average model is the different adjacency matrices (non row-normalized and row-normalized,

respectively), a testing procedure based on the augmented model or the hybrid model would

be similar. The J test presented in Section 4.2 has, however, a more general validity for

testing non-nested models (see Davidson and MacKinnon, 1993, pp. 381-388).

4.4 The 2SLS and GMM estimators

For the estimation of the hybrid network model (21) and the augmented model (15) or (18)

in the second step of the J test, we consider the following estimators by generalizing the

2SLS and GMM methods in Liu and Lee (2010):
18For the QML method to be applicable, all rows of G∗ have to be normalized to sum to unity. For the

case of undirected networks, G∗ satisfies this condition. However, for the case of directed networks, some
rows of G∗ are all zeros, and, hence, cannot be nomalized to sum to one. So for the estimation of directed
networks, we use the 2SLS and GMM estimators given in (a)-(c) and (d00)-(f 00) in Section 4.4.
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(a) “2SLS-1”: a 2SLS estimator with IVs Q1 = J [X,G∗X,GX].

(b) “2SLS-2”: a 2SLS estimator with IVs Q2 = J [X,G∗X,GX,Gι]. This estimator has

been proposed by Liu and Lee (2010). The additional IVs Gι corresponds to the information

on different positions of group members measured by Bonacich (1987) centrality. The ad-

ditional IVs improves asymptotic efficiency of the estimator and helps achieve identification

when the “conventional” IVs Q1 are weak.

(c) “C2SLS”: a bias-corrected 2SLS estimator with IVs Q2. Note that, the additional IVs

in Q2, Gι, has r̄ columns, where r̄ is the number of networks in the data. Therefore, if there

are many groups, the “2SLS-2” estimator may have an asymptotic bias, which is known as

the many-instrument bias.19 The “C2SLS” estimator adjusts the “2SLS-2” estimator by an

estimated leading-order many-instrument bias.

The 2SLS estimators are based on moment conditions that are linear in the model coef-

ficients. However, when the IVs are weak, the inference based on the 2SLS estimation may

be unreliable. Lee (2007a) has suggested to generalize the 2SLS method to a comprehen-

sive GMM framework with additional quadratic moment conditions based on the covariance

structure of the reduced form equation to improve identification and estimation efficiency.

The added quadratic moment conditions are especially helpful when the IVs are weak. In

this paper, we consider the following GMM estimators for the estimation of the empirical

model:

(d) “GMM-1”: an optimal GMM estimator with linear moment conditions with Q1 and

quadratic moment conditions.

(e) “GMM-2”: an optimal GMM estimator with linear moment conditions with Q2 and

the same quadratic moment conditions as in GMM-1.

(f) “CGMM”: a bias-corrected optimal GMM estimator with the same moment functions

as in GMM-2. Similar to the corresponding 2SLS estimator, the additional IVs in Q2 may

introduce many-instrument bias into the GMM estimator. The “CGMM” estimator adjusts

“GMM-2” by an estimated leading-order bias.

The details of the 2SLS and GMM methods including the explicit form of the quadratic

moment condition are given in Appendix B.

19This is less of a concern in the data used in this paper, as the number of groups are small relative to the
sample size.
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5 Estimation results

5.1 Statistical analysis

Let us now test our theoretical local-aggregate and local-average models for different out-

comes using the J test described above. Tables 1, 2, 3 report the estimation results for

the different outcomes, i.e. sports (Table 1), screen activities (Table 2) and GPA (Table 3)

using directed networks. We present the complete list of estimation results for the hybrid

network model (19) and the results for the target parameters for the augmented models (12)

and (16) in the last rows. The chosen estimator here is the bias-corrected optimal GMM

(CGMM) described in Section 4.4 above, which is reliable even if the IVs are weak and there

are many small groups. We present our results with an increasing set of controls, which

helps us validate our identification strategy. More specifically, our identification strategy is

based on the assumption that conditional on observed individual and peers characteristics

and network unobserved characteristics, peers choice is random (within networks). Under

this assumption, it should not matter too much which further controls are included: the esti-

mated effects of peers’ outcome on individual outcome should remain roughly unchanged. If

some controls do matter, it implies that these covariates are correlated with peers’ outcome

and also influence individual decisions. As a result, one could worry that there may be other

unobservable variables that are similarly correlated with our peer-level target variable and

our dependent variable. We thus start by including a set of individual and peers character-

istics that should reasonably explain the sorting of children into peer groups (peers’ choice),

such as parental education, sex, grade, ethnicity, mathematics score and indicators of school

attachment and relationship with teachers (specification (1) in Tables 1, 2, 3) and then grad-

ually introduce other possibly relevant factors affecting peers’ choice and individual outcome.

In specification (2), we add neighborhood quality and indicators of the social structures of

families, namely number of components and whether the parents are married or not. Next,

we consider an indicator of parental care and our proxy of self-esteem (specification (3)),

and, finally, in specification (4), we add parental occupation dummies. Tables 1, 2, 3 show

that the estimates of peer effects remain roughly unchanged across columns, thus supporting

our confidence on the exogeneity of network structure (conditional on controls and network

fixed effects).

[Insert Tables 1 to 3 here]

In order to appreciate the differences between the different estimators proposed in Section

4.4, we report in Tables 4, 5, 6 the estimation results for the hybrid network model (with
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the most extensive sets of controls) using alternative estimators.20 These tables also show

in the lasts rows the first stage F tests for weak IVs and the OIR tests.

[Insert Tables 4 to 6 here]

The values of the F-statistics reveal that our instruments in the linear moment conditions

are quite weak.21 ,22 This is the reason why we prefer the GMM with additional quadratic

moment conditions (see Section 4.4 and Appendix B) to the 2SLS estimates. The different

types of GMM estimators deliver similar estimation results. Indeed, the number of additional

moment conditions used in GMM-2 is equal to the number of the groups, which are not many

in our case. The correction used in CGMM is greatly effective if we have many small groups,

which is not our case. Therefore in our context where the number of groups is limited and the

average group size is not small with respect to total sample size, the statistical performance

of the three different GMM estimators is similar.

Because of the weak IV problem, we cannot trust the OIR test results based on the 2SLS.

We consider the OIR test statistic (Lee, 2007a) for the estimator GMM-1 which is based on

a relatively smaller set of instruments (Q1). In fact, such a test could be biased if there are

a large number of IVs, as in the IV matrix Q2.23 We find that the p−values of the over-
identifying restrictions test is large for all outcomes, which means that Gr is exogenous (i.e.

we cannot reject the null hypothesis that the moment conditions based on an exogenous Gr

are valid). This evidence provides further confidence on the exogeneity of network structure

(conditional on controls and network fixed effects).

5.2 Interpretation of results in economics terms

Do peer effects matter? Which model is more adequate for each activity? Looking at the

first two rows of Table 1, 2, 3 (tests of φ1 and φ2 of the hybrid network model) and at the

last row of Table 1, 2, 3 (tests of the augmented models where the null hypothesis is α1 = 0,

20The qualitative results remain unchanged when using the augmented models.
21Stock et al. (2002) have suggested that “evidently the first-stage F statistic must be large, typically

exceeding 10, for 2SLS inference to be reliable.”
22The construction and statistical properties of the first stage F-test for weak instruments can be found

in by Stock et al. (2002). The partial F-test used in this analysis is further detailed in Stock and Yogo
(2005). The matlab codes that implement the 2SLS and GMM estimators, J test, F test and OIR test
remain available upon request.
23For the case with independent observations, Chao et al. (2010) have proposed an OIR test that is robust

to many IVs. However, no robust OIR test with many IVs is available when observations are spatially
correlated.
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i.e., the local average model does not matter for model (12), and α2 = 0, i.e., the local

aggregate model does not matter for model (16), we see clearly that, for sport activities, it

is the sum of the effort of the friends (i.e. the local aggregate model) and not their average

effort that matters for explaining own sport activity while, for education (i.e. GPA index),

both matter. Observe, however, that, even if both matter, the magnitude of the effects is

higher for the local-average model than for the local-aggregate one. Indeed, a one-standard

deviation increase in the average activity of individual i’s reference group translates roughly

into a 0.29 increase in standard deviations of individual i’s GPA score while it is only 0.10

for the sum of activity of friends. Finally, for screen activities, our results suggest that

peer effects are not important in explaining own screen activity. The latter appears to be

explained by own characteristics and contextual effects. For example, male, black and lower

grade students are more likely to participate in screen activities than other students.

Our results are interesting and new. First, it is not that surprising that peer effects have

no significant impact on screening activities. Think, for example, of video games. There is,

obviously, a social aspect to it but there is also an addicted one. If teenagers are very much

into video games, then addiction might prevail and it does not matter very much if their

friends are also into it. Second, for sport activities, it does not seem that social norms play an

important role so that being different from friends have a cost. In other words, a student who

is not into sport may have some friends who are athletes (or “jocks”). However, individuals

with many sporty friends will very likely be themselves sporty. Finally, for education, we

find that both social norms and total activity of friends matter. In other words, if a student

have on average friends who have good grades, then he/she will not deviate from this norm.

However, he/she will be likely to have good grades even if the peers are heterogenous with

respect to grades but there are some friends with very good grades. In terms of magnitude, it

seems that social norms are important actors in education so that students tend to conform

to these norms.

6 Robustness checks

Our identification and estimation strategy depend on the correct specification of network

links. In particular, our identification strategy hinges upon nonlinearities in group member-

ship, i.e. on the presence of intransitive triads. In this section, we test the robustness of our

results with respect to misspecification of network topology. So far, we have measured peer

groups as precisely as possibly by exploiting the direction of the nomination data. However,

friendship relationships are reciprocal in nature, and even if a best friend of a given student
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does not nominate this student as his/her best friend, one may think that social interactions

take place. Under this circumstance, there can be some “unobserved” network link that, if

considered, would change the network topology and break some intransitivities in network

links. Therefore, in this section, we repeat our analysis by considering undirected networks,

i.e. we assume that a link exists between two friends if both students have named each other,

that is gij,r = gji,r = 1.

Tables 7, 8, 9 have the same structure as Tables 1, 2, 3 and report the results for

undirected networks. The qualitative results remain unchanged. The magnitude of the

effects is only slightly lower.

[Insert Tables 7 to 9 here]

For completeness, we also report in Tables 10, 11, 12 the different estimators, the first-

stage F-tests and the OIR tests (as in Tables 4, 5, 6) for undirected networks. The qualitative

evidence also remains roughly unchanged.

[Insert Tables 10 to 12 here]

7 Conclusion

In this paper, we have proposed two different social network models with different economic

foundations. In the first one, the local-aggregate model, each individual is positively affected

by the sum of effort of friends while, in the local-average model, it is the deviation from the

average effort of her friends that has a negative impact on her utility. We show that there

exists a unique interior Nash equilibrium in each model.

We then test each model using the AddHealth data, which provides detailed information

on adolescent friendships in social networks in the United States. We find that peer effects

have no significant impact on screen activities (like e.g. video games). On the contrary, for

sport activities, we find that students are mostly influenced by the sum of activities of their

friends (local-aggregate model) while, for education, we show that both the aggregate school

performance of friends and conformism matter, even though the magnitude of the effect is

higher for the latter. People tend to be very conformist in their behavior since it is well known

that humans readily conform to the wishes or beliefs of others. Asch (1955, 1956) found

that people will do this even in cases where they can obviously determine that others are

incorrect. Asch presented subjects with two cards, one contained a single reference line and

the other contained three lines of various lengths (one was the same length as the reference
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line). Asch manipulated the social situation by occasionally having two confederates publicly

answer incorrectly prior to the subject providing an answer. The subject heard the incorrect

responses of the others and was asked to publicly declare his answer as well. Asch found that

the degree of conformity was relatively high. It is therefore surprising that, in the real-world,

conformity do not always matter (like here for video games) or are less important (like here

for sport activities) than the impact of the sum of active friends.

We believe that it is important to be able to disentangle between different behavioral

peer-effect models because it implies different policy implications. For example, in terms

of education, to understand whether it is a local average or a local aggregate model, the

prevailing mechanism of interactions would be helpful for policy makers to optimally design

the composition of each classroom. Having around one very smart friend might not be

equivalent to having three less smart friends. If the local aggregate mechanism of peer

effects prevails, then classes should be heterogenous with respect to students’ test scores,

with the highly performing students distributed among the classes, if the objective is a

reduction of the variance of the students’ grades within each class. Under this scenario, a

class composition where the average test score of students is relatively uniform across the

different classes would be less effective to reach the target. A conformist aspect of peer

effects can also be exploited for different purposes (i.e. to design excellence schemes where

some classes are composed with the smartest students).

This paper has uncovered some of the tricky aspects of how peers affect individual effort in

different activities by highlighting that the difference between the “quantity” and “quality”

of friends may play an important role. This is a first step but there is much more work to

be done. We leave this for future research.
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APPENDICES

A Proofs of propositions in the theoretical model

Proof of Proposition 1: Apply Theorem 1, part b, in Calvó-Armengol et al. (2009)

to our problem.

Proof of Proposition 2: Our utility function (6) can be written as:

ui,r(Yr, gr) = (ai,r + ηr + εi,r) yi,r −
1

2
y2i,r −

d

2
(yi,r − yi,r)

2

= (ai,r + ηr + εi,r) yi,r −
(1 + d)

2
y2i,r + dyi,ryi,r −

d

2
y2i,r

Using (5), this can be written as:

ui,r(Yr, gr) = (ai,r + ηr + εi,r) yi,r −
(1 + d)

2
y2i,r + d

nrX
j=1

g∗ij,ryi,ryj,r −
d

2

Ã
nrX
j=1

g∗ij,ryj,r

!2
We can now apply Theorem 1, part b, in Calvó-Armengol et al. (2009) to our problem.24 The

condition on eigenvalue (that guarantees that the Nash equilibrium is unique and interior)

can now be written as: 1 + d > dω1(G
∗
r). Observe that G

∗
r is a stochastic matrix so that its

largest eigenvalue is 1, i.e., ω1(G∗r) = 1. As a result, the condition 1 + d > dω1(G
∗
r) can be

written as 1 + d > d, which is always true. As a result, the only condition needed is φ2 < 1

for the Nash equilibrium (7) to be well-defined.

B 2SLS and GMM Estimation

We consider 2SLS and GMM estimators for the estimation of an empirical hybrid network

model, and for the estimation of augmented models in the J test. This appendix presents

the derivation and asymptotic properties of the estimators.

For any n × n matrix A = [aij], let vecD(A) = (a11, · · · , ann)0, As = A + A0, At =

A−tr(A)J/tr(J), and A− denote a generalized inverse of a square matrix A. For a parameter
θ, let θ0 denote the true parameter value in the data generating process. Let μ3 and μ4 denote,

respectively, the third and fourth moments of the error term.

24Observe that the term −d
2

³Pnr
j=1 g

∗
ij,ryj,r

´2
does not matter since the derivative of this term with respect

to yi,r is equal to zero.
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B.1 Estimation of a hybrid network model

B.1.1 2SLS estimation

Let M0 = (I − φ10G− φ20G
∗)−1. From the reduced form equation (20), E(Y ) =M0(X

∗δ0 +

ι · η).25 For Z = [GY,G∗Y,X∗], the ideal IV matrix for the explanatory variables JZ in (21)

is given by

f = E(JZ) = J [GE(Y ), G∗E(Y ),X∗]. (22)

However, this IV matrix is infeasible as it involves unknown parameters. Note that f can be

considered as a linear combination of the IVs inQ∞ = J [GM0X
∗, GM0ι,G

∗M0X
∗, G∗M0ι,X

∗].

As ι has r̄ columns, the number of IVs in Q∞ increases as the number of groups r̄ increases.

Furthermore, if |φ10maxi(
P

j gij)| + |φ20| < 1,26 we have M0 = (I − φ10G − φ20G
∗)−1 =P∞

j=0(φ10G + φ20G
∗)j. Hence, M0 in Q∞ can be approximated by a linear combination of

[I,G,G∗, G2, GG∗, G∗G,G∗2, · · · ].
To achieve asymptotic efficiency, we assume the number of IVs increases with the sample

size so that the ideal IV matrix f can be approximated by a feasible IV matrix QK with an

approximation error diminishing to zero. That is, for an n×K IV matrix QK premultiplied

by J , there exists some conformable matrix πK such that ||f −QKπK||∞ → 0 as n,K →∞.
Let PK = QK(Q

0
KQK)

−Q0
K , the 2SLS estimator consider is θ̂2sls = (Z

0PKZ)
−1Z 0PKY.

Let θ0 = (φ10, φ20, δ
0
0)
0. If K/n → 0, then it follows by a similar argument as in Liu

and Lee (2010) that
√
n(θ̂2sls − θ0 − b2sls)

d→ N(0, σ2H̄−1), where H̄ = limn→∞
1
n
f 0f and

b2sls = σ2(Z 0PKZ)
−1[tr(PKGM0), tr(PKG

∗M0), 01×2m]
0 = Op(K/n). The 2SLS estimator has

an asymptotic bias term due to the large number of IVs. When K2/n → 0, the leading

order bias term
√
nb2sls converges to zero and the proposed 2SLS estimator is efficient as the

variance matrix σ2H̄−1 attains the efficiency lower bound for the class of IV estimators.

25For simplicity, we assume G and X are nonstochastic. If G and X are stochastic, then the following
results can be considered as conditional on G and X.
26The model represents an equilibrium so I − φ10G − φ20G

∗ is assumed to be invertible. A sufficient
condition for the invertibility assumption can be derived as follows. Let gi being the ith row sum of G.
Since G∗ is the row-normalized G, we have G = RG∗, where R is a diagonal matrix with the ith diagonal
element being gi. The invertibility of I −φ10G−φ20G

∗ requires ||φ10G+φ20G
∗|| < 1 for some matrix norm

|| · || (see Horn and Johnson, 1990). Let || · ||∞ denote the row-sum matrix norm. As ||G∗||∞ = 1, we have
||φ10G + φ20G

∗||∞ = ||φ10RG∗ + φ20G
∗||∞ ≤ ||φ10R + φ20I||∞. Therefore, a sufficient condition for the

invertibility assumption would be |φ10maxi(gi)|+ |φ20| < 1.
On the other hand, a sufficient condition for the the invertibility of I−φ10G for the local aggregate model

is |φ10| < 1/maxi(gi) (see Liu and Lee, 2010) and a sufficient condition for the the invertibility of I −φ20G
∗

for the local average model is |φ20| < 1. Both of them are weaker than the invertibility condition of the
hybrid model.
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To correct for the many-instrument bias in the 2SLS estimator, one can estimate the

leading order bias term and adjust the 2SLS estimator by the estimated leading-order bias

b̃2sls. With
√
n-consistent initial estimates σ̌2, φ̌1, φ̌2, the bias-corrected 2SLS (C2SLS) is

given by θ̂c2sls = θ̂2sls − b̃2sls, where b̃2sls = σ̌2(Z 0PKZ)
−1[tr(PKGM), tr(PKG

∗M), 01×2m]
0

and M = (I − φ̌1G− φ̌2G
∗)−1. The C2SLS is efficient when K/n→ 0.

B.1.2 GMM estimation

The 2SLS estimator can be generalized to the GMM with additional quadratic moment

equations. Let (θ) = J(Y − Zθ). The IV moment conditions Q0
K (θ) = 0 are linear in

at θ0. As E( 0U1 ) =E( 0U2 ) = 0 for U1 = (JGM0J)
t and U2 = (JG

∗M0J)
t, the quadratic

moment conditions for estimation are given by [U1 (θ), U2 (θ)]0 (θ) = 0. The proposed

quadratic moment conditions can be shown to be optimal (in terms of efficiency of the

GMM estimator) under normality (see Lee and Liu, 2010). The vector of linear and quadratic

empirical moments for the GMM estimation is given by g(θ) = [QK, U1 (θ), U2 (θ)]
0 (θ).

In order for inference based on the following asymptotic results to be robust, we do not

impose the normality assumption for the following analysis. The variance matrix of g(θ0) is

given by

Ω = Var[g(θ0)] =

Ã
σ2Q0

KQK μ3Q
0
Kω

μ3ω
0QK (μ4 − 3σ4)ω0ω + σ4∆

!
,

where ω = [vecD(U1), vecD(U2)] and ∆ = 1
2
[vec(U s

1), vec(U
s
2)]

0[vec(Us
1 ), vec(U

s
2 )]. By the

generalized Schwarz inequality, the optimal GMM estimator is given by

θ̂gmm = argmin g
0(θ)Ω−1g(θ). (23)

Let B−1 = (μ4 − 3σ4)ω0ω + σ4Υ− μ23
σ2
ω0PKω,

D = −σ2
Ã
tr(U s

1GM0) tr(Us
1G

∗M0) 01×2m

tr(U s
2GM0) tr(Us

2G
∗M0) 01×2m

!
,

D̄ = D− μ3
σ2
ω0f , and Ď = D− μ3

σ2
ω0PKZ. When K3/2/n→ 0, the optimal GMM estimator27

has the asymptotic distribution

√
n(θ̂gmm − θ0 − bgmm)

d→ N(0, (σ−2H̄ + lim
n→∞

1

n
D̄0BD̄)−1), (24)

27The weighting matrices for quadratic moments U1, U2 and the optimal weighting matrix for the objective
function Ω−1 involves unknown parameters φ1, φ2, σ

2
0, μ3 and μ4. With consistent preliminary estimators of

those unknown parameters, the feasible optimal GMM estimator can be shown to have the same asymptotic
distribution given by (24).

32



where bgmm = (σ
−2Z 0PKZ + Ď0BĎ)−1[tr(PKGM0), tr(PKG

∗M0), 01×2m]
0 = O(K/n).

As the asymptotic bias
√
nbgmm is O(K/

√
n), the asymptotic distribution of the GMM

estimator θ̂gmm will be centered at θ0 only if K2/n → 0. With a consistently estimated

leading order bias b̃gmm, the bias-corrected GMM (CGMM) estimator θ̂cgmm = θ̂gmm− b̃gmm

has a proper centered asymptotic normal distribution as given in (24) if K3/2/n→ 0.

The asymptotic variance matrix of the many-IV GMM estimator can be compared with

that of the many-IV 2SLS estimator. As D̄0BD̄ is nonnegative definite, the asymptotic

variance of the many-IVGMMestimator is relatively smaller than that of the 2SLS estimator.

Thus, the many-IV GMM estimator with additional quadratic moments improves efficiency

upon the 2SLS estimator.

B.2 Estimation of augmented models in the J test

In this subsection, we focus on the estimation of the augmented model in the test of model

H1 against model H2. The estimator for the test of model H2 against model H1 can be

derived in a similar manner.

B.2.1 2SLS estimation of the augmented model

First, we consider the 2SLS estimator of the augmented model (14). Let M10 = (I −
α10φ20G

∗ − φ10G)
−1. The ideal IV matrix for JZ∗1 in (14) is given by f1 = E(JZ∗1) =

J [φ20G
∗E(Y ) +X∗δ20, GE(Y ), X

∗], where E(Y ) = M10[X
∗(α10δ20 + δ10) + ι · (η1 + α10η2)].

The ideal IVmatrix f1 is infeasible as it involves unknown parameters. We note that f1 can be

considered as a linear combination of the IVs inQ∞ = J [G∗M10X
∗, G∗M10ι,GM10X

∗, GM10ι,X
∗].

Furthermore, under some regularity conditions,M10 = (I−α10φ20G∗−φ10G)−1 =
P∞

j=0(α10φ20G
∗+

φ10G)
j. Hence, M10 in Q∞ can be approximated by polynomials of I, G and G∗.

To achieve asymptotic efficiency, we consider an n×K feasible submatrix of Q∞, denoted

by QK, such that the ideal IV matrix f1 can be approximated by a linear combination of

QK with an approximation error diminishing to zero as the number of IVs K increases. Let

PK = QK(Q
0
KQK)

−Q0
K and Z̃

∗
1 = [(φ̃2G

∗Y +X∗δ̃2), GY,X
∗], where φ̃2, δ̃2 are

√
n-consistent

preliminary estimates. The 2SLS estimator considered is ϑ̂1,tsls = (Z̃∗01 PKZ̃
∗
1)
−1Z̃∗01 PKY.

Under the null hypothesis, it follows by a similar argument as in Liu and Lee (2010) that

if K/n → 0 then
√
n(ϑ̂1,tsls − ϑ10 − b1,tsls)

d→ N(0, σ21H̄
−1
1 ), where H̄1 = limn→∞

1
n
f 01f1 and

b1,tsls = σ21(Z̃
∗0
1 PKZ̃

∗
1)
−1[φ20tr(PKG

∗M10), tr(PKGM10), 01×2m]
0. The term b1,tsls is a bias due

to the presence of many IVs. We can adjust for the many-IV bias by considering the C2SLS

estimator ϑ̂1,ctsls = ϑ̂1,tsls− b̃1,tsls, where b̃1,tsls is a consistent estimator of b1,tsls. If K/n→ 0
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then
√
n(ϑ̂1,ctsls − ϑ10)

d→ N(0, σ21H̄
−1
1 ).

B.2.2 GMM estimation of the augmented model

The GMM estimator uses both linear moment conditions Q0
K 1(ϑ1) = 0 and quadratic ones

[U1 1(ϑ1), U2 1(ϑ1)]
0
1(ϑ1) = 0, where U1 = (JG∗M10J)

t, U2 = (JGM10J)
t, and 1(ϑ1) =

J(Y − Z̃∗1ϑ1). The vector of linear and quadratic empirical moment functions for the GMM

estimation is given by g1(ϑ1) = [QK , U1 1(ϑ1), U2 1(ϑ1)]
0
1(ϑ1). By the generalized Schwarz

inequality, the optimal GMM estimator is given by ϑ̂1,gmm = argmin g
0
1(ϑ1)Ω

−1g1(ϑ1), where

Ω =

Ã
σ21Q

0
KQK μ3Q

0
Kω

μ3ω
0QK (μ4 − 3σ41)ω0ω + σ41Υ

!
,

ω = [vecD(U1), vecD(U2)] and Υ = 1
2
[vec(Us

1), vec(U
s
2)]

0[vec(Us
1), vec(U

s
2)].

Let B−11 = (μ4 − 3σ41)ω0ω + σ41Υ−
μ23
σ21
ω0PKω,

D1 = −σ21

Ã
φ20tr(U

s
1G

∗M10) tr(U s
1GM10) 01×2m

φ20tr(U
s
2G

∗M10) tr(U s
2GM10) 01×2m

!
,

D̄1 = D1 − μ3
σ21
ω0f1, and Ď1 = D1 − μ3

σ21
ω0PKZ̃

∗
1 . Under the null hypothesis, if K

3/2/n → 0,

the optimal GMM estimator28 has the asymptotic distribution

√
n(ϑ̂1,gmm − ϑ10 − b1,gmm)

d→ N(0, (σ−21 H̄1 + lim
n→∞

1

n
D̄0
1B1D̄1)

−1), (25)

where b1,gmm = (σ
−2
1 Z̃∗01 PKZ̃

∗
1+Ď

0
1B1Ď1)

−1[φ20tr(PKG
∗M10), tr(PKGM10), 01×2m]

0 = O(K/n).

With a consistently estimated leading order bias b̃1,gmm, it follows by a similar argument

as in Liu and Lee (2010) that, ifK3/2/n→ 0, the CGMM estimator ϑ̂1,cgmm = ϑ̂1,gmm−b̃1,gmm

has a proper centered asymptotic normal distribution as given in (25).

28With consistent preliminary estimates of the unknown parameters in U1, U2,Ω, the feasible optimal
GMM estimator can be shown to have the same asymptotic distribution given by (25).
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Appendix C: Data appendix 
 

Table C.1: Description of Data 
 

Label Variable definition 
Screen data 
(n.obs. 3196 
networks 33) 

Sport data 
(n.obs. 2934 
networks 32) 

GPA data 
(n.obs. 1443 
networks 13) 

        
  mean std. dev. mean std. dev. mean std.dev. 
        
Screen activity index In the text 1.37 1.23 - - - - 

Sport activity index In the text - - 1.53 1.05 - - 
GPA index In the text - - - - 3.03 1.10 
Individual socio-demographic variables        

Female 
Dummy variable taking value one if the respondent is 
female. 0.53 0.50 0.53 0.50 0.51 0.5 

Black Ethnic group dummies, white is the reference category 0.18 0.38 0.18 0.39 0.14 0.35 
Other races “ 0.09 0.28 0.07 0.26 0.21 0.40 
Grade Grade of the student in the current year. 9.59 1.58 9.47 1.58 9.61 1.7 

Self esteem (Screen, Sport) 

Response to the question: "Compared with other people 
your age, how intelligent are you", coded as 1= 
moderately below average, 2= slightly below average, 
3= about average, 4= slightly above average, 5= 
moderately above average, 6= extremely above average. 

3.90 1.06 3.90 1.06   

Self esteem (Gpa) 

Response to the question: "I have a lot of good 
qualities", coded as 1= strongly agree, 2= agree, 3= 
neither agree nor disagree, 4= disagree, 5= strongly 
disagree. 

    1.72 0.76 

Math_sc_A (Screen, Sport) Mathematics score dummies, including a category 
capturing missing values. D is the reference category 0.29 0.45 0.31 0.46   

Math_sc_B (Screen, Sport) “ 0.31 0.46 0.32 0.47   
Math_sc_C (Screen, Sport) “ 0.23 0.42 0.22 0.42   
Math_sc_mis (Screen, Sport) “ 0.06 0.24 0.05 0.22   

Teacher troubles 

Response to the question: “How often have you had 
trouble getting along with your teachers?” 0= never, 1= 
just a few times, 2= about once a week, 3= almost 
everyday, 4=everyday 

0.84 0.9 0.82 0.88 1.17 1.26 



School attachment 

Response to the question: “I feel like you are part of 
your school", all coded as 1= strongly agree, 2= agree, 
3=neither agree nor disagree, 4= disagree, 5= strongly 
disagree. 

4 0.96 4.03 0.94 2.22 1.12 

Family background variables        

Family size Number of people living in the household 4.45 1.38 4.46 1.37 4.26 1.13 

Parental education (Screen, Sport) 

Schooling level of the (biological or non-biological) 
parent who is living with the child, distinguishing 
between "eighth grade or less", "more than eighth grade, 
but did not graduate from high school", "high school 
graduate", "completed a GED", "went to a business, 
trade, or vocational school after high school", “went to 
college but did not graduate”, “graduated from college 
or a university”, ” professional training beyond a four-
year college”, coded as 1 to 8. If both parents are in the 
household the education of the father is considered. It is 
coded  as zero if no parent lives with child or the 
reported level is “unknown”. 

5.03 2.26 5.02 2.27   

Parental education (Gpa) 

Schooling level of the (biological or non-biological) 
parent who is living with the child, distinguishing 
between "never went to school", "not graduate from high 
school", "high school graduate", "graduated from 
college or a university", "professional training beyond a 
four-year college", coded as 1 to 5. If both parents are in 
the household the education of the father is considered. 
It is coded  as zero if no parent lives with child or the 
reported level is “unknown”. 

    2.78 0.97 

Parent occupation manager 

Parent occupation dummies. Closest description of the 
job of (biological or non-biological) parent that is living 
with the child is manager. If both parents are in the 
household, the occupation of the father is considered. 
“none” is the reference group 

0.1 0.29 0.10 0.3 0.13 0.34 

Parent occupation professional/technical ” 0.17 0.37 0.17 0.37 0.22 0.41 
Parent occupation office or sales worker ” 0.11 0.31 0.11 0.31 0.14 0.34 
Parent occupation manual ” 0.35 0.48 0.35 0.48 0.38 0.49 
Parent occupation military or security ” 0.03 0.17 0.03 0.17 0.04 0.19 
Parent occupation farm or fishery ” 0.03 0.17 0.03 0.17 0.01 0.1 
Parent occupation other ” 0.15 0.36 0.15 0.36 0.04 0.18 

Married Parents 
Dummy variable taking value one if the child leaves in a 
family with both parents who are married 0.73 0.44 0.74 0.44 0.78 0.41 



Parental care Dummy taking value one if both parents care very much 
about her/him 0.92 0.27 0.92 0.27 0.57 0.50 

Residential neighborhood variables        

Neighborhood quality (Screen, Sport) 

Interviewer response to the question "How well kept is 
the building in which the respondent lives", coded as 4= 
very poorly kept (needs major repairs), 3= poorly kept 
(needs minor repairs), 2= fairly well kept (needs 
cosmetic work), 1= very well kept. 

1.53 0.8 1.53 0.81 - - 

Neighborhood quality (Gpa) 

Response to the question: “I feel safe in my 
neighborhood" all coded as 1= strongly agree, 2= agree, 
3=neither agree nor disagree, 4= disagree, 5= strongly 
disagree. 

- - - - 2.07 1.07 

Total number of links 
 

Number of individual social contacts derived from the 
nomination data (Directed networks) 2.18 2.05 2.14 2.00 2.34 2.13 

 Number of individual social contacts derived from the 
nomination data (Undirected networks) 3.48 2.42 3.43 2.35 3.68 2.45 

        
Notes: We consider networks with network size between 50 and 150 individuals. The reported summary statistics are for the samples which are constructed using directed 
network, unless differently specified. Screen and Sport data are derived from the Add Health in-home questionnaire. GPA data are instead derived from the Add-Health in-
school questionnaire. Some variables have been slightly redefined. Differences in sample sizes are mainly due to missing values in variables.  



Table 1: Testing local aggregate versus local average models for sport activities   
Increasing sets of controls- biased corrected optimal GMM 

Directed networks 
Hybrid model (19) 

 
      (1)     (2)     (3)     (4) 
Aggregate (φ1)   0.0216***   0.0217***   0.0215***   0.0213*** 
  (0.0065)  (0.0066)  (0.0065)  (0.0065) 
Average (φ2)   0.0148   0.0143   0.0136   0.0129 
  (0.0266)  (0.0266)  (0.0266)  (0.0266) 
Female  -0.5511***  -0.5523***  -0.5511***  -0.5502*** 
  (0.0379)  (0.0380)  (0.0379)  (0.0379) 
Grade  -0.0638***  -0.0624***  -0.0653***  -0.0651*** 
  (0.0174)  (0.0174)  (0.0174)  (0.0175) 
Math_sc_A   0.0881   0.0866   0.0251   0.0300 
  (0.0684)  (0.0685)  (0.0700)  (0.0700) 
Math_sc_B   0.0646   0.0613   0.0335   0.0372 
  (0.0669)  (0.0670)  (0.0672)  (0.0673) 
Math_sc_C   0.0574   0.0547   0.0460   0.0497 
  (0.0694)  (0.0695)  (0.0693)  (0.0695) 
Math_sc_mis  -0.0073  -0.0055  -0.0226  -0.0125 
  (0.1031)  (0.1031)  (0.1030)  (0.1031) 
Black  -0.0679  -0.0724  -0.0798  -0.0836 
  (0.0775)  (0.0782)  (0.0781)  (0.0782) 
Other races  -0.1722*  -0.1775**  -0.1738*  -0.1699* 
  (0.0905)  (0.0906)  (0.0904)  (0.0908) 
Parental education   0.0066   0.0066   0.0059   0.0061 
  (0.0081)  (0.0081)  (0.0081)  (0.0081) 
School attachment   0.1350***   0.1351***   0.1277***   0.1284*** 
  (0.0204)  (0.0204)  (0.0206)  (0.0206) 
Teacher troubles  -0.0003   0.0004   0.0037   0.0059 
  (0.0220)  (0.0220)  (0.0220)  (0.0220) 
Neighborhood quality   -0.0046   0.0010   0.0042 
   (0.0244)  (0.0244)  (0.0247) 
Family size    0.0258*   0.0261*   0.0276** 
   (0.0142)  (0.0141)  (0.0141) 
Married parents   -0.0223  -0.0315  -0.0244 
   (0.0458)  (0.0459)  (0.0475) 
Self esteem     0.0762***   0.0724*** 
    (0.0187)  (0.0188) 
Parental care    -0.0362  -0.0336 
    (0.0697)  (0.0698) 
Network fixed effects yes yes Yes yes 
Parental occupation dummies no no No yes 
    

J test 
Model (12) 
Null Hp. (α1=0) 

 
No local aver. 

 
t statistic 0.483 

 
Model (16) 
Null Hp. (α2=0) 

 
No local aggr. 

 
t statistic 3.252 

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 2: Testing local aggregate versus local average models for screen activities   
Increasing sets of controls- biased corrected optimal GMM 

Directed networks 
Hybrid model (19) 

 
      (1)      (2)      (3)     (4) 
Aggregate  (φ1)  -0.0022  -0.0022  -0.0022  -0.0026 
  (0.0089)  (0.0089)  (0.0089)  (0.0089) 
Average (φ2)  -0.0118  -0.0126  -0.0123  -0.0111 
  (0.0278)  (0.0279)  (0.0279)  (0.0279) 
Female  -0.1702***  -0.1685***  -0.1683***  -0.1676*** 
  (0.0445)  (0.0446)  (0.0446)  (0.0446) 
Grade  -0.0891***  -0.0897***  -0.0892***  -0.0897*** 
  (0.0204)  (0.0205)  (0.0205)  (0.0205) 
Math_sc_A   0.0064   0.0050   0.0069   0.0041 
  (0.0784)  (0.0785)  (0.0808)  (0.0808) 
Math_sc_B   0.1012   0.1012   0.1034   0.0970 
  (0.0767)  (0.0767)  (0.0773)  (0.0774) 
Math_sc_C   0.1352**   0.1350**   0.1348**   0.1316** 
  (0.0794)  (0.0795)  (0.0796)  (0.0797) 
Math_sc_mis   0.1554   0.1512   0.1507   0.1545 
  (0.1123)  (0.1124)  (0.1126)  (0.1126) 
Black   0.2973***   0.3038***   0.3037***   0.3038*** 
  (0.0885)  (0.0894)  (0.0895)  (0.0895) 
Other races   0.0678   0.0739   0.0750   0.0940 
  (0.0992)  (0.0995)  (0.0995)  (0.0999) 
Parental education  -0.0041  -0.0040  -0.0040  -0.0049 
  (0.0095)  (0.0095)  (0.0095)  (0.0096) 
School attachment  -0.0307  -0.0307  -0.0321  -0.0309 
  (0.0232)  (0.0233)  (0.0236)  (0.0236) 
Teacher troubles   0.0556***   0.0557***   0.0568***   0.0568*** 
  (0.0250)  (0.0250)  (0.0251)  (0.0252) 
Neighborhood quality    0.0053   0.0058   0.0077 
   (0.0286)  (0.0286)  (0.0289) 
Family size   -0.0168  -0.0166  -0.0158 
   (0.0164)  (0.0164)  (0.0164) 
Married parents    0.0313   0.0284  -0.0016 
   (0.0535)  (0.0538)  (0.0555) 
Self esteem   -0.0026  -0.0017 
   (0.0220)  (0.0220) 
Parental care    0.0544   0.0560 
   (0.0816)  (0.0816) 
Network fixed effects yes Yes yes yes 
Parental occupation dummies no No no yes 
    

J test 
Model (12) 
Null Hp. (α1=0) 

 
No local aver. 

 
t statistic 0.368 

 
Model (16) 
Null Hp. (α2=0) 

 
No local aggr. 

 
t statistic 0.312 

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 3: Testing local aggregate versus local average models for education (GPA)   
Increasing sets of controls- biased corrected optimal GMM 

Directed networks 
Hybrid model (19) 

 
      (1)     (2)      (3)     (4) 
Aggregate (φ1)   0.0153***   0.0150***   0.0149***   0.0146*** 
  (0.0046)  (0.0045)  (0.0045)  (0.0045) 
Average (φ2)   0.2279***   0.2258***   0.2216***   0.2177*** 
  (0.0340)  (0.0340)  (0.0340)  (0.0339) 
Female   0.2066***   0.2062***   0.2321***   0.2320*** 
  (0.0561)  (0.0562)  (0.0565)  (0.0566) 
Grade   0.0487*   0.0497*   0.0517*   0.0563** 
  (0.0271)  (0.0271)  (0.0270)  (0.0270) 
Black  -0.2466**  -0.2006  -0.2374*  -0.2585** 
  (0.1249)  (0.1258)  (0.1254)  (0.1255) 
Other races   0.0114   0.0098   0.0103   0.0167 
  (0.0792)  (0.0793)  (0.0789)  (0.0790) 
Parental education   0.0691***   0.0605***   0.0636***   0.0578*** 
  (0.0275)  (0.0276)  (0.0275)  (0.0279) 
School attachment  -0.1237***  -0.1152***  -0.0877***  -0.0912*** 
  (0.0236)  (0.0243)  (0.0251)  (0.0252) 
Teacher troubles  -0.0850***  -0.0841***  -0.0804***  -0.0814*** 
  (0.0212)  (0.0212)  (0.0211)  (0.0211) 
Neighborhood quality   -0.0168   0.0065   0.0106 
   (0.0258)  (0.0263)  (0.0263) 
Family size   -0.0060  -0.0069  -0.0048 
   (0.0248)  (0.0247)  (0.0247) 
Married parents    0.2078***   0.0994   0.1162 
   (0.0687)  (0.0832)  (0.0864) 
Self esteem   -0.1213***  -0.1237*** 
   (0.0371)  (0.0371) 
Parental care    0.1514***   0.1481*** 
   (0.0684)  (0.0684) 
Network fixed effects yes Yes yes yes 
Parental occupation dummies no No no yes 
    

J test 
Model (12) 
Null Hp. (α1=0) 

 
No local aver. 

 
t statistic 6.411 

 
Model (16) 
Null Hp. (α2=0) 

 
No local aggr. 

 
t statistic 3.235 

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 4: Testing local aggregate versus local average models for sport activities 
 Hybrid model (19) only - all controls - alternative estimators- 

Directed networks 
 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Aggregate (φ1)   0.0208***   0.0243***   0.0262***   0.0223***   0.0223***   0.0213*** 
  (0.0077)  (0.0074)  (0.0077)  (0.0066)  (0.0065)  (0.0065) 
Average (φ2)   0.0182  -0.2539  -0.4910   0.0209   0.0160   0.0129 
  (0.3125)  (0.1670)  (0.1745)  (0.0267)  (0.0266)  (0.0266) 
Female  -0.5507***  -0.5496***  -0.5487***  -0.5503***  -0.5502***  -0.5502*** 
  (0.0380)  (0.0387)  (0.0404)  (0.0379)  (0.0379)  (0.0379) 
Grade  -0.0657***  -0.0715***  -0.0767***  -0.0650***  -0.0648***  -0.0651*** 
  (0.0187)  (0.0181)  (0.0189)  (0.0175)  (0.0175)  (0.0175) 
Math_sc_A   0.0295   0.0252   0.0219   0.0297   0.0296   0.0300 
  (0.0702)  (0.0714)  (0.0746)  (0.0700)  (0.0700)  (0.0700) 
Math_sc_B   0.0364   0.0432   0.0496   0.0363   0.0367   0.0372 
  (0.0678)  (0.0687)  (0.0717)  (0.0673)  (0.0673)  (0.0673) 
Math_sc_C   0.0493   0.0462   0.0437   0.0497   0.0496   0.0497 
  (0.0696)  (0.0708)  (0.0739)  (0.0695)  (0.0695)  (0.0695) 
Math_sc_mis  -0.0129  -0.0306  -0.0458  -0.0117  -0.0125  -0.0125 
  (0.1050)  (0.1056)  (0.1102)  (0.1031)  (0.1031)  (0.1031) 
Black  -0.0839  -0.1004  -0.1149  -0.0825  -0.0833  -0.0836 
  (0.0804)  (0.0802)  (0.0838)  (0.0782)  (0.0782)  (0.0782) 
Other races  -0.1717*  -0.1612*  -0.1517  -0.1708*  -0.1703  -0.1699* 
  (0.0917)  (0.0927)  (0.0969)  (0.0908)  (0.0908)  (0.0908) 
Parental education   0.0060   0.0071   0.0081   0.0060   0.0060   0.0061 
  (0.0082)  (0.0083)  (0.0087)  (0.0081)  (0.0081)  (0.0081) 
School attachment   0.1278***   0.1309***   0.1339***   0.1279***   0.1281***   0.1284*** 
  (0.0210)  (0.0211)  (0.0220)  (0.0206)  (0.0206)  (0.0206) 
Teacher troubles   0.0045   0.0118   0.0182   0.0053   0.0057   0.0059 
  (0.0236)  (0.0228)  (0.0239)  (0.0220)  (0.0220)  (0.0220) 
Neighborhood quality   0.0052  -0.0020  -0.0087   0.0049   0.0048   0.0042 
  (0.0261)  (0.0255)  (0.0266)  (0.0247)  (0.0247)  (0.0247) 
Family size   0.0275*   0.0276*   0.0277*   0.0276**   0.0276**   0.0276** 
  (0.0142)  (0.0144)  (0.0151)  (0.0141)  (0.0141)  (0.0141) 
Married parents  -0.0238  -0.0178  -0.0128  -0.0246  -0.0243  -0.0244 
  (0.0480)  (0.0485)  (0.0507)  (0.0475)  (0.0475)  (0.0475) 
Self esteem   0.0723***   0.0731***   0.0738***   0.0723***   0.0724***   0.0724*** 
  (0.0188)  (0.0191)  (0.0200)  (0.0188)  (0.0188)  (0.0188) 
Parental care  -0.0360  -0.0291  -0.0229  -0.0346  -0.0339  -0.0336 
  (0.0702)  (0.0712)  (0.0743)  (0.0698)  (0.0698)  (0.0698) 
Network fixed effects yes yes yes yes yes yes 
Parental occupation dummies yes yes yes yes yes yes 
       
1st Stage F statistic 0.883 1.369     
       
OIR test    p-value 0.887   

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 5: Testing local aggregate versus local average models for screen activities 
 Hybrid model (19) only - all controls - alternative estimators- 

Directed networks 
 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Aggregate (φ1)  -0.0021  -0.0017  -0.0030  -0.0008  -0.0006  -0.0026 
  (0.0103)  (0.0098)  (0.0102)  (0.0091)  (0.0089)  (0.0089) 
Average (φ2)   0.3749  -0.0319  -0.4726  -0.0116  -0.0106  -0.0111 
  (0.3345)  (0.1527)  (0.1597)  (0.0280)  (0.0278)  (0.0279) 
Female  -0.1499***  -0.1683***  -0.1882***  -0.1677***  -0.1676***  -0.1676*** 
  (0.0488)  (0.0451)  (0.0472)  (0.0446)  (0.0446)  (0.0446) 
Grade  -0.0594*  -0.0910***  -0.1255***  -0.0894***  -0.0892***  -0.0897*** 
  (0.0335)  (0.0235)  (0.0246)  (0.0205)  (0.0205)  (0.0205) 
Math_sc_A  -0.0102   0.0044   0.0209   0.0035   0.0034   0.0041 
  (0.0850)  (0.0810)  (0.0847)  (0.0808)  (0.0808)  (0.0808) 
Math_sc_B   0.0672   0.0978   0.1317   0.0962   0.0962   0.0970 
  (0.0844)  (0.0782)  (0.0817)  (0.0774)  (0.0774)  (0.0774) 
Math_sc_C   0.1267   0.1310*   0.1360   0.1310   0.1311   0.1316* 
  (0.0830)  (0.0797)  (0.0834)  (0.0797)  (0.0797)  (0.0797) 
Math_sc_mis   0.1137   0.1573   0.2049   0.1546   0.1541   0.1545 
  (0.1225)  (0.1137)  (0.1189)  (0.1126)  (0.1126)  (0.1126) 
Black   0.3261***   0.3027***   0.2771***   0.3033***   0.3040***   0.3038*** 
  (0.0951)  (0.0899)  (0.0940)  (0.0895)  (0.0895)  (0.0895) 
Other races   0.0883   0.0939   0.1003   0.0934   0.0934   0.0940 
  (0.1041)  (0.0999)  (0.1045)  (0.0999)  (0.0999)  (0.0999) 
Parental education  -0.0016  -0.0051  -0.0090  -0.0049  -0.0049  -0.0049 
  (0.0104)  (0.0097)  (0.0101)  (0.0096)  (0.0096)  (0.0096) 
School attachment  -0.0374  -0.0308  -0.0232  -0.0314  -0.0314  -0.0309 
  (0.0251)  (0.0237)  (0.0248)  (0.0236)  (0.0236)  (0.0236) 
Teacher troubles   0.0578***   0.0567***   0.0556***   0.0566***   0.0567***   0.0568*** 
  (0.0262)  (0.0252)  (0.0263)  (0.0252)  (0.0252)  (0.0252) 
Neighborhood quality  -0.0143   0.0089   0.0337   0.0081   0.0080   0.0077 
  (0.0356)  (0.0302)  (0.0315)  (0.0289)  (0.0289)  (0.0289) 
Family size  -0.0070  -0.0164  -0.0267  -0.0157  -0.0157  -0.0158 
  (0.0188)  (0.0168)  (0.0176)  (0.0164)  (0.0164)  (0.0164) 
Married parents  -0.0452   0.0009   0.0511  -0.0018  -0.0018  -0.0016 
  (0.0690)  (0.0580)  (0.0607)  (0.0555)  (0.0555)  (0.0555) 
Self esteem   0.0017  -0.0019  -0.0058  -0.0018  -0.0017  -0.0017 
  (0.0231)  (0.0221)  (0.0231)  (0.0220)  (0.0220)  (0.0220) 
Parental care   0.0937   0.0546   0.0118   0.0564   0.0564   0.0560 
  (0.0908)  (0.0828)  (0.0866)  (0.0816)  (0.0816)  (0.0816) 
Network fixed effects yes yes yes yes yes yes 
Parental occupation dummies yes yes yes yes yes yes 
       
1st Stage F statistic 0.870 1.641     
       
OIR test    p-value 0.698   

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 6: Testing local aggregate versus local average models for education (GPA) 
 Hybrid model (19) only - all controls - alternative estimators- 

Directed networks 
 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Aggregate (φ1)   0.0059   0.0143***   0.0230***   0.0147***   0.0148***   0.0146*** 
  (0.0068)  (0.0052)  (0.0058)  (0.0045)  (0.0045)  (0.0045) 
Average (φ2)   0.6952**   0.1401  -0.4520**   0.2447***   0.2270***   0.2177*** 
  (0.3201)  (0.1523)  (0.1706)  (0.0340)  (0.0338)  (0.0339) 
Female   0.2070***   0.2434***   0.2820***   0.2326***   0.2317***   0.2320*** 
  (0.0624)  (0.0576)  (0.0646)  (0.0565)  (0.0566)  (0.0566) 
Grade   0.1156***   0.0446  -0.0311   0.0588**   0.0574**   0.0563** 
  (0.0494)  (0.0331)  (0.0370)  (0.0269)  (0.0269)  (0.0270) 
Black  -0.2725***  -0.2534***  -0.2332***  -0.2556***  -0.2585***  -0.2585*** 
  (0.1310)  (0.1261)  (0.1413)  (0.1254)  (0.1255)  (0.1255) 
Other races  -0.0081   0.0230   0.0560   0.0156   0.0163   0.0167 
  (0.0841)  (0.0797)  (0.0893)  (0.0789)  (0.0790)  (0.0790) 
Parental education   0.0323   0.0593**   0.0882***   0.0547**   0.0571**   0.0578** 
  (0.0329)  (0.0289)  (0.0324)  (0.0279)  (0.0279)  (0.0279) 
School attachment  -0.0998***  -0.0893***  -0.0782***  -0.0915***  -0.0911***  -0.0912*** 
  (0.0269)  (0.0255)  (0.0285)  (0.0252)  (0.0252)  (0.0252) 
Teacher troubles  -0.0643***  -0.0835***  -0.1040***  -0.0801***  -0.0811***  -0.0814*** 
  (0.0245)  (0.0218)  (0.0244)  (0.0211)  (0.0211)  (0.0211) 
Neighborhood quality   0.0128   0.0109   0.0089   0.0107   0.0107   0.0106 
  (0.0274)  (0.0264)  (0.0296)  (0.0263)  (0.0263)  (0.0263) 
Family size  -0.0083  -0.0040   0.0005  -0.0051  -0.0049  -0.0048 
  (0.0259)  (0.0249)  (0.0279)  (0.0247)  (0.0247)  (0.0247) 
Married parents   0.1571   0.1120   0.0638   0.1205   0.1169   0.1162 
  (0.0935)  (0.0876)  (0.0981)  (0.0863)  (0.0864)  (0.0864) 
Self esteem  -0.1031***  -0.1253***  -0.1491***  -0.1216***  -0.1232***  -0.1237*** 
  (0.0407)  (0.0377)  (0.0423)  (0.0371)  (0.0371)  (0.0371) 
Parental care   0.1059   0.1615***   0.2209***   0.1451**   0.1471**   0.1481** 
  (0.0780)  (0.0702)  (0.0787)  (0.0683)  (0.0684)  (0.0684) 
Network fixed effects yes yes yes yes yes yes 
Parental occupation dummies yes yes yes yes yes yes 
       
1st Stage F statistic 1.127 2.886     
       
OIR test    p-value 0.540   

 
 

Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 7: Testing local aggregate versus local average models for sport activities   
Increasing sets of controls- biased corrected optimal GMM 

Undirected networks 
Hybrid model (19) 

 
      (1)     (2)     (3)     (4) 
Aggregate (φ1)   0.0153***   0.0152***   0.0148***   0.0143*** 
  (0.0052)  (0.0052)  (0.0052)  (0.0052) 
Average (φ2)   0.0019   0.0024   0.0025   0.0026 
  (0.0252)  (0.0252)  (0.0252)  (0.0251) 
Female  -0.5486***  -0.5499***  -0.5492***  -0.5484*** 
  (0.0378)  (0.0379)  (0.0378)  (0.0378) 
Grade  -0.0617***  -0.0615***  -0.0617***  -0.0610*** 
  (0.0256)  (0.0256)  (0.0256)  (0.0256) 
Math_sc_A   0.0730   0.0715   0.0118   0.0158 
  (0.0685)  (0.0686)  (0.0700)  (0.0701) 
Math_sc_B   0.0598   0.0559   0.0291   0.0320 
  (0.0669)  (0.0670)  (0.0672)  (0.0673) 
Math_sc_C   0.0497   0.0471   0.0385   0.0413 
  (0.0695)  (0.0695)  (0.0694)  (0.0695) 
Math_sc_mis  -0.0119  -0.0099  -0.0272  -0.0184 
  (0.1028)  (0.1028)  (0.1027)  (0.1028) 
Black  -0.0198  -0.0202  -0.0283  -0.0382 
  (0.0881)  (0.0884)  (0.0883)  (0.0885) 
Other races  -0.1541*  -0.1599*  -0.1562*  -0.1529* 
  (0.0916)  (0.0917)  (0.0915)  (0.0920) 
Parental education   0.0078   0.0077   0.0070   0.0070 
  (0.0081)  (0.0081)  (0.0081)  (0.0082) 
School attachment   0.1304***   0.1302***   0.1236***   0.1245*** 
  (0.0204)  (0.0205)  (0.0206)  (0.0207) 
Teacher troubles   0.0033   0.0042   0.0070   0.0095 
  (0.0220)  (0.0220)  (0.0220)  (0.0220) 
Neighborhood quality   -0.0105  -0.0053  -0.0016 
   (0.0243)  (0.0243)  (0.0246) 
Family size    0.0270*   0.0273*   0.0288** 
   (0.0142)  (0.0141)  (0.0142) 
Married parents   -0.0268  -0.0354  -0.0261 
   (0.0458)  (0.0459)  (0.0475) 
Self esteem    0.0749   0.0714 
   (0.0187)  (0.0188) 
Parental care   -0.0394  -0.0374 
   (0.0697)  (0.0698) 
Network fixed effects yes yes yes yes 
Parental occupation dummies no no no yes 
    

J test 
Model (12) 
Null Hp. (α1=0) 

 
No local aver. 

 
t statistic 0.105 

 
Model (16) 
Null Hp. (α2=0) 

 
No local aggr. 

 
t statistic 2.746 

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 8: Testing local aggregate versus local average models for screen activities   
Increasing sets of controls- biased corrected optimal GMM 

Undirected networks 
Hybrid model (19) 

 
       (1)     (2)     (3)     (4) 
Aggregate (φ1)  -0.0003  -0.0003  -0.0004  -0.0006 
  (0.0070)  (0.0070)  (0.0070)  (0.0070) 
Average (φ2)  -0.0062  -0.0062  -0.0061  -0.0054 
  (0.0271)  (0.0271)  (0.0271)  (0.0271) 
Female  -0.1678***  -0.1660***  -0.1655***  -0.1656*** 
  (0.0444)  (0.0445)  (0.0445)  (0.0445) 
Grade  -0.0559*  -0.0560*  -0.0553*  -0.0579* 
  (0.0300)  (0.0300)  (0.0300)  (0.0301) 
Math_sc_A   0.0054   0.0037   0.0052   0.0024 
  (0.0784)  (0.0785)  (0.0807)  (0.0808) 
Math_sc_B   0.0954   0.0954   0.0975   0.0914 
  (0.0765)  (0.0766)  (0.0772)  (0.0773) 
Math_sc_C   0.1333*   0.1329*   0.1327*   0.1296 
  (0.0794)  (0.0795)  (0.0796)  (0.0797) 
Math_sc_mis   0.1653   0.1612   0.1608   0.1651 
  (0.1119)  (0.1120)  (0.1121)  (0.1122) 
Black   0.2179***   0.2224***   0.2225***   0.2272*** 
  (0.0975)  (0.0981)  (0.0982)  (0.0983) 
Other races   0.0591   0.0660   0.0676   0.0875 
  (0.1009)  (0.1012)  (0.1012)  (0.1016) 
Parental education  -0.0040  -0.0039  -0.0039  -0.0049 
  (0.0095)  (0.0095)  (0.0095)  (0.0096) 
School attachment  -0.0337  -0.0338  -0.0352  -0.0339 
  (0.0233)  (0.0234)  (0.0236)  (0.0236) 
Teacher troubles   0.0570***   0.0569***   0.0582***   0.0580*** 
  (0.0250)  (0.0251)  (0.0252)  (0.0252) 
Neighborhood quality    0.0054   0.0060   0.0085 
   (0.0284)  (0.0285)  (0.0287) 
Family size   -0.0188  -0.0186  -0.0178 
   (0.0164)  (0.0164)  (0.0164) 
Married parents    0.0324   0.0293   0.0007 
   (0.0533)  (0.0536)  (0.0554) 
Self esteem   -0.0023  -0.0016 
   (0.0219)  (0.0220) 
Parental care    0.0578   0.0579 
   (0.0816)  (0.0816) 
Network fixed effects yes yes yes yes 
Parental occupation dummies no no no yes 
    

J test 
Model (12) 
Null Hp. (α1=0) 

 
No local aver. 

 
t statistic 0.185 

 
Model (16) 
Null Hp. (α2=0) 

 
No local aggr. 

 
t statistic -0.086 

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 9: Testing local aggregate versus local average models for education (GPA)   
Increasing sets of controls- biased corrected optimal GMM 

Undirected networks 
Hybrid model (19) 

 
      (1)      (2)     (3)     (4) 
Aggregate (φ1)   0.0150***   0.0146***   0.0145***   0.0144*** 
  (0.0035)  (0.0035)  (0.0035)  (0.0035) 
Average (φ2)   0.2167***   0.2173***   0.2144***   0.2135*** 
  (0.0315)  (0.0315)  (0.0315)  (0.0314) 
Female   0.2198***   0.2201***   0.2409***   0.2416*** 
  (0.0549)  (0.0549)  (0.0552)  (0.0553) 
Grade   0.0493   0.0508   0.0458   0.0468 
  (0.0464)  (0.0463)  (0.0461)  (0.0462) 
Black  -0.2092  -0.1685  -0.2011  -0.2310* 
  (0.1326)  (0.1332)  (0.1328)  (0.1333) 
Other races   0.0270   0.0290   0.0295   0.0331 
  (0.0782)  (0.0784)  (0.0780)  (0.0781) 
Parental education   0.0625***   0.0544**   0.0575**   0.0521* 
  (0.0269)  (0.0271)  (0.0269)  (0.0274) 
School attachment  -0.1116***  -0.1040***  -0.0783***  -0.0807*** 
  (0.0234)  (0.0240)  (0.0248)  (0.0249) 
Teacher troubles  -0.0781***  -0.0775***  -0.0735***  -0.0749*** 
  (0.0210)  (0.0209)  (0.0209)  (0.0209) 
Neighborhood quality   -0.0162   0.0062   0.0102 
   (0.0253)  (0.0258)  (0.0259) 
Family size   -0.0103  -0.0112  -0.0102 
   (0.0244)  (0.0243)  (0.0244) 
Married parents    0.1900***   0.0822   0.0982 
   (0.0676)  (0.0814)  (0.0846) 
Self esteem   -0.1116***  -0.1145*** 
   (0.0365)  (0.0366) 
Parental care    0.1542***   0.1533*** 
   (0.0669)  (0.0670) 
Network fixed effects yes yes yes yes 
Parental occupation dummies no no no yes 
    

J test 
Model (12) 
Null Hp. (α1=0) 

 
No local aver. 

 
t statistic 6.796 

 
Model (16) 
Null Hp. (α2=0) 

 
No local aggr. 

 
t statistic 4.103 

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 10: Testing local aggregate versus local average models for sport activities 
 Hybrid model (19) only - all controls - alternative estimators- 

Undirected networks 
 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Aggregate (φ1)   0.0122**   0.0134**   0.0123**   0.0160***   0.0161***   0.0143*** 
  (0.0059)  (0.0056)  (0.0068)  (0.0052)  (0.0052)  (0.0052) 
Average (φ2)   0.4262   0.1160  -0.9655   0.0151   0.0029   0.0026 
  (0.2701)  (0.1739)  (0.2109)  (0.0252)  (0.0251)  (0.0251) 
Female  -0.5488***  -0.5490***  -0.5492***  -0.5474***  -0.5486***  -0.5484*** 
  (0.0393)  (0.0379)  (0.0460)  (0.0378)  (0.0378)  (0.0378) 
Grade  -0.0772***  -0.0643***  -0.0212  -0.0601***  -0.0604***  -0.0610*** 
  (0.0288)  (0.0266)  (0.0323)  (0.0256)  (0.0256)  (0.0256) 
Math_sc_A  -0.0126   0.0050   0.0704   0.0153   0.0144   0.0158 
  (0.0745)  (0.0710)  (0.0861)  (0.0701)  (0.0701)  (0.0701) 
Math_sc_B   0.0005   0.0217   0.0987   0.0318   0.0310   0.0320 
  (0.0724)  (0.0685)  (0.0831)  (0.0673)  (0.0673)  (0.0673) 
Math_sc_C   0.0105   0.0316   0.1072   0.0408   0.0406   0.0413 
  (0.0746)  (0.0707)  (0.0857)  (0.0695)  (0.0695)  (0.0695) 
Math_sc_mis   0.0103  -0.0137  -0.0965  -0.0167  -0.0187  -0.0184 
  (0.1088)  (0.1039)  (0.1260)  (0.1028)  (0.1028)  (0.1028) 
Black  -0.0489  -0.0425  -0.0197  -0.0388  -0.0384  -0.0382 
  (0.0921)  (0.0887)  (0.1076)  (0.0885)  (0.0885)  (0.0885) 
Other races  -0.2093**  -0.1696*  -0.0271  -0.1536*  -0.1543*  -0.1529* 
  (0.1018)  (0.0949)  (0.1150)  (0.0920)  (0.0920)  (0.0920) 
Parental education   0.0039   0.0060   0.0134   0.0069   0.0070   0.0070 
  (0.0087)  (0.0083)  (0.0100)  (0.0082)  (0.0082)  (0.0082) 
School attachment   0.1138***   0.1223***   0.1536***   0.1229***   0.1238***   0.1245*** 
  (0.0228)  (0.0213)  (0.0258)  (0.0207)  (0.0207)  (0.0207) 
Teacher troubles   0.0007   0.0056   0.0234   0.0101   0.0093   0.0095 
  (0.0233)  (0.0222)  (0.0270)  (0.0220)  (0.0220)  (0.0220) 
Neighborhood quality   0.0103   0.0030  -0.0252  -0.0005  -0.0007  -0.0016 
  (0.0264)  (0.0250)  (0.0303)  (0.0246)  (0.0246)  (0.0246) 
Family size   0.0244   0.0272*   0.0368**   0.0287**   0.0288**   0.0288** 
  (0.0149)  (0.0143)  (0.0173)  (0.0142)  (0.0142)  (0.0142) 
Married parents  -0.0263  -0.0251  -0.0223  -0.0258  -0.0257  -0.0261 
  (0.0494)  (0.0476)  (0.0578)  (0.0475)  (0.0475)  (0.0475) 
Self esteem   0.0633***   0.0690***   0.0898***   0.0712***   0.0711***   0.0714*** 
  (0.0202)  (0.0191)  (0.0232)  (0.0188)  (0.0188)  (0.0188) 
Parental care  -0.0403  -0.0388  -0.0327  -0.0367  -0.0378  -0.0374 
  (0.0726)  (0.0700)  (0.0848)  (0.0698)  (0.0698)  (0.0698) 
Network fixed effects yes yes yes yes yes yes 
Parental occupation dummies yes yes yes yes yes yes 
       
1st Stage F statistic 1.334 1.261     
       
OIR test    p-value 0.234   

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 11: Testing local aggregate versus local average models for screen activities 
 Hybrid model (19) only - all controls - alternative estimators- 

Undirected networks 
 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Aggregate (φ1)  -0.0011   0.0006  -0.0030   0.0006   0.0024  -0.0006 
  (0.0080)  (0.0078)  (0.0086)  (0.0071)  (0.0070)  (0.0070) 
Average (φ1)   0.1680  -0.1723  -0.7149   0.0017  -0.0094  -0.0054 
  (0.4455)  (0.1886)  (0.2080)  (0.0273)  (0.0271)  (0.0271) 
Female  -0.1650***  -0.1651***  -0.1644***  -0.1657***  -0.1660***  -0.1656*** 
  (0.0449)  (0.0448)  (0.0494)  (0.0446)  (0.0446)  (0.0445) 
Grade  -0.0561*  -0.0589*  -0.0656**  -0.0573*  -0.0569*  -0.0579* 
  (0.0307)  (0.0303)  (0.0334)  (0.0301)  (0.0301)  (0.0301) 
Math_sc_A  -0.0017   0.0026   0.0124   0.0016   0.0012   0.0024 
  (0.0818)  (0.0812)  (0.0896)  (0.0808)  (0.0808)  (0.0808) 
Math_sc_B   0.0728   0.1073   0.1660*   0.0896   0.0902   0.0914 
  (0.0905)  (0.0800)  (0.0882)  (0.0773)  (0.0773)  (0.0773) 
Math_sc_C   0.1160   0.1395*   0.1793**   0.1283   0.1287   0.1296 
  (0.0863)  (0.0812)  (0.0895)  (0.0797)  (0.0797)  (0.0797) 
Math_sc_mis   0.1374   0.1912   0.2805**   0.1633   0.1641   0.1651 
  (0.1337)  (0.1166)  (0.1286)  (0.1122)  (0.1122)  (0.1122) 
Black   0.2282***   0.2262***   0.2254***   0.2268***   0.2261***   0.2272*** 
  (0.0992)  (0.0988)  (0.1090)  (0.0983)  (0.0983)  (0.0983) 
Other races   0.0829   0.0891   0.1038   0.0863   0.0854   0.0875 
  (0.1030)  (0.1022)  (0.1127)  (0.1017)  (0.1016)  (0.1016) 
Parental education  -0.0044  -0.0055  -0.0073  -0.0049  -0.0049  -0.0049 
  (0.0098)  (0.0096)  (0.0106)  (0.0096)  (0.0096)  (0.0096) 
School attachment  -0.0379  -0.0297  -0.0143  -0.0345  -0.0347  -0.0339 
  (0.0264)  (0.0242)  (0.0267)  (0.0236)  (0.0236)  (0.0236) 
Teacher troubles   0.0568***   0.0585***   0.0624***   0.0577***   0.0575***   0.0580*** 
  (0.0256)  (0.0253)  (0.0279)  (0.0252)  (0.0252)  (0.0252) 
Neighborhood quality  -0.0003   0.0165   0.0422   0.0086   0.0092   0.0085 
  (0.0362)  (0.0303)  (0.0334)  (0.0287)  (0.0287)  (0.0287) 
Family size  -0.0136  -0.0221  -0.0362***  -0.0175  -0.0176  -0.0178 
  (0.0200)  (0.0171)  (0.0189)  (0.0164)  (0.0164)  (0.0164) 
Married parents  -0.0099   0.0121   0.0474   0.0004   0.0008   0.0007 
  (0.0628)  (0.0569)  (0.0628)  (0.0554)  (0.0554)  (0.0554) 
Self esteem   0.0001  -0.0030  -0.0078  -0.0017  -0.0017  -0.0016 
  (0.0226)  (0.0222)  (0.0245)  (0.0220)  (0.0220)  (0.0220) 
Parental care   0.0730   0.0427  -0.0062   0.0586   0.0579   0.0579 
  (0.0914)  (0.0836)  (0.0922)  (0.0816)  (0.0815)  (0.0815) 
Network fixed effects yes yes yes yes yes yes 
Parental occupation dummies yes yes yes yes yes yes 
       
1st Stage F statistic 0.473 1.093     
       
OIR test    p-value 0.804   

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 



Table 12: Testing local aggregate versus local average models for education (GPA) 
 Hybrid model (19) only - all controls - alternative estimators- 

Undirected networks 
 

 2SLS-1 2SLS-2 C2SLS GMM-1 GMM-2 CGMM 
Aggregate (φ1)   0.0107***   0.0104***   0.0209***   0.0145***   0.0149***   0.0144*** 
  (0.0044)  (0.0040)  (0.0049)  (0.0035)  (0.0035)  (0.0035) 
Average (φ2)   0.6099***   0.6449***  -0.6802***   0.2480***   0.2250***   0.2135*** 
  (0.2790)  (0.1941)  (0.2376)  (0.0311)  (0.0312)  (0.0314) 
Female   0.2217***   0.2197***   0.2966***   0.2412***   0.2409***   0.2416*** 
  (0.0581)  (0.0572)  (0.0700)  (0.0552)  (0.0553)  (0.0553) 
Grade   0.0603   0.0615   0.0167*   0.0471*   0.0467*   0.0468* 
  (0.0476)  (0.0473)  (0.0579)  (0.0461)  (0.0462)  (0.0462) 
Black  -0.2136  -0.2120  -0.2796  -0.2297  -0.2293  -0.2310 
  (0.1353)  (0.1355)  (0.1659)  (0.1330)  (0.1332)  (0.1333) 
Other races   0.0576   0.0600  -0.0351   0.0344   0.0344   0.0331 
  (0.0813)  (0.0804)  (0.0984)  (0.0779)  (0.0781)  (0.0781) 
Parental education   0.0295   0.0276   0.1026***   0.0495*   0.0510*   0.0521* 
  (0.0316)  (0.0297)  (0.0364)  (0.0273)  (0.0273)  (0.0274) 
School attachment  -0.0852***  -0.0857***  -0.0686***  -0.0800***  -0.0802***  -0.0807*** 
  (0.0255)  (0.0254)  (0.0311)  (0.0249)  (0.0249)  (0.0249) 
Teacher troubles  -0.0586***  -0.0572***  -0.1111***  -0.0735***  -0.0743***  -0.0749*** 
  (0.0239)  (0.0225)  (0.0276)  (0.0208)  (0.0208)  (0.0209) 
Neighborhood quality   0.0132   0.0135   0.0024   0.0103   0.0105   0.0102 
  (0.0262)  (0.0263)  (0.0322)  (0.0258)  (0.0258)  (0.0259) 
Family size  -0.0156  -0.0161   0.0033  -0.0106  -0.0104  -0.0102 
  (0.0249)  (0.0249)  (0.0304)  (0.0243)  (0.0243)  (0.0244) 
Married parents   0.1114   0.1127   0.0635   0.0979   0.0986   0.0982 
  (0.0860)  (0.0861)  (0.1053)  (0.0844)  (0.0845)  (0.0846) 
Self esteem  -0.0942***  -0.0924***  -0.1613***  -0.1123***  -0.1137***  -0.1145*** 
  (0.0396)  (0.0384)  (0.0470)  (0.0365)  (0.0365)  (0.0366) 
Parental care   0.1268***   0.1241***   0.2299***   0.1528***   0.1522***   0.1533*** 
  (0.0712)  (0.0697)  (0.0853)  (0.0669)  (0.0670)  (0.0670) 
Network fixed effects yes yes yes yes yes Yes 
Parental occupation dummies yes yes yes yes yes Yes 
       
1st Stage F statistic 1.381 1.730     
       
OIR test    p-value 0.862   

 
Note: Coefficients marked with one (two) [three] stars are significant at 10 (5) [1] percent level. 
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