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ABSTRACT 

Absorptive Capacity and the Growth Effects of Regional Transfers: 
A Regression Discontinuity Design with Heterogeneous  

Treatment Effects* 

Transfers to individuals, firms, and regions are often regulated by threshold 
rules, giving rise to a regression discontinuity design. An example are 
transfers provided by the European Commission to regions of EU member 
states below a certain income level. Researchers have focused on estimation 
of the average treatment effect of this program, assuming that it does not vary 
in a systematic way across units. We suggest a regression discontinuity 
design which allows for parametric or nonparametric identification of 
heterogeneous average treatment effects that systematically vary with 
observable characteristics in order to shed light on the role of absorptive 
capacity in determining the impact of regional transfers on economic growth 
across regions in the European Union. The results suggest that only about 
47% of the regions, namely those with a sufficiently high endowment with 
human capital and a high quality of government, are able to turn transfers 
under the Union's Objective 1 Structural Funds programme into faster growth. 
Those regions are the ones which are responsible for a positive average effect 
of the programme. 
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1 Introduction

Economic growth is considered to depend on a region’s absorptive capacity. A
higher level of absorptive capacity facilitates technology transfer and thereby stim-
ulates catch-up processes (see Benhabib and Spiegel, 1994; Griffith, Redding and
van Reenen, 2004; and Becker, Hornung, and Woessmann, 2011). Similarly, we ex-
pect the response of economic growth to fiscal stimuli in general and transfers in
specific to depend on a targeted region’s absorptive capacity, The reason is that
higher levels of human capital and quality of government may enable a recipient
region to use funds more efficiently.1 The critical role of absorptive capacity in this
wide interpretation surfaces in both the literatures on growth and convergence and
the one on economic effects of aid (see Burnside and Dollar, 2000, 2004). While
views may differ with regard to the sources of higher absorptive capacity and the
exact channels through which it promotes economic prosperity, there is unequivocal
agreement about a positive role of higher absorptive capacity in the form of better
education or higher endowments with skilled labor and better economic, judicial,
or political institutions for economic growth. Also, while there is mixed support
for the benefit of transfers from developed to less developed countries or regions,2

proponents and opponents would agree that transfers targeted towards countries or
regions will generate a marginal return on investment which is ceteris paribus higher
in regions with a higher absorptive capacity.3

In this paper, we provide evidence on the relevance of absorptive capacity for
regional economic growth by looking at European Union transfers to sub-national
regions. The European Commission takes a number of initiatives to pursue its
goals of growth and convergence. Such initiatives are subsumed under two major
funding programmes: the Structural Funds – which are composed of the European
Regional Development Fund (ERDF) and the European Social Fund – and the
Cohesion Fund. In this project, we single out one budget among the Structural
Funds – which is referred to as Objective 1 – for the following reasons. First,
the Objective 1 program is the biggest initiative among the aforementioned pools.
Second, its goal is most clearly directed to provide transfers to the poorest regions
of the EU to allow them to catch up with the EU average. Third, it exhibits

1We interpret absorptive capacity in a very broad sense, including endowments with human
capital and a country’s or region’s ability to translate stimuli into economic activity using best-
practice technologies as well as institutional characteristics which prevent misuse of resources in
unproductive ways.

2For instance, see Dalgaard, Hansen, and Tarp (2004) who argue in favor of an aid-growth link,
and Easterly (2003) who questions the effectiveness of aid with respect to economic growth.

3The direct link between political institutions and growth as discussed, for instance, in Mauro
(1995) and Acemoglu, Johnson, and Robinson (2005) is not at the center of this study. We focus
on the role of political institutions for transfer effectiveness.
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a treatment discontinuity which may be used for identification of a local average
treatment effect: only so-called NUTS2 regions4 whose per-capita GDP is below
75% of the EU average are eligible for funding while regions above the 75% threshold
are not eligible.5 We used this design in Becker, Egger, and von Ehrlich (2010) to
identify the local average treatment effect of Objective 1 funding on average annual
growth of per-capita income measured at the treatment threshold. The main finding
was that, on average, Objective 1 treatment raises growth in the neighborhood of the
threshold and, according to a back-of-the-envelope calculation (which assumes that
tax collection and transfers are organized in a non-distorting way) exhibits a positive
net effect. However, what we are interested in here is not a single local average
treatment effect (LATE) but estimation of heterogeneous local average treatment
effects (HLATE). In particular, we wish to infer how the treatment effect of regional
transfers varies with absorptive capacity of targeted regions.

The paper contributes to two literatures. First, it formulates a flexible regression
discontinuity design (RDD) which is applicable with fixed but arbitrary numbers of
forcing variables, i.e. the variables determining treatment status. It also allows for
fixed but arbitrary numbers of variables the treatment effect interacts with. For such
designs, we formulate an RDD for the HLATE and illustrate that nonparametric
estimators work comparatively well relative to parametric estimators of the multi-
variate control function, even in small to medium-sized samples. Not surprisingly,
parametric estimators – if the functional form of the relationship between forcing
and treatment variable is known – work slightly better than their nonparametric
counterparts in terms of root mean squared error, but the HLATE estimates appear
to have small biases in our simulations with one or two treatment interaction terms.
Obviously, with regional per-capita income levels prior to a programming period
as one forcing (threshold) variable and Objective 1 treatment interaction with two
measures of absorptive capacity, the application of interest here is a special case of
that general design. Second, with regard to the literature on growth effects of trans-
fer treatment – such as national or regional aid, of which EU Objective 1 transfer are
a prominent example – we shed light on the quantitative importance of absorptive
capacity in terms of human capital endowments and quality of government as two
measures of absorptive capacity for the treatment effect of transfers on economic
growth.

The empirical application reveals a great variability of the impact of Objective 1

4NUTS is the acronym for N omenclature des U nités Territoriales S tatistiques coined by EU-
ROSTAT which refers to regional aggregates. NUTS2 regions correspond to groups of counties
and unitary authorities with a population of 0.8-3 million inhabitants.

5Funding periods are called Programming Periods in EU jargon and last for 5 to 7 years. The
three most recent Programming Periods were 1989-1993, 1994-1999 and 2000-2006. Eligibility is
determined in pre-specified years prior to a Programming Period.
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treatment on regional growth that is related to absorptive capacity as measured by
a region’s endowment with human capital and with regional quality of government.
Higher positive effects of Objective 1 transfers are realized in regions with above-
average levels of human capital endowments and quality of government relative to
other regions. The LATE of Objective 1 tends to be insignificantly different from
zero for other regions.

The remainder of the paper is organized as follows. In the next section, we outline
the econometric model with RDDs for the HLATE in general terms. An Appendix
provides evidence on the small sample performance in terms of bias and root mean
squared error for identification of the HLATE in the distribution of treatment effects
with nonparametric versus parametric control functions. In Section 3, we apply
this identification strategy for the HLATE to a sample of NUTS2 regions of 25
EU countries and evaluate the role of absorptive capacity for the effectiveness of
Objective 1 transfers for regional economic growth. Section 4 concludes with a
summary of our main findings.

2 RDD for heterogeneous treatment effects

Our focus is on identification of heterogeneous treatment effects with an RDD where
the heterogeneity of treatment effects pertains to interactions with exogenous ob-
servable variables. A standard fuzzy RDD, which contains the sharp RDD as a
limiting case, exploits discontinuities in the probability of treatment conditional on
one forcing variable. The result is a research design where the rule giving rise to the
discontinuity becomes an instrumental variable for the actual treatment status. In
a fuzzy RDD, one can identify a local average treatment effect (LATE) in the sense
of Imbens and Angrist (1994). LATE is the average treatment effect for compliers,
i.e. those treated who take the treatment only when eligible, but do not get treated
when ineligible. Our aim is to employ estimators, where the estimated treatment
effect is not (only) local in the sense of being a LATE, but local and heterogenous
in the sense that it is allowed to vary with a fixed but arbitrary number of observ-
ables. Accordingly, we refer to this as a heterogenous local average treatment effect
(HLATE). We will allow heterogeneity of treatment effects to vary with variables
that do or do not influence treatment status. Moreover, for the sake of generality,
we will consider the case of a fixed but arbitrary number of forcing variables (and,
hence, discontinuities at potentially more than one treatment threshold) as well as
a fixed but arbitrary number of exogenous variables interacting with the treatment
effect.

In the following, we the outline parametric as well as nonparametric identification
for the most general case with many forcing variables and many variables affecting
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the treatment effects. Building on this, we compare the performance of the derived
estimators in Monte Carlo studies (see Appendix C) where we focus on designs which
permit graphical illustration.6

2.1 Definition of heterogeneous local average treatment ef-
fects (HLATE)

Let us use the following notation. First, use Ti to denote a treatment indicator
which is equal to one if treatment is received by unit i and zero otherwise. Outcome
yi is a function of treatment, of the 1×K vector xi of forcing variables, and of the
1× L vector zi of interaction variables that render treatment more or less effective
but do not affect treatment assignment. We seek to estimate the heterogenous local
average treatment effect

HLATE(xi = x0, zi) = HLATE(x0, zi) = E[y1i|x0, zi]− E[y0i|x0, zi] (1)

where y1i denotes the outcome with treatment and y0i the outcome without treat-
ment and x0 denotes the 1 × K vector of threshold values x0k for the K forcing
variables.

The challenge for treatment evaluation arises because we observe each individual
i only in one of two mutually exclusive states of the world, either with or without
treatment, and treatment assignment is not random but depends on the information
in xi. In contrast to the commonly identified local average treatment effect (LATE),
the HLATE above allows for variation in the dimensions of zi. This flexibility is
particularly valuable as in many cases where the LATE is not different from zero,
the HLATE may vary substantially around the LATE.

In the RDD, the treatment probability is a discontinuous function of the forcing
variables

P (Ti = 1|xi) =

{
g1(xi) if xik ≥ x0k ∀ k ∈ K
g0(xi) otherwise

(2)

where x0k represents the threshold value of the k-th forcing variable with k =
1, ..., K. The literature distinguishes two types of RDD: the sharp design where
g1(x0) − g0(x0) = 1 and the fuzzy design where 0 < g1(x0) − g0(x0) < 1. Accord-
ingly, in the sharp design, the treatment probability jumps from zero to one once
all K treatment rules are satisfied while the probability jump is less than one in the
fuzzy design where treatment assignment is noisy due to exemptions from the rules.

6Obviously, with more than two variables enforcing treatment status or co-determining treat-
ment effects, graphical illustration becomes difficult. Specifically, we will illustrate two scenarios in
the Appendix: a 1-way threshold scenario where the forcing variable is independent of the variable
that interacts with the treatment effect, and a 2-way threshold scenario with two forcing variables,
one of which is allowed to simultaneously affect the magnitude of treatment effects.
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Regardless of whether a sharp or a fuzzy design prevails, the HLATE can be
estimated parametrically or non-parametrically under the following assumptions:

Assumption 1 (Continuity of counterfactual outcomes at threshold vector.)
E[y0] and E[y1] are continuous at x0.

This is the standard identifying assumption in an RDD. In Becker, Egger, and
von Ehrlich (2010), we provided evidence that, in the context of the effect of Objec-
tive 1 treatment on regional growth, there were no jumps in a number of observable
covariates at the 75% threshold in compliance with Assumption 1.

Assumption 2 (Continuity of interaction variables at threshold vector.)
The interaction variables zi are continuous at x0.

This assumption is important for the HLATE to pick up genuine variation in
the interaction variables. In our application, we check this assumption by plotting
graphs for human capital and quality of government to see whether these measures
of absorptive capacity are discontinuous about the forcing variable at the threshold
or not (see Figure 2 below).

Assumption 3 (Random assignment of interaction variables zi conditional on xi.)
The interaction variables zi are uncorrelated with the error term in the outcome
equation, conditional on xi.

In the context of our application, this assumption states that, conditional on
GDP per capita (the forcing variable), regions with different human capital endow-
ments and quality of governance do not differ in unobserved dimensions which are
relevant for per-capita income growth. Take the example of two regions with the
same pre-treatment level of GDP per capita that differ in their human capital endow-
ment. The fact that, despite different human capital endowment, they achieved the
same pre-treatment GDP per capita indicates that there were other factors which,
in the past, led the two regions to achieve the same pre-treatment level of GDP
per capita. For instance, regions in former communist countries with high human
capital endowments might have achieved the same (low) per-capita income as some
Western European regions with low human capital endowments. The omitted factor
would be the past experience of a communist system in place. Assumption 3 states
that such other factors are not systematically contributing contemporaneously to
economic growth. We address this particular concern in several ways: first, we run
fixed effects regressions (amongst others) which wipe out time-constant factors such
as past communist political system experience. Furthermore, we take the absorptive
capacity interaction variables as time-constant variables, so that the HLATE picks
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up factors that facilitate or hinder the effective use of EU transfers over longer hori-
zons. Both human capital endowment and quality of government are factors which
hardly vary over time and are thus relatively stable attributes of regions.

In the following we outline the estimation approaches formally, where the sharp
RDD can be understood as a special case of the fuzzy RDD with treatment assign-
ment being a deterministic function of the forcing variables while the fuzzy design
allows for some randomness in treatment assignment.

2.2 Parametric control function for identification of the HLATE

Assuming that E[yi|xi, zi] follows an additive process based on polynomial functions
of the columns of xi and zi we can write the conditional expected outcomes in the
counterfactual situations of treatment and non-treatment as follows:

E[y0i|xi, zi] = α + f0(x̃i) + h0(zi) (3)

E[y1i|xi, zi] = E[y0i|xi, zi] + β + f∗1(x̃i) + h∗1(zi) (4)

where f0(x̃i), h0(zi), f∗1(x̃i), and h∗1(zi) are sufficiently smooth polynomial functions
of the columns of xi and zi.

7 In order to simplify the interpretation of the coefficients,
we define the parametric functions f0(·) and f∗1(·) in terms of deviations of xik from
the thresholds x0k and h0(·) and h∗1(·) in terms of deviations of zil from the sample
means E[zl]. Accordingly, x̃ik = xik−x0k and zil = zil−E[zl]. Overall, we can then
write

E[yi|xi, zi] = E[y0i|xi, zi] + Ti[β + f∗1(x̃i) + h∗1(zi)]. (5)

Using this notation, the local average treatment effect at the multidimensional
threshold level of the forcing variables, x0, is given by β. The heterogenous treat-
ment effect for deviations from the sample means in the z-dimensions is measured
by HLATE(x0, zi) = β + h∗1(zi).

In the sharp RDD, where the treatment is a deterministic function of the set of
forcing variables, we can estimate the treatment effects by the following regression:

yi =α + f0(x̃i) + h0(zi) + Ti [β + f∗1(x̃i) + h∗1(zi)] + εi (6)

where Ti = 1(xik ≥ x0k ∀ k ∈ K) (7)

7We use a notation where f∗1(·) ≡ f1(·) − f0(·) and h∗1(·) ≡ h1(·) − h0(·), and where f1(·) and
h1(·) in the treatment state are defined analogously to f0(·) and h0(·) in the no-treatment state.
More generally, one can also allow for interaction terms between columns of xi and zi and add
those interaction terms as additional elements in a (new) zi with larger column space. Hence,
we will not specifically address this issue. But we note that, in our application, all results are
robust to the introduction of interaction terms between (polynomials of) the forcing variable and
(polynomials of) the measures of absorptive capacity.
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In the fuzzy RDD, even though the treatment probability jumps when crossing
the multidimensional threshold x0, as indicated in (2), Ti is no longer a determin-
istic function of x0. Hence, the identifying assumption of the sharp RDD in (7) is
violated. This requires us to specify some functional form for the conditional treat-
ment probability P (Ti = 1|xi). Let us define a scalar Ri = 1(xik ≥ x0k ∀ k ∈ K)
indicating whether all rules underlying the treatment status are fulfilled or not.
When g1(xi) and g0(xi) in (2) can be approximated sufficiently well, Ri may serve
as an instrument for P (Ti = 1|xi) conditional on g1(xi) and g0(xi). Using analogous
notation as for the outcome, we may determine g0(x̃i), g∗1(x̃i) ≡ g1(x̃i) − g0(x̃i),
l0(zi), l∗1(zi) ≡ l1(zi) − l0(zi). In the first stage of the 2SLS implementation of the
fuzzy RDD we estimate:8

Ti =g0(x̃i) + l0(zi) +Ri[δ + g∗1(x̃i) + l∗1(zi)] + νi (8)

The forcing variables are again measured in terms of deviations from the respective
thresholds. Substituting (8) for the treatment indicator Ti in (6) we obtain the
reduced form for the fuzzy RDD. Equations (6) and (8) together constitute the IV
estimator of the HLATE(x0, zi).

2.3 Nonparametric control function for identification of the
HLATE

The parametric estimates of the treatment effects rely on the validity of the approx-
imations f0(·), f∗1(·), h0(·), h∗1(·), g0(·), g∗1(·), l0(·), and l∗1(·). As has been shown
by Hahn, Todd, and van der Klaauw (2001), average treatment effects can be iden-
tified nonparametrically under much weaker assumptions (basically only continuity
restrictions). This section introduces the nonparametric approach to the estimation
of the HLATE.

In a standard RDD with one forcing variable, where xi is a scalar and zi is
absent from the model, identification and consistent estimation of the LATE hinges
upon estimation of E[yi|xi]. In the more general design analyzed here, we have to
estimate E[yi|xi, zi] in the neighborhood of the multidimensional discontinuity. It
can be shown that the HLATE at the multidimensional threshold is given by (see
Appendix A for a proof):

HLATE(x0, zi) = lim
∆→0

E[yi|0 < x̃i < ∆, zi]− E[yi| −∆ < x̃i < 0, zi]

E[Ti = 1|0 < x̃i < ∆, zi]− E[Ti = 1| −∆ < x̃i < 0, zi]
(9)

8Alternatively, the first stage may be estimated by a nonlinear model. In our application, the
results remain unaffected by the choice of a linear or nonlinear first stage.
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where ∆ denotes a vector of some small, positive deviations from zero. In the sharp
RDD the denominator in (9) is simply unity whereas it ranges between zero and one
in the fuzzy RDD.

As pointed out by Hahn, Todd, and van der Klaauw (2001), standard kernel esti-
mators for the above conditional expectations to the left and the right of the thresh-
old yield biased estimates for the treatment effects due to their adverse boundary
properties. At boundary points the kernel estimators have a slower rate of conver-
gence than at interior points. Therefore, Hahn, Todd, and van der Klaauw (2001)
propose using local linear regressions instead of standard kernel estimates. In our
case with multiple interaction and forcing variables we resort to multivariate local
polynomial regressions as introduced by Ruppert and Wand (1994).

Let us collect all columns in x̃i and in zi in the vector ξi. The first K columns
of ξi belong to the columns of x̃i and the second L columns belong to zi. We aim
at estimating the expectations of yi in the neighborhood of the multidimensional
threshold for given values of zi. Hence, we fit a polynomial in the neighborhood of
a vector x̃i = 0. The local linear estimator for lim∆→0E[yi|0 < x̃i < ∆, zi] is given
by:

min
b0,b1

N∑
i=1

{yi − b0 − bT1 ξi}2KH(ξi) ∗ 1(x̃i > 0) (10)

where KH represents a kernel function with bandwidth matrix H. In our appli-
cations, we generally use a uniform kernel. For further details on the use of local
polynomial regressions we refer to Härdle, Müller, Sperlich, and Werwatz (2004).
HLATE(x0, zi) is asymptotically normally distributed as shown in Appendix B.

3 The HLATE of EU Objective 1 transfers de-

pending on absorptive capacity

In this section, we provide parametric and nonparametric estimates of the LATE
and the HLATE of Objective 1 treatment on regional growth within the EU. The
latter allows for heterogeneity of the response to Objective 1 treatment depending
on human capital endowments or regional quality of government, our two measures
of absorptive capacity.

3.1 Data and descriptive evidence

We use data on NUTS2 regions for the last three completed EU programming pe-
riods: 1989-93, 1994-99, and 2000-06. Due to enlargements of the EU during the
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observation period, the number of NUTS2 regions covered varies between 186 and
279 per period. Hence, a regional unit may be observed in the data once, twice, or
thrice. Of course, repeated observation of cross-sectional units should be respected
in estimation either by clustering of standard errors or alternative treatment of
fixed region-specific effects. For instance, with re-sampling of the standard errors,
one should use a routine which re-samples the data in blocks (across all years; see
Fitzenberger, 1998; and Becker and Egger, 2011, for an application).

For the question of interest, we utilize four types of data from two sources. First,
information on NUTS2 regional per-capita GDP at purchasing power parity (PPP)
is available from the Regional Database compiled by Cambridge Econometrics. The
corresponding data can be utilized to calculate the level of regional average per-
capita income in the years specified by the European Commission prior to each
programming period – the forcing variable for Objective 1 treatment eligibility.
NUTS2 regions whose per-capita GDP fell short of 75% of the EU average were
eligible to receive Objective 1 funds from the EU. The same regional GDP data can
be employed to determine average annual growth of per-capita income in PPP terms
during a programming period.

Second, information about actual Objective 1 treatment is available directly
from the European Commission, from various Council Regulations, in particular
the Regulations numbered 2052/88, 2082/93, and 502/1999, and in editions of the
Official Journal (see also Becker, Egger, and von Ehrlich, 2010). The data show
that there is a discrepancy between the rule and actual treatment, which establishes
a fuzziness: about 7% of the data points represent non-compliers with the 75%
assignment rule.

Third, since our emphasis is on absorptive capacity in terms of a region’s human
capital endowment, we employ data on the level of education of the workforce in
a region from the European Union Labour Force Survey. More specifically, we
employ data on the share of workers with at least secondary education9 and allow
the response to Objective 1 treatment to vary with it.

Fourth, regional quality of government (QoG) data come from Charron and La-
puente (2011). They use a perception-based indicator of QoG built from a 34,000-

9Eurostat delivered NUTS2-level data on education of the workforce for the years 1999 through
2008. Education is measured in three categories, based on UNESCO’s International Standard
Classification of Education (ISCED): low education refers to ISCED categories 0-2. Medium edu-
cation refers to ISCED categories 3 and 4 and high education to ISCED categories 5 and 6. Our
measure of (at least) upper-secondary education includes ISCED categories 3 to 6. In our sample
of NUTS2 EU regions, the correlation coefficient between the share of the work force with at least
upper-secondary education in 1999 and in 2008 is 0.91, which shows the stability of human capital
endowment over time and makes it an interesting stable measure of the absorptive capacity of a
region.
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respondents survey. Their data-set is available for download and contains informa-
tion at the national level for all 27 EU countries and, at the sub-national level, for
172 NUTS 1 and NUTS 2 regions in the European Union for the year 2009.10 The
variable is standardized within the EU (mean of 0 and standard deviation of 1),
such that higher scores equal higher levels of QoG. The QoG index is based on 16
separate survey questions pertaining to three key public services – education, health
care, and law enforcement. The respondents were asked to rate their public services
with respect to three related concepts of QoG – the quality, impartiality, and level
of corruption of the above-mentioned services.

Both human capital and quality of government indicators are used as time-
invariant variables. The reason is that data for both of those variables is not available
for all years for all regions. With respect to human capital we have data for several
years which we average over time.11 In contrast, the quality of government indicator
is only available for one year.

Summary statistics for all variables used in our application are provided in Table
1. As in Section 2, we measure absorptive capacity variables – human capital (HC)
and quality of government (QoG) – as deviations from the sample mean. The forcing
variable corresponds to average GDP per capita in the threshold years that were
crucial to assigning eligibility for Objective 1 transfers. Table 1 reports per-capita
GDP in the threshold years in absolute terms and as a fraction of average EU per
capita GDP. The Objective 1 treatment variable indicates transfer recipience. GDP
per capita growth is measured in nominal terms in the average year of the budgetary
period and represents our outcome of interest.

– Table 1 –

In terms of specification, our estimation corresponds to the case of a 1-way treat-
ment threshold (in the forcing variable GDP per capita relative to the EU average)
in Section 2 and an interaction with one or two regressors. In fact, we present results
separately for three cases: (a) human capital as the only indicator of absorptive ca-
pacity; (b) quality of government as the only indicator of absorptive capacity; (c)
both human capital and quality of government as indicators of absorptive capacity
which matter simultaneously.

10Countries with NUTS 1 level information are Belgium, Germany, Greece, Hungary, Nether-
lands, Sweden, and United Kingdom. NUTS2 level information is available for Austria, Bulgaria,
Czech Republic, Denmark, France, Italy, Poland, Portugal, Slovak Republic, Romania, and Spain.
We assume that quality of government is at least as time invariant as human capital endowment.

11We averaged human capital for each region across the years. This minimizes also the problem
of unequal spacing of missing data on human capital across regions and time.
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A difference with respect to the Monte Carlo analysis in Appendix C lies in
the use of repeated observations of cross-sectional units which we allow for in order
to exploit variability in the data (taking account of repeated observations in the
computation of standard errors throughout).

– Figure 1 and 2 –

Before turning to regressions, it is useful to have a look at the raw data when
pooling them across all three programming periods. Figure 1 depicts the fraction of
treated observations against their initial per-capita GDP relative to the EU average
– in bins of a width of 1.5 percentage points in the forcing variable – in the years
critical for determining Objective 1 eligibility. The discontinuity at 75% is evident,
but the design is fuzzy because a number of regions does not comply with the
treatment rule.

Such a discontinuity does not appear when plotting equivalent graphs for hu-
man capital and quality of government (see Figure 2). Note that this supports
Assumption 2 underlying the HLATE, which requires the interaction variables to be
continuous at the forcing variables threshold.

In a similar vein, in Becker, Egger, and von Ehrlich (2010), we showed graphs
depicting the absence of jumps in other covariates, supporting Assumption 1. We
do not repeat them here for space constraints, but refer the reader to Figure 4 of
that paper.

– Figure 3 –

Unlike RDD plots for homogeneous LATE, the graphs in Figure 3 are three-
dimensional figures, similar to those shown in the Monte Carlo analysis in Appendix
C. They are useful to visualize the interaction between the forcing variable (initial
GDP/capita relative to the EU average in a period), the variables relating to absorp-
tive capacity (education and quality of government as deviations from the respective
EU average), and the outcome variable (GDP per capita growth). Notice that this
figure is generated for the subspace of values of HC and QoG where we have rela-
tively good support (see Figure 13 in the Appendix for frequency plots of the data)
Since the rule is not applied sharply by the Commission, we expect both treated
units (marked by red dots) and untreated units (marked by blue dots) just above
and below the threshold of the forcing variable (i.e., at a level of 0.75 or 75%). The
surfaces are estimated using 5th-order polynomial functions in the forcing variable
and linear functions of the absorptive capacity variables. These surfaces are esti-
mated separately for both sides of the threshold in order to allow for a discontinuity.
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The figure clearly points to a continuous impact of the forcing variable on the out-
come, and to a discontinuity at the 75% threshold which in turn varies significantly
with absorptive capacity. The data indicate a smaller (or even non-existent) treat-
ment effect at the threshold for regions with below-average absorptive capacity and
a higher treatment effect for regions with above-average absorptive capacity. The
wedges between the two surfaces in the human capital and quality of government
plots indicate heterogeneity of LATE. Note, however, that the HLATE cannot be
directly “inferred” from the wedges in Figure 3. The wedges between the surfaces
disregard fuzziness about Objective 1 status, i.e., the true treatment effect needs
to take account of the size of the jump in the treatment probability at the 75%
threshold.

Hence, we proceed with parametric instrumental variable regression analysis and
with nonparametric regression analysis to avoid a possibly large bias of the hetero-
geneous treatment effects accruing to fuzziness.

3.2 Regression results

A first step to scrutinize the heterogeneity of treatment effects displayed in Figure 3
is to split the sample into observations featuring below- and above-average absorptive
capacity and to estimate the LATE for each of these subsamples separately using the
fuzzy RDD estimator. Regarding the human capital employed here, we observe 355
observations with an above-average HC endowment and 319 observations below the
average level of HC. The former group exhibits an LATE of about 2.5 percentage
points – significant at the 1 percent level – while the LATE of the latter group
amounts to about 1.2 percentage points which turns out to be significant at the 10
percent level. Regarding quality of government, the 418 observations with an above-
average level of QoG feature a LATE of 2.2 percentage points – significant at the 1
percent level – while the LATE for the group of below-average QoG turns out to be
insignificant at the usual levels of confidence. These results point to a considerable
heterogeneity of treatment effects. Yet, the split of the sample may seem arbitrary
and we loose substantive information and efficiency by collapsing the two continuous
measures of absorptive capacity into binary indicators. A more efficient way to take
into account the heterogeneity of the LATE is to follow the identification strategy
for the HLATE as introduced in Section 2.

The regression results of are summarized in Tables 2-4 for polynomial IV regres-
sions and in Tables 5 and 6 for nonparametric regressions.

– Tables 2-6 –
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Table 2 contains eighteen different parametric specifications that form the basis
for LATE and HLATE estimation. Different columns refer to different degrees of the
polynomial in the forcing variable (initial per-capita GDP) and to pooled regression
versus fixed effects panel estimation. In the vertical dimension, we use three differ-
ent types of specifications where we vary the polynomial degree of the interaction
variable, human capital (HC): linear (panel 1), quadratic (panel 2), cubic (panel
3).12 The treatment effect as well as the linear interaction between treatment and
absorptive capacity are highly significant in each of the specifications. In contrast
to the cubic interaction between treatment and absorptive capacity, the quadratic
interaction turns out to be insignificant.

Overall, the estimates reveal a considerable heterogeneity of LATE for different
levels of absorptive capacity. Taking the pooled OLS specification with a 5th-order
polynomial function of the forcing variable and a cubic function of HC as the bench-
mark, a one standard deviation of absorptive capacity yields a 82% higher treatment
effect compared to the average level of HC. Note that a statement like this is not
possible in the simple approach where the sample is ex ante split in a high HC and
a low HC subsample.

An important issue related to the interpretation of our findings is whether human
capital is indeed key in making good use of the funds assigned by the EU or whether
human capital might already be a factor in attracting EU funds, conditional on a
region qualifying for Objective 1 status. In fact, we can correlate the amount of
funds received (relative to a region’s initial GDP) under Objective 1 to the region’s
human capital endowment. Using data from the programming periods 1994-1999
and 2000-2006 for which we know the amount of funds received per region, we find a
negative correlation between human capital endowment and funds received relative
to GDP in the group of Objective 1 regions. Our findings of a stronger growth effect
of Objective 1 status are thus not explained by more funds received, but by the
more efficient use of the given funds.

Table 3 is similar to Table 2, but uses quality of government (QoG) as the
interaction variable capturing heterogeneity of the LATE. Naturally, since both the
HC and QoG indicators are measured relative to the EU average, the main effect
of Objective 1 treatment is almost the same in both tables and is in line with the
estimates in Becker, Egger, and von Ehrlich (2010) which only looked at the LATE
of Objective 1 treatment. As for the role of quality of government, it turns out

12In all cases, we include a polynomial function of HC that is once uninteracted and once inter-
acted with the treatment dummy in order to be able to distinguish between a role of human capital
for growth as such (‘main effect’) and its role for the HLATE. All results are also robust to the
introduction of interaction terms between (polynomials of) the forcing variable and (polynomials
of) the measures of absorptive capacity.
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that regions with better quality of government have a larger treatment effect, as
we would expect. Taking the pooled OLS specification with a 5th-order polynomial
function of the forcing variable and a linear function of QoG as the benchmark, a
one standard deviation of quality of government renders the treatment effect about
41% higher compared to the average level of QoG.

Table 4 goes one step further and analyzes how the LATE varies along both
the HC and QoG dimensions. We look at linear interaction terms in HC and QoG
and in HC·QoG. The main interaction effect of quality of government (Object1·QoG)
becomes statistically insignificant, but the heterogeneity along the HC dimension re-
mains strong. Furthermore, in the fixed effects regressions, also the Object1·HC·QoG
term is significantly positive, suggesting that quality of government translates into a
higher treatment effect in the presence of higher human capital levels in the recipient
region.

The relevant nonparametric estimates of LATE in Tables 5 and 6 are very close to
their parametric counterparts in Tables 2 and 3. Notice that bandwidth choice has

an impact on the estimated LATE, referred to as L̂ATE. However, the difference
in the point estimates across columns is moderate. If one chooses too small a

bandwidth, variability increases a lot and L̂ATE can not be estimated precisely
enough to reject the null hypothesis of a zero impact of Objective 1 on per-capita
income growth. However, according to the cross-validation procedure suggested by
Ludwig and Miller (2007), one would choose an optimal bandwidth of 0.2 for the
treatment stage and one of 0.3 for the outcome stage with the data at hand. When

using such a bandwidth, L̂ATE ≈ 0.021 which is significantly different from zero at
the 1% level.

Notice that Tables 5 and 6 do not provide the information we are most inter-
ested in, namely whether and how LATE varies with absorptive capacity. Likewise,
Tables 2 and 3 do not display the treatment effects for different levels of absorptive

capacity directly. Therefore, we choose a graphical illustration of ̂HLATE and its
90% confidence bounds. The findings are portrayed in two panels in Figures 4 and
5 for the human capital (HC) and the quality of government (QoG) variables, re-
spectively. The panels on the left of the two figures represent parametric estimates
while the ones on the right represent their nonparametric counterparts.

The parametric results are based upon the coefficients of the cubic specification
of the forcing variable and a linear term in HC and QoG, while the nonparametric
estimates are based on the optimal bandwidth according to the Ludwig and Miller
(2007) criterion in Tables 5 and 6. The four graphs represent estimates of the
HLATE at the threshold of the forcing variable of Objective 1 treatment. Under the
maintained assumptions, they are consistent estimates of the (fuzzy) discontinuity
displayed in the outcome plot in Figure 3.
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– Figure 4 and 5 –

In line with the results in the above Tables, ̂HLATE is monotonic in absorptive
capacity for both the parametric and the nonparametric specification. The graphs
show a monotonic increase of the HLATE with human capital. Not surprisingly, the
confidence intervals are wider for the nonparametric estimates than for their para-
metric counterparts. Similarly, the HLATE with respect to quality of government,
again shows a monotonic relationship: higher quality of government is associated
with a larger Objective 1 treatment effect.

Finally, Figure 6 shows how human capital and quality of government interact,
leading to larger treatment effects in the HC and QoG dimensions. The figure is
based on a specification that includes a 3rd-order polynomial of per-capita GDP
and linear terms of HC and QoG. The light dots mark areas where the HLATE is
insignificant: light blue dots refer to negative point estimates and light red ones
to positive point estimates. The dark red dots mark areas where the HLATE is
positive and significantly different from zero. According to these estimates, for a
positive and significant HLATE the human capital endowment as well as the quality
of government have to exceed certain critical levels. For regions below those levels,
Objective 1 transfers can not be rejected to be a wash. Once the critical values are
passed – i.e., an observation lies within the dark red area – transfers are more effec-
tive with higher levels of both human capital and quality of government. The fact
that the HLATE is a continuous function of measures of absorptive capacity allows
us to exploit that functional form even further. For instance, we can gain insights
into the geographic location of areas where absorptive capacity was insufficient to
generate additional growth from EU funds.

– Figure 6 – and Table 7

Table 7 provides information on the percentage of Objective 1 regions among
the EU member countries that received Objective 1 funds and had at the same
time sufficiently high levels of human capital and quality of government for realizing
positive treatment effects that are significantly different from zero. These figures
are derived from assigning the recipient regions within the respective countries to
the surface illustrated in Figure 6. The table contains three columns with numbers:
the first one of them provides the percentage of a country’s regions with a positive
average treatment effect among all of its Objective 1 regions; the second and third
column only consider regions with a real per-capita income in the 60-90% and 65-
85% brackets of the forcing variable which determines Objective 1 transfer eligibility
at a level of the forcing variable of less than 75%. Of course, the denominator
underlying the respective percentages is smallest in the third column where the
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window in forcing-variable space is smallest and largest in the first column where
all Objective 1 regions are covered.

The percentage in Table 7 is zero whenever a country has a positive number
of Objective 1 regions within the specified window, but none of them receives a
positive HLATE which is significantly different from zero according to Figure 6.
The percentage is 100 whenever a country has a positive number of Objective 1
regions within the specified window, and all of them receive a positive HLATE
which is significantly different from zero according to Figure 6. The entry in Table 7
is “−” in case a country does not have any Objective 1 regions within the specified
window. All other entries are in the support region of (0, 100). In general, we would
consider the estimates underlying Figure 6 to be better suited with smaller windows
around the eligibility threshold. On average, the estimated treatment effects appear
to be positive and significant with greater probability for Objective 1 regions in
the incumbent countries of the European Union. The zeros for Belgium, Finland,
and Ireland and the 100s for Estonia and Malta are exceptions which accrue to low
values of either the human capital endowments (HC) or the quality of government
(QoG) dimensions and to high values in either dimension, respectively.

3.3 Policy considerations

The results provoke a number of alternative policy conclusions. Figure 6 suggests
that significantly positive effects of Objective 1 transfers are only to be had with
sufficiently high levels of human capital endowments (HC) and quality of government
(QoG). This is the case for only 107 out of 227 recipients (when considering all
observations as in the first column of Table 7). Hence, one could say that the
European Commission could save money by voiding Objective 1 transfers to about
53% percent of the recipients. For the most part, those regions belong in the group
of least-developed regions within the EU. By the same token, the Commission could
stimulate further growth by reallocating transfers from 53% of regions without any
positive significant response to the other ones. Either measure would counteract the
very purpose of the programme, though, which is reducing per-capita income gaps
and stimulating convergence from the tails towards the average within the European
Union.

An alternative proposal could be to use funds at the Structural Programme in a
more discretionary fashion than at present and to target human capital formation
and political as well as administrative institutions (quality of government) in regions
which are eligible for transfers. According to our findings, such an approach would
be largely complementary to other means of redistribution. In terms of labels of ini-
tiatives at the level of the European Commission, this could be seen as an argument
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in favor of strengthening and broadening efforts around measures taken under the
auspices of the Regional Competitiveness and Employment Objective (formerly Ob-
jective 2) rather than the Convergence Objective (formerly Objective 1). Of course,
significant changes in the response to transfers induced by such measures should not
be expected to happen in the very short run. Both the formation of human capital
as well as institutional change take time – most likely about one generation rather
than a small number of years. But the returns on those investments in terms of
growth effects might be higher than ones on infrastructure and other types of real
investments to regions that lack complementary factors such as skilled workers or
high-quality institutions to realize the expected growth stimuli.

On a broader scale, the notion that fiscal policy induces heterogeneous responses
across recipients is consistent with recent findings in the macro literature on fiscal
multipliers. For instance, Auerbach and Gorodnichenko (2010, 2011) provide evi-
dence of state-dependent effects of fiscal multipliers. While there is evidence of a
positive effect of fiscal multipliers over the longer run (see Gemmell, Kneller, and
Sanz, 2011; Ramey, 2011), Auerbach and Gorodnichenko’s (2010, 2011) findings
suggest that effects can vary significantly over the business cycle. There is also work
on the heterogeneity of treatment effects in the cross section. Shoah (2011) uses
variation in portfolio returns of defined-benefit pension plans across US states – for
which the state governments bear the investment risk – to identify the effect of state
government spending on in-state income and employment. He detects heterogeneity
in that the effect is stronger in non-tradable industries and when economic slack
is high. Suárez Serrato and Wingender (2011) exploit US county-level variation in
receipt of US federal grants that depend on local population levels to estimate local
fiscal multipliers. They show that there is heterogeneity of the impacts of govern-
ment spending and that there is a higher impact in low-growth areas. The latter
is consistent with the finding that transfers are more effective in regions of the EU
with higher levels of absorptive capacity than elsewhere.

4 Discussion and conclusions

This paper studies the role of absorptive capacity of regions in translating transfers
into economic growth. In particular, we study the importance of absorptive ca-
pacity for the treatment effect triggered by regional transfers under the auspices of
Objective 1 under the Structural Funds Programme of the European Commission.
A region’s initial GDP per capita relative to the EU average determines eligibility
of NUTS regions in the European Union to receive transfers out of the Structural
Funds. Regions whose initial GDP per capita is less than 75% of the EU average
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are eligible to receive Objective 1 funds. Econometrically, this gives rise to a regres-
sion discontinuity design (RDD). To the extent that a region’s absorptive capacity
systematically influences how efficiently it uses transfers received, we expect hetero-
geneity in local average treatment effects (LATE) which varies with the recipient
region’s absorptive capacity. We derive a heterogeneous LATE (HLATE) estimator
for the general scenario with multiple thresholds and various interaction variables
that affect the treatment effect’s magnitude, and we allow for a fuzzy treatment
assignment mechanism. In a Monte Carlo simulation, we study the performance
of parametric and nonparametric identification strategies for such an heterogeneous
treatment effect and show that both approaches yield consistent estimators.

In our empirical illustration, we show that the heterogeneity of recipient regions
with respect to their absorptive capacity matters considerably. Both measures of
a region’s absorptive capacity, the human capital endowment of the workforce and
quality of government, show similar patterns. While the treatment effect is insignif-
icant for regions with a very low level of absorptive capacity it exceeds the average
treatment effect for regions with above-average absorptive capacity.

Our findings are complementary to recent work on the heterogeneous responses
to fiscal stimuli in macroeconomics in the sense that fiscal multipliers may differ
dramatically across recipients. We estimate positive responses to stimuli (transfers)
to be higher for recipients with higher levels of absorptive capacity measured as an
above-average endowment of human capital and an above average level of quality of
government.
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Appendix A. Deriving the HLATE

We aim at proving

HLATE(x0, zi) = lim
∆→0

E[yi|0 < x̃i < ∆, zi]− E[yi| −∆ < x̃i < 0, zi]

E[Ti = 1|0 < x̃i < ∆, zi]− E[Ti = 1| −∆ < x̃i < 0, zi]

The outcome difference of observations at the threshold is

E[yi|x̃i = ∆, zi]− E[yi|x̃i = −∆, zi] =

E[Tiβ|x̃i = ∆, zi]− E[Tiβ|x̃i = −∆, zi]

+E[ziβ|x̃i = ∆, zi]− E[ziβ|x̃i = −∆, zi]

+E[αi|x̃i = ∆, zi]− E[αi|x̃i = −∆, zi]

We assume that E[αi|xi = x] is continuous at x0 such that the last two terms
in the above equation cancel each other out as ∆ moves towards zero. Assuming
conditional independence between Ti and β as well as between zi and β yields

E[yi|x̃i = ∆, zi]− E[yi|x̃i = −∆, zi] =

E[β|x̃i = ∆, zi]E[Ti|x̃i = ∆, zi] + E[β|x̃i = ∆, zi]E[zi|x̃i = ∆, zi]

−E[β|x̃i = −∆, zi]E[Ti|x̃i = −∆, zi]− E[β|x̃i = −∆, zi]E[zi|x̃i = −∆, zi]
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Note that conditional independence requires that no selection into treatment on the
basis of the expected effect occurs. Assuming that E[β|x̃i = 0] is continuous at
x̃i = 0 then delivers

lim
∆→0

E[yi|x̃i = ∆, zi]− lim
∆→0

E[yi|x̃i = −∆, zi] =

E[β|x̃i = 0, zi]
(

lim
∆→0

E[Ti|x̃i = ∆, zi]− lim
∆→0

E[Ti|x̃i = −∆, zi]
)

which can easily be reformulated to obtain HLATE(zi) from above.

Appendix B. Standard errors of the HLATE

Under the maintained assumptions in this paper and Assumptions (i)-(vii) in Hahn,

Todd, and van der Klaauw (2001), the estimate ̂HLATE(x0, zi) is distributed as

n2/5[ ̂HLATE(x0, zi)−HLATE(x0, zi)]→ N [µHLATE(x0, zi),ΩHLATE(x0, zi)]
(11)

where µHLATE(x0, zi) approaches zero as ∆ in (9) approaches zero. ΩHLATE(x0, zi)
in (11) is then defined as in Hahn, Todd, and van der Klaauw (2001) conditional on
zi.

Appendix C. Monte Carlo study

Appendix C.1. Simulation design

In the following we examine the performance of parametric and nonparametric es-
timators in identifying the HLATE. We consider sharp and fuzzy designs for the
HLATE and scenarios where the treatment depends on one (1-way threshold) ver-
sus two forcing variables (2-way threshold). In the application in Section 3 only one
forcing variable matters for treatment assignment, yet it is useful to consider a more
general case other applications rely upon (see Egger and Wamser, 2011). For each
case (sharp versus fuzzy and 1-way versus 2-way), let us consider 3 · 2 experiments:
a Sharp RDD, a Fuzzy 1 RDD with a low degree of fuzziness, and a Fuzzy 2 RDD
with a high degree of fuzziness about treatment assignment (see below); a standard
deviation of the disturbances εi of σε = 0.3 versus σε = 0.6. In any case, εi is
distributed as εi i.i.d.N(0, σε).

We generate the data about xi and zi for observation i = 1, . . . , N based on a
grid of 60 · 60 bins in x-z-space. In each dimension, bins take addresses (i.e., values
of xi and zi) between −2.95 and 2.95 and have a size of 0.1. We, assume that each
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of the 602 = 3, 600 bins hosts 6 observations with identical values of xi and zi but
an independent draw of εi. Hence, there is a total number of 21, 600 observations
available to the largest data-set possible. This aims at mimicking the empirical
situation with RDDs where one allots data points into bins to generate averages of
xi (zi) and yi (see Angrist and Pischke, 2009; Lee and Lemieux, 2010). To illustrate
the small sample performance of the nonparametric estimator of the HLATE and
compare it with its parametric counterpart, we alternatively consider subsets of that
data-set where consider sub-grids of 40 · 40 in the support region of [−1.95, 1.95] in
x-z-space with 402 · 6 = 9, 600 observations and 20 · 20 in the support region of
[−0.95, 0.95] in x-z-space with 202 · 6 = 2, 400 observations.

In each of the experiments, LATE corresponds to the average level of HLATE
and is measured by the coefficient on the treatment dummy Ti, i.e., β = 1.

1-way threshold

With a 1-way threshold rule, the data generating processes can be described as
follows.

Sharp RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where Ti = 1(xi ≥ 0)

Fuzzy 1 RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b
11/12 if 0 ≤ xi ≤ b
1/12 if −b ≤ xi < 0
0 if xi < −b

For the simulations, we chose b = 0.45 so that the probability of treatment
mis-assignment is 1/12 in the support region of [−0.45, 0.45] in x-space (i.e., in 5
bins to the left and in 5 bins to the right of the 1-way threshold). The maximum
of observations in the mis-classification region are 10 · 60 · 6 = 3, 600,
10 · 40 · 6 = 2, 400, and 10 · 20 · 6 = 1, 200, depending on the chosen grid and
sample size. Hence, 300, 200, and 100 observations, respectively, are expected to
be misclassified. Note that the random process underlying the fuzzyness are drawn
for each replication of the monte carlo study separately.
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Fuzzy 2 RDD:
yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2

i + .1z2
i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b
5/6 if 0 ≤ xi ≤ b
1/6 if −b ≤ xi < 0
0 if xi < −b

As in the Fuzzy 1 design, we chose b = 0.45 but we assumed the probability of
treatment mis-assignment amounting to 1/6 in the support region of [−0.45, 0.45]
in x-space. Hence, depending on the chosen grid and sample size, 600, 400, and 200
observations, respectively, are expected to be misclassified in the Fuzzy 2 design.

The results for the Sharp RDD are illustrated in Figure 7 and the ones for the
Fuzzy 1 and Fuzzy 2 RDDs are illustrated in Figure 8. In the 1-way experiments,
the treatment is only determined by forcing the variable xi whereas the outcome is
affected by xi and zi. The heterogenous treatment effect appears in the outcome
graphs as a wedge between the red (treated) and the blue (untreated) observations.
The extent of heterogeneity of LATE is noticeable as the outcome shift between
treated and non-treated observations disappears for low values of zi. In the fuzzy
experiments illustrated in Figure 8, the treatment probability (approximated by the
fraction of treated observations) jumps at the threshold x0 by about 0.85 and 0.65
in the Fuzzy 1 and Fuzzy 2 designs, respectively, which reflects the corresponding
mis-classification probabilities of 1/12 and 1/6. With a fuzzy design, some of the
red observations characterized by xi > x0 do not receive treatment while some of
of the blue observations with xi < x0 do receive treatment. This fuzziness blurs
the discontinuity in the outcome function and results in a smaller treatment wedge
compared to the sharp design. According to equation (9), the treatment effect
is measured by the ratio of the outcome wedge and the jump in the treatment
probability.

– Figures 7 and 8 –

2-way threshold

With a 2-way threshold, both xi and zi serve as forcing variables and LATE also
varies with zi. With respect to xi, we maintain the threshold value x0 = 0 while
now also zi has to exceed a level of z0 = −0.6 in order to qualify for treatment. For
(sharp) treatment assignment we require both rules to be fulfilled at the same
time.13 Distinguishing again between sharp and fuzzy scenarios we consider the
following experiments in the 2-way threshold design:

13Recent work by Wong, Steiner and Cook (2010) considers multiple threshold rules but requires
only one rule to be satisfied for treatment.
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Sharp RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where Ti = 1(xi ≥ 0 ∧ zi ≥ −0.6)

Fuzzy 1 RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b ∧ zi > −.6 + b
11/12 if 0 ≤ xi ≤ b ∧ −0.6− b ≤ zi ≤ −.6
1/12 if b ≤ xi < 0 ∧ −.6 ≤ zi ≤ −.6 + b
0 if xi < b ∧ zi < −.6 + b

As with a 1-way treatment threshold, we chose b = 0.45 and the probability of
treatment mis-assignment is 1/12 in the chosen support region. However, now
treatment mis-classification may vary with both xi and zi. Therefore, we chose the
support region to be bounded by [−0.45, 0.45] in x-space and by [−1.05,−0.15] in
z-space. The maximum of observations in the mis-classification region are
10 · 10 · 6 = 600, independent of the chosen grid and sample size. Hence, 50
observations are expected to be misclassified in any one of the fuzzy design
experiments.

Fuzzy 2 RDD:

yi =1 + Ti + .5Tizi + .5xi + .5zi + .1x2
i + .1z2

i + .3xizi + εi

where P (Ti = 1) =


1 if xi > b ∧ zi > −.6 + b
7/8 if 0 ≤ xi ≤ b ∧ −0.6− b ≤ zi ≤ −.6
1/8 if b ≤ xi < 0 ∧ −.6 ≤ zi ≤ −.6 + b
0 if xi < b ∧ zi < −.6 + b

As in the 2-way threshold Fuzzy 1 design, we chose b = 0.45 but we assumed the
probability of treatment mis-assignment amounting to 1/6 in the support region of
[−0.45, 0.45] in x-space and [−1.05,−0.15] in z-space. Hence, 100 observations are
generally expected to be misclassified in the 2-way Fuzzy 2 design. The 2-way Sharp
RDD is illustrated in Figure 9 and the corresponding Fuzzy 1 and Fuzzy 2 RDDs
are illustrates in Figure 10.

– Figures 9 and 10 –

Notice that, apart from the different design in general, the 2-way (H)LATE esti-
mates are based on a smaller number of cells and observations at the the treatment
thresholds. The latter should not have any bearing for the bias but it comes at a
loss of precision of the estimates in comparison to the 1-way threshold results.
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4.1 Appendix C.2. Results

The simulation results for the local average treatment effect (LATE; at x, z = 0)
are presented in Table 8 for a 1-way threshold design (and in Table 9 for a 2-
way threshold design). Those for the heterogeneous local average treatment effect
(HLATE; at x = 0 across all z) are presented graphically in Figure A.5. Remember
that LATE in the sense of the average HLATE corresponds to the coefficient on
the treatment dummy Ti, i.e., β = 1. The bias is measured as a deviation of the
estimate β̂ from the true parameter β = 1 in percent.

Note that, for the parametric estimates, we use the true functional form, i.e.,
that of the data-generating process. (Our interest is not in simulating the effect
of mis-specification of the control function, but in illustrating the small sample
performance of nonparametric relative to parametric estimates of the HLATE.)

The findings can be summarized as follows. First, the estimates of both the
nonparametric and the parametric estimates of LATE (β) appear to have a small
bias across all experiments considered in the Monte Carlo analysis. In every one
of the experiments is the bias of LATE smaller than one percent in absolute value
independent of sample size of whether we consider a sharp or a fuzzy RDD (see
the panels at the top of Tables 8 and 9). All else equal, the mean squared error
tends to be smallest with a sharp design, a smaller value of σε, a larger bandwidth
considered, parametric rather than nonparametric estimates, and a 1-way instead of
a 2-way threshold design. None of that is surprising, since fuzzy designs add noise to
the estimation problem by involving a projection of the endogenous treatment status
in a first stage; a larger value of σε involves more noise at the level of the outcome
equation; a smaller bandwidth considered is associated with a smaller number of
observations we estimate the HLATE from, thus reducing precision; more flexible
nonparametric estimates involve a loss of precision, if the true functional form of the
relationship between the forcing variable (x) and also of the variable which interacts
with treatment status (z) is a parametric polynomial; and the 2-way threshold design
requires more parameters to be estimates – in our case, from a smaller number of
observations at which the threshold is observed – which leads to efficiency losses.

– Tables 8 and 9

These insights about LATE also carry over to the estimation of HLATE in Figure
8. Quite obviously, the point estimates are virtually indistinguishable from the
true values, but the estimated confidence intervals are smaller for the parametric
estimates (which assumes the true functional form) than for the more flexible, local-
linear-regression-based nonparametric estimates. Finally, the estimates for the 2-
way threshold regressions in Figure 9 have somewhat larger confidence intervals
than their counterparts for the 1-way thresholds.
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Hence, we may conclude that both the nonparametric and the parametric esti-
mates work well in small to moderately large samples. In empirical circumstances
where parametric approximations of unknown functional forms will not work as well
as in the Monte Carlo study, where the parametric estimates assumed the correct
form of the control function, we expect nonparametric estimates to work quite well.
In any case, HLATE can be inferred with very small bias from both nonparametric
and parametric control function, irrespective of whether a sharp or a fuzzy design
is being considered.

– Figures 11 and 12 –

4.2 Appendix D. Frequency of Observations

– Figure 13 –
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Tables and Figures

Table 1: Descriptive Statistics

Mean Std. Dev. Min Max
(1) (2) (3) (4)

GDP per capita growth .042 .018 -.008 .131
Objective 1 .306 .461 0 1
Avg. GDP per capita in threshold years 12,927.270 4,562.467 3,343.816 37,835.190
Avg. GDP per capita in threshold years/EU avg. 1.189 .414 .229 3.104
Human capital (HC) 0 .148 -.403 .315
Quality of government (QoG) 0 .825 -2.699 1.244

Notes: Units of observation are EU NUTS2 regions. GDP data are from Cambridge Econometrics; information
about Objective 1 treatment is available directly from the European Commission, from various Council Regulations,
in particular the Regulations numbered 2052/88, 2082/93, and 502/1999, and in editions of the Official Journal (see
also Becker, Egger, and von Ehrlich, 2010); the human capital (HC) variable measures the share of the workforce
with at least upper-secondary education (ISCED categories 3 to 6); the quality of government (QoG) index comes
from Charron and Lapuente (2011); both the HC and QoG variables are normalized to zero, by detracting the EU
average; see the main text for more detail.
We miss information on the four French overseas-départements and the two autonomous Portuguese regions Madeira
and Azores for all three periods. For the Dutch region Flevoland we miss information for the first period only.
Regarding the East-German NUTS2 regions we calculated GDP per capita growth for the years 1989 and 1990
using information from the GDR’s statistic yearbook. The EU QoG index is not available for the Spanish region
Ceuta and Melilla.

29



Table 2: Objective 1 Treatment and Human Capital (parametric iden-
tification)

3rd-order polynomial 4th-order polynomial 5th-order polynomial
Pooled OLS FE Pooled OLS FE Pooled OLS FE

linear HC (1) (2) (3) (4) (5) (6)
Object1 .010 .012 .007 .008 .006 .011

(.003)∗∗∗ (.003)∗∗∗ (.003)∗∗ (.004)∗∗ (.004)] (.004)∗∗∗

Object1×HC .039 .039 .045 .044 .046 .044
(.009)∗∗∗ (.009)∗∗∗ (.009)∗∗∗ (.009)∗∗∗ (.009)∗∗∗ (.009)∗∗∗

HC .011 .007 .008 .003 .007 .002
(.008) (.007) (.008) (.007) (.008) (.007)

Const. .040 .017 .041 .014 .040 .010
(.001)∗∗∗ (.009)∗∗ (.002)∗∗∗ (.010) (.002)∗∗∗ (.011)

Obs. 674 674 674 674 674 674
R2 .363 .38 .369 .402 .369 .408

quadratic HC (1) (2) (3) (4) (5) (6)
Object1 .013 .016 .009 .009 .009 .010

(.003)∗∗∗ (.004)∗∗∗ (.004)∗∗ (.004)∗∗ (.004)∗ (.004)∗∗∗

Object1×HC .051 .055 .048 .051 .048 .049
(.011)∗∗∗ (.011)∗∗∗ (.011)∗∗∗ (.011)∗∗∗ (.010)∗∗∗ (.010)∗∗∗

Object1× HC2 .184 .325 .101 .227 .075 .182
(.130) (.137)∗∗ (.139) (.138)∗ (.132) (.129)

HC .005 -.004 .007 -.001 .007 -.0007
(.009) (.009) (.009) (.009) (.009) (.008)

HC2 -.151 -.258 -.073 -.164 -.049 -.126
(.130) (.130)∗∗ (.135) (.129) (.129) (.122)

Const. .039 .004 .040 .007 .039 .005
(.001)∗∗∗ (.011) (.002)∗∗∗ (.012) (.002)∗∗∗ (.012)

Obs. 674 674 674 674 674 674
R2 .337 .338 .36 .389 .363 .4

cubic HC (1) (2) (3) (4) (5) (6)
Object1 .015 .014 .012 .009 .012 .010

(.003)∗∗∗ (.004)∗∗∗ (.004)∗∗∗ (.004)∗∗ (.005)∗∗∗ (.004)∗∗

Object1×HC .113 .098 .113 .092 .112 .087
(.021)∗∗∗ (.022)∗∗∗ (.021)∗∗∗ (.023)∗∗∗ (.021)∗∗∗ (.023)∗∗∗

Object1× HC2 .157 .306 .116 .268 .077 .213
(.085)∗ (.106)∗∗∗ (.082) (.100)∗∗∗ (.081) (.098)∗∗

Object1× HC3 -2.190 -1.842 -2.157 -1.706 -2.076 -1.570
(.666)∗∗∗ (.664)∗∗∗ (.654)∗∗∗ (.661)∗∗∗ (.644)∗∗∗ (.673)∗∗

HC -.046 -.050 -.046 -.048 -.044 -.043
(.016)∗∗∗ (.016)∗∗∗ (.016)∗∗∗ (.016)∗∗∗ (.016)∗∗∗ (.016)∗∗∗

HC2 -.168 -.248 -.131 -.200 -.095 -.153
(.074)∗∗ (.084)∗∗∗ (.067)∗ (.075)∗∗∗ (.067) (.071)∗∗

HC3 1.980 1.854 1.948 1.772 1.866 1.632
(.644)∗∗∗ (.633)∗∗∗ (.623)∗∗∗ (.607)∗∗∗ (.612)∗∗∗ (.617)∗∗∗

Const. .038 .010 .038 .011 .037 .010
(.001)∗∗∗ (.009) (.002)∗∗∗ (.010) (.002)∗∗∗ (.011)

Obs. 674 674 674 674 674 674
R2 .356 .366 .371 .401 .376 .413

Notes: ∗∗∗, ∗∗, ∗, ] denote significance at the 1, 5, 10, and 15% level, respectively. Standard errors are clustered
at the NUTS2 level. First-stage regressions are probit models. The polynomial functions are allowed to have
different parameters to the left and the right of the threshold. The human capital variable (HC) is time-invariant.
The sample consists of the EU12 NUTS2 regions for the first period, the EU15 NUTS2 regions for the second
period, and the EU25 NUTS2 regions for the third programming period. We miss information on the four French
overseas-départements and the two autonomous Portuguese regions Madeira and Azores for all three periods. For
the Dutch region Flevoland we miss information for the first period only. Regarding the East-German NUTS2
regions, we calculated GDP per capita growth for the years 1989 and 1990 using information from the GDR’s
statistic yearbook.



Table 3: Objective 1 Treatment and Quality of Government (paramet-
ric identification)

3rd-order polynomial 4th-order polynomial 5th-order polynomial
Pooled OLS FE Pooled OLS FE Pooled OLS FE

linear QoG (1) (2) (3) (4) (5) (6)
Object1 .007 .012 .008 .010 .010 .016

(.004)∗ (.004)∗∗∗ (.004)∗ (.004)∗∗∗ (.004)∗∗∗ (.004)∗∗∗

Object1×QoG .005 .005 .005 .006 .005 .006
(.002)∗∗ (.002)∗∗∗ (.002)∗∗ (.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗

QoG .002 .002 .002 .001 .001 .001
(.002) (.001) (.002) (.001) (.002) (.001)

Const. .039 -.003 .039 -.007 .038 -.010
(.002)∗∗∗ (.009) (.002)∗∗∗ (.010) (.002)∗∗∗ (.012)

Obs. 668 668 668 668 668 668
R2 .315 .356 .314 .374 .312 .376

quadratic QoG (1) (2) (3) (4) (5) (6)
Object1 .005 .007 .004 .004 .006 .009

(.004)] (.003)∗∗ (.004) (.004) (.003)∗ (.003)∗∗∗

Object1×QoG .006 .009 .006 .009 .007 .011
(.003)∗ (.003)∗∗∗ (.003)∗ (.003)∗∗∗ (.003)∗∗ (.003)∗∗∗

Object1×QoG2 -.005 -.0006 -.005 -.0009 -.004 .0005
(.002)∗ (.002) (.003)∗ (.002) (.002)∗ (.002)

QoG .0007 .0005 .0005 .0003 .0005 .00002
(.002) (.002) (.002) (.001) (.002) (.001)

QoG2 .005 .003 .005 .003 .005 .002
(.002)∗∗ (.002) (.002)∗∗ (.002)∗ (.002)∗∗ (.001)

Const. .039 -.0007 .040 -.006 .040 -.009
(.001)∗∗∗ (.008) (.002)∗∗∗ (.010) (.002)∗∗∗ (.011)

Obs. 668 668 668 668 668 668
R2 .321 .365 .321 .382 .322 .391

cubic QoG (1) (2) (3) (4) (5) (6)
Object1 .004 .006 .003 .003 .005 .008

(.004) (.004)] (.004) (.004) (.004) (.004)∗∗

Object1×QoG .008 .012 .009 .012 .009 .013
(.004)∗∗ (.004)∗∗∗ (.004)∗∗ (.003)∗∗∗ (.003)∗∗∗ (.003)∗∗∗

Object1×QoG2 -.003 .001 -.003 .001 -.003 .002
(.004) (.004) (.004) (.004) (.004) (.004)

Object1×QoG3 -.003 -.002 -.002 -.001 -.002 -.002
(.002) (.002) (.002) (.002) (.002) (.002)

QoG -.002 -.002 -.002 -.002 -.002 -.002
(.002) (.002) (.002) (.002) (.002) (.002)

QoG2 .005 .002 .005 .003 .005 .002
(.002)∗∗ (.002) (.002)∗∗ (.001)∗∗ (.002)∗∗ (.001)∗

QoG3 .003 .003 .003 .002 .003 .002
(.002) (.002)∗ (.002) (.001) (.002) (.001)

Const. .040 -.0005 .040 -.005 .040 -.009
(.001)∗∗∗ (.008) (.002)∗∗∗ (.010) (.002)∗∗∗ (.011)

Obs. 668 668 668 668 668 668
R2 .323 .365 .323 .382 .324 .391

Notes: ∗∗∗, ∗∗, ∗, ] denote significance at the 1, 5, 10, and 15% level, respectively. Standard errors are clustered at
the NUTS2 level. First-stage regressions are probit models. The polynomial functions are allowed to have different
parameters to the left and the right of the threshold. The quality of government variable (QoG) is time-invariant
and refers to the EU QoG index by Charron and Lapuente (2011). The sample consists of the EU12 NUTS2 regions
for the first period, the EU15 NUTS2 regions for the second period, and the EU25 NUTS2 regions for the third
programming period. We miss information on the four French overseas-départements and the two autonomous
Portuguese regions Madeira and Azores for all three periods. For the Dutch region Flevoland we miss information
for the first period only. Regarding the East-German NUTS2 regions, we calculated GDP per capita growth for the
years 1989 and 1990 using information from the GDR’s statistic yearbook.



Table 4: Objective 1 Treatment, Human Capital, and Quality of Gov-
ernment

3rd-order polynomial 4th-order polynomial
Pooled OLS FE Pooled OLS FE

Object1 .009 .009 .009 .011
(.003)∗∗ (.004)∗∗ (.004)∗∗ (.004)∗∗∗

Object1×QoG -.0004 .001 -.0005 .002
(.003) (.003) (.003) (.003)

Object1×HC .043 .044 .043 .041
(.014)∗∗∗ (.013)∗∗∗ (.014)∗∗∗ (.012)∗∗∗

Object1×QoG×HC .023 .043 .022 .045
(.024) (.023)∗ (.024) (.023)∗∗

QoG .0003 - .0004 -
(.002) (.002)

HC .006 - .006 -
(.012) (.012)

QoG×HC -.042 - -.042 -
(.023)∗ (.023)∗

Const. .040 .012 .039 .008
(.002)∗∗∗ (.011) (.003)∗∗∗ (.012)

Obs. 668 668 668 668
R2 .387 .413 .387 .419

Notes: ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level, respectively. Standard errors
are clustered at the NUTS2 level. First-stage regressions are probit models. The polynomial functions are allowed
to have different parameters to the left and the right of the threshold. The human capital variable (HC) as well
as the quality of government variable (QoG) are time-invariant. The sample consists of the EU12 NUTS2 regions
for the first period, the EU15 NUTS2 regions for the second period, and the EU25 NUTS2 regions for the third
programming period. We miss information on the four French overseas-départements and the two autonomous
Portuguese regions Madeira and Azores for all three periods. For the Dutch region Flevoland we miss information
for the first period only. Regarding the East-German NUTS2 regions, we calculated GDP per capita growth for the
years 1989 and 1990 using information from the GDR’s statistic yearbook.

Table 5: Objective 1 Treatment and Human Capital (nonparametric
identification)

Bandwidth: 0.1 0.2 0.3 0.4 0.5 Total Optimal
(1) (2) (3) (4) (5) (6) (7)

LATE -.0042 .0178 .0154∗∗ .0146∗∗∗ .0168∗∗∗ .0166∗∗∗ .0207∗∗

Std.err. .1099 .0171 .0066 .0049 .0042 .0036 .0102

Notes: ∗∗∗, ∗∗, ∗, ] denote statistical significance at the 1%, 5%, 10%, and 15% level, respectively. The nonpara-
metric estimates are derived from multivariate local linear regressions with uniform kernel. The standard errors
are calculated according to a plug-in procedure which was introduced by Imbens and Lemieux (2008). The average
treatment effects in the first six columns refer to estimates with identical bandwidth for the respective conditional
expectations of treatment and outcome. In the first five columns the bandwidth is expressed as the ratio of the
average EU per-capita GDP (i.e., 0.1 indicates a bandwidth of 10% of average EU per-capita GDP). The sixth
column uses the maximum bandwidth while the seventh column employs the optimal bandwidth according to the
cross-validation procedure introduced by Ludwig and Miller (2007). We apply the cross-validation procedure to
the conditional expectations of treatment and outcome separately which yields an optimal bandwidth of 0.2 for the
treatment stage and 0.3 for the outcome stage.
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Table 6: Objective 1 Treatment and Quality of Government (nonpara-
metric identification)

Bandwidth: 0.1 0.2 0.3 0.4 0.5 Total Optimal
(1) (2) (3) (4) (5) (6) (7)

LATE -0.0080 0.0120 0.0078 0.0069 0.0107∗∗ 0.0114 ∗∗∗ 0.0105
Std.err. 0.1238 0.0163 0.0071 0.0053 0.0045 0.0038 0.0098

Notes: ∗∗∗, ∗∗, ∗, ] denote statistical significance at the 1%, 5%, 10%, and 15% level, respectively. The nonpara-
metric estimates are derived from multivariate local linear regressions with uniform kernel. The standard errors
are calculated according to a plug-in procedure which was introduced by Imbens and Lemieux (2008). The average
treatment effects in the first six columns refer to estimates with identical bandwidth for the respective conditional
expectations of treatment and outcome. In the first five columns the bandwidth is expressed as the ratio of the
average EU per-capita GDP (i.e., 0.1 indicates a bandwidth of 10% of average EU per-capita GDP). The sixth
column uses the maximum bandwidth while the seventh column employs the optimal bandwidth according to the
cross-validation procedure introduced by Ludwig and Miller (2007). We apply the cross-validation procedure to
the conditional expectations of treatment and outcome separately which yields an optimal bandwidth of 0.2 for the
treatment stage and 0.3 for the outcome stage.

Table 7: Percentage of Objective 1 regions with significant positive
HLATE per country

Support region of forcing variable around 75%-threshold

Country Total 60-90% interval 65-85% interval

Austria 100 100 100
Belgium 0 0 0
Czech Republic 29 - -
Germany 100 74 100
Estonia 100 100 100
Spain 38 23 29
Finland 0 0 0
France 100 100 100
Greece 23 14 20
Hungary 86 0 -
Ireland 0 0 0
Italy 88 78 100
Lithuania 0 0 -
Latvia 0 0 0
Malta 100 100 100
Netherlands 100 67 100
Poland 0 0 0
Portugal 100 67 100
Sweden 100 - -
Slovenia 67 0 0
Slovak Republic 0 - -
United Kingdom 13 0 0

Notes: The percentages in the table are based on the same estimates as Figure 6. ”-” indicates that a country does
not have Objective 1 regions in the specified window.
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Table 8: Local Average Treatment Effect (1-Way Threshold)

Panel A: Bias of Average Treatment Effect

Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD
σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.012 -0.061 0.013 0.015 -0.068 -0.076
N = 402 · 6 0.004 -0.039 0.005 0.006 -0.046 -0.056
N = 202 · 6 0.017 0.116 0.022 0.031 0.147 0.203

Nonparametric

Bandwidth 2/3 -0.017 -0.044 -0.020 -0.026 -0.046 -0.047
Bandwidth 1/3 -0.007 -0.124 -0.015 -0.037 -0.158 -0.244
Bandwidth 1/6 0.079 -0.050 0.101 0.101 -0.047 -0.039

Panel B: RMSE of Average Treatment Effect

Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD
σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.006 0.027 0.008 0.010 0.033 0.042
N = 402 · 6 0.014 0.062 0.019 0.027 0.082 0.116
N = 202 · 6 0.061 0.237 0.098 0.183 0.379 0.712

Nonparametric

Bandwidth 2/3 0.010 0.040 0.013 0.019 0.054 0.079
Bandwidth 1/3 0.027 0.109 0.043 0.089 0.176 0.368
Bandwidth 1/6 0.126 0.488 0.193 0.472 0.741 1.788

Notes: All estimates result from Monte Carlo simulations with 2000 replications. The random error terms in the
outcome equation as well as the random process underlying the fuzziness are drawn for each replication separately.
The nonparametric estimates result from local linear regressions with uniform kernel. The variance of the error term
in the outcome equation is denoted by σε. Fuzzy 1 (2) refers to a data generating process with a misassignment
probability of 1/12 (1/6) within 5 bins at both sides of the threshold. The largest sample refers to a grid range
[−2.95, 2.95] with 0.1 intervals. Accordingly, x and z feature 60 different values each. We observe each x − z
combination 6 times. The bias as well as the RMSE of the average treatment effect are measured in percent.
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Table 9: Local Average Treatment Effects (2-Way Threshold)

Panel A: Bias of Average Treatment Effect
Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD

σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.012 -0.097 0.012 0.013 -0.098 -0.101
N = 402 · 6 0.047 0.051 0.049 0.051 0.053 0.056
N = 202 · 6 -0.001 0.175 -0.003 -0.005 0.181 0.188

Nonparametric

Bandwidth 2/3 -0.004 -0.079 -0.002 0.005 -0.088 -0.099
Bandwidth 1/3 0.026 -0.088 0.032 0.041 -0.087 -0.091
Bandwidth 1/6 0.077 -0.035 0.072 0.053 -0.019 0.049

Panel B: RMSE of Average Treatment Effect
Sharp RDD Fuzzy 1 RDD Fuzzy 2 RDD

σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6 σε = 0.3 σε = 0.6

Parametric

N = 602 · 6 0.007 0.027 0.007 0.008 0.028 0.029
N = 402 · 6 0.014 0.058 0.015 0.016 0.062 0.066
N = 202 · 6 0.054 0.197 0.059 0.067 0.218 0.247

Nonparametric

Bandwidth 2/3 0.016 0.066 0.017 0.018 0.069 0.075
Bandwidth 1/3 0.042 0.165 0.047 0.061 0.185 0.243
Bandwidth 1/6 0.159 0.599 0.185 0.290 0.691 1.081

Notes: All estimates result from Monte Carlo simulations with 2000 replications. The random error terms in the
outcome equation as well as the random process underlying the fuzziness are drawn for each replication separately.
The nonparametric estimates result from local linear regressions with uniform kernel. The variance of the error term
in the outcome equation is denoted by σε. Fuzzy 1 (2) refers to a data generating process with a misassignment
probability of 1/12 (1/6) within 5 bins at both sides of the two dimensional threshold. The largest sample refers to
a grid range [−2.95, 2.95] with 0.1 intervals. Accordingly, x and z feature 60 different values each. We observe each
x− z combination 6 times. The bias as well as the RMSE of the average treatment effect are measured in percent.
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Figure 1: Objective 1 status and the 75% GDP threshold

Note: The figure shows average treatment rates in equally-sized bins of 1.5 percentage points
which are plotted against the per-capita GDP level that applied in the years relevant for the
decision about Objective 1 status. The graph represents a local polynomial smooth based on
an Epanechnikov kernel with a rule-of-thumb bandwidth. Note that the outlier at about 1.3
times the EU average which received treatment represents only one observation, namely Berlin
in the 1989-1993 programming period. All results are robust to the exclusion of Berlin.
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Figure 2: Human Capital, Quality of Government and the 75% GDP
threshold

Human Capital (HC) Quality of Government (QoG)

Note: The figures show averages of HC and QoG in equally-sized bins of 1.5% which are
plotted against the per-capita GDP level that applied in the years relevant for the decision
about Objective 1 status. The graphs represent a 2nd-order local polynomial function.
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Figure 3: Objective 1 Treatment, Human Capital, and Quality of Gov-
ernment

Note: The upper and lower figures illustrate the relationship between the outcome, forcing
variable, human capital, and quality of government, respectively. The red (blue) dots indicate
observations which received (did not receive) Objective 1 treatment. The surfaces represent
5th-order polynomial functions of per-capita GDP and linear functions of human capital and
quality of government, respectively. These functions are estimated on both sides of the 75%
threshold separately.



Figure 4: HLATE for different levels of Human Capital

Parametric Nonparametric

Note: The black line illustrates the point estimates, the red lines represent the 90% confidence
intervals. The parametric estimates are derived from a specification with 3rd-order polynomials
of initial GDP per-capita and linear human capital. The nonparametric estimates are based on
an optimal bandwidth selection procedure following Ludwig and Miller (2007). We choose the
optimal bandwidth for the conditional expectations of treatment and outcome separately. The
confidence intervals are derived from bootstrapped standard errors with 1000 replications.
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Figure 5: HLATE for different levels of Quality of Government

Parametric Nonparametric

Note: The black line illustrates the point estimates, the red lines represent the 90% confidence
intervals. The parametric estimates are derived from a specification with 3rd-order polynomials
of initial GDP per capita and linear quality of government. The nonparametric estimates
are based on an optimal bandwidth selection procedure following Ludwig and Miller (2007).
We choose the optimal bandwidth for the conditional expectations of treatment and outcome
separately. The confidence intervals are derived from bootstrapped standard errors with 1000
replications.
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Figure 6: HLATE for different levels of Human Capital (HC) and
Quality of Government (QoG): Parametric estimation

Note: The light red and light blue areas refer to insignificant positive and insignificant negative
effects, respectively. The dark red area indicates significant positive effects. We choose the 90%
confidence interval – calculated on the basis of bootstrapped standard errors – to determine
significance of the HLATE. The predictions stem from parametric OLS regressions with a 3rd-
order polynomial of per-capita GDP and linear HC and QoG.
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Figure 7: Sharp RDD (1-Way Threshold)

Treatment Outcome (σε = 0.3)

Outcome (σε = 0.6)

Note: The upper left figure shows average treatment rates in equally-sized bins of 0.1 which
are plotted against the forcing variable x. The other two figures show average outcome rates
plotted against the forcing variable x and the interaction variable z. Blue (red) dots indicate
untreated (treated) observations. For illustration purpose, we focus on the range x = [−1, 1].
σε refers to the standard deviation of the error term in the outcome function. That is, the
greater is σε the less precise is the control function of x.
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Figure 8: Fuzzy RDD (1-Way Threshold)

Treatment (Fuzzy 1) Treatment (Fuzzy 2)

Outcome (Fuzzy 1, σε = 0.3 ) Outcome (Fuzzy 2, σε = 0.3)

Outcome (Fuzzy 1, σε = 0.6 ) Outcome (Fuzzy 2, σε = 0.6)

Note: The upper figures show average treatment rates in equally-sized bins of 0.1 which are
plotted against the forcing variable x. The figures in the two lower panels show average outcome
rates plotted against the forcing variable x and the interaction variable z. Blue (red) dots
indicate to untreated (treated) observations. For illustration purpose, we focus on the range
x = [−1, 1]. σε refers to the standard deviation of the error term in the outcome function while
Fuzzy 1 (2) indicates a misassignment probability of 1/12 (1/6). Accordingly, the greater is σε
the less precise is the control function of x, and Fuzzy 2 represents a less precise relationship
between the treatment the treatment rule than Fuzzy 1.



Figure 9: Sharp RDD (2-Way Threshold)

Treatment Outcome (σε = 0.3)

Outcome (σε = 0.6)

Note: The upper left figure shows average treatment rates in equally-sized bins of 0.1 which are
plotted against the two forcing variables x and z. The other two figures show average outcome
rates plotted against the forcing variables x and z. In addition to determining the treatment
probability, z affects the treatment effect via an interaction term in the outcome equation. σε
refers to the standard deviation of the error term in the outcome function. That is, the greater
is σε the less precise is the control function of x.

44



Figure 10: Fuzzy RDD (2-Way Threshold)

Treatment (Fuzzy 1) Treatment (Fuzzy 2)

Outcome (Fuzzy 1, σε = 0.3 ) Outcome (Fuzzy 2, σε = 0.3)

Outcome (Fuzzy 1, σε = 0.6 ) Outcome (Fuzzy 2, σε = 0.6)

Note: The upper figures show average treatment rates in equally-sized bins of 0.1 which are
plotted against the forcing variables x and z where red (blue) dots indicate observations that
qualify (do not qualify) for treatment according to the treatment rule. The figures in the
two lower panels show average outcome rates plotted against the forcing variables x and z
where red (blue) dots indicate observations that did (did not) receive treatment. In addition
to determining the treatment probability, z affects the treatment effect via an interaction term
in the outcome equation. σε refers to the standard deviation of the error term in the outcome
function, while Fuzzy 1 (2) indicates a misassignment probability of 1/8 (1/4). Accordingly,
the greater is σε the less precise is the control function of x, and z, and Fuzzy 2 represents a
less precise relationship between the treatment the treatment rule than Fuzzy 1.



Figure 11: Heterogenous local average treatment effects (1-Way
Threshold)

Sharp RDD
Parametric Nonparametric

Fuzzy RDD
Parametric Nonparametric

Note: The figures show treatment effects at the x0 threshold (we restrict the sample to one
bin on each side of x0) plotted against the interaction variable z. All figures are based on
experiments with σε = 0.6 where the fuzzy design refers to a data-generating process with a
misassignment probability 1/6. The parametric figures are derived from an N = 202 · 6 sample.
For the nonparametric figures, we choose a bandwidth of 1/6. The green line illustrates the
true effect, the black line illustrates the point estimates, and the red lines represent the 90%
confidence intervals.
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Figure 12: Heterogenous local average treatment effects (2-Way
Threshold)

Sharp RDD
Parametric Nonparametric

Fuzzy RDD
Parametric Nonparametric

Note: The figures show treatment effects at the x0 threshold (we restrict the sample to one
bin on each side of x0) plotted against the interaction variable z. All figures are based on
experiments with σε = 0.6 where the fuzzy design refers to a data-generating process with
a misassignment probability 1/6. Note that the fuzzyness is bounded in the z dimension by
[-1.05, -0.15] which results in a lower degree of precision of the HLATE in this interval. The
parametric figures are derived from an N = 202 · 6 sample. For the nonparametric figures, we
choose a bandwidth of 1/6. The green line illustrates the true effect, the black line illustrates
the point estimates, and the red lines represent the 90% confidence intervals.
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Figure 13: Frequency plots

Note: The upper and lower figures illustrate the number of observations in the human
capital/per-capita GDP bins and the quality of government/per-capita GDP bins, respectively.
These bins correspond to the ones used in Figure 3.
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