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ABSTRACT

Inference on Impulse Response Functions in Structural VAR
Models*

Skepticism toward traditional identifying assumptions based on exclusion
restrictions has led to a surge in the use of structural VAR models in which
structural shocks are identified by restricting the sign of the responses of
selected macroeconomic aggregates to these shocks. Researchers commonly
report the vector of pointwise posterior medians of the impulse responses as a
measure of central tendency of the estimated response functions, along with
pointwise 68 percent posterior error bands. It can be shown that this approach
cannot be used to characterize the central tendency of the structural impulse
response functions. We propose an alternative method of summarizing the
evidence from sign-identified VAR models designed to enhance their practical
usefulness. Our objective is to characterize the most likely admissible
model(s) within the set of structural VAR models that satisfy the sign
restrictions. We show how the set of most likely structural response functions
can be computed from the posterior mode of the joint distribution of admissible
models both in the fully identified and in the partially identified case, and we
propose a highest-posterior density credible set that characterizes the joint
uncertainty about this set. Our approach can also be used to resolve the long-
standing problem of how to conduct joint inference on sets of structural
impulse response functions in exactly identified VAR models. We illustrate the
differences between our approach and the traditional approach for the
analysis of the effects of monetary policy shocks and of the effects of oll
demand and oil supply shocks.
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1 Introduction

One of the most widely studied questions in empirical macroeconomics is to what extent an
unanticipated monetary tightening reduces real output. It is widely recognized that answering
this question requires the estimation of structural models in which cause and effect are clearly
differentiated. Much of the literature since the 1980s has relied on structural vector autoregres-
sive models in which exclusion restrictions on the instantaneous feedback from monetary policy
shocks to macroeconomic aggregates ensure the identification of the policy shock. Skepticism
toward these traditional identifying assumptions in recent years has made increasingly popular
an alternative class of structural VAR models in which policy shocks are identified by restricting
the sign of the responses of selected macroeconomic aggregates to policy shocks. For example,
Uhlig (2005) postulated that an unexpected monetary policy contraction is associated with an
increase in the federal funds rate, the absence of price increases and the absence of increases in
nonborrowed reserves for some time following the policy shock. This approach is considerably
more agnostic than traditional identification approaches in some dimensions, while more restric-
tive in others. Uhlig showed that sign-identified models may produce substantially different
results from conventional structural VAR models.

Although the original applications of this approach were to models of monetary policy, sign-
identified VAR models have become increasingly popular in other areas as well and are now
part of the mainstream of empirical macroeconomics. They have been used to study fiscal
shocks (e.g., Canova and Pappa 2007; Mountford and Uhlig 2009, Pappa 2009; Caldara 2011),
technology shocks (e.g., Dedola and Neri 2007; Peersman and Straub 2009), and various other
shocks in open economies (e.g., Canova and De Nicolo 2002; Scholl and Uhlig 2008), in oil
markets (e.g., Baumeister and Peersman 2009; Kilian and Murphy 2010, 2011), and in labor
markets (e.g., Fujita 2011), for example.

In all these applications, the cost of remaining agnostic about the structural model is that the
data are potentially consistent with a wide range of structural models that are all admissible in
that they satisfy the identifying restrictions. An unresolved question in the literature is how to
represent the results of such agnostic identification procedures when the set of admissible models
includes a range of models with conflicting interpretations. One early approach, exemplified by
Faust (1998), has been to focus on the model that is most favorable to the hypothesis of interest.
This allows us to establish the extent to which this hypothesis could potentially explain the data.
It may also help us to rule out a hypothesized explanation, if none of the admissible models
supports this hypothesis. The problem is that this approach is not informative about whether
any one of the admissible models is a more likely explanation of the data than some other model.

More commonly, researchers have reported the vector of pointwise posterior medians of the

impulse responses as a measure of the central tendency of the impulse response functions, along



with pointwise 68% posterior error bands. This approach suffers from two distinct shortcomings.
The first shortcoming is that the vector of pointwise posterior median responses will have no
structural economic interpretation unless the pointwise posterior medians of all impulse response
coefficients in the VAR system correspond to the same structural model, which is highly unlikely
a priori (see, e.g., Fry and Pagan 2011). In other words, in practice, none of the models in the set
of admissible structural models constructed by the researcher will exhibit the impulse response
dynamics embodied in the median response function obtained by connecting the dots between
the pointwise posterior medians. The second shortcoming is that median response functions
are not a valid statistical summary of the admissible set of impulse response functions. It is
well known that the median of a vector variable is not the vector of the medians, rendering the
vector of pointwise medians inappropriate as a statistical measure of the central tendency of
the impulse response functions (e.g., Chauduri 1996; Koltchinskii 1997; Liu, Parelius and Singh
1999). This means that even if there were an admissible structural model with the same impulse
response function as the median response function, there would be no compelling reason to focus
on this model in interpreting the evidence.!

Similar problems arise in the construction of pointwise impulse response error bands in
sign-identified models based on the quantiles of the marginal posterior distributions of the
impulse responses. Moreover, these error bands do not take account of the dependence of
the impulse response estimates across horizons and across response functions and hence may
overstate or understate the true uncertainty about the dynamics of the system. The latter
problem is well known, but there are no alternative methods in the literature that address these
limitations, leaving researchers with little choice, but to rely on potentially misleading measures
of uncertainty.

In this paper, we propose a new method of summarizing the evidence from sign-identified
VAR models that addresses these shortcomings and is designed to enhance the practical useful-
ness of sign-identified models. Our objective is to identify the most likely admissible model(s)
within the set of structural VAR models that satisfy the sign restrictions. A structural VAR
model is defined by the set of structural impulse response functions associated with a given
set of reduced-form VAR parameters and a given structural impact multiplier matrix. There is
a one-to-one mapping from the joint posterior density of these model parameters to the joint
posterior density of the corresponding set of structural impulse response functions, allowing us
to derive the latter density analytically by the change-of-variable method. This enables us to

assign a posterior density value to each structural model. The most likely or modal model by

'This second point is also relevant for a recent proposal by Fry and Pagan (2011) designed to overcome the lack of
structural interpretation of median response functions. Their idea is to search for the admissible structural model with
impulse response functions closest to the median response functions. This proposal deals with the first shortcoming,
but not the second. Because the median vector is not well defined statistically, there is no compelling reason to focus
on a structural model with response functions close to the vector of medians.



construction is the admissible model that maximizes the joint posterior density of the admissi-
ble structural VAR models. A 100(1 — «)% highest posterior density credible set of admissible
models may be formed by ranking the admissible models based on the value of this joint density.

In practice, we proceed in two steps. Under the conventional assumption of a diffuse
Gaussian-inverse Wishart prior, we begin by generating repeated draws from the joint pos-
terior distribution of the reduced-form VAR parameters and of the rotation matrices used in
constructing the structural impact multiplier matrix. For each candidate structural VAR model,
we first compute the posterior density value associated with that model; we then evaluate the
set of implied structural impulse response functions. We discard the structural models that
are inadmissible in that they do not satisfy the identifying sign restrictions. We then rank the
remaining structural models by the value of their posterior density, making it straightfoward to
determine the most likely admissible model and to characterize its impulse response dynamics.
The set of structural impulse response functions associated with the modal admissible model
by construction will be economically interpretable and statistically well defined, addressing the
two main critiques of traditional median response functions.

This baseline procedure is designed for fully identified structural VAR models. Many struc-
tural VAR models, however, are only partially identified in that only a subset of the structural
shocks are identified. Such models are sometimes also referred to as semi-structural VAR mod-
els. For example, in the model of Uhlig (2005) only the responses to monetary policy shocks
are identified. In this case, responses to unidentified shocks become irrelevant in constructing
the modal model. Instead the mode and credible set must be based on the marginal posterior
density of the subset of impulse response functions of interest. We propose a modification of
our baseline procedure that accomplishes this task. Marginalizing the joint density requires
Monte Carlo integration, which renders this procedure computationally more challenging than
the baseline procedure for fully identified models.

Although our approach was designed to aid in the interpretation of impulse response dy-
namics in sign-identified models, essentially the same approach can also be used to resolve the
long-standing problem of how to conduct joint inference on sets of structural impulse response
functions in exactly identified models. It is well known that the pointwise error bands commonly
attached to the structural impulse response functions in exactly identified VAR models fail to
convey the true uncertainty surrounding these impulse response functions. This problem has
been long recognized, but few practical alternatives have been proposed in the literature and
none of these alternative methods are applicable to sign-identified models.? Our final contribu-

tion is to show how a simplified version of our proposed procedure may be used to construct

2Sims and Zha (1999), for example, caution against connecting the dots representing pointwise error bands and
discuss possible alternative strategies for exactly identified models. Related work based on joint asymptotic approx-
imations for exactly identified models includes Liitkepohl (1990) and Jorda (2009).



credible sets for the structural impulse response functions for exactly identified structural VAR
models, providing a convenient alternative to traditional pointwise error bands that is easy to
implement. As in the earlier analysis, our approach can accommodate both fully identified and
partially identified models.

Table 1 summarizes the four distinct types of structural VAR models considered in this
paper. The remainder of the paper is organized as follows. In section 2, we describe the
proposed procedure and its implementation in more detail. Although Uhlig’s model focuses on
identifying only the monetary policy shock, many related studies have used sign restrictions
to identify simultaneously a variety of macroeconomic shocks (e.g., Canova and Paustian 2007;
Gambetti, Pappa and Canova 2008). Our analysis allows for that situation. Our analysis also
allows for refinements of the sign restriction approach in the form of additional bounds on
elasticities, for example, or of bounds on cross-correlations (e.g., Canova and De Nicolo 2002;
Kilian and Murphy 2011). These modifications do not affect the substance of our method and
can be easily incorporated.

In section 3, we contrast the proposed modal model responses with traditional median re-
sponses. We demonstrate that median response functions can be quite misleading in practice.
We illustrate how this problem may arise in practice and provide a simple analytical example
which shows that even in simple settings the median response is likely to be biased away from
the responses associated with the most likely or modal model. The median responses not only
tend to be biased relative to the modal response, but, in models with richer dynamics, the me-
dian response function may have the opposite sign of the response function in the modal model.
This observation suggests that there is a need to reexamine the findings of earlier studies based
on median responses from sign-identified VAR models.

The empirical relevance of these insights is demonstrated in section 4. In section 4a, we
pursue this question in the context of a fully identified structural VAR model. We focus on
the example of a model of the global market for crude oil in the tradition of Baumeister and
Peersman (2009) and Kilian and Murphy (2011). We show that the modal model generates
economically plausible responses. The 68 percent joint credible sets tend to be wider than
conventional 68 percent pointwise impulse response error bands, but many responses are fairly
precisely estimated nevertheless with credible sets that exclude the zero line at some or all
horizons. We demonstrate that the responses in the modal model can be substantially different
from conventional median response functions. The bias in the median response functions can
be upward or downward. In many cases, the responses of the modal model are outside of the
conventional 68 percent pointwise posterior error bands.

In section 4b, we consider a partially identified structural VAR model, building on the

analysis of U.S. monetary policy in Uhlig (2005). We explore in particular the question of what



the effect is of an unanticipated monetary policy tightening on real U.S. output. We show that
the method of summarizing the evidence matters. For example, Uhlig reported a peak median
output response of 0.15 for this model. For the same data, we obtain a peak response of almost
0.5 based on the modal model. Moreover, that modal model estimate is near the upper end of
the credible set and outside the conventional pointwise posterior error band.

Both the median estimate and the response estimate based on the modal model are counter-
intuitive in that a monetary tightening would be expected to cause a decline in real output over
time rather than an increase. This outcome reflects the fact that the identifying assumptions
are not overly informative. Even in Uhlig’s original analysis, there was substantial pointwise
probability mass on both negative and positive responses of real output. Our 68 percent credible
set further widens the set of probable responses. The explicit reason that Uhlig (2005) did not
impose further restrictions is that he wished to be as agnostic as possible about the response
of real output. It has been shown that this approach is valid only to the extent that we view
models in which real output increases in response to a monetary tightening as equally plausible
a priori as models in which real output declines (see Kilian and Murphy 2011). In an effort to
relax that assumption, we also considered an alternative set of models that impose an additional
sign restriction on the response of real GDP after 6 months (and only at that horizon). This
identifying assumption leaves the short-run as well as the longer-run response of real output
unrestricted.

The resulting modal model produces substantially different and more economically plausi-
ble results, including a cumulative drop in real GDP of -0.3 percentage points in the second
quarter. The response estimate for the modal model is at the lower end of the credible set and
again outside the conventional pointwise posterior error band. It also is substantially different
from the response estimate obtained from the traditional Cholesky decomposition. Even in
this alternative model, however, the 68 percent credible set includes many positive real output
responses, suggesting that the data are not very informative about the response of real output.
We conclude that there remains substantial uncertainty about the effects of monetary policy
shocks on real output, whereas there is strong evidence of the effects of oil demand shocks on
the real price of oil in the earlier example.

In section 5, we show that our approach of constructing joint credible sets for the structural
impulse response functions can also be adapted to exactly identified structural VAR models,
providing a convenient alternative to traditional pointwise error bands that is easy to implement.
For standard semi-structural monetary policy VAR models of the type considered by Uhlig
(2005) as a benchmark, we show that properly accounting for the joint uncertainty about all
impulse responses renders the impulse response estimates less informative than conventional

pointwise error bands suggest. For example, evidence of the price puzzle vanishes. On the other



hand, several of the response functions including that of real GDP remain precisely enough
estimated for the VAR model to be economically informative. In addition, we illustrate that,
for the reasons already discussed, commonly used posterior median response functions may differ
from the response functions in the modal posterior model. The concluding remarks are in section

6. Some technical details of the proposed procedure can be found in the technical appendix.

2 Evaluating the Posterior of Sign-Identified VAR Models

2.1 Preliminaries

Consider the n-variate reduced-form VAR(p) model:
Yyt = c+Biys 1+ Bays 2+ + Bpyrp + e, (1)
for t = 1,...,T, where e, N(0,x1,%) and ¥ is positive definite. Write (1) as
Y = XB+e (2)

where Y = [y1 yo - yr], X = [X1 Xo --- X7|', Xy =[1y;y -~ yi_,), B=[cB1 -+ By,
and e =[e; €2 -+ ep].

Throughout this paper, we follow the conventional approach of specifying a normal-inverse
Wishart prior distribution for the reduced-form VAR parameters and a Haar distribution for
the rotation matrix. This approach ensures that all admissible models are a priori equally likely

(see Uhlig 2005, p. 389):

vec(B)|X ~ N(vec(By),E® Nyt),

Z ~ IWn(VQSO,V()),

where Ny is an np X np positive definite matrix, Sy is an n X n covariance matrix, and g > 0.

Then the posterior is given by

vec(B)|X ~ N(vec(Br),~® N1, (3)

E ~ [Wn(I/TST,I/T), (4)
where vy = T 4 v, Ny = No + X'X, By = N7 ' (NoBo + X' X B),

Te 1, o 5 _ B
Sy = 228+ =%+ —(B — Bo)' NoN7'X'X(B — By),
vr v vt



B=(X'X)"'X'Y and ¥ = (Y — XB)'(Y — XB)/T.

Consider a set of n x n matrices consisting of orthonormal column vectors:
={U =[uru - w) : w € R <wgup > = 1(i =), Vi,j = 1,2,.,n},

where < -,- > denotes the inner product and 1(-) is the indicator function. Let U denote a draw
from the uniform distribution over ¢. By construction, UU’ = I,,. Define A = AU where A is
the Cholesky decomposition of ¥, such that AA’ = X. Note that AA = AUU'A = AA =%
When all structural shocks in the model are identified, we say that the model is fully identified;
when only a subset of the structural shocks is identified, we say that the model is partially
identified. For further discussion see, e.g., Rubio-Ramirez, Waggoner and Zha (2010) and Fry
and Pagan (2011). The discussion in section 2.2 focuses on sign-identified models in which all
structural shocks are jointly identified (corresponding to case 1 in Table 1). Partially identified
structural VAR models based on sign restrictions (corresponding to case 2 in Table 1) are

discussed in section 2.3.

2.2 Fully Identified Models

2.2.1 The Posterior Mode of Sign-Identified Structural Impulse Responses

Let vech(A) denote the n(n + 1)/2 x 1 vector that consists of the on-diagonal elements and
the below-diagonal elements of A and let veck(U) denote the n(n — 1)/2 x 1 vector that con-
sists of above-diagonal elements of U. Ignoring the intercept for notational convenience, let
B = [By --- Bp]. As shown in the appendix, because there is a one-to-one mapping between
B and the reduced-form vector moving average coefficient matrices ®;, ¢ = 1,2, ..., p (see equa-
tion 10.1.19 of Hamilton, 1994, p. 260, for example) and because ¥ is nonsingular and U is
orthonormal, there is a one-to-one mapping between the first p 4+ 1 structural impulse responses
O =[4, &4, DA, -, @, A]’ on the one hand and the tuple formed by the reduced-form VAR
parameters and the rotation matrix, (B, vech(A),veck(U)), on the other. The nonlinear func-
tion © = h(B, vech(A), veck(U)) is known. Using the change-of-variables method, the posterior

density of O can be written as

Olvec(B)’ vech(A)/ veck(U)']
dvec(O)

dvec(©)
O[vec(B)’ vech(A) veck(U)’]

@) = ' (B.AD)

g
x

>_ ‘gi‘f(B 5,0)

dvec(O)
Ovec(B)’ vech(A)’ veck(U)]

) |, )



where B, ¥ = AA’, and U are the unique values that satisfy the nonlinear function 0 =
h(B,vech(A),veck(U)). Here f’s denote posterior densities whose conditioning on the data is
omitted for notational simplicity. Because U is uniformly distributed on U/ the following result

holds:

Proposition 1. The posterior density of O is

- 8vec(é)
1o = (‘ d[vec(B)’ vech(A)' veck(U)']

LI (6)
) 5

The Jacobian matrix and its construction are discussed in the technical appendix.

Let x denote the set of structural impulse responses O that satisfy the sign restrictions.
The modal model by construction is the admissible model that maximizes the posterior density
of the sign-identified structural impulse responses. Because the impulse responses that do not
satisfy the sign restrictions are discarded, the posterior density of the sign-identified impulse
responses can be written as

/0 § c ©

9(6) = { Peee) =7 (7)
0 ife¢ O

where P(© € @) is the posterior probability that © € ©. Because P(© € @) does not depend on
O, finding the mode of the posterior of the sign-identified structural impulse responses reduces to
finding the maximum of the right hand side of (6) subject to the sign restrictions. In particular,
it is not necessary to reweight P(© € ©) to account for draws from the posterior that have
been rejected.

In practice we proceed as follows:

Step 1. Take a random draw, (B, X)), from the posterior of the reduced-form VAR parameters.

Step 2. For each (B,Y), consider N random draws of the rotation U, and for each combination

(B,%,U) compute the set of implied structural impulse responses ©.

Step 3. If © satisfies the sign restrictions, store the value of © and the value of f (@) Otherwise
discard ©.

Step 4. Repeat steps 2 and 3 M times and find the element of © that maximizes (6).

2.2.2 Credible Sets for Structural Impulse Response Functions

Define the 100(1 — a)% highest posterior density (HPD) credible set by

S =1{6 € ©:f(0) > cu} (8)



where f (C:)) is the posterior density of © and ¢, is the largest constant such that
PS) > 1-a

(see Definition 5 of Berger, 1985, p. 140).
In practice, we compute the 100(1 — «)% HPD credible set as follows:

Step 1. Take a random draw, (B,Y), from the posterior distribution of the reduced-form VAR

parameters.

Step 2. For each (B,X), consider N random draws of the rotation U, and for each combination

(B, %, U) compute the set of implied structural impulse responses O.

Step 3. If © satisfies the sign restrictions, store the value of © and the value of f(©). Otherwise
discard ©.

Step 4. Repeat Steps 2 and 3 M times and sort the pairs {(é, f ((:)))} in descending order by the
value of f(©). The 100(1 — )% HPD credible set consists of the set of ©’s contained in
the first (1 — &)@ sorted pairs, where @Q refers to the number of models among the M - N

draws that satisfy the sign restrictions.

Credible sets differ from conventional error bands for impulse responses in that the elements
of the credible set are vectors representing the impulse response functions up to some prespecified
horizon. There is no reason for credible sets to be dense necessarily. Rather a plot of the credible

set will typically exhibit a shot-gun pattern.

2.3 Partially Identified Models

A common situation in VAR models of monetary policy is that the structural model is only
partially identified in that we are concerned with identifying the policy shock, but no other
structural shocks. If we are concerned with a subset of impulse response functions only, what
matters for constructing the posterior mode is not the joint impulse response distribution, but
the marginalized distribution obtained by integrating out responses to shocks that are not
identified. To simplify the exposition we will focus on the case in which only impulse responses
to one structural shock are identified. The method proposed below can be modified to allow for
impulse responses to more than one shocks.

The sign-identified structural impulse responses, 61 = ®1aq, ..., 6, = ®pa, where a = Au, do

not single out a unique value of ®4, ..., ®,. That is because any ®; that satisfies
<I>ia = 01‘, i:17...7p (9)

is consistent with 6; and there are infinitely many of such ®;. Given np restrictions of the form



(9), one therefore needs to integrate out the joint posterior distribution of B with respect to

(n — 1)p of the parameters in B. Our approach exploits the following proposition.

Proposition 2:

f(80,01,...,0,) o / f(00,61,..., 0,0, 2@ ) f(@P) T)d(a, P, %)

/ laa["P|A] £@DB®,$) 5B, £)d(a, B, )

= /Iall”plfll F(BYBE. D) f(BAD)f(E)d(@, B, %), (10)

A heuristic proof of Proposition 2 may be constructed as follows. Consider a random draw of by
from the posterior distribution of ¥ and condition on its Cholesky decomposition, say A. Given
/Nl, the sign-identified impulse responses in the impact period, 6y, uniquely pin down the value
of @.3 Conditional on ¥, we draw the second through last columns of B;, i =1, ...,p, from the

unconstrained posterior distribution. Postmultiplying

$, = By, (11)
by a yields

91 = Bla (12)

Because a has a continuous distribution under our assumptions, a; # 0 with probability one.
Thus it follows from (12) that the first column of Bj is obtained from
01 — 3 50 a3 Buji

Bij1 = o forj=1,..,n (13)
1

with probability one, where B; ;, and a; denote the (j, k)th element of B; and the jth element
of aj, respectively. We now have a value of By that is consistent with (9).
Next, we postmultiply
dy = B1P; + Bo, (14)

by a to obtain
92 = 3191 +Bga, (15)

from which we obtain

¢y — 22:2 a;Ba jk
as

By ;1 = forj=1,..,n (16)

3Because A is nonsingular, @ = A~ !0, is uniquely defined and satisfies @' = W A’A VYA Au = w' A" Au =
u'u = 1 where A is the original Cholesky decomposition of 3 from which a is obtained.

10



where

¢y = 03 — B10;.

This provides a value of the first column of By that is consistent with (9). This process may be

repeated recursively until we reach B,. In the last step, we postmultiply
®, = Bi®, 1+ Bo®, o+ + By, (17)

by a to obtain
Hp = 3101,71 + BQHP,Q R Bpa, (18)

from which we obtain the first column of B, as:

N _a:B, s
Bpj1 = il Zkaf I7PIE for j=1,..n (19)

where

¢p =0, —B10,_1— - —Bp_161

Therefore, given ¥ and the second through last columns of B; for i = 1,2,...,p, the value of
01,..., 0, implies a unique value of @ and of the first columns of each B; (and vice versa).

Let B denote the pn(n — 1) column vector obtained by stacking the first columns of the
Bys,i=1,...,p, and let B? denote the corresponding second through last columns. Then the

marginal posterior density of the subset of structural impulse responses of interest is

f(a()vel,"'a /f 90791,"' p|u q) )f(q)@)ﬂi)d(q)@)ﬂi)

/ jaa "7 A] F(@D B, £)f(BA, £)d(BP), %)

jar[*?|A] f(BW B, D) f(BPR)f(£)d(BP, ), (20)

where the first equality follows because the distribution of u is uniform, the second equality
follows from applying the change-of-variables method to (13), (16),...,(19), and the last equality
follows from using the block diagonality of the Jacobian matrix and applying the change-of-

variables method to (11), (14),...,(17), |A| follows from 6y = A, (16),...,(19) and the last

11



equality follows from applying the change-of-variables method to (11), (14),...,(17).*Q.E.D.

Proposition 2 allows us to estimate the posterior density of 6y, 61, ...,0, (up to scale) by Monte

Carlo integration (see, e.g., Robert and Casella 2004).

To summarize:

Step 1. Generate M draws of (B,Y), from the posterior distribution of the reduced-form VAR

parameters with N independent draws each of the rotations U.

Step 2. For each of the M - N draws compute the set of sign-identified structural impulse responses

of interest, 6,01, ...,0,.

Step 2a For each of these sets of structural impulse response functions use (13),(16),...,(19) to
construct L draws of B®) and ¥, from which L draws of B(") are constructed. Evaluate

the value of

jar[*?|A] f(BY|BP),E). (21)

Step 2b Compute the average of (21) across the L draws considered in step 2a. This Monte Carlo
integration yields (up to scale) an estimate of the density f(6o,61,...,6,).

Given the marginal posterior density of the structural response functions of interest, we may

then compute the mode and credible sets as outlined earlier.

2.4 Implementation

In practice, we specify a diffuse Gaussian prior for the VAR slope parameters such that the pos-
terior mode of the slope parameters equals the least-squares estimator. For expository purposes,
we follow the literature in setting @ = 0.32. The mode and the credible set of course may be
computed from the same loop. The procedures were implemented in MATLAB or FORTRAN,

depending on the computational requirements.

3 Posterior Modes versus Posterior Medians

Before discussing the extent to which median response functions differ from response functions
of the modal model in practice, it is useful to develop some intuition about the limitations of

median response functions. Let ©;; ; denote the response of variable i to structural shock j at

given that there is a one-to-one mapping from (vec(B)', vech(A)’,veck(U)") to (Oo, ...
case, the argument that f(6o,01,...,6,) is a posterior density is more involved. Note that marginalizing the joint
posterior of the reduced-form parameters with respect to B™ and the ¥ that satisfies the identifying restrictions
yields the marginal posterior of B™ conditional on the identifying restrictions being satisfied. Because the mapping

between this BY) and the impulse responses characterized in equation (20) is one-to-one conditional on B® and DI

*In the fully identified case, the interpretation of the density f(©o,...,0,) as a posterior density is immediate

it follows that equation (20) is the posterior distribution of g, 61, ..., 0,.
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horizon h. One situation in which the vector of pointwise posterior medians is misleading as
a measure of the central tendency of a structural impulse response function is when posterior
draws of ©;; ,h =1, ..., H, for given ¢ and j, cross one another. This situation is illustrated in
Figure 1. The figure focuses on the response of real GDP to an unanticipated monetary policy
shock for a horizon of up to 36 months. This example was constructed by plotting a randomly
chosen subset of nine admissible response functions for the Uhlig (2005) model discussed in
section 4.2. It is evident that, for different horizons, the pointwise posterior median responses
coincide with responses of different admissible models. Specifically, the median response function
coincides with the response function of model 1 at horizons 4, 12-13, and 17-25; with the response
function of model 2 at horizon 9 and 15-16; with that of model 3 at horizon 16; with that of
model 5 at horizons 5-8, 10 and 27; with that of model 6 at horizons 0-3, 11 and 15, and with
that of model 9 at horizons 28-36. There is, in fact, no structural model in the admissible set
that could replicate the response pattern implied by the posterior median response function,
rendering this statistic economically meaningless. Note that it is not sufficient to show that
there are no cross-overs between impulse response functions. Similar problems may arise even
in the absence of cross-overs when the order of the models differs for two response functions
at some horizon h. Verifying the absence of these problems is not practically feasible, given
the thousands of admissible models implied by typical sign-identified VAR models. A key
advantage of the approach discussed in section 2 is that it avoids both of these problems by
construction. Moreover, as discussed in the introduction, median response functions are not
appropriate measures of the central tendency of the vector of impulse responses, making them
difficult to intepret not only from an economic, but even from a purely statistical point of view.
Focusing instead on the impulse response functions of the most likely structural model therefore
seems natural in our context.’

It is important to understand the implications of this choice. Even if we focus on one impulse
response coefficient at a time, the posterior mode will differ systematically from the posterior
median. To illustrate these differences, consider a scalar process y; = py;—1 + €4, € N (0,1),
where t = 1,...,7. In population, p = 0. We generate a random draw of length T" = 200
from this process and postulate a diffuse Gaussian prior for p. Consider the impulse response
at horizon h defined as dy;yp/0c; = p*. We focus on h = 1 for illustrative purposes. The
left panel of Figure 2 shows the posterior density of p in the absence of sign restrictions. The

distribution is centered on the least-squares estimate, which for this sample is slightly positive.

>Qur emphasis on the mode of the joint distribution of models is not without precedence. The same approach
is used in classical maximum likelihood estimation, for example. Likewise, there is precedence for focusing on the
peak of the posterior in Bayesian analysis (see, e.g., Rubio-Ramirez, Waggoner and Zha 2009). There clearly are
situations in which the use of the mode may be problematic (such as for bimodal distributions with equally high
peaks in both tails and little probability mass in the center), but in that case the median or the mean would not be
adequate summary statistics either. In any case, our empirical analysis below suggests that such extreme examples

are not practically relevant.
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By construction, the least-squares estimate is both the mode and the median of the posterior
distribution of p. The right panel shows the corresponding posterior density after imposing the
restriction p > 0, which is equivalent to restricting all impulse responses to be positive. The
dotted line is the posterior median; the dashed line is the mode. The right panel illustrates
that the posterior median in the sign-identified model by construction implies a larger impulse
response than the posterior mode, which is the most likely value of p by construction. In other
words, the posterior median is a biased estimator of the response associated with the most likely
model even when dealing with one impulse response at a time.

This intuition carries over to impulse responses in sign-identified VAR models. The problem
of using median responses is not merely one of overstating (or understating) the magnitude of
the impulse responses. As we will illustrate in section 4.2, in higher-dimensional models with
richer dynamics it is even possible to find examples in which impulse responses of the most likely
admissible model are of a different sign than the pointwise posterior median. Such examples
suggest that there is a need more generally to reexamine the findings of earlier studies that were
based on posterior median responses from sign-identified VAR models. In the next section, we

consider one fully identified model and one partially identified model for illustrative purposes.

4 Sign-Identified Models

4.1 Fully Identified Case: Oil Demand and Supply Shocks

There is a growing literature of models of the global market for crude oil based on fully identified
structural VAR models. Here we follow Kilian and Murphy (2011) in specifying a monthly
VAR(24) model with intercept for 1973.2-2008.9. The set of variables consists of monthly data
for the percent change in global oil production, a measure of global real activity (in deviations
from trend), and the real price of crude oil. The variables are defined and discussed in detail in
Kilian (2009). We combine some of the key identifying assumptions from the existing literature.
We first impose sign restrictions on the impact responses of each variable to each structural
shock. An unanticipated oil supply disruption causes oil production to fall, the real price of
oil to increase, and global real activity to fall on impact. An unanticipated increase in the
flow demand for oil driven by the global business cycle causes global oil production, global real
activity and the real price of oil to increase on impact. Other positive demand shocks (such
as shocks to oil inventory demand driven by forward looking behavior) cause oil production
and the real price of oil to increase on impact and global real activity to fall. Second, we
bound the impact price elasticity of oil supply by 0.025, as suggested by Kilian and Murphy
(2011). This elasticity can be expressed as the ratio of two impact responses. This identifying

restriction is consistent with widely held views among oil economists that the short-run price

14



elasticity of oil supply is close to zero. Very similar results would be obtained if we doubled
that bound. Finally, we follow Baumeister and Peersman (2009) in restricting the real price of
oil to be positive for the first year in response to unanticipated oil supply disruptions and in
response to positive oil demand shocks. We construct the posterior distribution of the impulse
responses estimates based on M = 5000 draws from the reduced-form posterior distribution
with N = 20,000 rotations each.

Figure 3 displays the responses of each variable to each shock in the modal model along
with the corresponding 68% credible sets. The responses have been normalized such that each
structural shock implies an increase in the real price of oil. All structural response function
estimates are consistent with standard economic intuition. For example, a negative flow supply
shock is associated with a persistent decline in oil production, a modest increase in the real price
of oil, and a gradual modest decline in global real economic activity. A positive flow demand
shock is associated with a persistent and hump-shaped response in both global real activity
and the real price of oil and with little response in global crude oil production. Other demand
shocks (such as shocks to oil inventory demand) cause a temporary increase in the real price of
oil, a temporary decline in global real activity for about 20 months and little response in global
crude oil production. The corresponding credible sets indicate considerable uncertainty about
the price responses and to a lesser extent for the responses in real activity, whereas the credible
sets for oil production responses are quite narrow. Nevertheless, several response functions are
precisely enough estimated to conclude that the response differs from zero.

There also are important differences between the most likely estimates provided by the modal
model and the conventional median response functions. Figure 4 demonstrates that the median
response function may be closer to zero or further away from zero than the responses of the
modal model. For example, median response functions overestimate the magnitude of the price
response to other demand shocks, but underestimate the response of global real activity to the
same shock. Moreover, pointwise 68% posterior error bands provide little protection against
mis-characterizing the impulse response dynamics, as shown in Figure 5. In many cases, the
response functions of the modal model are outside the pointwise error bands for at least some
horizon. Figure 5 also illustrates that pointwise intervals tend to understate the estimation
uncertainty compared with credible sets that capture the joint uncertainty over all impulse
response functions. This example illustrates that the way estimates of sign-identified VAR

models are represented matters for the interpretation of the data.

4.2 Partially Identified Case: Monetary Policy Shocks

Whereas the preceding example dealt with a fully identified model, this section considers an

example of a partially identified model. We focus on the model of U.S. monetary policy proposed
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by Uhlig (2005). Our focus in this section is not so much on whether this specific model is an
appropriate model of U.S. monetary policy, but whether the method of statistical evaluation
makes a difference for the economic interpretation of the results. The central question in Uhlig
(2005) is what the effects of an unanticipated monetary contraction are on real output. We
follow Uhlig in constructing a VAR(12) model without intercept. The set of variables consists of
monthly U.S. data for the log of interpolated real GDP of the US, the log of the interpolated GDP
deflator, the log of a commodity price index, total reserves, non-borrowed reserves and the federal
funds rate. The sample period is 1965.1-2003.12 to ensure compatibility with Uhlig’s original
analysis.5 The numerical stability of the results requires a fairly large number of draws, especially
for M and L. We construct the posterior distribution of the impulse responses estimates based
on M = 5,000 draws from the reduced-form posterior distribution with N = 500 rotations each.
We set L = 20, 000.

Figure 6 demonstrates that there are important differences between the median response
estimates of the response of real output and the response in the modal model. Whereas Uhlig
reported a peak median output response of 0.15 percentage points, for the same data, we obtain
a peak response of almost 0.5 percentage points based on the modal model. Moreover, that peak
value is near the upper end of the credible set and outside the conventional pointwise posterior
error band. It should be noted that both the median estimate and the response estimate based
on the modal model are counterintuitive in that a monetary tightening would be expected to
cause a decline in real output over time rather than an increase. This outcome reflects the fact
that the identifying assumptions are not overly informative. Even in Uhlig’s original analysis,
there was substantial pointwise probability mass on both negative and positive responses of real
output. Our 68% credible set further widens the set of probable response functions.

The explicit reason why Uhlig (2005) did not impose further restrictions is that he wished to
be as agnostic as possible about the response of real output. It has been shown that this approach
is appropriate only to the extent that we view models in which real output increases in response
to a monetary tightening as equally plausible a priori as models in which real output declines
(see Kilian and Murphy 2011). In an effort to relax that assumption, in Figure 7 we consider
an alternative set of models that impose an additional sign restriction on the response of real
GDP after 6 months (and only at that horizon). This identifying assumption leaves the short-
run as well as the longer-run response of real output unrestricted. The resulting modal model
produces substantially different and more economically plausible results, including a cumulative
drop in real GDP of -0.3 percentage points in the second quarter. The response estimate for the
modal model is at the lower end of the credible set and again outside the conventional pointwise

posterior error band. It also is substantially different from the response estimate obtained

SFor a more detailed description of the data the reader is referred to Uhlig (2005). The data set was provided by
Harald Uhlig.
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from the traditional Cholesky decomposition. One difference is that the reduction in real GDP
in Figure 7 is temporary, whereas traditional Cholesky models imply a much more persistent
decline in real GDP. Even in this alternative model, however, the 68% credible set includes many
positive real output responses, suggesting that the data are not informative about the response
of real output. Likewise the other response functions are estimated only very imprecisely. We
conclude that there remains substantial uncertainty about the effects of monetary policy shocks
on real output, whereas there is strong evidence of the effects of oil demand shocks on the real
price of oil in the earlier example.

Figures 8 and 9 elaborate further on the results in Figure 7. Figure 8 illustrates that there
can be substantial differences between the median response function estimates and the response
function estimates based on the modal model. For example, the decline in real GDP caused
by an unanticipated monetary contraction is much larger in the modal model, at least in the
short run. In some cases, the median and the modal response of real GDP differs not only in
magnitude, but in sign. Finally, Figure 9 demonstrates that the modal model response may be
outside the conventional pointwise 68% error bands. This is true in particular for the response
of real GDP and to a lesser extent for the response of commodity prices and the own-response

of the federal funds rate.

5 Exactly Identified Models

Our approach is not limited to sign-identified models. It can also be applied to exactly identified
models. A case in point is a recursively identified model, in which the policy reaction function is
ordered last in the system of equations. This type of model is commonly used in the monetary
policy literature and indeed is the point of departure for the analysis in Uhlig (2005). The only
difference to the earlier model is that the order of the variables matters. We follow Uhlig in
ordering the variables of the VAR(12) model as real GDP, GDP deflator, commodity prices,
federal funds rate, nonborrowed reserves and total reserves. The model in question is only
partially identified. The object of interest are the responses to an orthogonalized federal funds
rate shock.

Uhlig (2005) reports the posterior median impulse response functions. As in the sign-
identified model, this measure of the central tendency of the structural impulse responses is
valid only pointwise and need not correspond to the impulse response functions implied by the
most likely structural model. Uhlig also reports pointwise 68% posterior error bands for this
model. It is well known that these pointwise error bands fail to convey the true uncertainty
surrounding these impulse response functions. This problem has been long recognized, but few
practical alternatives have been proposed in the literature, which explains why these methods

have remained the standard in the structural VAR literature (see, e.g., Liitkepohl 1990, Sims
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and Zha 1999, Jorda 2009).

A solution to this problem is provided by a simplified version of our baseline procedure for
sign-identified models. In the fully identified case, corresponding to case 3 in Table 1, it suffices
to replace the rotation matrices in the procedure outlined in section 2.2 by the identity matrix

and to modify the Jacobian of the transformation accordingly. We obtain

d[vech(6y)’ vec( [(:)17 O2, ..., ép:| )]

F(6) o dlvec(B)' vech(A)]

71 |,

where O is the impulse response matrix in the impact period and 61, (:)2,...,ép are the impulse
response matrices at higher horizons. It follows from (:)j =0;Afor j =1, ...,p, and equation (29)

in the appendix that the determinant of the Jacobian reduces to |A|"" |E4[(A® I,,) + (I, @ A)K,2]E4|,
where E4 is defined in the appendix. On the basis of this result, we can evaluate the posterior as
discussed earlier. This simplified procedure could be applied, for example, to the fully structural

oil market VAR model in Kilian (2009).

The partially point-identified case considered by Uhlig (2005) corresponding to case 4 in
Table 1 is more involved. Suppose that only impulse responses to the kth shock are considered
(e.g., monetary policy shocks). Because the impulse responses in the impact period correspond
to the kth column of the Cholesky decomposition, we need to draw 3 conditional on the kth
column of its Cholesky decomposition when marginalizing the joint posterior density. We write

the Cholesky decomposition as

A 0 0
A= | Ay Ay 0
Ag1 Asy Ass

where Alla 14217 A22, A31, A32 and A33 are ni; Xny, 1x 1, No X Ny, o X 1 and Nng X N2 matrices,

n1+1+mn2 =n,and [0 AL, Aj,]" corresponds to the kth column of A. Then

A11A/11 AllA/21 AllAél
Y= | Ag Al AgiAYy + Agp A, Ag1 Ay + Az Ajy
A1 Al A1 Ay + AgpAhy Az Azi + Asg Al + Ags Al

Because
A1 AYy + A Ajy A1 Afy + A Ajy | Axdy Agp Ay
I Az1 Ay + Asp Ay Ag1 Azt + Asp Afy + Asz Al AzoAby  AsaAby + Ags Al
[ Ay Al Ay Al
_ 2145, 2145, (22)
I Az1 Ay Az Asy + Az Al
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is positive definite and Asq, A3; and Asz are unconstrained, one can draw 3 from the posterior
distribution of ¥ conditional on the kth Cholesky decomposition by drawing S from the uncon-
ditional posterior distribution of ¥ and retaining the draws in which (22) is positive definite.
We draw B’s that are consistent with the impulse responses 81, 62, ..., 0, in the same way as
in Proposition 2 except that we condition on the nth columns of B; rather than the first column
of B;. This is because the first element of 0y is zero (unless the first shock is considered).
Let B denote the last columns of B;’s and let B(®) denote their first through second-to-last

columns. Then we can summarize our approach in the following proposition:
Proposition 3:

f(00,01,...,0,) o / £(00,01, ....0,|5, @@, ) (@3, £)d(2?), %)

- / ] F(@DB®,5) (B2, £)d(BP, %)

/ lan[™ F(BV|B®, ) f(BO|)f()d(BP,5), (23)

where the integration is taken over B(?) and the 3. whose (na+1) x (ny+1) lower-right submatrix

satisfies the restriction (22).

The resulting procedure allows the user to construct credible sets for the structural impulse
response functions for exactly identified structural VAR models that account for the joint uncer-
tainty in the set of structural impulse response functions. It provides a convenient alternative
to traditional pointwise error bands that is easy to implement. We illustrate this point for the
responses to an unanticipated monetary tightening in the (partially) recursively identified VAR
model used as a benchmark in Uhlig (2005). Uhlig’s Figure 4 reported the pointwise median
response functions and pointwise 68% posterior error bands for this model. We instead report
the response functions of the modal model and the corresponding 68% joint credible set. All
results are based on M = 5,000 and L = 20,000. Figure 10 shows that, even after accounting
for the full uncertainty about the impulse response dynamics, the response functions of real
GDP, of the federal funds rate and of nonborrowed reserves are precisely enough estimated to
be economically informative at least at some horizons. The price puzzle and the puzzling initial
increase in real GDP in response to an unanticipated monetary tightening, in contrast, can
be attributed to estimation uncertainty. This result highlights the importance of simultaneous
inference for all structural impulse responses. A user of pointwise 68% posterior error bands
would have concluded that these puzzles cannot be explained merely by estimation uncertainty.

Figure 10 also illustrates that the median response functions may differ substantially from
the response functions of the modal model. For example, the response of total reserves in the

modal model differs not only in magnitude, but also in sign. The negative response of commodity
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prices doubles in magnitude compared with the results in Uhlig (2005) and the response of the
GDP deflator turns negative after only 24 months rather than 48 months. These differences
highlight that accounting for the dependence across impulse response estimates is important

even in point-identified models.

6 Concluding Remarks

Conventional approaches to summarizing the evidence from sign-identified impulse response
functions based on quantiles of the pointwise posterior distribution of impulse responses lack a
clear economic interpretation and fail to convey the uncertainty about the structural responses
functions. We proposed an alternative approach based on a characterization of the most likely
models in the set of admissible structural models. The approach discussed in this paper is
explicitly Bayesian in nature. The use of Bayesian methods facilitates the interpretation of
sign-identified VAR models and is standard in this literature. In fact, it is not clear how to
extend our approach to evaluating sign-identified VAR models to frequentist settings.”

For exactly identified VAR models, in contrast, one could construct joint asymptotic normal
approximations of the distribution of the impulse responses (see, e.g., Liitkepohl 1990, Mittnik
and Zadrozny 1993). This allows joint inference based on the Bonferroni principle, although
that method is impractical given its low power (see Liitkepohl 1990). As an alternative, Jorda
(2009) recently proposed the construction of joint confidence intervals based on Scheffé’s method.
Likewise, our approach in this paper could be adapted to provide joint confidence sets for
structural impulse response functions in exactly identified models based on the conventional
asymptotic normal approximation.

Finally, in related work, Sims and Zha (1999) proposed a joint impulse response error band
based on the mean and variance of the joint posterior distrubution of the structural impulse
responses in exactly identified models. Their Bayesian error band could also be computed for
impulse response functions in sign-identified models, but has no obvious rationale in the absence
of normality. The reason is that only under normality the first two moments provide an adequate
characterization of the distribution. It is well known that the finite-sample posterior distribution
of impulse responses tends to be highly nonnormal. In the case of exactly identified models, the
joint impulse response distribution is at least aymptotically normal. In the sign-identified model,
in contrast, asymptotic normality breaks down, as shown by Moon, Schorfheide, Granziera, and
Lee (2009), making this approach less appealing. In either case, the probability content of
the 68% joint error band of Sims and Zha (1999) will be at best approximately 68% in finite

"Moon, Schorfheide, Granziera, and Lee (2009) recently proposed pointwise frequentist confidence intervals for
impulse response estimates obtained from sign-identified VAR models. They showed that Bayesian and classical
inference do not coincide even asymptotically in sign-identified VAR models. Moon et al. do not address the question
of how to construct joint confidence regions or the question of which response estimates are most likely.
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samples. In contrast, our credible set has exactly 68% probability content in finite samples by
construction. An interesting question for future research would be to see how well the error
band proposed by Sims and Zha approximates its nominal probability content in the exactly
identified and in the sign-identified case.

Two empirical examples illustrated that the way information from structural VAR model
estimates is represented matters. Responses based on the modal model and the associated
credible sets can generate very different assessments of the evidence than traditional methods.
It may seem that there could be alternatives to the use of the posterior mode in characterizing the
structural impulse responses of the most likely model. We motivated our analysis by observing
that posterior median response functions are not appropriate for characterizing the central
tendency of structural impulse response functions. The use of the mode of the posterior is
not without precedent in Bayesian analysis (see, e.g, Rubio-Ramirez, Waggoner and Zha 2010,
p. 684). One obvious alternative statistic might seem to be the vector of posterior means.
The posterior mean is statistically well-defined in the vector case and does not suffer from the
second shortcoming discussed in the introduction. Given a finite set of admissible posterior
draws, the posterior mean in general will not correspond to any one structural model in the
set of admissible models, however, making it vulnerable to the first shortcoming. One way of
addressing this concern would be to search for the admissible structural model that produces
impulse responses closest to those of the posterior mean response functions, building on an idea
in Fry and Pagan (2011).® We do not pursue this idea in this paper. One disadvantage of the
posterior mean approach compared with focusing on the most likely or modal model is that there
is no natural way of constructing joint credible sets in the sign-identified model. In contrast,
our approach in this paper has the advantage of allowing for a unified treatment of estimation

and inference in both the exactly identified and the sign-identified VAR model.

8Fry and Pagan (2011) suggested to minimize the distance to the median response function. That idea is not
advisable because the posterior median response function is not a well defined statistical object, as discussed earlier,
but the same idea could be applied without problems to the posterior mean response function.
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Technical Appendix

Proof of the result that the mapping between the first p + 1 structural impulse responses 6 =
[A, @14, ,®,A] and [B,vech(A),veck(U)] is one-to-one: Because there is a one-to-one map-
ping between B and the reduced-form vector moving average coefficient matrices ®;,7=1,2,...,p
(see equation 10.1.19 of Hamilton, 1994, p.260, for example), establishing this result comes down
to showing that the mapping between A and the pair vech(A) and veck(U) is one-to-one. We
prove this result in two steps. Recall that - because the orthonormality restriction UU’ = I,
imposes n(n + 1)/2 restrictions on the n x n matrix U - one can recover all elements of U
from its upper diagonal elements, veck(U). First, suppose that A; # Ay but A; = A,. Then
fljfl;- = A;U;UIA} = Aj A} regardless of the value of U; because U;U] = I, for j = 1,2. Be-
cause A; = A, this implies 14_1114_1’1 = AQAIQ which contradicts the assumption that A; # A,.
Hence, A; # Ay implies vech(A); # vech(A),. Second, suppose that [A1,U;] # [Az, Us] but
Ay = Ay. Because A1 A} = A1 A) = Ay A, = Ay A} and the Cholesky decomposition is uniquely
determined for positive definite matrix ¥, it has to be the case that 47 = Ay and Uy # Us.
Because A; is nonsingular for j = 1,2, however, U; = Aflﬁl = A51A2 = Us,, which is a
contradiction. Hence, [A1,U;] # [Az,Us] implies A; # As.
Derivation of the Jacobian matrix in Proposition 1: Let D,, denote the n?xn(n+1)/2 duplication
matrix of zeros and ones such that vec(M) = D, vech(M) for n x n symmetric matrix M (see
Magnus and Neudecker, 1999, pp.49). D; denotes the Moore-Penrose inverse of D, so that
we can write vech(M) = D;vec(M). K,, denotes the n? x n? communication matrix such that
vec(M') = K,vec(M) for n x n matrix M (see Magnus and Neudecker, 1999, pp.46-47).

Let & = [®) @ - ®) and A, = [A®) A®) --- A®) where ®; is the ith

reduced-form vector moving average coefficient matrix. Because A; = ®AU,

vec(A)
VeC(Zl) B Uel, I,A O,z xn2p (24)
Olvec(A)" vec(U)" vec(®)'] Ued I,oPA AL, |

We need to replace the partial derivatives with respect to vec(A4) and vec(U) in (24) with
those with respect to vech(A) and veck(U). It follows from UU’ = I,, that

(UI,)+ (I, ®U)K,|dvec(U) = 0p2x1, (25)
from which we obtain

D;H(U ® 1) + (In @ U)Kpldvec(U) = On(nt1)/2x1- (26)
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Let Ej, and Ej, denote the (n? x n(n +1)/2) and (n? x n(n — 1)/2) matrices of zeros and ones

such that

vech(U)
vec(U) = [E) Fy]
veck(U)

Then (26) can be written as

DU @ In) + (In @ U) K] Epvech(U) + Dy (U ® In) + (In @ U) K] Exveck(U) = On(ns1)/2x1-
(27)
Applying the implicit function theorem to (27), the Jacobian of vec(U) with respect to veck(U)

can be written as

Thus, it follows from (24) and (28) that

5 vec(A)
I vec(f) | WeL)D, (In®A)Ju  Op2xn2p (20)
1T BlvechA’ veck(U) vec(®)] U ®®)D, (I, @ DAy A'® I, ‘

Because (29) is block-diagonal, its determinant is given by the product of determinants:

| J1] (U' ® I,)D,, (I, @ A)Jy| |A' @ L)

(U ® I,)D, (I, ® A)Jy| |A™ . (30)

Because of the recursive relationships (11), (14),...,(17) between B and @, the Jacobian matrix

of 6 with respect to B is block-diagonal and each diagonal block has unit determinant. Thus

171 = | st - @)
Since the Jacobian of vec(X) with respect to vec(A) is
[(A@ L) + (In © A)Knl, (32)
the determinant of the Jacobian of vech(X) with respect to vech(A) is given by
[Ja] = [DL[(A® In) + (In @ A) K] Dy (33)

Therefore it follows from (30), (31) and (33) that the determinant of the Jacobian in (6) is given
by the product of |J;] in (30) and |J3] in (33) subject to sign.
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